WO2023100414A1 - Autonomous mobile object control method - Google Patents

Autonomous mobile object control method Download PDF

Info

Publication number
WO2023100414A1
WO2023100414A1 PCT/JP2022/027505 JP2022027505W WO2023100414A1 WO 2023100414 A1 WO2023100414 A1 WO 2023100414A1 JP 2022027505 W JP2022027505 W JP 2022027505W WO 2023100414 A1 WO2023100414 A1 WO 2023100414A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
autonomous mobile
mobile body
route
controlling
Prior art date
Application number
PCT/JP2022/027505
Other languages
French (fr)
Japanese (ja)
Inventor
義文 郡
聡夫 重兼
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280076820.1A priority Critical patent/CN118369629A/en
Priority to JP2023564740A priority patent/JPWO2023100414A1/ja
Publication of WO2023100414A1 publication Critical patent/WO2023100414A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present disclosure relates to a control method for an autonomous mobile body.
  • Patent Literature 1 discloses a robot that autonomously moves between floors using an elevator installed in a facility.
  • Japanese Patent Laid-Open No. 2004-100000 discloses a technique for controlling a robot to rotate and align the orientation of the robot with the elevator in order to realize smooth boarding and alighting operations when boarding and alighting on an elevator.
  • An object of the present disclosure is to provide a control method for an autonomous mobile body that can autonomously and safely move to the inside of an elevator cage.
  • a method for controlling an autonomous mobile body is a method for controlling an autonomous mobile body that controls a driving unit that moves an aircraft, and an approach route that is a route of the autonomous mobile body to a starting point outside an elevator is set. determining, determining a first step of controlling the drive unit to move the aircraft based on the approach route, and determining a boarding route that is a route of the autonomous mobile body from the starting point to the end point inside the elevator; and a second step of controlling the drive to move the vehicle based on the boarding path.
  • the autonomous mobile body can autonomously and safely move to the inside of the elevator car.
  • FIG. 1 is a perspective view showing an example of an appearance of an autonomous mobile body according to an embodiment of the present disclosure
  • FIG. Top view of autonomous mobile body Diagram showing how an autonomous mobile body turns Functional block diagram of autonomous mobile body
  • Flowchart showing an operation example of an autonomous mobile body
  • Schematic diagram showing a top view of an autonomous mobile body moving in an elevator and its surrounding area
  • a diagram showing a specific example of section information when an autonomous mobile body moves on the floor shown in FIG.
  • Diagram for explaining the turning direction of the aircraft at the waypoint Diagram for explaining another example of the turning direction of the aircraft at the waypoint
  • FIG. 1 is a perspective view showing an example of the appearance of an autonomous mobile body 1 according to an embodiment of the present disclosure.
  • the autonomous mobile body 1 is an autonomous mobile robot that can move autonomously, for example, inside a facility. In the present disclosure, it is assumed that the autonomous mobile body 1 is used in a facility that allows movement to multiple floors by elevator.
  • the autonomous mobile body 1 comprises a body 11 to which a pair of drive wheels 12 and a pair of driven wheels 13 are attached.
  • the movement of the autonomous mobile body 1 may be described as the autonomous mobile body 1 moving the body 11 .
  • FIG. 2A is a top view of the autonomous mobile body 1.
  • the autonomous mobile body 1 can move forward or backward with the driven wheel 13 side as the front and the driving wheel 12 side as the rear.
  • the autonomous mobile body 1 can rotate the body 11 and adjust the orientation of the body 11. For example, by rotating the left and right drive wheels 12 in opposite directions at a constant speed, the fuselage 11 can turn about the midpoint of the left and right drive wheels 12 .
  • the position of the center when turning the fuselage 11 is described as the turning center Cw.
  • the state before turning of the airframe 11 is shown with a solid line, and the state after turning is shown with a dotted line.
  • the turning center Cw of the body 11 is located at the center of the drive wheels 12, which are the rear wheels. That is, as shown in FIG. 2B, the turning center Cw is shifted rearward from the center position of the body 11 in the longitudinal direction.
  • the center of rotation of the airframe 11 is eccentric to the rear side.
  • the eccentricity of the turning center means that the turning center is deviated from the center of the circumscribed circle of the body 11 when viewed from above.
  • the rear side of the fuselage 11 is an example of one side of the present disclosure.
  • the eccentricity of the turning center refers to the above-described mode, but is not limited to this.
  • the turning center may be shifted from the center of gravity of the aircraft. In either case, it is possible to safely and autonomously move to the inside of the elevator car by the method of getting into the elevator car, which will be described later.
  • range sensors 14A and 14B are attached to the airframe 11.
  • the range sensors 14A and 14B acquire the distance to an object existing around the autonomous mobile body 1, such as an obstacle or a wall, for each angular resolution.
  • the ranging sensor 14A is attached to the front of the airframe 11, and the ranging sensor 14B is attached to the rear of the airframe 11.
  • Range sensor 14A detects the position and direction of an object present in front of airframe 11
  • range sensor 14B detects the position and direction of an object present in front of airframe 11.
  • FIG. In the following description, the range sensors 14A and 14B may be collectively referred to as the range sensor 14.
  • a control unit 15 is provided inside the airframe 11 .
  • the control unit 15 is a computer including a processor such as a CPU (Central Processing Unit) and a storage medium such as a memory.
  • a processor such as a CPU (Central Processing Unit)
  • a storage medium such as a memory.
  • FIG. 3 is a functional block diagram of the autonomous mobile body 1. As shown in FIG. 3
  • the control unit 15 includes a storage unit 151 , a movement control unit 152 , a route determination unit 153 , a position estimation unit 154 and a target point setting unit 155 .
  • the storage unit 151 includes a map information storage unit 151A, a section information storage unit 151B, and a shape information storage unit 151C.
  • the map information storage unit 151A stores map information of the range in which the autonomous mobile body 1 can move.
  • the autonomous mobile body 1 stores section information in the section information storage unit 151B.
  • the shape information storage unit 151C stores information about the shape of the elevator.
  • the map information is information related to a map that indicates areas where the autonomous mobile body 1 can move and areas where obstacles such as walls and signboards exist.
  • the map included in the map information is an occupation grid map.
  • the occupancy grid map is obtained by dividing the floor on which the autonomous mobile body 1 moves into grids and giving each grid a value indicating whether it is a movable area or an area corresponding to an obstacle. .
  • the section information storage unit 151B stores section information indicating the section in which the autonomous mobile body 1 moves.
  • the section information includes the start point position and end point position of the section, and information indicating whether the end point position is inside the elevator.
  • the section information storage unit 151B may store section information regarding one section in which the autonomous mobile body 1 is scheduled to move from now on, or may store section information regarding a plurality of sections.
  • the section information about the plurality of sections is stored in the section information storage unit 151B in association with the order of the sections in which the autonomous mobile body 1 moves.
  • the section information storage unit 151B may store all the section information in advance. It may be accumulated at any time. The section information will be described later in detail with specific examples.
  • the shape information storage unit 151C stores shape information related to the shape of the elevator in which the autonomous mobile body 1 gets on.
  • the shape information is information about the shape of the elevator when the door is open. The shape information will be described later in detail with specific examples.
  • the movement control unit 152 controls the movement of the autonomous mobile body 1. Specifically, the movement control unit 152 controls the drive wheels 12 so as to move the body 11 along the route generated by the route determination unit 153 . Note that the movement control unit 152 may avoid obstacles within a range that does not deviate from the route based on the detection result of the range sensor 14 while the body 11 is moving along the route.
  • the route determining unit 153 determines a route for moving the aircraft 11 from the starting position to the ending position based on the map information and the section information, and generates route information regarding the determined route.
  • the position estimating unit 154 uses the detection result of the range sensor 14, the rotational speed information indicating the rotational speed of the driving wheel 12 output from the encoder incorporated in the driving wheel 12, and the information stored in the map information storage unit 151A. Based on the existing map information, the position of the autonomous mobile body 1 is estimated.
  • the target point setting unit 155 prevents the aircraft 11 from colliding with a wall surface provided with an elevator entrance, an elevator entrance, a wall surface inside the elevator, or the like. Set a target point to be moved so as not to
  • FIG. 4 is a flow chart showing an operation example of the autonomous mobile body 1 having the configuration described above. The flowchart shown in FIG. 4 is executed when the autonomous mobile body 1 tries to newly move one section.
  • step S1 the route determination unit 153 acquires section information for the next movement of the autonomous mobile body 1 from the section information storage unit 151B.
  • the section information includes the starting point position, the ending point position of the section, and information indicating whether the ending point position is inside the elevator.
  • step S2 the route determining unit 153 refers to the acquired section information and determines whether the end point is inside the elevator. If the end point is not inside the elevator (step S2: N), the process proceeds to step S3, and if the end point is inside the elevator (step S2: Y), the process proceeds to step S7.
  • step S3 the movement control unit 152 turns the front side of the body 11 to face the end point position.
  • step S4 the route determination unit 153 uses the first route determination method to determine a route for moving the aircraft 11 from the start position indicated by the section information to the end position. The details of the first route determination method will be described later.
  • step S5 the movement control unit 152 moves the body 11 forward along the route.
  • step S6 the movement control unit 152 determines whether or not the body 11 has reached the end point position due to the movement in step S5. If the machine body 11 has reached the end position (step S6: Y), the process returns to step S1, and if not (step S6: N), the process returns to step S5.
  • step S7 the movement control unit 152 turns the front side of the body 11 away from the end position.
  • step S8 the route determination unit 153 uses the second route determination method to determine a route for moving the aircraft 11 from the start position indicated by the section information to the end position. The details of the second route determination method will be described later.
  • step S9 the movement control unit 152 moves the body 11 backward along the route.
  • step S10 the movement control unit 152 determines whether or not the body 11 has reached the end point position due to the movement in step S9. If the machine body 11 has reached the end position (step S10: Y), the process returns to step S1, and if not (step S6: N), the process returns to step S9.
  • step S6 or step S10 If it is determined in step S6 or step S10 that the autonomous mobile body 1 has finished moving through all sections, the process ends.
  • FIG. 5 is a schematic diagram showing a top view of the autonomous mobile body 1 moving in the elevator 500 and its surrounding area.
  • FIG. 5 shows an example in which the departure point Ps is provided at one location in the elevator hall 600 facing the entrance of the elevator 500, and the destination point Pd is provided inside the elevator 500, respectively.
  • the autonomous mobile body 1 first moves from the departure point Ps to the vicinity of the entrance of the elevator 500 in the elevator hall 600 , changes direction (turns) on the spot, and then moves to the destination point Pd inside the elevator 500 .
  • the point where the autonomous mobile body 1 turns is referred to as a waypoint Pw.
  • a waypoint Pw is a point in the elevator hall 600 and near the entrance of the elevator 500 .
  • the waypoint Pw is preferably set at a position relatively close to the entrance of the elevator 500 .
  • the starting point Ps, waypoint Pw, and destination point Pd are set in advance before the autonomous mobile body 1 starts moving.
  • a two-dimensional coordinate system XY is set in the top view shown in FIG.
  • the X-axis is an axis set in a direction parallel to the wall surface 501 on which the elevator entrance is provided
  • the Y-axis is an axis set in a direction perpendicular to the wall surface 501 on which the elevator entrance is provided.
  • the coordinates corresponding to the departure point Ps are (10,10)
  • the coordinates corresponding to the waypoint Pw are (40,10)
  • the coordinates corresponding to the destination point Pd are is (40,30).
  • FIGS. 6A and 6B are diagrams showing specific examples of section information when the autonomous mobile body 1 moves on the floor shown in FIG.
  • the section information includes the section number, starting point position, ending point position, elevator flag, and maximum speed of each section.
  • the section number is the number given to each section.
  • 6A shows the section information of the section given the section number 01
  • FIG. 6B shows the section information of the section given the section number 02.
  • the section information is associated with each section number and stored in the section information storage unit 151B.
  • Section number 01 corresponds to the section from the departure point Ps to the waypoint Pw shown in FIG.
  • section number 02 corresponds to the section from the waypoint Pw to the destination point Pd shown in FIG. That is, the section indicated by the section number 01 and the section indicated by the section number 02 are continuous.
  • the section corresponding to section number 01 may be referred to as section 01
  • the section corresponding to section number 02 may be referred to as section 02.
  • the starting point position indicates the position of the starting point of each section.
  • the end point position indicates the position of the end point in each section.
  • the starting point position of section 01 shown in FIG. 6A corresponds to the starting point Ps shown in FIG. 5, and the coordinates are (10, 10).
  • the end point position of the section 01 shown in FIG. 6A and the starting point position of the section 02 shown in FIG. 6B correspond to the waypoint Pw, and the coordinates are (40, 10).
  • the end point position of the section 02 shown in FIG. 6B corresponds to the destination point Pd, and the coordinates are (40, 30).
