WO2023098381A1 - 二次电池及包含其的用电装置 - Google Patents

二次电池及包含其的用电装置 Download PDF

Info

Publication number
WO2023098381A1
WO2023098381A1 PCT/CN2022/129407 CN2022129407W WO2023098381A1 WO 2023098381 A1 WO2023098381 A1 WO 2023098381A1 CN 2022129407 W CN2022129407 W CN 2022129407W WO 2023098381 A1 WO2023098381 A1 WO 2023098381A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
negative electrode
positive electrode
secondary battery
electrolyte
Prior art date
Application number
PCT/CN2022/129407
Other languages
English (en)
French (fr)
Inventor
徐宁波
邹海林
陈培培
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22900186.2A priority Critical patent/EP4394970A1/en
Publication of WO2023098381A1 publication Critical patent/WO2023098381A1/zh
Priority to US18/622,884 priority patent/US20240283026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a secondary battery and an electrical device including the same.
  • the first aspect of the present application provides a secondary battery, including an additive
  • the structure of the additive is R 1 -XR 0 , wherein, X is one of carbon, nitrogen, silicon, phosphorus, and sulfur;
  • R O includes one or two non-polar groups;
  • R is a polar group of a chain group or a ring group, wherein the chain group includes one of double bonds, triple bonds, and silicon-oxygen bonds or several, and the cyclic group includes one or more of three-membered heterocycles, four-membered heterocycles, five-membered heterocycles, and six-membered heterocycles.
  • the present application provides an additive that can be applied to the positive electrode, the negative electrode, and the electrolyte, so that the interface structure of the secondary battery is not affected by the volume effect of the material, and inhibits the surface contact between the electrolyte and the active material, thereby improving the secondary battery. Battery storage life and cycle performance.
  • R 0 is a fluorocarbon chain; optionally, R 0 is a perfluorocarbon chain.
  • R 0 includes 2-10 carbon atoms.
  • the number of carbon atoms in the main chain of the additive is less than or equal to 20.
  • the double bond consists of carboxylate, carboxylate, carbonate, carbonate, sulfonate, sulfonate, sulfate, sulfate, phosphate, phosphate, carbon-carbon double bond, carbon
  • One or more of nitrogen double bonds, silicate, silicates; and/or, triple bonds include carbon-carbon triple bonds or carbon-nitrogen triple bonds; and/or, silicon-oxygen bonds are provided by silicate or silicon salt provided.
  • the cyclic group includes one or more of the following formulas I-IV structures,
  • a 1 -A 4 are independently selected from carbon, nitrogen, oxygen, sulfur, phosphorus, and silicon
  • B 1 and B 2 are independently selected from carbon, nitrogen, oxygen, sulfur, phosphorus, silicon, and carboxylic acid Esters, carboxylates, carbonates, carbonates, sulfonates, sulfonates, sulfates, sulfates, phosphates, phosphates, silicates, silicates, carbon-carbon double bonds, carbon-oxygen double bonds , A branch chain of one or more groups in the carbon-nitrogen double bond.
  • the secondary battery includes a positive pole piece, a negative pole piece and an electrolyte, and the additive is applied to at least one of the positive pole piece, the negative pole piece or the electrolyte.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer formed on the surface of the positive electrode current collector, and the mass fraction of the additive in the positive electrode film layer is 0.01%-10%, optionally 0.05%-8%.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode film layer formed on the surface of the negative electrode collector, and the mass fraction of the additive in the negative electrode film layer is 0.01%-10%, optionally 0.5%-10%.
  • the mass fraction of the additive in the electrolyte is 0.01%-10%, optionally 0.01%-5%.
  • a second aspect of the present application provides a battery module including the secondary battery provided in the first aspect of the present application.
  • a third aspect of the present application provides a battery pack, including the battery module of the second aspect of the present application.
  • the fourth aspect of the present application provides an electrical device, including one or more of the secondary battery of the first aspect of the present application, the battery module provided by the second aspect of the present application, or the battery pack provided by the third aspect of the present application kind.
  • Fig. 1 is a schematic structural view of an additive according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • Fig. 3 is an exploded view of the secondary battery according to an embodiment of the present application shown in Fig. 2;
  • FIG. 4 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • Fig. 6 is an exploded view of the battery pack according to an embodiment of the present application shown in Fig. 5;
  • FIG. 7 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • Secondary batteries also known as rechargeable batteries or accumulators, refer to batteries that can be activated by charging the active materials and continue to be used after the battery is discharged.
  • a secondary battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte.
  • active ions such as lithium ions
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows active ions to pass through.
  • the electrolyte is between the positive pole piece and the negative pole piece, and mainly plays the role of conducting active ions.
  • One embodiment of the present application provides a secondary battery, including an additive, the structure of the additive is R 1 -XR 0 , wherein, X is one of carbon, nitrogen, silicon, phosphorus, and sulfur; R 0 includes one or two a non-polar group; R 1 is a polar group of a chain group or a ring group, wherein the chain group includes one or more of double bonds, triple bonds, and silicon-oxygen bonds, and the ring
  • the shape group includes one or more of three-membered heterocycles, four-membered heterocycles, five-membered heterocycles, and six-membered heterocycles.
  • the volume effect of the positive or negative electrode has an important impact on the life of the cell: 1.
  • the huge volume effect will cause the rupture and re-growth of the interfacial film, resulting in a large interface impedance and affecting the kinetics of the cell.
  • the regeneration of the interface will consume the active lithium in the electrolyte and accelerate the decline of the battery capacity.
  • the re-growth of the interface film will consume too much electrolyte, reduce the kinetics of lithium ion transmission, and even deplete the electrolyte, causing the performance of the battery to plunge.
  • the active catalysis of the positive or negative interface on the electrolyte has an important impact on the life of the battery: 1.
  • the active catalysis of the interface will accelerate the excessive consumption of the electrolyte and generate thicker interface components, resulting in greater interface impedance and affecting Cell Kinetics. 2.
  • the active catalysis of the interface leads to an increase in the instability of the interface and reduces the storage performance of the battery.
  • a film-forming additive is usually added to the electrolyte.
  • the film-forming additive itself will undergo electrochemical oxidation or reduction reactions during the delithiation or lithium insertion process of the positive or negative electrodes. Continue to play a role in stabilizing the interface during the cycle. 2. During the oxidation or reduction process, the film-forming additive will still consume active lithium, reducing the Coulombic efficiency of the first cycle. 3.
  • the interface film formed by commonly used film-forming additives has certain mechanical strength and elasticity, it still cannot match the huge volume effect of the silicon-based negative electrode, and the improvement effect on battery life is not good, and even deteriorates the high-temperature storage performance. and gas production.
  • the present application introduces the additive R 1 -XR 0 into the secondary battery, which can solve the above problems.
  • the R 0 in the amphiphilic molecule is the hydrophobic group of the fluorocarbon chain. Fluorine is the most electronegative element, so the bond energy of the carbon-fluorine (CF) bond is high.
  • the atomic radius of covalently bonded fluorine atoms is larger than that of hydrogen atoms, which can effectively protect the fluorinated CC bonds, and the fluorocarbon chain has the characteristics of "hydrophobic and oil-repellent". Therefore, fluorosurfactants have high thermal stability and chemical stability.
  • an interface component with a double-layer structure can be generated by using the "oleophobic" characteristic of the fluorocarbon chain.
  • the inner layer contains cyclic, polar groups or unsaturated bond structures, which can be combined with positive or negative active materials through oxidation or reduction, characteristic adsorption, and bonding to form the inner layer of the interface film .
  • the outer layer contains 2-10 fluorocarbon chains. Due to the "oleophobic" property, it can inhibit the entry of the electrolyte solvent, that is, the desolvation of lithium ions begins to occur in the outer interface film.
  • This structure can accommodate the huge volume change of silicon-based anode materials without the problem of fracture of interfacial components. In addition, it can also prevent the direct contact between the electrolyte solvent and the positive/negative electrode active material, inhibit the oxidation or reduction decomposition of the electrolyte solvent, and help improve the performance of the battery cell.
  • R 0 is a fluorocarbon chain; alternatively, R 0 is a perfluorocarbon chain.
  • Perfluorocarbon chains are fluorine-containing carbon chains in which hydrogen atoms in hydrocarbons are replaced by fluorine atoms, and have higher thermal and chemical stability.
  • R 0 includes 2-10 carbon atoms.
  • the length of the perfluorocarbon chain has an important impact on the effect of interface modification: 1. If the number of carbon atoms in the perfluorocarbon chain is less than 2, the solvation layer of lithium ions cannot complete desolvation in the outer interface of the perfluorocarbon chain Chemicalization, that is, the contact between the electrolyte solvent and the electrode active material cannot be inhibited, and the oxidation or reduction reaction of the electrolyte solvent cannot be inhibited. 2. If the number of carbon atoms in the perfluorocarbon chain exceeds 10, lithium ions still cannot reach the inner layer containing polar groups after being completely desolvated in the outer layer structure of the perfluorocarbon chain, which will cause a large interface impedance , affecting the dynamic performance of the cell.
  • the number of carbon atoms in the main chain of the additive is less than or equal to 20.
  • the number of carbon atoms in the perfluorocarbon chain does not exceed 10, and if the main chain of the amphiphilic molecule exceeds 20 carbon atoms, that is, the number of carbon atoms in the polar group exceeds 10. Too long carbon chains of polar groups will form a thicker inner interface film at the interface of the active material, inhibit the migration of lithium ions, and affect the kinetic performance of the battery.
  • the double bond consists of carboxylate, carboxylate, carbonate, carbonate, sulfonate, sulfonate, sulfate, sulfate, phosphate, phosphate, carbon-carbon double bond, carbon
  • One or more of nitrogen double bonds, silicate, silicates; and/or, triple bonds include carbon-carbon triple bonds or carbon-nitrogen triple bonds; and/or, silicon-oxygen bonds are provided by silicate or silicon salt provided.
  • the cyclic group includes one or more of the following structures of formula I to formula IV,
  • a 1 -A 4 are independently selected from carbon, nitrogen, oxygen, sulfur, phosphorus, and silicon
  • B 1 and B 2 are independently selected from carbon, nitrogen, oxygen, sulfur, phosphorus, silicon, and carboxylic acid Esters, carboxylates, carbonates, carbonates, sulfonates, sulfonates, sulfates, sulfates, phosphates, phosphates, silicates, silicates, carbon-carbon double bonds, carbon-oxygen double bonds , A branch chain of one or more groups in the carbon-nitrogen double bond.
  • the compound having the above structure is preferably 3-perfluorobutyl-1,2-oxirane, tetraethylamine perfluorooctanesulfonate, lithium perfluorobutylsulfonate, perfluorobutylsulfonyl fluoride, Perfluorobutylethyltriethoxysilane, 1H,1H,2H,2H-perfluorohexyltrimethoxysilane, perfluorobutylethylene, perfluorobutylethyl acrylate, dodecafluoroheptyl acrylate, Perfluorodecylethanethiol, nonafluoropentanoic acid, perfluorobutylsulfonic acid, perfluorohexylethylsulfonic acid, lithium perfluorohexylsulfonate, perfluorohexylethylene, hexafluorobutyl acrylate
  • the polar head of the perfluorocarbon chain is composed of double bonds, triple bonds, silicon-oxygen bonds, and three to six-membered heterocyclic structures.
  • the head group containing double bonds or triple bonds because of the high electron cloud density, the solvent undergoes oxidation or reduction reactions, and combines with transition metal ions in the positive electrode material or siloxane groups in the silicon-based negative electrode material.
  • the high electron cloud density of groups containing unsaturated bonds will complex with transition metal ions and bind at the interface of positive electrode active materials.
  • the head group containing the silicon-oxygen bond and the silicon-based negative electrode material interface can be triggered by conditions to generate Si-O-Si bonds to combine with the silicon-based negative electrode active material interface.
  • the head group containing a three- to six-membered heterocycle can be bonded to transition metal ions or silicon-oxygen through oxidation or reduction in a ring-opening reaction.
  • the three- to six-membered heterocycle will also contain some electron-rich groups , Such as phosphorus-oxygen double bond, silicon-oxygen double bond, sulfur-oxygen double bond, etc., this electron-rich heterocycle will also complex with transition metal ions.
  • this polar head group is prone to oxidation, reduction, bonding with silicon/oxygen or complexing with transition metal ions, and can be tightly bound to the active material interface of the positive or negative electrode to form a double-layer interface film.
  • polar inner layer is prone to oxidation, reduction, bonding with silicon/oxygen or complexing with transition metal ions, and can be tightly bound to the active material interface of the positive or negative electrode to form a double-layer interface film.
  • the tail of the perfluorocarbon chain containing 2-10 carbon atoms is in the outer layer of the double-layer interfacial film, which is in direct contact with the electrolyte, which plays a role in inhibiting the direct contact between the electrolyte and the active material interface, and inhibits the electrolyte from being oxidized or Excessive consumption due to reduction reactions.
  • the secondary battery includes a positive electrode sheet, a negative electrode sheet, and an electrolyte, and additives are applied to at least one of the positive electrode sheet, the negative electrode sheet, or the electrolyte.
  • the content of amphoteric substances has an important influence on the effect of interface modification.
  • the mass fraction is within the range provided by the present application, it can evenly cover the interface of the active material and play a role in inhibiting the contact between the electrolyte and the active material, while the interface impedance and the kinetic performance of the battery cell are not affected.
  • the positive electrode sheet generally includes a positive electrode current collector and a positive electrode film layer arranged on at least one surface of the positive electrode current collector, and the positive electrode film layer includes a positive electrode active material.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode film layer may include the above-mentioned additives in this application.
  • the mass fraction of the additive in the positive electrode film layer can be 0.01%-10%, optionally 0.05%-8%.
  • a metal foil or a composite current collector can be used as the positive electrode current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a positive electrode active material known in the art for batteries.
  • the positive active material may include at least one of the following materials: olivine-structured lithium-containing phosphate, lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as LiNi
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also may be abbreviated as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon At least one of a composite material, lithium manganese iron phosphate, and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also may be abbreviated as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of meta-copolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as the positive electrode active material, the additives mentioned above in this application, the conductive agent, the binder, and any other components Dispersed in a solvent (such as N-methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N-methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode film layer may include the above-mentioned additives in this application.
  • the mass fraction of the additive in the negative electrode film layer can be 0.01%-10%, optionally 0.5%-10%.
  • a metal foil or a composite current collector can be used as the negative electrode current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material can be selected from at least one of simple tin, tin oxide and tin alloy.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder may be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), At least one of polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • electrolytes can be liquid, gel or all solid.
  • the additives described above in this application may be included in the electrolyte.
  • the mass fraction of the additive in the electrolyte can be 0.01%-10%, optionally 0.01%-5%.
  • the electrolyte is liquid and includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the sodium salt and the potassium salt are not specifically limited, and can be selected according to actual needs.
  • the electrolyte also optionally includes additives.
  • the additives may include negative film-forming additives, positive film-forming additives, and additives that can improve certain performances of the battery, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of the battery, and the like.
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 2 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating chamber. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 4 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 may be fixed by fasteners.
  • the battery module 4 may also include a case having a housing space in which a plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3 , the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • FIG. 7 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module may be used.
  • LFP positive electrode dissolve the positive electrode active material lithium iron phosphate, the conductive agent acetylene black, and the binder polyvinylidene fluoride (PVDF) in the solvent N-methylpyrrolidone (NMP) at a weight ratio of 90:5:5, fully
  • NMP solvent N-methylpyrrolidone
  • Ni0 positive electrode Dissolve the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), the conductive agent acetylene black, and the binder polyvinylidene fluoride (PVDF) in the solvent N-formaldehyde in a weight ratio of 90:5:5
  • the positive electrode slurry is obtained after fully stirring and mixing in NMP; then, the positive electrode slurry is evenly coated on the positive electrode current collector, and then dried, cold pressed, and cut to obtain the positive electrode sheet.
  • Ni1 positive electrode Dissolve the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), the conductive agent acetylene black, and the binder polyvinylidene fluoride (PVDF) in the solvent N-formaldehyde in a weight ratio of 90:5:5 Add 1wt% of 3-perfluorobutyl-1,2-oxirane to NMP, stir and mix well to obtain the positive electrode slurry; then apply the positive electrode slurry evenly on the positive electrode current collector After drying, cold pressing and slitting, the positive electrode sheet is obtained.
  • NCM811 LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • PVDF binder polyvinylidene fluoride
  • Ni2 positive electrode Soak the positive active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) and tetraethylamine perfluorooctane sulfonate in EMC at a mass ratio of 98:2, stir for 24 hours, filter, and vacuum dry at 80°C After 12 hours, dissolve in the solvent N-methylpyrrolidone (NMP) with the conductive agent acetylene black and the binder polyvinylidene fluoride (PVDF) at a weight ratio of 90:5:5, and mix well to obtain the positive electrode slurry ; Afterwards, the positive electrode slurry is evenly coated on the positive electrode current collector, and then dried, cold pressed, and cut to obtain the positive electrode sheet.
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride
  • Ni3 positive electrode Soak the positive active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) and lithium perfluorobutane sulfonate in EMC at a mass ratio of 98:2, stir for 24 hours and then filter, vacuum dry at 80°C for 12 hours and then mix with
  • the conductive agent acetylene black and the binder polyvinylidene fluoride (PVDF) are dissolved in the solvent N-methylpyrrolidone (NMP) in a weight ratio of 90:5:5, and the positive electrode slurry is obtained after fully stirring and mixing;
  • the positive electrode slurry is evenly coated on the positive electrode current collector, and then dried, cold pressed, and cut to obtain the positive electrode sheet.
  • Ni4 positive electrode Dissolve the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), the conductive agent acetylene black, and the binder polyvinylidene fluoride (PVDF) in the solvent N-formaldehyde in a weight ratio of 90:5:5 Add 1wt% of N,N ⁇ -bis(3-perfluorohexyl-2-hydroxypropyl)-N,N ⁇ -disulfopropylhexamethylenediamine to NMP, stir and mix well The positive electrode slurry is obtained; after that, the positive electrode slurry is evenly coated on the positive electrode current collector, and then dried, cold pressed, and cut to obtain the positive electrode sheet.
  • C negative electrode Dissolve active material artificial graphite, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethyl cellulose (CMC) in a solvent at a weight ratio of 90:4:4:2
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethyl cellulose
  • Si0 negative electrode dissolve active material silicon-carbon composite material, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethyl cellulose (CMC) in a weight ratio of 90:4:4:2
  • the negative electrode slurry is prepared by uniform mixing; then the negative electrode slurry is uniformly coated on the copper foil of the negative electrode current collector one or more times, and the negative electrode diaphragm is obtained after drying, and then cold pressed, slitting Obtain the negative pole piece.