  • the elevator flag is a flag indicating whether or not the end point position of each section is inside the elevator, and corresponds to the information indicating whether or not the end point position is inside the elevator in the above description.
  • the elevator flag is set to "1" if the end point location is inside the elevator, and to "0" otherwise.
  • the inside of the elevator means the space inside the car of the elevator.
  • the end point position of section 01 i.e., waypoint Pw
  • the elevator flag is "0"
  • the elevator flag is "1"
  • the maximum speed is the maximum speed at which the autonomous mobile body 1 can move in each section.
  • the method of setting the maximum speed is not particularly limited, but for safety, the autonomous mobile body 1 is set to a smaller value when entering or moving inside the elevator than when moving outside the elevator. may be set.
  • the maximum speed of section 01 is set to 1.0 m/s
  • the maximum speed of section 02 is set to 0.5 m/s.
  • section 01 section from departure point Ps to waypoint Pw
  • the route determination unit 153 acquires section information corresponding to the section 01 from the section information storage unit 151B (see step S1 in FIG. 4).
  • the section 01 is the section from the departure point Ps to the waypoint Pw.
  • the elevator flag in section 01 is "0". That is, the end point position (way point Pw) of section 01 is not inside elevator 500 . Therefore, the movement control unit 152 controls the drive wheels 12 to change the direction of the autonomous mobile body 1 so that the front side of the body 11 faces the end point position (way point Pw) (see step S3 in FIG. 4). .
  • the direction change of the autonomous mobile body 1 is performed by the movement control unit 152 driving the left and right drive wheels 12 in mutually opposite directions, so that the turning center Cw eccentric to the rear side of the body 11 is the center.
  • the front side of the body 11 faces the end point position, and the body 11 can be smoothly moved to the end point position.
  • the route determination unit 153 uses the first route determination method to determine a route for moving from the starting point (departure point Ps) to the ending point (waypoint Pw) ( (see step S4 in FIG. 4).
  • a route traveling from a starting point Ps outside elevator 500 to a waypoint Pw outside elevator 500, that is, a route for approaching elevator 500 is referred to as an approach route.
  • the route determination unit 153 determines the approach route based on the position of the autonomous mobile body 1 estimated by the position estimation unit 154 .
  • the position estimation unit 154 estimates the self-position based on the detection result of the ranging sensor 14A (see FIG. 1) in front of the aircraft 11 and the map information stored in the map information storage unit 151A (see FIG. 3). do.
  • a known method can be used for the method of estimating the self-position by the position estimator 154 .
  • the accuracy of the estimated self-position may be improved by using a plurality of self-position estimation methods.
  • the position estimating unit 154 uses a method (a method called map matching or the like) that compares the detection result of the range sensor 14A and the map information stored in the map information storage unit 151A to determine the first self-position. Compute candidates.
  • the position estimation unit 154 calculates a second self-position candidate based on the movement amount of the autonomous mobile body 1 calculated from the rotation speed information output by the encoder that measures the rotation speed of the drive wheel 12 and the starting point position. . Then, the position estimation unit 154 integrates the first self-position candidate and the second self-position candidate using a Kalman filter or the like to obtain a final self-position estimation result.
  • the route determination unit 153 determines the approach route based on the estimation result of the self-position estimated by the position estimation unit 154, the detection result of the range sensor 14A, and the map information.
  • a route that moves linearly from a starting point Ps, which is simply a starting point, to a waypoint Pw, which is an ending point, is shown.
  • a person, a pillar, a signboard, etc. is detected by the ranging sensor 14A or specified from the map information, the route determination unit 153 may determine the approach route so as to bypass the obstacle.
  • the route determination unit 153 can It is preferable to determine the approach route so as to move along the wall surface 501 . The reason will be explained in connection with FIGS. 7A and 7B described later.
  • the movement control unit 152 controls the drive wheels 12 to move the autonomous mobile body 1 forward along the approach route determined by the route determination unit 153 (step S5 in FIG. 4). reference). With such an operation, the autonomous mobile body 1 can safely and autonomously move from the starting point Ps to the waypoint Pw.
  • the section 02 is the section from the waypoint Pw to the destination point Pd.
  • the elevator flag in section 02 is "1". That is, the end point position (destination point Pd) of section 02 is inside elevator 500 . Therefore, the movement control unit 152 controls the drive wheels 12 to change the direction of the autonomous mobile body 1 so that the rear side of the body 11 faces the destination point Pd inside the elevator 500 (step S7 in FIG. 4). reference). This allows the rear side of the aircraft 11 to face the destination point Pd.
  • the waypoint Pw is a point near the entrance of the elevator 500 in the elevator hall 600 .
  • FIG. 7A The turning direction of the aircraft 11 at the waypoint Pw will be described with reference to FIG. 7A.
  • the fuselage 11 before turning is indicated by a broken line
  • the fuselage 11 after turning is indicated by a solid line.
  • the movement control unit 152 rotates the body 11 clockwise.
  • the turning direction may be determined, for example, as follows.
  • the direction of the body 11 is the direction of viewing the waypoint Pw from the departure point Ps.
  • the entrance to elevator 500 is on the left side of fuselage 11 in this orientation.
  • the turning center Cw of the fuselage 11 is eccentric to the rear side of the fuselage 11 . Therefore, when the fuselage 11 is turned, the front end of the fuselage 11 draws an arc around the turning center Cw. As described above, since the entrance of the elevator 500 exists on the left side of the aircraft 11, when the front side of the aircraft 11 turns in the direction of the destination point Pd (end point position) inside the elevator 500, the front side of the aircraft 11 will hit the entrance of
  • the front side of the fuselage 11 (that is, the side opposite to the eccentric side of the turning center, an example of the other side in the present disclosure) moves away from the destination point Pd (end point position).
  • the front end of the fuselage 11 moving in an arc can be prevented from coming into contact with the wall surface 501 provided with the entrance of the elevator 500 .
  • the approach route in the section 01 be a route that is close to the wall surface 501 and that follows the wall surface 501 . Then, as in FIG. 7A, it is preferable to turn the airframe 11 in a direction in which the front side of the airframe 11 moves away from the destination point Pd. If the departure point Ps is located away from the wall surface 501 on which the entrance of the elevator 500 is located, the route determining unit 153 moves the airframe 11 once to the vicinity of the wall surface 501 and then along the wall surface 501.
  • An approach route may be set so as to move to the waypoint Pw.
  • the route determination unit 153 uses the second route determination method to determine a route for moving from the starting position (route point Pw) to the ending point position (destination point Pd) (step S8 in FIG. 4). reference).
  • a route from a waypoint Pw outside elevator 500 to a destination point Pd inside elevator 500, that is, a route for boarding elevator 500 is referred to as a boarding route.
  • the second route determination method will be explained.
  • the route determination unit 153 determines the boarding route based on the target points set by the target point setting unit 155 .
  • FIG. 8 is a diagram for explaining how the target point setting unit 155 sets target points.
  • a plurality of detection points Pm shown in FIG. 8 are detection points detected by the range sensor 14B.
  • the detection points detected by the range sensor 14B are the wall surface 501 provided with the entrance of the elevator 500, the door pocket 502 provided inside the wall surface 501, and the elevator 500.
  • the wall surface inside the cage 504 including the outer door 503, the cage 504, the inner door 505 of the elevator 500, and the inner wall surface 506 of the cage 504 of the elevator is detected.
  • the target point setting unit 155 selects a detection point group PmG_1 corresponding to the wall surface 506 on the back side of the cage of the elevator 500 and a detection point group PmG_2 corresponding to both ends of the entrance of the elevator 500. to extract
  • FIG. 9 is a diagram showing the positional relationship between the autonomous mobile body 1 and a plurality of detection points.
  • FIG. 9 is a diagram in which elevator 500 and wall surfaces are removed from FIG.
  • the target point setting unit 155 extracts the farthest detection point Pm_far from the airframe 11 from the detection point group detected by the ranging sensor 14B, and also extracts the farthest detection point Pm_far from the farthest detection point Pm_far. Extract the point group PmG_1.
  • the detection point group PmG_1 can be regarded as a detection point group indicating the wall surface 506 on the back side of the cage of the elevator 500 .
  • a line segment L1 is a line segment corresponding to the wall surface 506 on the back side of the cage of the elevator 500 when the elevator 500 and the autonomous mobile body 1 are viewed from above.
  • Target point setting unit 155 also detects left detection area Am_L and right detection area Am_R for specifying both ends of the entrance of elevator 500 based on the shape information of elevator 500 stored in advance in shape information storage unit 151C. set. Then, the detection point Pm_near_L closest to the aircraft 11 among the detection points existing inside the left detection area Am_L, the detection point Pm_near_R closest to the aircraft 11 among the detection points existing inside the right detection area Am_R, Extract each. The two detection points thus extracted correspond to the corners on both sides of the entrance of the elevator 500, as shown in FIG.
  • the left detection area Am_L and the right detection area Am_R will be explained.
  • the range of each detection area is set by various parameters indicating the shape of elevator 500 stored in shape information storage unit 151C.
  • the range of the detection area in the depth direction of the elevator 500 is set by the inner depth dimension Sin_depth and the outer depth dimension Sout_depth of the cage of the elevator 500, and their detection margins My.
  • the range R_depth of the detection region in the depth direction is set to the following range in the depth direction with the line segment L1 as a reference.
  • the range of the detection area in the width direction of the elevator 500 is set by the width We of the entrance of the elevator 500 and its detection margin Mx.
  • the range R_width_L of the left detection area in the width direction is set to the following range in the width direction with reference to the perpendicular line L2 drawn from the range sensor 14B to the line segment L1.
  • the range R_width_R of the right detection area in the width direction is set to the following range in the width direction with reference to the perpendicular line L2 drawn from the range sensor 14B to the line segment L1.
  • the left and right detection points Pm_near_L and Pm_near_R extracted in this way are the detection point group PmG_2 corresponding to both ends of the entrance of the elevator 500 .
  • the target point setting unit 155 derives the middle point P_center between the detection points Pm_near_L and Pm_near_R.
  • the target point setting unit 155 draws a perpendicular line L3 from the midpoint P_center to the line segment L1.
  • a perpendicular line L3 is a straight line passing through the center of the entrance of the elevator 500 and perpendicular to the wall surface 506 on the back side of the cage of the elevator 500 .
  • the perpendicular L3 derived in this way passes through the entrance of the elevator 500 and the center of the cage of the elevator 500. Therefore, by moving the body 11 of the autonomous mobile body 1 along the perpendicular line L3, even if the entrance of the elevator 500 is relatively narrow, there is a possibility that the body 11 will come into contact with the entrance, door, wall surface, etc. of the elevator 500. can be reduced.
  • the target point setting unit 155 sets two target points Pg_1 and Pg_2 on the perpendicular line L3 derived as described above, as shown in FIG.
  • the first target point Pg_1 is provided outside the entrance of the elevator 500 .
  • the position of the target point Pg_1 is a position away from the midpoint P_center on the perpendicular L3 by a distance ⁇ to the outside of the elevator 500 .
  • the midpoint P_center is between the two corners of the entrance of the elevator 500, in other words, between the outermost left and right detection points Pm_near_L and Pm_near_R of the entrance of the elevator 500. is the midpoint. Therefore, the midpoint P_center is located on the outermost side when viewed from elevator 500 . Therefore, the target point Pg_1, which is located outside the elevator 500 by the distance ⁇ from the midpoint P_center, is positioned outside the elevator 500 without fail.
  • the second target point Pg_2 is provided inside the cage of the elevator 500 and near the destination point Pd (within a predetermined distance). Specifically, the position of the target point Pg_2 is a position away from the line segment L1 corresponding to the wall surface 506 on the back side of the cage of the elevator 500 on the vertical line L3 by the distance ⁇ to the inside of the elevator 500 . Note that the distances ⁇ and ⁇ are parameters determined based on the size of the airframe 11, for example.
  • the route determination unit 153 determines the boarding route so as to pass through the target points set by the target point setting unit 155 in this way. Specifically, the route determination unit 153 determines the boarding route so that the aircraft 11 moves from the waypoint Pw, which is the starting position of the section 02, to the target point Pg_2 via the target point Pg_1.
  • the target points Pg_1 and Pg_2 are on the perpendicular line L3 passing through the center of the entrance of the elevator 500 as described above. Therefore, by moving the aircraft 11 to the target point Pg_1 and then to the target point Pg_2 inside the elevator 500, the possibility of the aircraft 11 contacting the entrance of the elevator 500 can be reduced. .
  • the movement control unit 152 After moving the body 11 from the waypoint Pw to the target point Pg_1, the movement control unit 152 turns the body 11 so that the rear side of the body 11 faces the target point Pg_2, and then moves the body 11 to the target point Pg_2. You may make it move to Pg_2.