  • Si1 negative electrode Dissolve active material silicon-carbon composite material, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethyl cellulose (CMC) in a weight ratio of 90:4:4:2
  • solvent deionized water add 1wt% perfluorobutylsulfonyl fluoride, and mix uniformly to prepare negative electrode slurry; then uniformly coat the negative electrode slurry on the negative electrode current collector copper foil one or more times, and dry The negative electrode diaphragm is obtained, and then the negative electrode sheet is obtained through cold pressing and slitting.
  • Si2 negative electrode Soak the active material silicon-carbon composite material and perfluorobutylethyltriethoxysilane in deionized water at a mass ratio of 98:2, stir for 24 hours and then filter, vacuum dry at 100°C for 24 hours and mix with the conductive agent acetylene Black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethylcellulose (CMC) are dissolved in solvent deionized water according to the weight ratio of 90:4:4:2, and are prepared into negative electrode slurry after uniform mixing ; Then the negative electrode slurry is evenly coated on the negative electrode current collector copper foil one or more times, and the negative electrode diaphragm is obtained after drying, and then the negative electrode sheet is obtained by cold pressing and slitting.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethylcellulose
  • Si3 negative electrode Soak the active material silicon-carbon composite material and 1H, 1H, 2H, 2H-perfluorohexyltrimethoxysilane in deionized water at a mass ratio of 98:2, stir for 24 hours, filter, and vacuum dry at 100°C for 24 hours It is prepared by dissolving the conductive agent acetylene black, the binder styrene-butadiene rubber (SBR), and the thickener sodium carboxymethylcellulose (CMC) in deionized water in a weight ratio of 90:4:4:2, and mixing evenly Then, the negative electrode slurry is evenly coated on the copper foil of the negative electrode collector one or more times, and the negative electrode diaphragm is obtained after drying, and then the negative electrode sheet is obtained by cold pressing and slitting.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethylcellulose
  • Si4 negative electrode dissolve active material silicon-carbon composite material, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethyl cellulose (CMC) in a weight ratio of 90:4:4:2 In solvent deionized water, add 1wt% 2-perfluorododecyl ethyl methacrylate, and mix uniformly to prepare negative electrode slurry; then uniformly coat the negative electrode slurry on the negative electrode current collector one or more times On the copper foil, the negative electrode diaphragm is obtained after drying, and then the negative electrode sheet is obtained by cold pressing and slitting.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethyl cellulose
  • Si5 negative electrode dissolve active material silicon-carbon composite material, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethyl cellulose (CMC) in a weight ratio of 90:4:4:2
  • solvent deionized water add 1wt% 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione, mix evenly to prepare negative electrode slurry
  • the negative electrode slurry is evenly coated on the negative electrode current collector copper foil one or more times, and the negative electrode diaphragm is obtained after drying, and then the negative electrode sheet is obtained by cold pressing and slitting.
  • Si6 negative electrode dissolve active material silicon-carbon composite material, conductive agent acetylene black, binder styrene-butadiene rubber (SBR), thickener sodium carboxymethyl cellulose (CMC) in a weight ratio of 90:4:4:2 In solvent deionized water, add 1wt% 4-perfluorooctylaniline, and mix uniformly to prepare a negative electrode slurry; then uniformly coat the negative electrode slurry on the negative electrode current collector copper foil one or more times, and after drying The negative electrode diaphragm is obtained, and then the negative electrode sheet is obtained through cold pressing and slitting.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethyl cellulose
  • E0 electrolyte In an argon atmosphere glove box (H 2 O ⁇ 0.1ppm, O 2 ⁇ 0.1ppm), mix the organic solvent EC/EMC according to the volume ratio of 3/7, add 12.5% LiPF 6 lithium salt and dissolve in In the organic solvent, add 1% PS, 0.5% DTD, 0.5% VC, 2% FEC as additives, stir evenly to obtain the corresponding electrolyte.
  • E1 Electrolyte In an argon atmosphere glove box (H 2 O ⁇ 0.1ppm, O 2 ⁇ 0.1ppm), mix the organic solvent EC/EMC according to the volume ratio of 3/7, add 12.5% LiPF 6 lithium salt and dissolve in In the organic solvent, add 1% PS, 0.5% DTD, 0.5% VC, 2% FEC, 1% perfluorobutyl ethylene as additives, stir evenly to obtain the corresponding electrolyte.
  • E2 electrolyte In an argon atmosphere glove box (H 2 O ⁇ 0.1ppm, O 2 ⁇ 0.1ppm), mix the organic solvent EC/EMC according to the volume ratio of 3/7, add 12.5% LiPF 6 lithium salt and dissolve in In the organic solvent, add 1% PS, 0.5% DTD, 0.5% VC, 2% FEC, 1% perfluorobutyl ethyl acrylate as additives, stir evenly to obtain the corresponding electrolyte.
  • E3 electrolyte In an argon atmosphere glove box (H 2 O ⁇ 0.1ppm, O 2 ⁇ 0.1ppm), mix the organic solvent EC/EMC according to the volume ratio of 3/7, add 12.5% LiPF 6 lithium salt and dissolve in In the organic solvent, add 1% PS, 0.5% DTD, 0.5% VC, 2% FEC, 1% (3,3,3-trifluoropropyl) trimethoxysilane as additives, and stir evenly to obtain the corresponding electrolyte .
  • a polypropylene film is used as the separator.
  • the capacity retention (%) of the lithium-ion battery after 800 cycles at 45°C (discharge capacity of the 800th cycle/discharge capacity of the first cycle) ⁇ 100%.
  • the volume expansion rate (%) of the lithium-ion battery after storage at 60° C. for 50 days (V 2 ⁇ V 1 )/V 1 ⁇ 100%.
  • the silicon-carbon composite interface in Examples 1-3 is covered by amphiphilic molecules containing perfluorocarbon chains.
  • the polar head group is combined with the silicon carbon active material to form the inner layer of the interfacial film.
  • Non-polar perfluorocarbon chains are located on the outer layer of the interfacial membrane in contact with the electrolyte.
  • the outer layer of the perfluorocarbon chain has the characteristics of "oil repellency", which can avoid the contact between the electrolyte solvent and the silicon carbon material interface, and inhibit the decomposition reaction of the electrolyte. It also avoids the problems of active lithium consumption and electrolyte solvolysis and gas generation caused by the reorganization of the interface film. It can effectively improve the performance of the battery cell.
  • the silicon-carbon composite material interface in Example 25 is covered by amphiphilic molecules with perfluorocarbon chains exceeding 10 carbon atoms. Because the non-polar perfluorocarbon chain is too long, lithium ions still cannot reach the inner layer containing polar groups after complete desolvation in the outer layer structure of the perfluorocarbon chain, which will cause a large interface impedance and affect the Cell kinetic performance.
  • the polar groups in the amphiphilic molecules containing perfluorocarbon chains covered by the silicon-carbon composite interface in Example 31 and Example 32 are not within the preferred group range, which has little effect on improving the interface and relatively good performance. Compared with Comparative Example 1, the improvement is small.
  • the interface of the nickel-rich material in Examples 4-6 is covered by amphiphilic molecules containing perfluorocarbon chains.
  • the polar head group combines with the transition metal ions at the interface of the nickel-rich material to form the inner layer of the interfacial film.
  • This inner layer structure can reduce the catalytic active sites of the high Ni cathode interface and improve the interface stability under high SOC conditions.
  • Non-polar perfluorocarbon chains are located on the outer layer of the interfacial membrane in contact with the electrolyte.
  • the outer layer of the perfluorocarbon chain has the characteristics of "oil-repelling", it can avoid the contact between the electrolyte solvent and the high-nickel material interface, inhibit the decomposition reaction of the electrolyte, and effectively improve the performance of the battery cell.
  • the interface of the high-nickel material in Example 26 is covered by amphiphilic molecules containing perfluorocarbon chains with a main chain length exceeding 20 carbon atoms. Because the number of carbon atoms in the perfluorocarbon chain does not exceed 10, if the main chain of the amphiphilic molecule exceeds 20 carbon atoms, that is, the number of carbon atoms in the polar group exceeds 10. Too long carbon chains of polar groups will form a thicker inner interface film at the interface of the active material, resulting in a larger interface impedance, inhibiting the migration of lithium ions, and affecting the kinetic performance of the battery.
  • the high-nickel material and the silicon-carbon composite material interface in Examples 7-18 are all covered by amphiphilic molecules containing perfluorocarbon chains.
  • the double-layer interface structure composed of amphiphilic molecules can reduce the active sites of the high-nickel positive electrode interface and adapt to the huge volume effect of silicon-carbon composite materials. It can also avoid the contact between the electrolyte solvent and the positive or negative electrode interface, and suppress the problems of increased impedance caused by excessive consumption of electrolyte and loss of active lithium, accelerated decline in capacity retention rate, and deterioration of gas production.
  • the formation of an amphiphilic bilayer interface structure containing perfluorocarbon chains at the interface of the positive electrode or the negative electrode can effectively improve the performance of the battery.
  • the interface of the silicon-carbon composite material in Example 27 is covered by amphiphilic molecules containing perfluorocarbon chains exceeding 10 carbon atoms, and the interface of the high-nickel material is covered by amphiphilic molecules containing perfluorocarbon chains with a main chain length exceeding 20 carbon atoms. cover.
  • amphiphilic molecules that do not meet the requirements will cause a large interface impedance at the electrode/electrolyte interface, inhibit the migration of lithium ions, and affect the performance of the battery.
  • the electrolyte solution used in Examples 19-24 contains amphiphilic molecules with perfluorocarbon chains.
  • This amphiphilic molecule has the characteristic distribution or characteristic adsorption of the interface, and can spontaneously form a double-layer interface structure with different polarities at the interface of the positive electrode or the negative electrode.
  • This double-layer structure can avoid the contact between the electrolyte solvent and the positive electrode or negative electrode interface, and suppress the deterioration of battery performance caused by excessive consumption of electrolyte and loss of active lithium.
  • amphiphilic molecules in the electrolyte used in Examples 28-30 are not perfluorocarbon chains, and it is impossible to realize the desolvation of lithium ions in the outer layer, that is, the contact between the electrolyte solvent and the active material cannot be inhibited, which will also cause The excessive decomposition of the electrolyte solvent leads to a decrease in the performance of the battery cell.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种二次电池(5),包括添加剂,添加剂的结构为Ri-X-R0,其中,X为碳、氮、硅、磷、硫中的一种;Ro包括一个或两个非极性基团;R1为链状基团或环状基团的极性基团,其中,链状基团包括双键、三键、硅氧键中的一种或几种,环状基团包括三元杂环、四元杂环、五元杂环、六元杂环中的一种或几种。

Description

二次电池及包含其的用电装置
本申请要求申请日为2021年12月2日提交的202111460178.0的优先权
技术领域
本申请涉及电池技术领域,尤其涉及一种二次电池及包含其的用电装置。
背景技术
近年来,二次电池的应用范围越来越广泛,其被广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。
二次电池在便携式电子设备市场占据主导地位,并且由于能量密度高、重量轻、寿命长,在电动汽车(EV)和混合动力汽车(HEV)中崭露头角。在为EV采用的高能量密度二次电池开发的材料中,硅(Si)和富镍(Ni)层状氧化物由于其高能量存储能力而成为电极材料的主要研究方向。然而,硅基负极和富镍正极由于各向异性的体积变化和界面恶化而受到结构不稳定性的影响,严重阻碍了其实际应用,因此二次电池的循环性能和存储寿命是亟待解决的问题。
发明内容
为了达到上述目的,本申请第一方面提供了一种二次电池,包括添加剂,添加剂的结构为R 1-X-R 0,其中,X为碳、氮、硅、磷、硫中的一种;R 0包括一个或两个非极性基团;R 1为链状基团或环状基团的极性基团,其中,链状基团包括双键、三键、硅氧键中的一种或几种,环状基团包括三元杂环、四元杂环、五元杂环、六元杂环中的一种或几种。
由此,本申请通过提供一种添加剂,可应用于正极、负极和电解液,使二次电池的界面结构不受材料体积效应的影响,并且抑制电解液和活性材料表面接触,进而提高二次电池的存储寿命及循环性能。
在任意实施方式中,R 0为含氟碳链;可选地,R 0为全氟碳链。
在任意实施方式中,R 0包括2-10个碳原子。
在任意实施方式中,添加剂的主链碳原子数小于等于20。
在任意实施方式中,双键由羧酸酯、羧酸盐、碳酸酯、碳酸盐、磺酸酯、磺酸盐、硫酸酯、硫酸盐、磷酸酯、磷酸盐、碳碳双键、碳氮双键、硅酸酯、硅酸盐中的一种或几种提供;和/或,三键包括碳碳三键或碳氮三键;和/或,硅氧键由硅酸酯或硅酸盐提供。
在任意实施方式中,环状基团包括如下式Ⅰ-式Ⅳ结构中的一种或几种,
Figure PCTCN2022129407-appb-000001
其中,A 1-A 4分别独立地选自碳、氮、氧、硫、磷、硅,B 1、B 2分别独立地选自碳、氮、氧、硫、磷、硅、以及含有羧酸酯、羧酸盐、碳酸酯、碳酸盐、磺酸酯、磺酸盐、硫酸酯、硫酸盐、磷酸酯、磷酸盐、硅酸酯、硅酸盐、碳碳双键、碳氧双键、碳氮双键中一个或多个基团的支链。
在任意实施方式中,二次电池包括正极极片、负极极片和电解质,添加剂应用于正极极片、负极极片或电解质中的至少一个中。
在任意实施方式中,正极极片包括正极集流体及形成于正极集流体表面的正极膜层,添加剂在正极膜层中的质量分数为0.01%-10%,可选为0.05%-8%。
在任意实施方式中,负极极片包括负极集流体及形成于负极集流体表面的 负极膜层,添加剂在负极膜层中的质量分数为0.01%-10%,可选为0.5%-10%。
在任意实施方式中,添加剂在电解质中的质量分数为0.01%-10%,可选为0.01%-5%。
本申请的第二方面提供一种电池模块,包括本申请第一方面提供的二次电池。
本申请的第三方面提供一种电池包,包括本申请的第二方面的电池模块。
本申请的第四方面提供一种用电装置,包括本申请的第一方面的二次电池、本申请第二方面提供的电池模块或本申请第三方面提供的电池包中的一种或多种。
附图说明
图1是本申请一实施方式的添加剂的结构示意图;
图2是本申请一实施方式的二次电池的示意图;
图3是图2所示的本申请一实施方式的二次电池的分解图;
图4是本申请一实施方式的电池模块的示意图;
图5是本申请一实施方式的电池包的示意图;
图6是图5所示的本申请一实施方式的电池包的分解图;
图7是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的隔离膜、正极极片、负极极片、电解液、二次电池、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一 个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[二次电池]
二次电池又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性材料激活而继续使用的电池。通常情况下,二次电池包括正极极片、负极极片、隔离膜及电解液。在电池充放电过程中,活性离子(例如锂离子)在正极极片和负极极片之间往返嵌入和脱出。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使活性离子通过。电解质在正极极片和负极极片之间,主要起到传导活性离子的作用。
二次电池
本申请的一个实施方式提供一种二次电池,包括添加剂,添加剂的结构为R 1-X-R 0,其中,X为碳、氮、硅、磷、硫中的一种;R 0包括一个或两个非极性基团;R 1为链状基团或环状基团的极性基团,其中,链状基团包括双键、三键、硅氧键中的一种或几种,环状基团包括三元杂环、四元杂环、五元杂环、六元杂环中的一种或几种。
正极或负极的体积效应对电芯寿命有重要影响:1、巨大的体积效应会导致界面膜的破裂和重新生长,造成较大的界面阻抗,影响电芯动力学。2、界面的重新生成会消耗电解液中的活性锂,加速电芯容量的衰退。3、界面膜的重新生长会消耗过多的电解液,降低锂离子传输动力学,甚至电解液枯竭导致电芯性能跳水。正极或负极界面对电解液的活性催化作用对电芯寿命有重要影响:1、界面的活性催化会加速电解液的过度消耗,生成较厚的界面的组分,造成较大的界面阻抗,影响电芯动力学。2、界面的活性催化作用,导致界面的不稳定性增加,降低电芯的存储性能。
因此为了稳定正极或负极与电解液的界面,通常是在电解液中添加成膜添加剂。但这种方案也存在一些问题:1、成膜添加剂本身会在正极或负极的脱锂或嵌锂过程中发生电化学氧化或还原反应,成膜过程一般在电芯的化成阶段进行,无法保证在循环过程中持续起到稳定界面的作用。2、成膜添加剂在氧化或还原过程中,仍会消耗活性锂,降低首圈的库仑效率。3、目前常用的成膜添加剂生成的界面膜虽然具有一定的机械强度和弹性,但仍然无法匹配硅基负极巨大的体积效应,对电芯寿命的改善效果不佳,甚至还会恶化高温存储性能和产气。
本申请在二次电池中引入添加剂R 1-X-R 0,可以解决上述问题。两性分子中的R 0为氟碳链的疏水基团。氟是电负性最高的元素,所以碳-氟(C-F)键 的键能很高。其次,共价键合的氟原子原子半径比氢原子大,可有效地将氟化的C-C键保护起来,氟碳链具有“憎水憎油”的特性。因此氟表面活性剂具有很高的热稳定性及化学稳定性。
在电极/电解液界面,利用氟碳链的“憎油”特性,可以生成一种具有双层结构的界面组分。参照图1的结构示意图,内层包含环状、极性基团或不饱和键结构,可以通过氧化或还原、特性吸附、键合的方式与正极或负极活性材料结合,构成界面膜的内层。外层是含有2-10个的氟碳链,由于“憎油”性,可以抑制电解液溶剂的进入,即在外层界面膜中开始发生锂离子的脱溶剂化作用。这种结构可以适应硅基负极材料巨大的体积变化,而不会出现界面组分破裂的问题。此外,还可以阻止电解液溶剂和正/负极活性材料的直接接触,抑制了电解液溶剂的氧化或还原分解,有利于改善电芯性能。
在一些实施方式中,R 0为含氟碳链;可选地,R 0为全氟碳链。
全氟碳链是烃中的氢原子均被氟原子取代的含氟碳链,具有更高的热稳定性和化学稳定性。
在一些实施方式中,R 0包括2-10个碳原子。
全氟碳链的长度对界面改性的效果具有重要影响:1、如果全氟碳链的碳原子数小于2,锂离子的溶剂化层无法在全氟碳链的外层界面中完成脱溶剂化,即无法抑制电解液溶剂和电极活性材料相接触,也就无法抑制电解液溶剂的氧化或还原反应。2、如果全氟碳链的碳原子数超过10,锂离子在全氟碳链的外层结构中完全脱溶剂化后仍然无法到达含极性基团的内层,会造成较大的界面阻抗,影响电芯动力学性能。
在一些实施方式中,添加剂的主链碳原子数小于等于20。
全氟碳链的碳原子数不超过10,如果两性分子的主链碳原子超过20,也即极性基团的碳原子数超过10。过长的极性基团碳链,会在活性材料界面处生成较厚的内层界面膜,抑制锂离子的迁移,影响电芯的动力学性能。
在一些实施方式中,双键由羧酸酯、羧酸盐、碳酸酯、碳酸盐、磺酸酯、磺酸盐、硫酸酯、硫酸盐、磷酸酯、磷酸盐、碳碳双键、碳氮双键、硅酸酯、硅酸盐中的一种或几种提供;和/或,三键包括碳碳三键或碳氮三键;和/或,硅氧键由硅酸酯或硅酸盐提供。
在一些实施方式中,环状基团包括如下式Ⅰ-式Ⅳ结构中的一种或几种,
Figure PCTCN2022129407-appb-000002
其中,A 1-A 4分别独立地选自碳、氮、氧、硫、磷、硅,B 1、B 2分别独立地选自碳、氮、氧、硫、磷、硅、以及含有羧酸酯、羧酸盐、碳酸酯、碳酸盐、磺酸酯、磺酸盐、硫酸酯、硫酸盐、磷酸酯、磷酸盐、硅酸酯、硅酸盐、碳碳双键、碳氧双键、碳氮双键中一个或多个基团的支链。
具有上述结构的化合物优选为3-全氟丁基-1,2-环氧乙烷、全氟辛基磺酸四乙基胺、全氟丁基磺酸锂、全氟丁基磺酰氟、全氟丁基乙基三乙氧基硅烷、1H,1H,2H,2H-全氟己基三甲氧基硅烷、全氟丁基乙烯、全氟丁基乙基丙烯酸酯、丙烯酸十二氟庚酯、全氟癸基乙硫醇、九氟戊酸、全氟丁基磺酸、全氟己基乙基磺酸、全氟己基磺酸锂、全氟己基乙烯、丙烯酸六氟丁酯、3-(1H,1H,5H八氟戊氧基)-1,2-氧化丙烯、3-(2,2,3,3-四氟丙氧基)-1,2-氧化丙烯、3-(全氟正辛基)-1,2-环氧丙烷、1H,1H,5H-八氟戊基甲基丙烯酸酯、2,2,3,3-四氟丙基甲基丙烯酸酯、七氟丁酸酐、3-(全氟正己基)环氧丙烷、3-(2-全氟己基乙氧基)-1,2-环氧丙烷、双全氟辛基取代的碳酸乙烯酯、双全氟己基取代的碳酸乙烯酯、双全氟丁基取代的碳酸乙烯酯、双全氟乙基取代的碳酸乙烯酯、全氟辛基取代的硫酸亚乙酯、全氟己基取代的硫酸亚乙酯、全氟丁基取代的硫酸亚乙酯、全氟乙基取代的硫酸亚乙酯、全氟辛基取代的丙磺酸内酯、全氟己基取代的丙磺酸内酯、全氟丁基取代的丙磺酸内酯、全氟乙基取代的丙磺酸内酯中的一种或几种。