  • the target point Pg_2 is provided near the destination point Pd on the perpendicular L3. Therefore, when the aircraft 11 reaches the target point Pg_2, the movement control unit 152 determines that the aircraft 11 has reached the destination point Pd, which is the end position of the section 02, and terminates the movement of the aircraft 11. good. Alternatively, the movement control unit 152 may move the aircraft 11 to the target point Pg_2 and then move the aircraft 11 to the destination point Pd.
  • the destination point Pd or the target point Pg_2 is a position inside the elevator 500 where the body 11 does not come into contact with the inner wall surface 506 of the elevator 500 .
  • the second route determination method does not use the self-position and map information estimated by the position estimation unit 154, and the position of the elevator 500 detected by the range sensor 14B is determined.
  • a boarding route is determined using the detection points of each part.
  • the self-position estimated by the position estimator 154 includes errors that may occur due to map information errors, encoder errors that measure the number of rotations of the drive wheels 12, or the like. Such an error does not pose a particular problem when determining the approach route when moving outside the elevator 500, but when entering through the entrance of the elevator 500, route determination with higher accuracy is possible. is required.
  • the boarding route is set without using information with errors such as map information, so the route can be determined with higher accuracy than in the first route determination method.
  • the autonomous mobile body 1 drives the left and right drive wheels 12 in opposite directions at the same speed so that the midpoint of the left and right drive wheels 12 is the turning center Cw.
  • one of the left and right drive wheels 12 may be rotated while the other is driven while the other drive wheel 12 is stopped.
  • the autonomous mobile body 1 is provided in the section 01 that moves from the departure point Ps provided in the elevator hall 600 to the waypoint Pw, and the section 01 that is provided inside the elevator 500 from the waypoint Pw.
  • the robot continuously moves through the section 02 in which it moves to the destination point Pd has been described.
  • the autonomous mobile body may continuously move three or more sections.
  • the autonomous mobile body 1 moves inside the elevator 500 as the destination point Pd
  • the present disclosure can also be applied when an autonomous mobile body starts inside an elevator and moves outside the elevator as a destination point.
  • the autonomous mobile body when the autonomous mobile body exits from the inside of the elevator into the elevator hall, it may change direction so that the front side of the body moves toward the destination point, and then move again to the destination point.
  • the driving wheels 12 of the autonomous mobile body 1 are rear wheels.
  • the driving wheels of the autonomous mobile body may be front wheels.
  • the center of rotation of the autonomous mobile body is eccentric to the front side of the body.
  • the autonomous mobile body according to the present disclosure can suitably perform autonomous movement including getting on and off an elevator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

An autonomous mobile object control method according to the present disclosure is a method for controlling an autonomous mobile object that controls a drive unit for moving the body thereof, the method comprising: a first step for determining an approach path that is a path of the autonomous mobile object to a start point outside an elevator and controlling the drive unit so as to move the body according to the approach path; and a second step for determining a boarding path that is a path of the autonomous mobile object from the start point to an end point inside the elevator and controlling the drive unit so as to move the body according to the boarding path.

Description

自律移動体の制御方法Autonomous mobile object control method
 本開示は、自律移動体の制御方法に関する。 The present disclosure relates to a control method for an autonomous mobile body.
 自律的に移動するロボット等の自律移動体が普及している。特許文献1には、施設内に設置されたエレベータを利用して、各フロア間を自律的に移動するロボットが開示されている。特許文献1では、エレベータへの乗降時において、スムーズな乗降動作を実現するため、ロボットを旋回させてロボットの向きをエレベータに合わせる制御を行う技術が開示されている。 Autonomous moving bodies such as robots that move autonomously are becoming widespread. Patent Literature 1 discloses a robot that autonomously moves between floors using an elevator installed in a facility. Japanese Patent Laid-Open No. 2004-100000 discloses a technique for controlling a robot to rotate and align the orientation of the robot with the elevator in order to realize smooth boarding and alighting operations when boarding and alighting on an elevator.
特開2020-187483号公報JP 2020-187483 A
 しかしながら、特許文献1に開示された技術では、ロボットとエレベータの周囲の壁面等の障害物との位置関係を考慮せずにロボットの旋回が行われるので、旋回中にロボットがエレベータの周囲の壁面等にぶつかる事態が生じうる。 However, in the technique disclosed in Patent Document 1, the robot turns without considering the positional relationship between the robot and obstacles such as walls around the elevator. etc. may occur.
 本開示は、エレベータの籠の内部まで、自律的に、かつ安全に移動できる自律移動体の制御方法を提供することを目的とする。 An object of the present disclosure is to provide a control method for an autonomous mobile body that can autonomously and safely move to the inside of an elevator cage.
 本開示に係る自律移動体の制御方法は、機体を移動させる駆動部の制御を行う自律移動体の制御方法であって、エレベータの外部の起点までの前記自律移動体の経路であるアプローチ経路を決定し、前記アプローチ経路に基づき前記機体を移動させるよう、前記駆動部を制御する第1ステップと、前記起点から前記エレベータ内部の終点までの前記自律移動体の経路である乗り込み経路を決定し、前記乗り込み経路に基づき前記機体を移動させるよう、前記駆動部を制御する第2ステップと、を含む。 A method for controlling an autonomous mobile body according to the present disclosure is a method for controlling an autonomous mobile body that controls a driving unit that moves an aircraft, and an approach route that is a route of the autonomous mobile body to a starting point outside an elevator is set. determining, determining a first step of controlling the drive unit to move the aircraft based on the approach route, and determining a boarding route that is a route of the autonomous mobile body from the starting point to the end point inside the elevator; and a second step of controlling the drive to move the vehicle based on the boarding path.
 本開示によれば、自律移動体が、エレベータの籠の内部まで、自律的に、かつ安全に移動できる。 According to the present disclosure, the autonomous mobile body can autonomously and safely move to the inside of the elevator car.
本開示の実施の形態に係る自律移動体の外観の一例を示す斜視図1 is a perspective view showing an example of an appearance of an autonomous mobile body according to an embodiment of the present disclosure; FIG. 自律移動体の上面図Top view of autonomous mobile body 自律移動体が旋回する様子を示す図Diagram showing how an autonomous mobile body turns 自律移動体の機能ブロック図Functional block diagram of autonomous mobile body 自律移動体の動作例を示すフローチャートFlowchart showing an operation example of an autonomous mobile body エレベータおよびその周辺の領域において移動する自律移動体を上面視した様子を示す概略図Schematic diagram showing a top view of an autonomous mobile body moving in an elevator and its surrounding area 図5に示すフロアを自律移動体が移動する場合の、区間情報の具体例を示す図A diagram showing a specific example of section information when an autonomous mobile body moves on the floor shown in FIG. 図5に示すフロアを自律移動体が移動する場合の、区間情報の具体例を示す図A diagram showing a specific example of section information when an autonomous mobile body moves on the floor shown in FIG. 経由地点における機体の旋回方向について説明するための図Diagram for explaining the turning direction of the aircraft at the waypoint 経由地点における機体の旋回方向の他の例について説明するための図Diagram for explaining another example of the turning direction of the aircraft at the waypoint 目標点設定部が目標点を設定する方法について説明するための図A diagram for explaining how the target point setting unit sets the target point. 自律移動体と複数の検出点との位置関係を示す図A diagram showing the positional relationship between an autonomous mobile body and multiple detection points
 以下本開示の実施の形態について、図面を参照しながら説明する。 Embodiments of the present disclosure will be described below with reference to the drawings.
 図1は、本開示の実施の形態に係る自律移動体1の外観の一例を示す斜視図である。自律移動体1は、例えば施設の内部を、自律的に移動することができる自律移動ロボットである。本開示では、自律移動体1は、エレベータによって複数フロアへの移動が可能な施設において使用されることが想定されている。 FIG. 1 is a perspective view showing an example of the appearance of an autonomous mobile body 1 according to an embodiment of the present disclosure. The autonomous mobile body 1 is an autonomous mobile robot that can move autonomously, for example, inside a facility. In the present disclosure, it is assumed that the autonomous mobile body 1 is used in a facility that allows movement to multiple floors by elevator.
 自律移動体1は、一対の駆動輪12とおよび一対の従動輪13が取り付けられた機体11を備える。本開示では、自律移動体1が移動することを、自律移動体1が機体11を移動させる、と記載することがある。 The autonomous mobile body 1 comprises a body 11 to which a pair of drive wheels 12 and a pair of driven wheels 13 are attached. In the present disclosure, the movement of the autonomous mobile body 1 may be described as the autonomous mobile body 1 moving the body 11 .
 図2Aは、自律移動体1の上面図である。自律移動体1は、従動輪13側を前、駆動輪12側を後ろとして、前後いずれかの方向に移動することができる。 FIG. 2A is a top view of the autonomous mobile body 1. FIG. The autonomous mobile body 1 can move forward or backward with the driven wheel 13 side as the front and the driving wheel 12 side as the rear.
 自律移動体1は、駆動輪12の回転方向および速度を制御することで、機体11を旋回させて機体11の向きを調整することができる。例えば左右の駆動輪12を相反する方向に等速度で回転させることにより、機体11は、左右の駆動輪12の中点を中心として、旋回することができる。本開示では、機体11を旋回させる際の中心の位置を旋回中心Cwと記載する。 By controlling the rotation direction and speed of the drive wheels 12, the autonomous mobile body 1 can rotate the body 11 and adjust the orientation of the body 11. For example, by rotating the left and right drive wheels 12 in opposite directions at a constant speed, the fuselage 11 can turn about the midpoint of the left and right drive wheels 12 . In the present disclosure, the position of the center when turning the fuselage 11 is described as the turning center Cw.
 図2Bには、機体11の旋回前の様子を実線で、旋回後の様子を点線で、それぞれ示している。このように、自律移動体1において、機体11の旋回中心Cwは、後輪である駆動輪12同士の中心の位置にある。すなわち、図2Bに示すように、旋回中心Cwは、機体11の前後方向における中心位置から、後ろ側にずれている。言い換えると、機体11の旋回中心は、後ろ側に偏心している。なお、本実施の形態において、旋回中心が偏心しているとは、機体11の上面視における外接円の中心から旋回中心がずれている状態を意味する。なお、機体11の後ろ側は、本開示の一方側の例である。なお、本実施の形態においては旋回中心の偏心は前述の様態を指すが、これに限られず、例えば旋回中心が機体の重心からずれている状態であってもよい。いずれの場合であっても、後述するエレベータ籠への乗り込み方法により、安全に籠の内部まで自律的に移動することができる。 In FIG. 2B, the state before turning of the airframe 11 is shown with a solid line, and the state after turning is shown with a dotted line. Thus, in the autonomous mobile body 1, the turning center Cw of the body 11 is located at the center of the drive wheels 12, which are the rear wheels. That is, as shown in FIG. 2B, the turning center Cw is shifted rearward from the center position of the body 11 in the longitudinal direction. In other words, the center of rotation of the airframe 11 is eccentric to the rear side. In the present embodiment, the eccentricity of the turning center means that the turning center is deviated from the center of the circumscribed circle of the body 11 when viewed from above. Note that the rear side of the fuselage 11 is an example of one side of the present disclosure. In the present embodiment, the eccentricity of the turning center refers to the above-described mode, but is not limited to this. For example, the turning center may be shifted from the center of gravity of the aircraft. In either case, it is possible to safely and autonomously move to the inside of the elevator car by the method of getting into the elevator car, which will be described later.
 また、図1に示すように、機体11には、測域センサ14A,14Bが取り付けられている。測域センサ14A,14Bは、障害物または壁等、自律移動体1の周囲に存在する物体までの距離を、ある角度分解能毎に取得する。測域センサ14Aは、機体11の前方に取り付けられており、測域センサ14Bは、機体11の後方に取り付けられている。測域センサ14Aは機体11の前方に存在する対象物の位置および方向を検知し、測域センサ14Bは機体11の前方に存在する対象物の位置および方向を検知する。以下の説明では、測域センサ14A,14Bをまとめて、測域センサ14と記載することがある。 In addition, as shown in FIG. 1, range sensors 14A and 14B are attached to the airframe 11. The range sensors 14A and 14B acquire the distance to an object existing around the autonomous mobile body 1, such as an obstacle or a wall, for each angular resolution. The ranging sensor 14A is attached to the front of the airframe 11, and the ranging sensor 14B is attached to the rear of the airframe 11. As shown in FIG. Range sensor 14A detects the position and direction of an object present in front of airframe 11, and range sensor 14B detects the position and direction of an object present in front of airframe 11. FIG. In the following description, the range sensors 14A and 14B may be collectively referred to as the range sensor 14. FIG.
 機体11の内部には、制御部15が設けられている。制御部15は、例えばCPU(Central Processing Unit)等のプロセッサやメモリ等の記憶媒体を備えたコンピュータである。 A control unit 15 is provided inside the airframe 11 . The control unit 15 is a computer including a processor such as a CPU (Central Processing Unit) and a storage medium such as a memory.
 次に、自律移動体1の制御システムについて説明する。図3は、自律移動体1の機能ブロック図である。 Next, the control system for the autonomous mobile body 1 will be explained. FIG. 3 is a functional block diagram of the autonomous mobile body 1. As shown in FIG.