全氟碳链的极性头部由双键、三键、硅氧键、三到六元杂环的结构组成。含双键或三键的头部基团,因为电子云密度较高,溶剂发生氧化或还原反应,和正极材料中的过渡金属离子或者硅基负极材料中的硅氧基团结合。此外,含不饱和键的基团的高电子云密度会和过渡金属离子发生络合作用,而结合在正极活性材料界面。含硅氧键的头部基团和硅基负极材料界面可以通过条件触发,生成Si-O-Si键而与硅基负极活性材料界面结合。含三到六元杂环的头部基团,可以通过氧化或还原发生开环反应与过渡金属离子或硅氧键合,此外,三到六元杂环中还会含有一些富电子的基团,如磷氧双键、硅氧双键、硫氧双键等,这种带富电子的杂环也会和过渡金属离子发生络合作用。总之,这种极性的头部基团容易发生氧化、还原、和硅/氧键合或者和过渡金属离子络合的过程,可以紧密结合在正极或负极的活性材料界面,构成双层界面膜的极性内层。含2-10个碳原子的全氟碳链的尾部处在双层界面膜的外层,和电解液直接接触,起到抑制电解液和活性材料界面直接接触的作用,抑制电解液由于氧化或还原反应引起的过度消耗。
在一些实施方式中,二次电池包括正极极片、负极极片和电解质,添加剂应用于正极极片、负极极片或电解质中的至少一个中。
本申请提供的二次电池中,两性物质的含量对界面改性的效果具有重要影响。在本申请提供的质量分数范围内时,既可以均匀覆盖在活性材料界面,起到抑制电解液和活性材料接触的作用,同时界面阻抗及电芯动力学性能不受影响。
[正极极片]
正极极片通常包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,正极膜层包括正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,正极膜层中可以包括本申请上述的添加剂。添加剂在正极膜层中的质量分数可以为0.01%-10%,可选为0.05%-8%。
在一些实施方式中,正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子 材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、本申请前述的添加剂、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,负极膜层中可以包括本申请上述的添加剂。添加剂在负极膜层中的质量分数可以为0.01%-10%,可选为0.5%-10%。
在一些实施方式中,负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。作为示例,粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。作为示例,导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,电解质中可以包括本申请上述的添加剂。添加剂在电解质中的质量分数可以为0.01%-10%,可选为0.01%-5%。
在一些实施方式中,电解质为液态的,且包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,钠盐和钾盐也不受具体的限制,可根据实际需求进行选择。
在一些实施方式中,电解液还可选地包括添加剂。作为示例,添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多 孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图2是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图3,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图4是作为一个示例的电池模块4。参照图4,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图5和图6是作为一个示例的电池包1。参照图5和图6,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图7是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
[实施例]
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例的制备
(1)正极极片的制备
LFP正极:将正极活性材料磷酸铁锂,导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,再经 过烘干、冷压、分切,得到正极片。
Ni0正极:将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2(NCM811),导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,再经过烘干、冷压、分切,得到正极片。
Ni1正极:将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2(NCM811),导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,再加入1wt%的3-全氟丁基-1,2-环氧乙烷,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,再经过烘干、冷压、分切,得到正极片。
Ni2正极:将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)和全氟辛基磺酸四乙基胺以质量比98:2浸泡在EMC中,搅拌24h后过滤,在80℃真空干燥12h后与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,再经过烘干、冷压、分切,得到正极片。
Ni3正极:将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)和全氟丁基磺酸锂以质量比98:2浸泡在EMC中,搅拌24h后过滤,在80℃真空干燥12h后与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,再经过烘干、冷压、分切,得到正极片。
Ni4正极:将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2(NCM811),导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为90:5:5溶于溶剂N-甲基吡咯烷酮(NMP)中,再加入1wt%的N,N`-二(3-全氟己基-2-羟基丙基)-N,N`-二磺丙基己二胺,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,再经过烘干、冷压、分切,得到正极片。
(2)负极极片的制备
C负极:将活性物质人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中与溶剂去离子水均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂 覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si0负极:将活性物质硅碳复合材料、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si1负极:将活性物质硅碳复合材料、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中,再加入1wt%全氟丁基磺酰氟,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si2负极:将活性物质硅碳复合材料和全氟丁基乙基三乙氧基硅烷以质量比98:2浸泡在去离子水中,搅拌24h后过滤,在100℃真空干燥24h后与导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si3负极:将活性物质硅碳复合材料和1H,1H,2H,2H-全氟己基三甲氧基硅烷以质量比98:2浸泡在去离子水中,搅拌24h后过滤,在100℃真空干燥24h后与导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si4负极:将活性物质硅碳复合材料、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中,再加入1wt%2-全氟十二烷基乙基甲基丙烯酸酯,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si5负极:将活性物质硅碳复合材料、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去 离子水中,再加入1wt%2,2-二甲基-6,6,7,7,8,8,8-七氟-3,5-辛二酮,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
Si6负极:将活性物质硅碳复合材料、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:4:4:2溶于溶剂去离子水中,再加入1wt%4-全氟辛基苯胺,均匀混合后制备成负极浆料;然后将负极浆料一次或多次均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
(3)电解液的制备
E0电解液:在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm),将有机溶剂EC/EMC按照体积比3/7混合均匀,加入12.5%LiPF 6锂盐溶解于有机溶剂中,加入1%PS,0.5%DTD,0.5%VC,2%FEC作为添加剂,搅拌均匀,得到相应的电解液。