 制御部15は、記憶部151と、移動制御部152と、経路決定部153と、位置推定部154と、目標点設定部155と、を備える。 The control unit 15 includes a storage unit 151 , a movement control unit 152 , a route determination unit 153 , a position estimation unit 154 and a target point setting unit 155 .
 記憶部151は、地図情報記憶部151A、区間情報記憶部151B、形状情報記憶部151Cを含む。 The storage unit 151 includes a map information storage unit 151A, a section information storage unit 151B, and a shape information storage unit 151C.
 地図情報記憶部151Aは、自律移動体1が移動可能な範囲の地図情報を記憶している。区間情報記憶部151Bは、自律移動体1が区間情報を記憶している。形状情報記憶部151Cは、エレベータ形状の形状に関する情報を記憶している。 The map information storage unit 151A stores map information of the range in which the autonomous mobile body 1 can move. The autonomous mobile body 1 stores section information in the section information storage unit 151B. The shape information storage unit 151C stores information about the shape of the elevator.
 地図情報は、自律移動体1が移動可能な領域と、壁や看板等の障害物が存在する領域と、を示す地図に関する情報である。一例として、地図情報に含まれる地図は、占有格子地図である。占有格子地図は、自律移動体1が移動するフロアを格子状に分割して、それぞれの格子に対し、移動可能な領域か、障害物に該当する領域か、を示す値を与えたものである。 The map information is information related to a map that indicates areas where the autonomous mobile body 1 can move and areas where obstacles such as walls and signboards exist. As an example, the map included in the map information is an occupation grid map. The occupancy grid map is obtained by dividing the floor on which the autonomous mobile body 1 moves into grids and giving each grid a value indicating whether it is a movable area or an area corresponding to an obstacle. .
 区間情報記憶部151Bは、自律移動体1が移動する区間を示す区間情報を記憶する。区間情報は、区間の起点位置および終点位置、ならびに、終点位置がエレベータの内部であるか否かを示す情報を含む。なお、区間情報記憶部151Bは、これから自律移動体1が移動する予定の1つの区間に関する区間情報を記憶してもよいし、複数の区間に関する区間情報を記憶していてもよい。複数の区間に関する区間情報は、自律移動体1が移動する区間の順番と関連付けられて区間情報記憶部151Bに記憶されている。 The section information storage unit 151B stores section information indicating the section in which the autonomous mobile body 1 moves. The section information includes the start point position and end point position of the section, and information indicating whether the end point position is inside the elevator. Note that the section information storage unit 151B may store section information regarding one section in which the autonomous mobile body 1 is scheduled to move from now on, or may store section information regarding a plurality of sections. The section information about the plurality of sections is stored in the section information storage unit 151B in association with the order of the sections in which the autonomous mobile body 1 moves.
 複数の区間情報を記憶する場合、区間情報記憶部151Bには、全ての区間情報があらかじめ記憶されていてもよいし、例えば無線通信等により外部から入力された区間情報が区間情報記憶部151Bに随時蓄積されてもよい。区間情報については、後に具体例を挙げて詳細に説明する。 When storing a plurality of pieces of section information, the section information storage unit 151B may store all the section information in advance. It may be accumulated at any time. The section information will be described later in detail with specific examples.
 形状情報記憶部151Cは、自律移動体1が乗り込むエレベータの形状に関する形状情報を記憶する。形状情報は、扉が開いた状態における、エレベータの形状に関する情報である。形状情報については、後に具体例を挙げて詳細に説明する。 The shape information storage unit 151C stores shape information related to the shape of the elevator in which the autonomous mobile body 1 gets on. The shape information is information about the shape of the elevator when the door is open. The shape information will be described later in detail with specific examples.
 移動制御部152は、自律移動体1を移動させる制御を行う。具体的には、移動制御部152は、経路決定部153が生成した経路に沿って機体11を移動させるように、駆動輪12の制御を行う。なお、移動制御部152は、経路に沿って機体11を移動させている間、測域センサ14の検知結果に基づいて、経路から外れない範囲で障害物を回避してもよい。 The movement control unit 152 controls the movement of the autonomous mobile body 1. Specifically, the movement control unit 152 controls the drive wheels 12 so as to move the body 11 along the route generated by the route determination unit 153 . Note that the movement control unit 152 may avoid obstacles within a range that does not deviate from the route based on the detection result of the range sensor 14 while the body 11 is moving along the route.
 経路決定部153は、地図情報および区間情報に基づいて、起点位置から終点位置まで機体11を移動させる経路を決定し、決定した経路に関する経路情報を生成する。 The route determining unit 153 determines a route for moving the aircraft 11 from the starting position to the ending position based on the map information and the section information, and generates route information regarding the determined route.
 位置推定部154は、測域センサ14の検知結果、駆動輪12に内蔵されているエンコーダから出力される駆動輪12の回転数を示す回転数情報、および、地図情報記憶部151Aに記憶されている地図情報に基づいて、自律移動体1の位置を推定する。 The position estimating unit 154 uses the detection result of the range sensor 14, the rotational speed information indicating the rotational speed of the driving wheel 12 output from the encoder incorporated in the driving wheel 12, and the information stored in the map information storage unit 151A. Based on the existing map information, the position of the autonomous mobile body 1 is estimated.
 目標点設定部155は、移動制御部152が自律移動体1をエレベータの内部に移動させる際に、機体11がエレベータの入口が設けられた壁面、エレベータの入口、またはエレベータ内部の壁面等にぶつからないように移動させる目標となる目標点を設定する。 When the movement control unit 152 moves the autonomous mobile body 1 into the elevator, the target point setting unit 155 prevents the aircraft 11 from colliding with a wall surface provided with an elevator entrance, an elevator entrance, a wall surface inside the elevator, or the like. Set a target point to be moved so as not to
 <自律移動体1の動作例>
 図4は、上記説明した構成を備える自律移動体1の動作例を示すフローチャートである。図4に示すフローチャートは、自律移動体1が、1つの区間を新たに移動しようとする際に実行される。
<Operation example of the autonomous mobile body 1>
FIG. 4 is a flow chart showing an operation example of the autonomous mobile body 1 having the configuration described above. The flowchart shown in FIG. 4 is executed when the autonomous mobile body 1 tries to newly move one section.
 ステップS1において、経路決定部153は、区間情報記憶部151Bから、次に自律移動体1が移動する区間情報を取得する。上記したように、区間情報には、区間の起点位置および終点位置、ならびに、終点位置がエレベータの内部であるか否かを示す情報が含まれる。 In step S1, the route determination unit 153 acquires section information for the next movement of the autonomous mobile body 1 from the section information storage unit 151B. As described above, the section information includes the starting point position, the ending point position of the section, and information indicating whether the ending point position is inside the elevator.
 ステップS2において、経路決定部153は、取得した区間情報を参照し、終点位置がエレベータの内部であるか否かを判定する。終点位置がエレベータの内部ではない場合(ステップS2:N)、処理はステップS3に進み、終点位置がエレベータの内部である場合(ステップS2:Y)、処理はステップS7に進む。 In step S2, the route determining unit 153 refers to the acquired section information and determines whether the end point is inside the elevator. If the end point is not inside the elevator (step S2: N), the process proceeds to step S3, and if the end point is inside the elevator (step S2: Y), the process proceeds to step S7.
 区間の終点位置がエレベータの内部ではない場合、ステップS3において、移動制御部152は、機体11の前側が終点位置を向くように旋回させる。 If the end point position of the section is not inside the elevator, in step S3, the movement control unit 152 turns the front side of the body 11 to face the end point position.
 ステップS4において、経路決定部153は、第1の経路決定方法を用いて、区間情報が示す起点位置から終点位置まで機体11を移動させる経路を決定する。第1の経路決定方法についての詳細は後述する。 In step S4, the route determination unit 153 uses the first route determination method to determine a route for moving the aircraft 11 from the start position indicated by the section information to the end position. The details of the first route determination method will be described later.
 ステップS5において、移動制御部152は、機体11を経路に沿って前向きで移動させる。 In step S5, the movement control unit 152 moves the body 11 forward along the route.
 ステップS6において、移動制御部152は、ステップS5における移動により、機体11が終点位置に到達したか否かを判定する。機体11が終点位置に到達した場合(ステップS6:Y)、処理はステップS1に戻り、到達していない場合(ステップS6:N)、処理はステップS5に戻る。 In step S6, the movement control unit 152 determines whether or not the body 11 has reached the end point position due to the movement in step S5. If the machine body 11 has reached the end position (step S6: Y), the process returns to step S1, and if not (step S6: N), the process returns to step S5.
 一方、区間の終点位置がエレベータの内部である場合、ステップS7において、移動制御部152は、機体11の前側が終点位置から遠ざかるように旋回させる。 On the other hand, if the end position of the section is inside the elevator, in step S7, the movement control unit 152 turns the front side of the body 11 away from the end position.
 ステップS8において、経路決定部153は、第2の経路決定方法を用いて、区間情報が示す起点位置から終点位置まで機体11を移動させる経路を決定する。第2の経路決定方法についての詳細は後述する。 In step S8, the route determination unit 153 uses the second route determination method to determine a route for moving the aircraft 11 from the start position indicated by the section information to the end position. The details of the second route determination method will be described later.
 そして、ステップS9において、移動制御部152は、機体11を経路に沿って後ろ向きで移動させる。 Then, in step S9, the movement control unit 152 moves the body 11 backward along the route.
 ステップS10において、移動制御部152は、ステップS9における移動により、機体11が終点位置に到達したか否かを判定する。機体11が終点位置に到達した場合(ステップS10:Y)、処理はステップS1に戻り、到達していない場合(ステップS6:N)、処理はステップS9に戻る。 In step S10, the movement control unit 152 determines whether or not the body 11 has reached the end point position due to the movement in step S9. If the machine body 11 has reached the end position (step S10: Y), the process returns to step S1, and if not (step S6: N), the process returns to step S9.
 なお、ステップS6またはステップS10において、自律移動体1が全ての区間を移動し終わったと判定された場合は、処理が終了する。 If it is determined in step S6 or step S10 that the autonomous mobile body 1 has finished moving through all sections, the process ends.
 <具体例>
 以下では、図4にて説明した自律移動体1の動作を、より具体的な例を挙げて説明する。以下では、エレベータ500の入口が設けられた施設のあるフロアにおいて、自律移動体1が、エレベータ500の外部に設定された出発地点Psから、エレベータ500の内部に設定された目的地点Pdまで自律的に移動することで、エレベータ500に乗り込む場合の動作について詳細に説明する。図5は、エレベータ500およびその周辺の領域において移動する自律移動体1を上面視した様子を示す概略図である。
<Specific example>
Below, operation|movement of the autonomous mobile body 1 demonstrated in FIG. 4 is demonstrated with a more concrete example. Below, on the floor with the facility where the entrance of the elevator 500 is provided, the autonomous mobile body 1 autonomously moves from the departure point Ps set outside the elevator 500 to the destination point Pd set inside the elevator 500. , the operation when getting into the elevator 500 will be described in detail. FIG. 5 is a schematic diagram showing a top view of the autonomous mobile body 1 moving in the elevator 500 and its surrounding area.
 図5には、エレベータ500の入口に面したエレベータホール600の1か所に出発地点Psが、エレベータ500の内部に目的地点Pdが、それぞれ設けられた例が示されている。自律移動体1は、まず、出発地点Psからエレベータホール600におけるエレベータ500の入口付近まで移動し、その場で方向転換(旋回)してから、エレベータ500の内部の目的地点Pdまで移動する。以下の説明において、自律移動体1が方向転換する地点を、経由地点Pwと記載する。経由地点Pwはエレベータホール600内、かつエレベータ500の入口付近の地点である。理由は後述するが、経由地点Pwはエレベータ500の入口から比較的近い位置に設定されることが好ましい。なお、出発地点Ps、経由地点Pw、目的地点Pdは、自律移動体1が移動を開始する前に、あらかじめ設定されている。 FIG. 5 shows an example in which the departure point Ps is provided at one location in the elevator hall 600 facing the entrance of the elevator 500, and the destination point Pd is provided inside the elevator 500, respectively. The autonomous mobile body 1 first moves from the departure point Ps to the vicinity of the entrance of the elevator 500 in the elevator hall 600 , changes direction (turns) on the spot, and then moves to the destination point Pd inside the elevator 500 . In the following description, the point where the autonomous mobile body 1 turns is referred to as a waypoint Pw. A waypoint Pw is a point in the elevator hall 600 and near the entrance of the elevator 500 . For reasons described later, the waypoint Pw is preferably set at a position relatively close to the entrance of the elevator 500 . The starting point Ps, waypoint Pw, and destination point Pd are set in advance before the autonomous mobile body 1 starts moving.