E1电解液:在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm),将有机溶剂EC/EMC按照体积比3/7混合均匀,加入12.5%LiPF 6锂盐溶解于有机溶剂中,加入1%PS,0.5%DTD,0.5%VC,2%FEC,1%全氟丁基乙烯作为添加剂,搅拌均匀,得到相应的电解液。
E2电解液:在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm),将有机溶剂EC/EMC按照体积比3/7混合均匀,加入12.5%LiPF 6锂盐溶解于有机溶剂中,加入1%PS,0.5%DTD,0.5%VC,2%FEC,1%全氟丁基乙基丙烯酸酯作为添加剂,搅拌均匀,得到相应的电解液。
E3电解液:在氩气气氛手套箱中(H 2O<0.1ppm,O 2<0.1ppm),将有机溶剂EC/EMC按照体积比3/7混合均匀,加入12.5%LiPF 6锂盐溶解于有机溶剂中,加入1%PS,0.5%DTD,0.5%VC,2%FEC,1%(3,3,3-三氟丙基)三甲氧基硅烷作为添加剂,搅拌均匀,得到相应的电解液。
(4)隔离膜的制备
以聚丙烯膜作为隔离膜。
(5)二次电池的制备
将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正、负极片之间起到隔离的作用,然后卷绕得到电极组件;将电极组件置于电池壳体中,干燥后 注入电解液,再经过化成、静置等工艺制得锂离子电池。
表1实施例1-29和对比例3的制备参数
序号 正极 负极 电解液
实施例1 LFP正极 Si1负极 E0电解液
实施例2 LFP正极 Si2负极 E0电解液
实施例3 LFP正极 Si3负极 E0电解液
实施例4 Ni1正极 C负极 E0电解液
实施例5 Ni2正极 C负极 E0电解液
实施例6 Ni3正极 C负极 E0电解液
实施例7 Ni1正极 Si1负极 E0电解液
实施例8 Ni2正极 Si1负极 E0电解液
实施例9 Ni3正极 Si1负极 E0电解液
实施例10 Ni1正极 Si2负极 E0电解液
实施例11 Ni2正极 Si2负极 E0电解液
实施例12 Ni3正极 Si2负极 E0电解液
实施例13 Ni1正极 Si3负极 E0电解液
实施例14 Ni2正极 Si3负极 E0电解液
实施例15 Ni3正极 Si3负极 E0电解液
实施例16 Ni1正极 Si4负极 E0电解液
实施例17 Ni2正极 Si4负极 E0电解液
实施例18 Ni3正极 Si4负极 E0电解液
实施例19 LFP正极 Si0负极 E1电解液
实施例20 LFP正极 Si0负极 E2电解液
实施例21 Ni0正极 C负极 E1电解液
实施例22 Ni0正极 C负极 E2电解液
实施例23 Ni0正极 Si0负极 E1电解液
实施例24 Ni0正极 Si0负极 E2电解液
实施例25 LFP正极 Si4负极 E0电解液
实施例26 Ni4正极 C负极 E0电解液
实施例27 Ni4正极 Si4负极 E0电解液
实施例28 LFP正极 Si0负极 E3电解液
实施例29 Ni0正极 C负极 E3电解液
实施例30 Ni0正极 Si0负极 E3电解液
实施例31 LFP正极 Si5负极 E0电解液
实施例32 LFP正极 Si6负极 E0电解液
对比例1 LFP正极 Si0负极 E0电解液
对比例2 Ni0正极 C负极 E0电解液
对比例3 Ni0正极 Si0负极 E0电解液
测试方法
1、电芯内阻测试
在25℃下,将出货的锂离子电池和45℃循环800圈的锂离子电池以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后再以1C放电30min,即将电芯的电量调整到50%SOC。然后将TH2523A交流内阻测试仪的正负表笔分别接触电池的正负极,通过内阻测试仪读取电池的内阻值,分别记为初始电芯内阻和800圈后电芯内阻。
2、容量保持率测试
在45℃下,将锂离子电池以1C恒流充电至4.3V,然后以4.3V恒压充电至电流小于0.05C,然后将锂离子电池以1C恒流放电至3.0V,此为一个充放电过程。如此反复进行充电和放电,计算锂离子电池循环800次后的容量保持率。
锂离子电池45℃循环800次后的容量保持率(%)=(第800次循环的放电容量/首次循环的放电容量)×100%。
3、体积膨胀率测试
在25℃下,以1C恒流充电至电压为4.3V,然后以4.3V恒压充电至电流为0.05C,此时测试锂离子电池的体积并记为V1;然后将满充的锂离子电池放入60℃恒温箱中,存储50天,采用排水法测试体积并记为V2。
锂离子电池60℃存储50天后的体积膨胀率(%)=(V 2-V 1)/V 1×100%。
实验例1
表2负极使用添加剂的探究
Figure PCTCN2022129407-appb-000003
实施例1-3中的硅碳复合材料界面被含全氟碳链的两性分子覆盖。极性的 头部基团和硅碳活性材料相结合,构成界面膜的内层。非极性的全氟碳链位于界面膜的外层与电解液相接触。随着硅碳材料在脱锂和嵌锂过程中发生巨大的体积效应,两性分子随着硅碳材料的变化逐渐向外扩张或向内收缩,而不会发生极性的头部基团和硅碳材料之间脱落的问题。此外,全氟碳链的外层,具有“憎油”的特性,可以避免电解液溶剂和硅碳材料界面相接触,抑制了电解液的分解反应。也避免了由于界面膜重组所带来的活性锂消耗和电解液溶剂分解产气的问题。可有效改善电芯性能。
实施例25中的硅碳复合材料界面被超过含10个碳原子的全氟碳链的两性分子覆盖。由于非极性的全氟碳链过长,锂离子在全氟碳链的外层结构中完全脱溶剂化后仍然无法到达含极性基团的内层,会造成较大的界面阻抗,影响电芯动力学性能。
实施例31和实施例32中的硅碳复合材料界面所包覆的含全氟碳链的两性分子中的极性基团不在优选的基团范围内,对界面改善作用较小,性能也相对于对比例1提升较小。
而在对比例1中,使用没有改性的硅碳复合材料,电芯循环寿命很差。这主要是由于硅碳复合材料在脱锂和嵌锂的过程中,具有较大的体积的效应。导致界面组分的破裂和重新生成,在循环过程中生成较厚的界面组分,因此800圈循环后的电芯内阻较大。由于界面的重新生长,需要消耗活性锂,也导致循环过程中容量保持率快速降低。此外,由于电解液的持续消耗,会产生较多的气体,导致60℃存储的体积膨胀较为严重。
实验例2
表3正极使用添加剂的探究
Figure PCTCN2022129407-appb-000004
实施例4-6中的高镍材料界面被含全氟碳链的两性分子覆盖。极性的头部 基团和高镍材料界面的过渡金属离子相结合,构成界面膜的内层。这种内层结构可以减少高镍正极界面的催化活性位点,提高在高SOC条件下的界面稳定性。非极性的全氟碳链位于界面膜的外层与电解液相接触。由于全氟碳链的外层,具有“憎油”的特性,可以避免电解液溶剂和高镍材料界面相接触,抑制电解液的分解反应,有效改善电芯性能。
实施例26中的高镍材料界面被主链长度超过20个碳原子的含全氟碳链的两性分子所覆盖。因为全氟碳链的碳原子数不超过10,如果两性分子的主链碳原子超过20,也即极性基团的碳原子数超过10。过长的极性基团碳链,会在活性材料界面处生成较厚的内层界面膜,造成较大的界面阻抗,抑制锂离子的迁移,影响电芯的动力学性能。
而在对比例2中,使用没有改性的高镍材料,电芯循环寿命很差。这主要是由于高镍材料在脱锂过程中,产生较多具有催化活性的Ni 4+。Ni 4+可以催化电解液的分解,导致界面不稳定性增加。不稳定的界面结构会恶化循环过程的容量保持率,且会增加内阻和产气。
实验例3
表4正极、负极共同使用添加剂的探究
Figure PCTCN2022129407-appb-000005
实施例7-18中的高镍材料和硅碳复合材料界面都被含全氟碳链的两性分 子覆盖。这种两性分子构成的双层界面结构,可以降低高镍正极界面的活性位点,适配硅碳复合材料的巨大体积效应。还可以避免电解液溶剂和正极或负极界面相接触,抑制电解液的过度消耗和活性锂损失所带来的阻抗增加、容量保持率衰退加速、恶化产气等问题。这种在正极或负极界面生成含全氟碳链的两性分子双层界面结构,可有效改善电芯的性能。
实施例27中的硅碳复合材料界面被超过含10个碳原子的全氟碳链的两性分子覆盖,高镍材料界面被主链长度超过20个碳原子的含全氟碳链的两性分子所覆盖。这种不满足要求的两性分子会对电极/电解液界面处,会造成较大的界面阻抗,抑制锂离子的迁移,影响电芯的性能。
而在对比例3中,使用没有改性的高镍正极材料和硅碳负极材料,电芯循环寿命很差。这主要是由于高镍材料界面具有催化活性的过渡金属离子,和硅碳材料在脱锂和嵌锂过程中巨大的体积效应,导致正极和负极的界面组分都不稳定。界面结构的破裂、重组,不稳定性增加都会恶化电芯的容量保持率,且会增加内阻和恶化产气。
实验例4
表5电解液使用添加剂的探究
Figure PCTCN2022129407-appb-000006
实施例19-24中所使用的电解液含有全氟碳链的两性分子。这种两性分子具有界面的特性分布或特征吸附的作用,可以自发在正极或负极界面构成的极 性不一样的双层界面结构。这种双层结构可以避免电解液溶剂和正极或负极界面相接触,抑制电解液的过度消耗和活性锂损失所带来的电芯性能恶化的问题。
实施例28-30中所使用的电解液中的两性分子不是全氟碳链,无法实现在外层实现对锂离子的脱溶剂化作用,即无法抑制电解液溶剂和活性材料相接触,同样会造成电解液溶剂的过度分解,导致电芯性能下降。
而在对比例1-3中,在没有改性的高镍正极材料或硅碳负极材料的体系中使用不含全氟碳链结构的两性分子电解液,电芯循环寿命很差。这主要是由于高镍材料界面的催化活性和硅碳材料的巨大体积效应,导致正极或负极的界面组分不稳定。界面结构的不稳定性增加会恶化电芯性能。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (13)

  1. 一种二次电池,包括添加剂,所述添加剂的结构为R 1-X-R 0,其中,所述X为碳、氮、硅、磷、硫中的一种;所述R 0包括一个或两个非极性基团;所述R 1为链状基团或环状基团的极性基团,其中,所述链状基团包括双键、三键、硅氧键中的一种或几种,所述环状基团包括三元杂环、四元杂环、五元杂环、六元杂环中的一种或几种。
  2. 根据权利要求1所述的二次电池,其特征在于,其特征在于,所述R 0为含氟碳链;可选地,所述R 0为全氟碳链。
  3. 根据权利要求2所述的二次电池,其特征在于,所述R 0包括2-10个碳原子。
  4. 根据权利要求1-3任一项所述的二次电池,所述添加剂的主链碳原子数小于等于20。
  5. 根据权利要求1-4任一项所述的二次电池,其特征在于,所述双键由羧酸酯、羧酸盐、碳酸酯、碳酸盐、磺酸酯、磺酸盐、硫酸酯、硫酸盐、磷酸酯、磷酸盐、碳碳双键、碳氮双键、硅酸酯、硅酸盐中的一种或几种提供;和/或,所述三键包括碳碳三键或碳氮三键;和/或,所述硅氧键由硅酸酯或硅酸盐提供。
  6. 根据权利要求1-5任一项所述的二次电池,其特征在于,所述环状基团包括如下式Ⅰ-式Ⅳ结构中的一种或几种,
    Figure PCTCN2022129407-appb-100001
    Figure PCTCN2022129407-appb-100002
    其中,A 1-A 4分别独立地选自碳、氮、氧、硫、磷、硅,B 1、B 2分别独立地选自碳、氮、氧、硫、磷、硅、以及含有羧酸酯、羧酸盐、碳酸酯、碳酸盐、磺酸酯、磺酸盐、硫酸酯、硫酸盐、磷酸酯、磷酸盐、硅酸酯、硅酸盐、碳碳双键、碳氧双键、碳氮双键中一个或几个基团的支链。
  7. 根据权利要求1-6任一项所述的二次电池,其特征在于,所述二次电池包括正极极片、负极极片和电解质,所述添加剂应用于所述正极极片、所述负极极片或所述电解质中的至少一个中。
  8. 根据权利要求7所述的二次电池,其特征在于,所述正极极片包括正极集流体及形成于所述正极集流体表面的正极膜层,所述添加剂在所述正极膜层中的质量分数为0.01%-10%,可选为0.05%-8%。
  9. 根据权利要求7或8所述的二次电池,其特征在于,所述负极极片包括负极集流体及形成于所述负极集流体表面的负极膜层,所述添加剂在所述负极膜层中的质量分数为0.01%-10%,可选为0.5%-10%。
  10. 根据权利要求7-9任一项所述的二次电池,其特征在于,所述添加剂在所述电解质中的质量分数为0.01%-10%,可选为0.01%-5%。
  11. 一种电池模块,其特征在于,包括权利1-10任一项所述的二次电池。
  12. 一种电池包,其特征在于包括权利要求11所述的电池模块。
  13. 一种用电装置,其特征在于,包括权利要求12所述的电池包。
PCT/CN2022/129407 2021-12-02 2022-11-03 二次电池及包含其的用电装置 WO2023098381A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22900186.2A EP4394970A1 (en) 2021-12-02 2022-11-03 Secondary battery and electrical device comprising same
US18/622,884 US20240283026A1 (en) 2021-12-02 2024-03-30 Secondary battery and electric apparatus containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111460178.0 2021-12-02
CN202111460178.0A CN115842154A (zh) 2021-12-02 2021-12-02 二次电池及包含其的用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/622,884 Continuation US20240283026A1 (en) 2021-12-02 2024-03-30 Secondary battery and electric apparatus containing same