 説明のため、図5に示す上面図には、2次元座標系X-Yが設定されている。X軸はエレベータの入口が設けられた壁面501に対して平行な方向に設定された軸であり、Y軸はエレベータの入口が設けられた壁面501に対して垂直な方向に設定された軸である。図5に示すX-Y座標系において、出発地点Psに対応する座標は(10,10)であり、経由地点Pwに対応する座標は(40,10)であり、目的地点Pdに対応する座標は(40,30)である。 For the sake of explanation, a two-dimensional coordinate system XY is set in the top view shown in FIG. The X-axis is an axis set in a direction parallel to the wall surface 501 on which the elevator entrance is provided, and the Y-axis is an axis set in a direction perpendicular to the wall surface 501 on which the elevator entrance is provided. be. In the XY coordinate system shown in FIG. 5, the coordinates corresponding to the departure point Ps are (10,10), the coordinates corresponding to the waypoint Pw are (40,10), and the coordinates corresponding to the destination point Pd are is (40,30).
 図6Aおよび図6Bは、図5に示すフロアを自律移動体1が移動する場合の、区間情報の具体例を示す図である。図6Aおよび図6Bに示す例では、区間情報は、区間番号、それぞれの区間の起点位置、終点位置、エレベータフラグ、および最大速度を含む。 FIGS. 6A and 6B are diagrams showing specific examples of section information when the autonomous mobile body 1 moves on the floor shown in FIG. In the example shown in FIGS. 6A and 6B, the section information includes the section number, starting point position, ending point position, elevator flag, and maximum speed of each section.
 区間番号は、区間ごとに与えられた番号である。図6Aは、区間番号01が与えられた区間の区間情報を示しており、図6Bは、区間番号02が与えられた区間の区間情報を示している。このように、区間情報は区間番号毎に対応付けられて区間情報記憶部151Bに記憶されている。 The section number is the number given to each section. 6A shows the section information of the section given the section number 01, and FIG. 6B shows the section information of the section given the section number 02. FIG. In this way, the section information is associated with each section number and stored in the section information storage unit 151B.
 区間番号01は、図5に示す出発地点Psから経由地点Pwまでの区間に対応している。一方、区間番号02は、図5に示す経由地点Pwから目的地点Pdまでの区間に対応している。すなわち、区間番号01が示す区間と、区間番号02が示す区間とは連続している。以下の説明において、区間番号01に対応する区間を区間01、区間番号02に対応する区間を区間02と記載することがある。 Section number 01 corresponds to the section from the departure point Ps to the waypoint Pw shown in FIG. On the other hand, the section number 02 corresponds to the section from the waypoint Pw to the destination point Pd shown in FIG. That is, the section indicated by the section number 01 and the section indicated by the section number 02 are continuous. In the following description, the section corresponding to section number 01 may be referred to as section 01, and the section corresponding to section number 02 may be referred to as section 02.
 図6Aおよび図6Bに示す区間情報において、起点位置は、それぞれの区間の起点の位置を示している。終点位置は、それぞれの区間における終点の位置を示している。図6Aに示す区間01の起点位置は図5に示す出発地点Psに対応しており、座標は(10,10)である。図6Aに示す区間01の終点位置および図6Bに示す区間02の起点位置は経由地点Pwに対応しており、座標は(40,10)である。図6Bに示す区間02の終点位置は目的地点Pdに対応しており、座標は(40,30)である。 In the section information shown in FIGS. 6A and 6B, the starting point position indicates the position of the starting point of each section. The end point position indicates the position of the end point in each section. The starting point position of section 01 shown in FIG. 6A corresponds to the starting point Ps shown in FIG. 5, and the coordinates are (10, 10). The end point position of the section 01 shown in FIG. 6A and the starting point position of the section 02 shown in FIG. 6B correspond to the waypoint Pw, and the coordinates are (40, 10). The end point position of the section 02 shown in FIG. 6B corresponds to the destination point Pd, and the coordinates are (40, 30).
 エレベータフラグは、それぞれの区間の終点位置がエレベータの内部であるか否かを示すフラグであり、上記の説明における、終点位置がエレベータの内部であるか否かを示す情報に対応する。エレベータフラグは、終点位置がエレベータの内部である場合は「1」、そうでない場合は「0」に設定される。なお、本開示において、エレベータの内部とは、エレベータの籠の内側の空間を意味するものとする。図6Aに示す例では、区間01の終点位置(すなわち、経由地点Pw)はエレベータホール外であるためエレベータフラグは「0」であり、図6Bに示す例では、区間02の終点位置(すなわち、目的地点Pd)はエレベータの内部であるためエレベータフラグは「1」である。 The elevator flag is a flag indicating whether or not the end point position of each section is inside the elevator, and corresponds to the information indicating whether or not the end point position is inside the elevator in the above description. The elevator flag is set to "1" if the end point location is inside the elevator, and to "0" otherwise. In the present disclosure, the inside of the elevator means the space inside the car of the elevator. In the example shown in FIG. 6A, the end point position of section 01 (i.e., waypoint Pw) is outside the elevator hall, so the elevator flag is "0", and in the example shown in FIG. Since the destination point Pd) is inside the elevator, the elevator flag is "1".
 最大速度は、それぞれの区間において、自律移動体1が移動してもよい速度の最大値である。最大速度の設定方法は特に限定されないが、安全のため、自律移動体1がエレベータの外部を移動する場合よりも、エレベータの内部へ進入またはエレベータの内部を移動する場合の方が、小さい値に設定されてもよい。図6Aに示す例では、区間01の最大速度は1.0m/sに設定されており、図6Bに示す例では、区間02の最大速度は0.5m/sに設定されている。 The maximum speed is the maximum speed at which the autonomous mobile body 1 can move in each section. The method of setting the maximum speed is not particularly limited, but for safety, the autonomous mobile body 1 is set to a smaller value when entering or moving inside the elevator than when moving outside the elevator. may be set. In the example shown in FIG. 6A, the maximum speed of section 01 is set to 1.0 m/s, and in the example shown in FIG. 6B, the maximum speed of section 02 is set to 0.5 m/s.
 [区間01(出発地点Psから経由地点Pwまでの区間)における動作]
 以下では、区間01における自律移動体1の動作を具体的に説明する。出発地点Psに位置する自律移動体1において、経路決定部153(図3参照)は、区間情報記憶部151Bから区間01に対応する区間情報を取得する(図4のステップS1参照)。上記したように、区間01は、出発地点Psから経由地点Pwまでの区間である。
[Operation in section 01 (section from departure point Ps to waypoint Pw)]
Below, operation|movement of the autonomous mobile body 1 in the area 01 is demonstrated concretely. In the autonomous mobile body 1 located at the departure point Ps, the route determination unit 153 (see FIG. 3) acquires section information corresponding to the section 01 from the section information storage unit 151B (see step S1 in FIG. 4). As described above, the section 01 is the section from the departure point Ps to the waypoint Pw.
 図6Aに示すように、区間01のエレベータフラグは「0」である。すなわち、区間01の終点位置(経由地点Pw)はエレベータ500の内部ではない。このため、移動制御部152は、駆動輪12を制御して、機体11の前側が終点位置(経由地点Pw)を向くように、自律移動体1を方向転換させる(図4のステップS3参照)。自律移動体1の方向転換は、上述したように、移動制御部152が左右の駆動輪12を、互いに反対方向に駆動させることで、機体11の後ろ側に偏心した旋回中心Cwを中心として行われる。これにより、機体11の前側が終点位置と正対し、機体11をスムーズに終点位置まで移動させることができるようになる。 As shown in FIG. 6A, the elevator flag in section 01 is "0". That is, the end point position (way point Pw) of section 01 is not inside elevator 500 . Therefore, the movement control unit 152 controls the drive wheels 12 to change the direction of the autonomous mobile body 1 so that the front side of the body 11 faces the end point position (way point Pw) (see step S3 in FIG. 4). . As described above, the direction change of the autonomous mobile body 1 is performed by the movement control unit 152 driving the left and right drive wheels 12 in mutually opposite directions, so that the turning center Cw eccentric to the rear side of the body 11 is the center. will be As a result, the front side of the body 11 faces the end point position, and the body 11 can be smoothly moved to the end point position.
 機体11の方向転換が終わると、経路決定部153は、第1の経路決定方法を用いて、起点位置(出発地点Ps)から終点位置(経由地点Pw)まで移動するための経路を決定する(図4のステップS4参照)。なお、本開示では、エレベータ500の外部にある出発地点Psから、エレベータ500の外部にある経由地点Pwまで移動する経路、すなわちエレベータ500にアプローチするための経路を、アプローチ経路と記載する。 After the aircraft 11 has finished turning, the route determination unit 153 uses the first route determination method to determine a route for moving from the starting point (departure point Ps) to the ending point (waypoint Pw) ( (see step S4 in FIG. 4). In the present disclosure, a route traveling from a starting point Ps outside elevator 500 to a waypoint Pw outside elevator 500, that is, a route for approaching elevator 500 is referred to as an approach route.
 第1の経路決定方法について詳細に説明する。第1の経路決定方法では、経路決定部153は、位置推定部154が推定した自律移動体1の位置に基づいてアプローチ経路を決定する。 The first route determination method will be explained in detail. In the first route determination method, the route determination unit 153 determines the approach route based on the position of the autonomous mobile body 1 estimated by the position estimation unit 154 .
 位置推定部154は、機体11前方の測域センサ14A(図1参照)の検知結果、および、地図情報記憶部151A(図3参照)が記憶している地図情報に基づいて、自己位置を推定する。位置推定部154による自己位置の推定方法には、既知の手法を用いることができる。また、複数の自己位置推定方法を用いることで、推定した自己位置の精度を向上させるようにしてもよい。 The position estimation unit 154 estimates the self-position based on the detection result of the ranging sensor 14A (see FIG. 1) in front of the aircraft 11 and the map information stored in the map information storage unit 151A (see FIG. 3). do. A known method can be used for the method of estimating the self-position by the position estimator 154 . Also, the accuracy of the estimated self-position may be improved by using a plurality of self-position estimation methods.
 具体例を挙げて説明する。位置推定部154は、例えば、測域センサ14Aの検知結果、および、地図情報記憶部151Aが記憶している地図情報を照らし合わせる方法(マップマッチング等と呼ばれる方法)を用いて、第1自己位置候補を算出する。また、位置推定部154は、駆動輪12の回転数を計測するエンコーダが出力する回転数情報から算出される自律移動体1の移動量と起点位置とに基づき、第2自己位置候補を算出する。そして、位置推定部154は、第1自己位置候補と第2自己位置候補とをカルマンフィルタ等を用いて統合し、最終的な自己位置の推定結果を得る。 Explain with specific examples. The position estimating unit 154, for example, uses a method (a method called map matching or the like) that compares the detection result of the range sensor 14A and the map information stored in the map information storage unit 151A to determine the first self-position. Compute candidates. In addition, the position estimation unit 154 calculates a second self-position candidate based on the movement amount of the autonomous mobile body 1 calculated from the rotation speed information output by the encoder that measures the rotation speed of the drive wheel 12 and the starting point position. . Then, the position estimation unit 154 integrates the first self-position candidate and the second self-position candidate using a Kalman filter or the like to obtain a final self-position estimation result.
 経路決定部153は、位置推定部154が推定した自己位置の推定結果、測域センサ14Aの検知結果、および地図情報に基づいて、アプローチ経路を決定する。図5に示す例では、単に起点位置である出発地点Psから終点位置である経由地点Pwまで直線的に移動する経路が示されているが、例えば起点位置と終点位置との間の障害物(人、柱、看板等)が測域センサ14Aによって検知されたり、地図情報から特定されたりした場合、経路決定部153は、障害物を迂回するようにアプローチ経路を決定してもよい。 The route determination unit 153 determines the approach route based on the estimation result of the self-position estimated by the position estimation unit 154, the detection result of the range sensor 14A, and the map information. In the example shown in FIG. 5, a route that moves linearly from a starting point Ps, which is simply a starting point, to a waypoint Pw, which is an ending point, is shown. a person, a pillar, a signboard, etc.) is detected by the ranging sensor 14A or specified from the map information, the route determination unit 153 may determine the approach route so as to bypass the obstacle.
 なお、経路決定部153は、起点位置である出発地点Psから終点位置である経由地点Pwまでの間に障害物等がない場合、エレベータ500の入口が設けられた壁面501に近接した状態で、当該壁面501に沿って移動するようにアプローチ経路を決定することが好ましい。その理由は、後出の図7Aおよび図7Bと関連付けて説明する。 If there are no obstacles between the start point Ps, which is the starting point, and the waypoint Pw, which is the end point, the route determination unit 153 can It is preferable to determine the approach route so as to move along the wall surface 501 . The reason will be explained in connection with FIGS. 7A and 7B described later.
 アプローチ経路が決定されると、移動制御部152は、駆動輪12を制御して、経路決定部153が決定したアプローチ経路に沿って、自律移動体1を前向きで移動させる(図4のステップS5参照)。このような動作により、自律移動体1は、出発地点Psから経由地点Pwまで安全に自律的な移動を行うことができる。 When the approach route is determined, the movement control unit 152 controls the drive wheels 12 to move the autonomous mobile body 1 forward along the approach route determined by the route determination unit 153 (step S5 in FIG. 4). reference). With such an operation, the autonomous mobile body 1 can safely and autonomously move from the starting point Ps to the waypoint Pw.
 [区間02(経由地点Pwから目的地点Pdまでの区間)における動作]
 自律移動体1が区間01における終点位置である経由地点Pwに到着すると、経路決定部153は、区間01における移動が完了したと判断し、区間情報記憶部151Bから、次に自律移動体1が移動する区間である区間02に対応する区間情報を取得する(図4のステップS1参照)。なお、自律移動体1が区間01における終点位置である経由地点Pwに到着したか否かは、位置推定部154が推定した自己位置の推定結果と、経由地点Pwの位置とが一致したか否かによって判定されればよい。
[Operation in section 02 (section from waypoint Pw to destination point Pd)]
When the autonomous mobile body 1 arrives at the waypoint Pw, which is the end point position in the section 01, the route determination unit 153 determines that the movement in the section 01 is completed, and from the section information storage unit 151B, the autonomous mobile body 1 next Section information corresponding to section 02, which is a section to be moved, is acquired (see step S1 in FIG. 4). Whether or not the autonomous mobile body 1 has arrived at the waypoint Pw, which is the end position of the section 01, is determined by whether or not the estimation result of the self-position estimated by the position estimation unit 154 matches the position of the waypoint Pw. It may be determined by whether
 上記したように、区間02は、経由地点Pwから目的地点Pdまでの区間である。 As described above, the section 02 is the section from the waypoint Pw to the destination point Pd.
 図6Bに示すように、区間02のエレベータフラグは「1」である。すなわち、区間02の終点位置(目的地点Pd)はエレベータ500の内部である。このため、移動制御部152は、駆動輪12を制御して、機体11の後ろ側がエレベータ500の内部である目的地点Pdを向くように、自律移動体1を方向転換させる(図4のステップS7参照)。これにより、機体11の後ろ側を目的地点Pdと正対させることができる。 As shown in FIG. 6B, the elevator flag in section 02 is "1". That is, the end point position (destination point Pd) of section 02 is inside elevator 500 . Therefore, the movement control unit 152 controls the drive wheels 12 to change the direction of the autonomous mobile body 1 so that the rear side of the body 11 faces the destination point Pd inside the elevator 500 (step S7 in FIG. 4). reference). This allows the rear side of the aircraft 11 to face the destination point Pd.
 なお、上記したように、経由地点Pwはエレベータホール600内におけるエレベータ500の入口付近の地点である。機体11が方向転換のために旋回する際、機体11がエレベータホール600の壁、またはエレベータ500の扉とぶつからないように、旋回方向を決定する必要がある。 It should be noted that, as described above, the waypoint Pw is a point near the entrance of the elevator 500 in the elevator hall 600 . When the aircraft 11 turns to change direction, it is necessary to determine the turning direction so that the aircraft 11 does not collide with the walls of the elevator hall 600 or the doors of the elevator 500 .
 図7Aを参照して、経由地点Pwにおける機体11の旋回方向について説明する。図7Aでは、旋回前の機体11が破線で、旋回後の機体11が実線で、それぞれ示されている。図7Aに示す例では、移動制御部152は、機体11を時計回りに旋回させている。 The turning direction of the aircraft 11 at the waypoint Pw will be described with reference to FIG. 7A. In FIG. 7A, the fuselage 11 before turning is indicated by a broken line, and the fuselage 11 after turning is indicated by a solid line. In the example shown in FIG. 7A, the movement control unit 152 rotates the body 11 clockwise.
 旋回方向は、例えば以下のようにして決定されればよい。自律移動体1が経由地点Pwに到着した時点では、機体11の向きは、出発地点Psから経由地点Pwを見た向きである。図7Aに示す例では、この向きにおいて、機体11の左側にエレベータ500の入口が存在する。 The turning direction may be determined, for example, as follows. When the autonomous mobile body 1 arrives at the waypoint Pw, the direction of the body 11 is the direction of viewing the waypoint Pw from the departure point Ps. In the example shown in FIG. 7A, the entrance to elevator 500 is on the left side of fuselage 11 in this orientation.
 図2Bに示すように、機体11の旋回中心Cwは、機体11の後ろ側に偏心している。したがって、機体11を旋回させた場合、機体11の前側端部は、旋回中心Cwを中心とした弧を描く。上記したように、機体11の左側にエレベータ500の入口が存在するため、機体11の前側がエレベータ500の内部にある目的地点Pd(終点位置)の方向に旋回した場合、機体11の前側がエレベータの入口等にぶつかってしまう。 As shown in FIG. 2B, the turning center Cw of the fuselage 11 is eccentric to the rear side of the fuselage 11 . Therefore, when the fuselage 11 is turned, the front end of the fuselage 11 draws an arc around the turning center Cw. As described above, since the entrance of the elevator 500 exists on the left side of the aircraft 11, when the front side of the aircraft 11 turns in the direction of the destination point Pd (end point position) inside the elevator 500, the front side of the aircraft 11 will hit the entrance of
 このため、経由地点Pwにおける機体11の方向転換時には、機体11の前側(すなわち、旋回中心の偏心した側とは逆側、本開示における他方側の例)が目的地点Pd(終点位置)から遠ざかる方向へ機体11を旋回させることにより、弧を描いて移動する機体11の前側端部が、エレベータ500の入口が設けられた壁面501に接触する事態を防止できる。 Therefore, when the fuselage 11 changes direction at the waypoint Pw, the front side of the fuselage 11 (that is, the side opposite to the eccentric side of the turning center, an example of the other side in the present disclosure) moves away from the destination point Pd (end point position). By turning the fuselage 11 in the direction, the front end of the fuselage 11 moving in an arc can be prevented from coming into contact with the wall surface 501 provided with the entrance of the elevator 500 .
 なお、図7Bに示すように、経由地点Pwとエレベータ500の入口とが比較的離れている場合、経由地点Pwにおいて、機体11の前側がエレベータ500に入口に近づく方向へ機体11を旋回するスペースが確保できる。しかしながら、経由地点Pwとエレベータ500の入口とが比較的離れている場合、区間01における移動の経路(アプローチ経路)は、エレベータ500の入口が設けられた壁面501から比較的離れた位置を通るため、エレベータホール600内に存在する他の人間の動きの邪魔になりやすい。 As shown in FIG. 7B, when the waypoint Pw and the entrance of the elevator 500 are relatively far apart, at the waypoint Pw, the front side of the fuselage 11 turns toward the entrance of the elevator 500. can be ensured. However, when the waypoint Pw and the entrance of the elevator 500 are relatively distant, the route of movement (approach route) in the section 01 passes through a position relatively distant from the wall surface 501 on which the entrance of the elevator 500 is provided. , the movement of other people present in the elevator hall 600 is likely to be disturbed.
 このため、上記したように、区間01におけるアプローチ経路は、壁面501に近接し、壁面501に沿った経路であることが好ましい。そして、図7Aと同様に、機体11の前側が目的地点Pdから遠ざかる方向へ機体11を旋回させることが好ましい。出発地点Psが、エレベータ500の入口が設けられた壁面501から離れた位置に設けられていた場合、経路決定部153は、機体11を一度壁面501の近くまで移動させてから、壁面501に沿って経由地点Pwまで移動するようなアプローチ経路を設定すればよい。 Therefore, as described above, it is preferable that the approach route in the section 01 be a route that is close to the wall surface 501 and that follows the wall surface 501 . Then, as in FIG. 7A, it is preferable to turn the airframe 11 in a direction in which the front side of the airframe 11 moves away from the destination point Pd. If the departure point Ps is located away from the wall surface 501 on which the entrance of the elevator 500 is located, the route determining unit 153 moves the airframe 11 once to the vicinity of the wall surface 501 and then along the wall surface 501. An approach route may be set so as to move to the waypoint Pw.
 このように、機体11の前側が目的地点Pdから遠ざかる方向へ旋回させる動作により、機体11の後ろ側はエレベータ500の内部に設けられた目的地点Pdの方を向く。この状態で、経路決定部153は、第2の経路決定方法を用いて、起点位置(経由地点Pw)から終点位置(目的地点Pd)まで移動するための経路を決定する(図4のステップS8参照)。なお、本開示では、エレベータ500の外部の経由地点Pwから、エレベータ500の内部の目的地点Pdまで移動する経路、すなわちエレベータ500に乗り込むための経路を、乗り込み経路と記載する。 In this way, the front side of the airframe 11 turns away from the destination point Pd, so that the rear side of the airframe 11 faces toward the destination point Pd provided inside the elevator 500 . In this state, the route determination unit 153 uses the second route determination method to determine a route for moving from the starting position (route point Pw) to the ending point position (destination point Pd) (step S8 in FIG. 4). reference). Note that in the present disclosure, a route from a waypoint Pw outside elevator 500 to a destination point Pd inside elevator 500, that is, a route for boarding elevator 500 is referred to as a boarding route.
 第2の経路決定方法について説明する。第2の経路決定方法では、経路決定部153は、目標点設定部155が設定した目標点に基づいて乗り込み経路を決定する。 The second route determination method will be explained. In the second route determination method, the route determination unit 153 determines the boarding route based on the target points set by the target point setting unit 155 .
 図8は、目標点設定部155が目標点を設定する方法について説明するための図である。 FIG. 8 is a diagram for explaining how the target point setting unit 155 sets target points.
 図8に示す複数の検出点Pmは、測域センサ14Bによって検出された検出点である。自律移動体1が経由地点Pwに位置するとき、測域センサ14Bによって検出される検出点は、エレベータ500の入口が設けられた壁面501、壁面501の内部に設けられた戸袋502、エレベータ500の外側の扉503、籠体504、エレベータ500の内側の扉505、エレベータの籠体504の奥側の壁面506を含む籠体504の内部の壁面を検出した点である。 A plurality of detection points Pm shown in FIG. 8 are detection points detected by the range sensor 14B. When the autonomous mobile body 1 is positioned at the waypoint Pw, the detection points detected by the range sensor 14B are the wall surface 501 provided with the entrance of the elevator 500, the door pocket 502 provided inside the wall surface 501, and the elevator 500. The wall surface inside the cage 504 including the outer door 503, the cage 504, the inner door 505 of the elevator 500, and the inner wall surface 506 of the cage 504 of the elevator is detected.
 目標点設定部155は、これらの検出点Pmの中から、エレベータ500の籠の奥側の壁面506に対応する検出点群PmG_1と、エレベータ500の入口の両端部に対応する検出点群PmG_2とを抽出する。 From these detection points Pm, the target point setting unit 155 selects a detection point group PmG_1 corresponding to the wall surface 506 on the back side of the cage of the elevator 500 and a detection point group PmG_2 corresponding to both ends of the entrance of the elevator 500. to extract
 図9は、自律移動体1と複数の検出点との位置関係を示す図である。図9は、図8からエレベータ500および壁面を削除した図である。 FIG. 9 is a diagram showing the positional relationship between the autonomous mobile body 1 and a plurality of detection points. FIG. 9 is a diagram in which elevator 500 and wall surfaces are removed from FIG.
 まず、目標点設定部155は、測域センサ14Bが検出した検出点群の中から、機体11から最も離れた検出点Pm_farを抽出するとともに、その最も離れた検出点Pm_farから閾値距離内の検出点群PmG_1を抽出する。検出点群PmG_1は、エレベータ500の籠の奥側の壁面506を示す検出点群とみなすことができる。 First, the target point setting unit 155 extracts the farthest detection point Pm_far from the airframe 11 from the detection point group detected by the ranging sensor 14B, and also extracts the farthest detection point Pm_far from the farthest detection point Pm_far. Extract the point group PmG_1. The detection point group PmG_1 can be regarded as a detection point group indicating the wall surface 506 on the back side of the cage of the elevator 500 .
 次に、目標点設定部155は、検出点群PmG_1に含まれる検出点を用いて、最小二乗推定法等により線分L1を求める。線分L1は、エレベータ500および自律移動体1を上面視した場合の、エレベータ500の籠の奥側の壁面506に対応する線分である。 Next, the target point setting unit 155 uses the detection points included in the detection point group PmG_1 to find the line segment L1 by the least-squares estimation method or the like. A line segment L1 is a line segment corresponding to the wall surface 506 on the back side of the cage of the elevator 500 when the elevator 500 and the autonomous mobile body 1 are viewed from above.