Publications (1)

Publication Number Publication Date
WO2023098381A1 true WO2023098381A1 (zh) 2023-06-08

Family

ID=85574564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129407 WO2023098381A1 (zh) 2021-12-02 2022-11-03 二次电池及包含其的用电装置

Country Status (4)

Country Link
US (1) US20240283026A1 (zh)
EP (1) EP4394970A1 (zh)
CN (1) CN115842154A (zh)
WO (1) WO2023098381A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066481A (ja) * 2014-09-24 2016-04-28 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
CN106030874A (zh) * 2014-01-24 2016-10-12 三洋化成工业株式会社 二次电池用添加剂、使用了该添加剂的电极和电解液、锂离子电池以及锂离子电容器
CN106328995A (zh) * 2015-07-07 2017-01-11 中国科学院过程工程研究所 一种锂离子电池电解液添加剂
CN113540563A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 一种添加剂以及锂电池电解液的改性方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196971A (ja) * 2003-12-26 2005-07-21 Matsushita Electric Ind Co Ltd リチウム二次電池用負極とその製造方法ならびにリチウム二次電池
JP2012003994A (ja) * 2010-06-17 2012-01-05 Sony Corp 非水電解質電池および非水電解質
CN102185156A (zh) * 2011-04-13 2011-09-14 北京理工大学 一种电解液
PL3750884T3 (pl) * 2014-11-21 2022-07-11 Daikin Industries, Ltd. Nowy fluorowany nienasycony cykliczny węglan oraz sposób jego wytwarzania
US11621438B2 (en) * 2018-12-05 2023-04-04 Honda Motor Co., Ltd. Solid electrolyte interphase (SEI) application on anode of fluoride ion/shuttle batteries
KR20180022247A (ko) * 2016-08-24 2018-03-06 솔브레인 주식회사 양극 코팅제를 포함하는 비수전해액 및 리튬 이차전지
CN106784589A (zh) * 2016-12-08 2017-05-31 宁德时代新能源科技股份有限公司 一种二次电池及注液方法
PL3627609T3 (pl) * 2017-06-30 2024-07-22 Daikin Industries, Ltd. Roztwór elektrolityczny, urządzenie elektrochemiczne, akumulator i moduł
CN109659620B (zh) * 2019-01-25 2022-09-16 欣旺达电动汽车电池有限公司 一种电解液及二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030874A (zh) * 2014-01-24 2016-10-12 三洋化成工业株式会社 二次电池用添加剂、使用了该添加剂的电极和电解液、锂离子电池以及锂离子电容器
JP2016066481A (ja) * 2014-09-24 2016-04-28 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
CN106328995A (zh) * 2015-07-07 2017-01-11 中国科学院过程工程研究所 一种锂离子电池电解液添加剂
CN113540563A (zh) * 2020-04-17 2021-10-22 中国石油化工股份有限公司 一种添加剂以及锂电池电解液的改性方法

Also Published As

Publication number Publication date
CN115842154A (zh) 2023-03-24
US20240283026A1 (en) 2024-08-22
EP4394970A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
WO2023004819A1 (zh) 二次电池与含有该二次电池的电池模块、电池包和用电装置
WO2023056825A1 (zh) 一种隔离膜、含有其的二次电池和用电装置
WO2023070988A1 (zh) 电化学装置和包含其的电子装置
WO2023082918A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023216139A1 (zh) 二次电池及其制备方法、电池模块、电池包和用电装置
WO2023045379A1 (zh) 一种电解液、包括其的二次电池及该二次电池的制备方法
WO2023029002A1 (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
US20240079600A1 (en) Cathode plate, secondary battery, battery module, battery pack, and electric device
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023216051A1 (zh) 一种含有环状硅氧烷的二次电池及用电装置
WO2023010927A1 (zh) 二次电池、电池模块、电池包及用电装置
WO2023133798A1 (zh) 一种用于锂离子二次电池的正极复合材料、正极和电池
WO2023070516A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023098381A1 (zh) 二次电池及包含其的用电装置
WO2021128001A1 (zh) 二次电池及含有该二次电池的装置
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023193230A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
CN116344826B (zh) 复合导电剂、包含其的负极组合物、负极极片、电池和用电装置
WO2023060554A1 (zh) 电解液、二次电池和用电装置
WO2023087168A1 (zh) 电解液、二次电池、电池模块、电池包以及用电装置
WO2023216209A1 (zh) 用于二次电池的造孔剂及其制备方法、负极极片、电极组件及二次电池
WO2024145741A1 (zh) 一种电解质、电池及用电装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023130249A1 (zh) 电解液及使用其的二次电池、电池模块、电池包以及用电装置
WO2022188163A1 (zh) 电解液、二次电池、电池模块、电池包和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900186

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022900186

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022900186

Country of ref document: EP

Effective date: 20240328

NENP Non-entry into the national phase

Ref country code: DE