 また、目標点設定部155は、あらかじめ形状情報記憶部151Cに記憶されているエレベータ500の形状情報に基づいて、エレベータ500の入口の両端部を特定するための左側検出領域Am_Lおよび右側検出領域Am_Rを設定する。そして、左側検出領域Am_Lの内部に存在する検出点群のうち機体11に最も近い検出点Pm_near_Lを、右側検出領域Am_Rの内部に存在する検出点群のうち機体11に最も近い検出点Pm_near_Rを、それぞれ抽出する。このようにして抽出された2つの検出点は、図9に示すように、エレベータ500の入口の両側の角部に対応する。 Target point setting unit 155 also detects left detection area Am_L and right detection area Am_R for specifying both ends of the entrance of elevator 500 based on the shape information of elevator 500 stored in advance in shape information storage unit 151C. set. Then, the detection point Pm_near_L closest to the aircraft 11 among the detection points existing inside the left detection area Am_L, the detection point Pm_near_R closest to the aircraft 11 among the detection points existing inside the right detection area Am_R, Extract each. The two detection points thus extracted correspond to the corners on both sides of the entrance of the elevator 500, as shown in FIG.
 左側検出領域Am_Lおよび右側検出領域Am_Rについて説明する。それぞれの検出領域の範囲は、形状情報記憶部151Cに記憶されている、エレベータ500の形状を示す各種パラメータより設定される。 The left detection area Am_L and the right detection area Am_R will be explained. The range of each detection area is set by various parameters indicating the shape of elevator 500 stored in shape information storage unit 151C.
 例えば、エレベータ500の奥行方向における検出領域の範囲は、エレベータ500の籠の奥行内寸法Sin_depth、奥行外寸法Sout_depth、および、それらの検出マージンMyにより設定される。図9に示すように、奥行方向における検出領域の範囲R_depthは、線分L1を基準として、奥行方向における以下の範囲に設定される。 For example, the range of the detection area in the depth direction of the elevator 500 is set by the inner depth dimension Sin_depth and the outer depth dimension Sout_depth of the cage of the elevator 500, and their detection margins My. As shown in FIG. 9, the range R_depth of the detection region in the depth direction is set to the following range in the depth direction with the line segment L1 as a reference.
 (Sin_depth-My)<Rd_depth<(Sout_depth+My)
 また、エレベータ500の幅方向における検出領域の範囲は、エレベータ500の入口の幅We、および、その検出マージンMxにより設定される。図9に示すように、幅方向における左側検出領域の範囲R_width_Lは、測域センサ14Bから線分L1に下ろした垂線L2を基準として、幅方向における以下の範囲に設定される。
(Sin_depth-My)<Rd_depth<(Sout_depth+My)
Also, the range of the detection area in the width direction of the elevator 500 is set by the width We of the entrance of the elevator 500 and its detection margin Mx. As shown in FIG. 9, the range R_width_L of the left detection area in the width direction is set to the following range in the width direction with reference to the perpendicular line L2 drawn from the range sensor 14B to the line segment L1.
 (-We/2-Mx)<R_width_L<(-We/2)
 同様に、幅方向における右側検出領域の範囲R_width_Rは、測域センサ14Bから線分L1に下ろした垂線L2を基準として、幅方向における以下の範囲に設定される。
(-We/2-Mx)<R_width_L<(-We/2)
Similarly, the range R_width_R of the right detection area in the width direction is set to the following range in the width direction with reference to the perpendicular line L2 drawn from the range sensor 14B to the line segment L1.
 (We/2)<R_width_R<(We/2+Mx)
 このように抽出した左右の検出点Pm_near_LおよびPm_near_Rが、エレベータ500の入口の両端部に対応する検出点群PmG_2である。そして、目標点設定部155は、検出点Pm_near_LおよびPm_near_Rの中点P_centerを導出する。さらに目標点設定部155は、中点P_centerから線分L1へ垂線L3を下ろす。垂線L3は、エレベータ500の入口の中心を通り、エレベータ500の籠の奥側の壁面506に垂直な直線である。
(We/2)<R_width_R<(We/2+Mx)
The left and right detection points Pm_near_L and Pm_near_R extracted in this way are the detection point group PmG_2 corresponding to both ends of the entrance of the elevator 500 . Then, the target point setting unit 155 derives the middle point P_center between the detection points Pm_near_L and Pm_near_R. Furthermore, the target point setting unit 155 draws a perpendicular line L3 from the midpoint P_center to the line segment L1. A perpendicular line L3 is a straight line passing through the center of the entrance of the elevator 500 and perpendicular to the wall surface 506 on the back side of the cage of the elevator 500 .
 このように導出した垂線L3は、エレベータ500の入口、およびエレベータ500の籠の中心を通る。このため、自律移動体1の機体11を当該垂線L3に沿って移動させることにより、エレベータ500の入口が比較的狭い場合でも、機体11がエレベータ500の入口、扉、壁面等に接触する可能性を低減させることができる。 The perpendicular L3 derived in this way passes through the entrance of the elevator 500 and the center of the cage of the elevator 500. Therefore, by moving the body 11 of the autonomous mobile body 1 along the perpendicular line L3, even if the entrance of the elevator 500 is relatively narrow, there is a possibility that the body 11 will come into contact with the entrance, door, wall surface, etc. of the elevator 500. can be reduced.
 このため、目標点設定部155は、図9に示すように、上記のようにして導出した垂線L3上に、2つの目標点Pg_1、Pg_2を設定する。1つ目の目標点Pg_1は、エレベータ500の入口よりも外側に設けられている。具体的には、目標点Pg_1の位置は、垂線L3上における、中点P_centerから距離α、エレベータ500の外側へ離れた位置である。 Therefore, the target point setting unit 155 sets two target points Pg_1 and Pg_2 on the perpendicular line L3 derived as described above, as shown in FIG. The first target point Pg_1 is provided outside the entrance of the elevator 500 . Specifically, the position of the target point Pg_1 is a position away from the midpoint P_center on the perpendicular L3 by a distance α to the outside of the elevator 500 .
 なお、図9を参照すれば分かるように、中点P_centerは、エレベータ500の入口のエレベータ500の入口の両角部、換言するとエレベータ500の入口の最も外側に位置する左右の検出点Pm_near_LおよびPm_near_Rの中点である。このため、中点P_centerは、エレベータ500から見て、最も外側に位置する。このため、中点P_centerから距離α、エレベータ500の外側へ離れた目標点Pg_1は、確実にエレベータ500の外側に位置することになる。 As can be seen from FIG. 9, the midpoint P_center is between the two corners of the entrance of the elevator 500, in other words, between the outermost left and right detection points Pm_near_L and Pm_near_R of the entrance of the elevator 500. is the midpoint. Therefore, the midpoint P_center is located on the outermost side when viewed from elevator 500 . Therefore, the target point Pg_1, which is located outside the elevator 500 by the distance α from the midpoint P_center, is positioned outside the elevator 500 without fail.
 2つ目の目標点Pg_2は、エレベータ500の籠の内部、かつ目的地点Pdの近く(所定の距離内)に設けられている。具体的には、目標点Pg_2の位置は、垂線L3上における、エレベータ500の籠の奥側の壁面506に対応する線分L1から距離β、エレベータ500の内側へ離れた位置である。なお、距離αおよびβは、例えば機体11の大きさに基づいて決定されるパラメータである。 The second target point Pg_2 is provided inside the cage of the elevator 500 and near the destination point Pd (within a predetermined distance). Specifically, the position of the target point Pg_2 is a position away from the line segment L1 corresponding to the wall surface 506 on the back side of the cage of the elevator 500 on the vertical line L3 by the distance β to the inside of the elevator 500 . Note that the distances α and β are parameters determined based on the size of the airframe 11, for example.
 経路決定部153は、このように目標点設定部155が設定した目標点を通るように、乗り込み経路を決定する。具体的には、経路決定部153は、区間02の起点位置である経由地点Pwから、目標点Pg_1を経由して、目標点Pg_2へ機体11を移動させるように乗り込み経路を決定する。 The route determination unit 153 determines the boarding route so as to pass through the target points set by the target point setting unit 155 in this way. Specifically, the route determination unit 153 determines the boarding route so that the aircraft 11 moves from the waypoint Pw, which is the starting position of the section 02, to the target point Pg_2 via the target point Pg_1.
 目標点Pg_1および目標点Pg_2は、上記したように、エレベータ500の入口の中心を通る垂線L3上にある。このため、機体11を目標点Pg_1に移動させてからエレベータ500の内部の目標点Pg_2まで移動させる経路とすることにより、機体11がエレベータ500の入口等に接触する可能性を低減させることができる。 The target points Pg_1 and Pg_2 are on the perpendicular line L3 passing through the center of the entrance of the elevator 500 as described above. Therefore, by moving the aircraft 11 to the target point Pg_1 and then to the target point Pg_2 inside the elevator 500, the possibility of the aircraft 11 contacting the entrance of the elevator 500 can be reduced. .
 なお、移動制御部152は、経由地点Pwから目標点Pg_1まで機体11を移動させた後、機体11の後ろ側が目標点Pg_2と正対するように機体11を旋回させてから、機体11を目標点Pg_2まで移動させるようにしてもよい。 After moving the body 11 from the waypoint Pw to the target point Pg_1, the movement control unit 152 turns the body 11 so that the rear side of the body 11 faces the target point Pg_2, and then moves the body 11 to the target point Pg_2. You may make it move to Pg_2.
 上記したように、目標点Pg_2は、垂線L3上における、目的地点Pdの近くに設けられている。このため、移動制御部152は、機体11が目標点Pg_2まで移動した時点で、機体11が区間02の終点位置である目的地点Pdに到達したと判定し、機体11の移動を終了させてもよい。または、移動制御部152は、目標点Pg_2まで機体11を移動させてから、さらに目的地点Pdまで機体11を移動させるようにしてもよい。なお、目的地点Pdまたは目標点Pg_2は、エレベータ500の内部であって、機体11がエレベータ500の内側の壁面506と接触しない位置である。 As described above, the target point Pg_2 is provided near the destination point Pd on the perpendicular L3. Therefore, when the aircraft 11 reaches the target point Pg_2, the movement control unit 152 determines that the aircraft 11 has reached the destination point Pd, which is the end position of the section 02, and terminates the movement of the aircraft 11. good. Alternatively, the movement control unit 152 may move the aircraft 11 to the target point Pg_2 and then move the aircraft 11 to the destination point Pd. The destination point Pd or the target point Pg_2 is a position inside the elevator 500 where the body 11 does not come into contact with the inner wall surface 506 of the elevator 500 .
 以上説明したように、第2の経路決定方法では、第1の経路決定方法とは異なり、位置推定部154が推定した自己位置および地図情報を用いず、測域センサ14Bが検出したエレベータ500の各部の検出点を用いて乗り込み経路を決定する。位置推定部154が推定する自己位置は、地図情報の誤差、または、駆動輪12の回転数を計測するエンコーダの誤差等により生じうる誤差が含まれている。このような誤差は、エレベータ500の外側を移動する場合のアプローチ経路を決定する際には特に問題にならないが、エレベータ500の入口を通って内部に進入する場合にはより高い精度での経路決定が求められる。第2の経路決定方法では、地図情報等の誤差がある情報を用いずに乗り込み経路を設定することから、第1の経路決定方法よりも高い精度での経路決定を行うことができる。 As described above, unlike the first route determination method, the second route determination method does not use the self-position and map information estimated by the position estimation unit 154, and the position of the elevator 500 detected by the range sensor 14B is determined. A boarding route is determined using the detection points of each part. The self-position estimated by the position estimator 154 includes errors that may occur due to map information errors, encoder errors that measure the number of rotations of the drive wheels 12, or the like. Such an error does not pose a particular problem when determining the approach route when moving outside the elevator 500, but when entering through the entrance of the elevator 500, route determination with higher accuracy is possible. is required. In the second route determination method, the boarding route is set without using information with errors such as map information, so the route can be determined with higher accuracy than in the first route determination method.
 <変形例>
 上記した実施の形態では、自律移動体1は、機体11を旋回させる際、左右の駆動輪12を互いに逆方向に同じ速度で駆動させることにより、左右の駆動輪12の中点を旋回中心Cwとして旋回させる例について説明した。しかしながら、本開示では、例えば左右の駆動輪12のうち、一方を停止させた状態で他方を駆動させることにより、一方の駆動輪12を旋回中心として旋回させるようにしてもよい。
<Modification>
In the above-described embodiment, when the body 11 is turned, the autonomous mobile body 1 drives the left and right drive wheels 12 in opposite directions at the same speed so that the midpoint of the left and right drive wheels 12 is the turning center Cw. An example of rotating as . However, in the present disclosure, for example, one of the left and right drive wheels 12 may be rotated while the other is driven while the other drive wheel 12 is stopped.
 上記した実施の形態では、具体例として、自律移動体1が、エレベータホール600内に設けられた出発地点Psから経由地点Pwまで移動する区間01と、経由地点Pwからエレベータ500の内部に設けられた目的地点Pdまで移動する区間02と、を連続して移動する例を説明した。しかしながら、本開示では、自律移動体が3つ以上の区間を連続して移動してもよい。 In the above-described embodiment, as a specific example, the autonomous mobile body 1 is provided in the section 01 that moves from the departure point Ps provided in the elevator hall 600 to the waypoint Pw, and the section 01 that is provided inside the elevator 500 from the waypoint Pw. An example in which the robot continuously moves through the section 02 in which it moves to the destination point Pd has been described. However, in the present disclosure, the autonomous mobile body may continuously move three or more sections.
 上記した実施の形態では、自律移動体1がエレベータ500の内部を目的地点Pdとして移動する例について説明した。本開示は、自律移動体がエレベータの内部を出発地点とし、エレベータの外部を目的地点として移動する場合にも適用が可能である。この場合、自律移動体がエレベータの内部からエレベータホールに出た時点で機体の前側が目的地点に向かうように方向転換し、そこから改めて目的地点まで移動するようにしてもよい。 In the above-described embodiment, an example in which the autonomous mobile body 1 moves inside the elevator 500 as the destination point Pd has been described. The present disclosure can also be applied when an autonomous mobile body starts inside an elevator and moves outside the elevator as a destination point. In this case, when the autonomous mobile body exits from the inside of the elevator into the elevator hall, it may change direction so that the front side of the body moves toward the destination point, and then move again to the destination point.
 上記した実施の形態では、自律移動体1の駆動輪12は後輪である。しかしながら、本開示では、自律移動体の駆動輪が前輪であってもよい。この場合、自律移動体の旋回中心は、機体の前側に偏心することになる。このような自律移動体がエレベータ入口付近の経由地点エレベータの内部に設けられた目的地点を向くように方向転換する場合、機体の後ろ側が目的地点から遠ざかるような旋回方向で機体を旋回させればよい。 In the embodiment described above, the driving wheels 12 of the autonomous mobile body 1 are rear wheels. However, in the present disclosure, the driving wheels of the autonomous mobile body may be front wheels. In this case, the center of rotation of the autonomous mobile body is eccentric to the front side of the body. When such an autonomous mobile body changes direction to face the destination point set inside the via point elevator near the elevator entrance, if the aircraft is turned in a turning direction such that the rear side of the aircraft moves away from the destination point. good.
 本開示に係る自律移動体は、エレベータへの乗り降りを含む自律移動を好適に行うことができる。 The autonomous mobile body according to the present disclosure can suitably perform autonomous movement including getting on and off an elevator.
 1 自律移動体
 11 機体
 12 駆動輪
 13 従動輪
 14,14A,14B 測域センサ
 15 制御部
 151 記憶部
 151A 地図情報記憶部
 151B 区間情報記憶部
 151C 形状情報記憶部
 152 移動制御部
 153 経路決定部
 154 位置推定部
 155 目標点設定部
1 autonomous mobile body 11 body 12 drive wheel 13 driven wheel 14, 14A, 14B range sensor 15 control unit 151 storage unit 151A map information storage unit 151B section information storage unit 151C shape information storage unit 152 movement control unit 153 route determination unit 154 Position estimation unit 155 Target point setting unit

Claims (10)

  1.  機体を移動させる駆動部の制御を行う自律移動体の制御方法であって、
     エレベータの外部の起点までの前記自律移動体の経路であるアプローチ経路を決定し、前記アプローチ経路に基づき前記機体を移動させるよう、前記駆動部を制御する第1ステップと、
     前記起点から前記エレベータ内部の終点までの前記自律移動体の経路である乗り込み経路を決定し、前記乗り込み経路に基づき前記機体を移動させるよう、前記駆動部を制御する第2ステップと、
     を含む、自律移動体の制御方法。
    A control method for an autonomous mobile body that controls a driving unit that moves the body,
    A first step of determining an approach route, which is a route of the autonomous mobile body to a starting point outside the elevator, and controlling the drive unit to move the aircraft based on the approach route;
    a second step of determining a boarding route, which is a route of the autonomous mobile body from the starting point to an end point inside the elevator, and controlling the drive unit to move the aircraft based on the boarding route;
    A control method for an autonomous mobile body, including
  2.  前記起点において、前記機体の一方側に偏心した点を旋回中心とし、前記機体の他方側を前記終点から遠ざける方向へ前記機体を旋回させるよう、前記駆動部を制御する第3ステップをさらに含み、
     前記第3ステップは、前記第1ステップと前記第2ステップとの間で実行される、
     請求項1に記載の自律移動体の制御方法。
    A third step of controlling the drive unit so as to rotate the fuselage in a direction that moves the other side of the fuselage away from the end point, with a point eccentric to one side of the fuselage at the starting point as the turning center, further comprising a third step;
    the third step is performed between the first step and the second step;
    The method for controlling an autonomous mobile body according to claim 1 .
  3.  前記起点は、前記エレベータの位置を含む地図情報に含まれる第1位置情報であり、
     前記第1ステップにおいて、前記第1位置情報に基づき前記第2ステップの実行を決定する、
     請求項2に記載の自律移動体の制御方法。
    The starting point is first position information included in map information including the position of the elevator,
    In the first step, determining execution of the second step based on the first location information;
    The method for controlling an autonomous mobile body according to claim 2 .
  4.  前記起点は、前記エレベータの位置を含む地図情報に含まれる第1位置情報が示す位置であり、
     前記第1ステップにおいて、前記第1位置情報に基づき前記第3ステップの実行を決定する、
     請求項2または3に記載の自律移動体の制御方法。
    The starting point is a position indicated by first position information included in map information including the position of the elevator,
    In the first step, determining execution of the third step based on the first location information;
    The method for controlling an autonomous mobile body according to claim 2 or 3.
  5.  前記自律移動体は、前記機体の位置を推定する位置推定部を備え、
     前記第1ステップにおいて、前記地図情報と、前記位置推定部により推定された前記機体の位置と、に基づいて前記アプローチ経路を決定する、
     請求項3または4に記載の自律移動体の制御方法。
    The autonomous mobile body includes a position estimating unit that estimates the position of the aircraft,
    In the first step, determining the approach route based on the map information and the position of the aircraft estimated by the position estimation unit;
    The method for controlling an autonomous mobile body according to claim 3 or 4.
  6.  前記自律移動体は、前記機体の周囲の物体と前記機体との相対的な距離および方向を計測する測域センサを備え、
     前記第2ステップにおいて、前記測域センサの計測結果に基づいて、前記機体と、前記エレベータの各部との相対的な位置を取得し、前記相対的な位置に基づいて前記乗り込み経路を決定する、
     請求項1~5のいずれか1項に記載の自律移動体の制御方法。
    The autonomous mobile body comprises a range sensor that measures the relative distance and direction between objects around the aircraft and the aircraft,
    In the second step, based on the measurement results of the range sensor, the relative positions of the aircraft and each part of the elevator are obtained, and the boarding route is determined based on the relative positions.
    The method for controlling an autonomous mobile body according to any one of claims 1 to 5.
  7.  前記第2ステップにおいて、前記機体と、前記エレベータの扉が開いた状態における、前記エレベータの入口の両端部、および前記エレベータの籠の奥側の壁との相対的な位置に基づいて前記終点を設定する、
     請求項6に記載の自律移動体の制御方法。
    In the second step, the end point is determined based on the relative positions of the airframe, both ends of the entrance of the elevator, and the inner wall of the cage of the elevator when the elevator door is open. set,
    The method for controlling an autonomous mobile body according to claim 6.
  8.  前記第2ステップにおいて、前記入口の両端部同士の中心を通り、前記奥側の壁に対する垂線上に、前記終点を設定する、
     請求項7に記載の自律移動体の制御方法。
    In the second step, the end point is set on a line perpendicular to the back wall passing through the center of both ends of the entrance.
    The method for controlling an autonomous mobile body according to claim 7 .
  9.  前記第2ステップにおいて、前記垂線上における、前記両端部同士の中心より前記エレベータの外側に経由地点を設定し、前記垂線上における、前記エレベータの籠の内部に前記終点を設定し、前記起点から前記経由地点を通って前記終点へ前記機体を移動させる前記乗り込み経路を生成する、
     請求項8に記載の自律移動体の制御方法。
    In the second step, a waypoint is set outside the elevator from the center of the two ends on the perpendicular, the end point is set inside the cage of the elevator on the perpendicular, and from the starting point generating the boarding path that moves the vehicle through the waypoint to the endpoint;
    The method for controlling an autonomous mobile body according to claim 8 .
  10.  前記第2ステップにおいて、前記経由地点は、前記入口の角部同士の中心より前記エレベータの外側に所定の距離離れた位置に設定される、
     請求項9に記載の自律移動体の制御方法。
    In the second step, the waypoint is set outside the elevator by a predetermined distance from the center of the corners of the entrance.
    The method for controlling an autonomous mobile body according to claim 9 .
PCT/JP2022/027505 2021-11-30 2022-07-13 Autonomous mobile object control method WO2023100414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280076820.1A CN118369629A (en) 2021-11-30 2022-07-13 Control method for autonomous mobile body
JP2023564740A JPWO2023100414A1 (en) 2021-11-30 2022-07-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194358 2021-11-30
JP2021194358 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100414A1 true WO2023100414A1 (en) 2023-06-08

Family

ID=86611835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027505 WO2023100414A1 (en) 2021-11-30 2022-07-13 Autonomous mobile object control method

Country Status (3)

Country Link
JP (1) JPWO2023100414A1 (en)
CN (1) CN118369629A (en)
WO (1) WO2023100414A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018382A (en) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd Autonomous mobile robot for getting on and off elevator
JP2010211512A (en) * 2009-03-10 2010-09-24 Toshiba Tec Corp Autonomous moving device
JP2018147476A (en) * 2017-03-08 2018-09-20 パナソニック株式会社 Mobile robot and follow-up method for mobile robot
JP2020128279A (en) * 2019-02-08 2020-08-27 東芝エレベータ株式会社 Elevator system, elevator group management control device and elevator number allocation method
CN112433528A (en) * 2020-11-27 2021-03-02 深圳优地科技有限公司 Method and device for robot to take advantage of elevator, robot and storage medium
JP2021086203A (en) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 Autonomous mobile device control system
CN113050637A (en) * 2021-03-16 2021-06-29 杭州安森智能信息技术有限公司 Task inspection method based on robot ladder control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018382A (en) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd Autonomous mobile robot for getting on and off elevator
JP2010211512A (en) * 2009-03-10 2010-09-24 Toshiba Tec Corp Autonomous moving device
JP2018147476A (en) * 2017-03-08 2018-09-20 パナソニック株式会社 Mobile robot and follow-up method for mobile robot
JP2020128279A (en) * 2019-02-08 2020-08-27 東芝エレベータ株式会社 Elevator system, elevator group management control device and elevator number allocation method
JP2021086203A (en) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 Autonomous mobile device control system
CN112433528A (en) * 2020-11-27 2021-03-02 深圳优地科技有限公司 Method and device for robot to take advantage of elevator, robot and storage medium
CN113050637A (en) * 2021-03-16 2021-06-29 杭州安森智能信息技术有限公司 Task inspection method based on robot ladder control system

Also Published As

Publication number Publication date
CN118369629A (en) 2024-07-19
JPWO2023100414A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US11845473B2 (en) Autonomous driving apparatus including a driving state switcher
JP2001515237A (en) Docking method of autonomous motion unit using guidance beam
KR100772912B1 (en) Robot using absolute azimuth and method for mapping by the robot
JP4682973B2 (en) Travel route creation method, autonomous mobile body, and autonomous mobile body control system
US20100324771A1 (en) Autonomous moving body, its control method, and control system
CN109643128B (en) Moving body and method for controlling moving body
JP2009031884A (en) Autonomous mobile body, map information creation method in autonomous mobile body and moving route specification method in autonomous mobile body
JP4670807B2 (en) Travel route creation method, autonomous mobile body, and autonomous mobile body control system
EP3620885A1 (en) Autonomous mobile apparatus
JP2020004095A (en) Autonomous mobile body controller and autonomous mobile body
JP5085251B2 (en) Autonomous mobile device
JP5553220B2 (en) Moving body
JP6962027B2 (en) Mobile vehicle
JPH08171416A (en) Apparatus and method for movement of robot through hall passage
WO2018179960A1 (en) Mobile body and local position estimation device
JP5314788B2 (en) Autonomous mobile device
WO2023100414A1 (en) Autonomous mobile object control method
JP2003058998A (en) Vehicle parking system
JPH075922A (en) Steering control method for unmanned work vehicle
KR101079197B1 (en) Line tracking method for autonomous guided vehicle
JP3293166B2 (en) Garage guidance system for vehicles
WO2016072186A1 (en) Location detecting device, control method, and autonomous vehicle
JP7367421B2 (en) Autonomous running body and control method for autonomous running body
CN114013426A (en) Horizontal parking path planning method and device, readable storage medium and terminal
JP7180449B2 (en) autonomous vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE