WO2023098190A1 - 一种含氰化物和草酸盐废水的处理方法 - Google Patents

一种含氰化物和草酸盐废水的处理方法 Download PDF

Info

Publication number
WO2023098190A1
WO2023098190A1 PCT/CN2022/116260 CN2022116260W WO2023098190A1 WO 2023098190 A1 WO2023098190 A1 WO 2023098190A1 CN 2022116260 W CN2022116260 W CN 2022116260W WO 2023098190 A1 WO2023098190 A1 WO 2023098190A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
oxalate
cyanide
treatment method
treatment
Prior art date
Application number
PCT/CN2022/116260
Other languages
English (en)
French (fr)
Inventor
袁琦
仇雅丽
刘勇奇
巩勤学
李长东
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Publication of WO2023098190A1 publication Critical patent/WO2023098190A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Definitions

  • the invention belongs to the technical field of sewage treatment, and in particular relates to a treatment method for waste water containing cyanide and oxalate.
  • Cyanide often exists in different forms in various industrial wastewaters such as electroplating, metallurgy, coking, and metal processing. Due to the toxicity of cyanide to the human body and natural water ecosystem, the relevant comprehensive sewage discharge standards stipulate that the total cyanide concentration in the sewage discharged by general enterprises shall not exceed 0.5mg/L.
  • the methods for dealing with cyanide mainly include chemical oxidation method, physical chemical method, biological treatment method, natural degradation method, high pressure hydrolysis method, membrane separation method, radiation method and ion exchange method.
  • cyanide complexed with metal ions such as ferricyanide and ferrocyanide
  • ferricyanide and ferrocyanide are relatively less toxic and have strong stability. It is difficult to remove them by general chemical oxidation methods. It is also difficult for microorganisms in the treatment to break it down. If these cyanide-containing complexes enter complex environmental water bodies and encounter dilute acids or stronger complexing agents, they will react to release highly toxic CN-. Therefore, seeking an economical and efficient treatment method for ferricyanide and ferrocyanide is the focus of many scholars' research.
  • Oxalic acid is often used as a complexing agent and reducing agent in the chemical and pharmaceutical industries. It affects the COD of wastewater in the form of organic matter in wastewater. Organic matter is also an object of frequent concern in wastewater treatment. Conventional methods for treating organic matter include chemical oxidation, physical adsorption, and biological treatment. However, the general chemical oxidation method and physical adsorption method have high treatment costs, and the biological method has a long treatment cycle, especially when the wastewater contains components that inhibit the growth of microorganisms such as cyanide or heavy metals, the efficiency of biological treatment of organic matter is low.
  • the present invention aims to solve at least one of the above-mentioned technical problems existing in the prior art. Therefore, the invention provides a treatment method for wastewater containing cyanide and oxalate, which can efficiently and quickly treat wastewater containing ferricyanide, ferrocyanide and oxalate.
  • First aspect of the present invention provides a kind of treatment method containing cyanide and oxalate waste water, comprises the following steps:
  • step S3 adding an alkali treatment agent and a flocculant in sequence to the wastewater filtered in step S2 to separate the solid and liquid, and adjust the pH of the wastewater to 6-9.
  • the present invention relates to a technical scheme in the treatment method of wastewater containing cyanide and oxalate, at least has the following beneficial effects:
  • the treatment method of the present invention can simultaneously treat ferricyanide, ferrocyanide and oxalate ions in wastewater, which is efficient and fast.
  • the total cyanide content in wastewater is as low as 0.5 mg/L, and the chemical oxygen demand is low
  • the Mn 2+ content is as low as 0.5mg/L, which meets the emission requirements of the third-level standard stipulated in GB8978.
  • the treatment method of the present invention uses commonly available reagents, does not require expensive equipment investment, is low in cost, and is easy to popularize.
  • the total cyanide content is 40 mg/ ⁇ 900 mg/L
  • the chemical oxygen demand is 2000 mg/L ⁇ 5000 mg/L
  • the Mn 2+ content is 50mg/L ⁇ 300mg/L.
  • the total cyanide content in the wastewater is ⁇ 0.5 mg/L
  • the chemical oxygen demand is ⁇ 500 mg/L
  • the Mn 2+ content is ⁇ 0.5 mg/L.
  • the reagent used to adjust the pH of the wastewater includes at least one of sulfuric acid or hydrochloric acid.
  • the ferrous salt includes at least one of ferrous sulfate, ferrous chloride and ferrous nitrate.
  • step S2 the dosage of the ferrous salt is 0.25 to 8 times the chemical oxygen demand of the wastewater.
  • step S2 the wastewater is subjected to stirring treatment before being left to settle.
  • the flocculant is anionic polyacrylamide with a concentration of 0.5 ⁇ ⁇ 1.5 ⁇ .
  • the flocculant is anionic polyacrylamide with a concentration of 1 ⁇ .
  • the alkali treatment agent includes at least one of calcium hydroxide and sodium hydroxide.
  • step S3 the dosage of the alkali treatment agent is 15 to 30 times the chemical oxygen demand of the wastewater.
  • the present embodiment has processed ferricyanide and ferrocyanide and oxalate waste water, specifically comprises the following steps:
  • the main components of wastewater before and after treatment are shown in Table 1.
  • the testing standards are GB8978, GB11911, HJ484 and HJ/T399.
  • CNT refers to total cyanide in wastewater
  • COD refers to chemical oxygen demand (Chemical Oxygen Demand) in wastewater.
  • the present embodiment has processed ferricyanide and ferrocyanide and oxalate waste water, specifically comprises the following steps:
  • the present embodiment has processed ferricyanide and ferrocyanide and oxalate waste water, specifically comprises the following steps:
  • This comparative example has processed ferricyanide and ferrocyanide and oxalate waste water, specifically comprises the following steps:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

本发明提供了一种含氰化物和草酸盐废水的处理方法,该处理方法先调节废水的pH,然后向废水中依次投加亚铁盐和絮凝剂,静置沉降后进行过滤,之后依次投加碱处理剂和絮凝剂,固液分离,再次调节废水的pH。本发明的处理方法,在弱酸性至弱碱性的条件下,首先加入过量的亚铁离子,使亚铁离子和废水中的铁氰根、亚铁氰根以及草酸根离子充分结合,生成沉淀,然后经固液分离,达到去除氰根和有机物的目的。之后再加入适量的碱性试剂,使氢氧根与废水中的重金属离子和过量的亚铁离子作用,生成沉淀,固液分离,达到去除重金属离子的目的。

Description

一种含氰化物和草酸盐废水的处理方法 技术领域
本发明属于污水处理技术领域,具体涉及一种含氰化物和草酸盐废水的处理方法。
背景技术
氰化物经常以不同的形式存在于电镀、冶金、焦化、金属加工等多种工业废水中。因氰化物对人体及自然水体生态系统的毒害性,相关污水综合排放标准中规定一般企业排放污水中总氰化物浓度不得超过0.5mg/L。
目前处理氰化物的方法主要有化学氧化法、物理化学法、生物处理法、自然降解法、高压水解法、膜分离法、辐射法及离子交换法等。在不同形态的氰化物中,与金属离子络合的氰化物如铁氰化物、亚铁氰化物等毒性相对较小,有着极强的稳定性,一般的化学氧化方法很难将其去除,生物处理法中的微生物也很难将其分解。若这些含氰络合物进入到复杂的环境水体中,遇到稀酸或者更强的络合剂,则会发生反应释放剧毒的CN-。因此寻求经济且高效的铁氰化物、亚铁氰化物的处理方法,是目前众多学者研究的重点。
草酸在化工、医药行业中常被用作络合剂、还原剂等,其在废水中以有机物形式影响废水的COD。有机物也是废水处理中经常被关注的对象。常规处理有机物的方法有化学氧化法、物理吸附法、生物处理法等。但一般化学氧化法和物理吸附法处理成本较高,生物法处理周期较长,尤其当废水中含有氰化物或重金属等抑制微生物的生长的成分时,生物法处理有机物的效率较低。
相关技术中,尚无能够处理同时含有铁氰络合物和以草酸盐为主的有机物的废水的方法。因此,开发一种处理成本低,处理效率高的综合污水处理方法是目前工业废水处理亟需解决的问题。
发明内容
本发明旨在至少解决现有技术中存在的上述技术问题之一。为此,本发明提供了一种含氰化物和草酸盐废水的处理方法,该方法能高效快捷地处理含铁氰和亚铁氰化物及草酸盐废水。
本发明的第一方面提供了一种含氰化物和草酸盐废水的处理方法,包括以下步骤:
S1:调节废水的pH至5~8;
S2:向废水中依次投加亚铁盐和絮凝剂,静置沉降后进行过滤;
S3:向步骤S2过滤后的废水中依次投加碱处理剂和絮凝剂,固液分离,调节废水的pH至6~9。
本发明关于含氰化物和草酸盐废水的处理方法中的一个技术方案,至少具有以下有益效果:
本发明的处理方法,在弱酸性至弱碱性的条件下,首先加入过量的亚铁离子,使亚铁离子和废水中的铁氰根、亚铁氰根以及草酸根离子充分结合,生成沉淀,然后经固液分离,达到去除氰根和有机物的目的。之后再加入适量的碱性试剂,使氢氧根与废水中的重金属离子和过量的亚铁离子作用,生成沉淀,固液分离,达到去除重金属离子的目的。
本发明的处理方法,可同时处理废水中的铁氰化物、亚铁氰化物及草酸根离子,高效快捷,处理后,废水中的总氰化物含量低至0.5mg/L,化学需氧量低至500mg/L,Mn 2+含量低至0.5mg/L,满足GB8978规定的三级标准排放要求。
本发明的处理方法,使用的试剂常规易得,无需昂贵的设备投入,成本低廉,易于推广。
根据本发明的一些实施方式,所述含氰化物和草酸盐废水中,总氰化物含量为40mg/~900mg/L,化学需氧量为2000mg/L~5000mg/L,Mn 2+含量为50mg/L~300mg/L。
根据本发明的一些实施方式,步骤S3处理后,废水中的总氰化物含量≤0.5mg/L,化学需氧量≤500mg/L,Mn 2+含量≤0.5mg/L。
根据本发明的一些实施方式,步骤S1中,调节废水pH所用的试剂包括硫酸或盐酸中的至少一种。
根据本发明的一些实施方式,所述亚铁盐包括硫酸亚铁、氯化亚铁和硝酸亚铁中的至少一种。
根据本发明的一些实施方式,步骤S2中,所述亚铁盐的投加量为废水化学需氧量的0.25倍~8倍。
根据本发明的一些实施方式,步骤S2中,静置沉降前,对废水进行搅拌处理。
根据本发明的一些实施方式,所述絮凝剂为浓度0.5‰~1.5‰的阴离子聚丙烯酰胺。
根据本发明的一些实施方式,所述絮凝剂为浓度1‰的阴离子聚丙烯酰胺。
根据本发明的一些实施方式,步骤S3中,所述碱处理剂包括氢氧化钙和氢氧化钠中的至少一种。
根据本发明的一些实施方式,步骤S3中,所述碱处理剂的投加量为废水化学需氧量的15倍~30倍。
具体实施方式
以下是本发明的具体实施例,并结合实施例对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
本实施例对含铁氰和亚铁氰化物及草酸盐废水进行了处理,具体包括如下步骤:
取200mL含铁氰和亚铁氰化物及草酸盐废水,往其中加入15%稀硫酸调节废水pH至6-7;
然后加入0.7g七水硫酸亚铁,搅拌反应60min,再加入1mL1‰的阴离子聚丙烯酰胺,搅拌20min,静置沉降,得到滤液;
往滤液中加入12.5g氢氧化钙粉末使废水pH值稳定在12-13,搅拌反应60min,然后加入1mL 1‰的阴离子聚丙烯酰胺,搅拌20min,固液分离,取上清液,往上清液中加入15%稀硫酸调节废水pH至7.6,即可排出废水。
废水处理前后主要成分如表1所示。测试依据的标准为GB8978、GB11911、HJ484和HJ/T399。
表1实施例1废水处理前后主要成分
水样 CN T(mg/L) COD(mg/L) Mn 2+(mg/L) pH
处理前 86.94 2856 251.16 8.7
处理后 0.12 128 0.13 7.6
表1中,CN T指废水中的总氰化物(total cyanide),COD指废水中的化学需氧量(Chemical Oxygen Demand)。
实施例2
本实施例对含铁氰和亚铁氰化物及草酸盐废水进行了处理,具体包括如下步骤:
取250mL含铁氰和亚铁氰化物及草酸盐废水,往其中加入15%稀硫酸调节废水pH至6-7;
加入1.4g七水硫酸亚铁,搅拌反应60min,加入1mL1‰的阴离子聚丙烯酰胺,搅拌20min, 静置沉降,得到滤液;
然后往滤液中加入20g氢氧化钙粉末使废水pH值稳定在12-13,搅拌反应60min,然后加入1mL 1‰的阴离子聚丙烯酰胺,搅拌20min,固液分离,取上清液。往上清液中加入15%稀硫酸调节废水pH至7.0,即可排出废水。
废水处理前后主要成分如表2所示。
表2实施例2废水处理前后主要成分
水样 CN T(mg/L) COD(mg/L) Mn 2+(mg/L) pH
处理前 744.5 3909 159.8 8.6
处理后 0.08 257 0.12 7.0
实施例3
本实施例对含铁氰和亚铁氰化物及草酸盐废水进行了处理,具体包括如下步骤:
取200mL含铁氰和亚铁氰化物及草酸盐废水,往其中加入15%稀硫酸调节废水pH至6-7;
然后加入18g七水硫酸亚铁,搅拌反应60min,然后加入1mL1‰的阴离子聚丙烯酰胺,搅拌20min,静置沉降,得到滤液;
往滤液中加入3mL4%的氢氧化钠溶液使废水pH值稳定在12-13,搅拌反应60min,然后加入1mL 1‰的阴离子聚丙烯酰胺,搅拌20min,固液分离,取上清液,往上清液中加入15%稀硫酸调节废水pH至7.5,即可排出废水。
废水处理前后主要成分如表3所示。
表3实施例3废水处理前后主要成分
水样 CN T(mg/L) COD(mg/L) Mn 2+(mg/L) pH
处理前 718.9 3303 114.61 8.5
处理后 0.19 385 0.1 7.5
对比例
本对比例对含铁氰和亚铁氰化物及草酸盐废水进行了处理,具体包括如下步骤:
取250mL含铁氰和亚铁氰化物及草酸盐废水,往其中加入15%稀硫酸调节废水pH至6-7;
然后加入0.8g七水硫酸亚铁,搅拌反应60min,然后加入1mL1‰的阴离子聚丙烯酰胺,搅拌20min,静置沉降,得到滤液;
往滤液中加入20g氢氧化钙粉末使废水pH值稳定在12-13,搅拌反应60min,然后加入1mL1‰的阴离子聚丙烯酰胺,搅拌20min,固液分离,取上清液,往上清液中加入15%稀硫酸调节废水pH至7.0,即可排出废水。
废水处理前后主要成分如表4所示。
表4对比例废水处理前后主要成分
水样 CN T(mg/L) COD(mg/L) Mn 2+(mg/L) pH
处理前 724.19 3348 159.8 8.5
处理后 491.9 257.5 0.1 7.5
对比例中,亚铁离子的添加量低于0.25倍COD(本对比例中COD的含量是为3348×0.25=837mg,七水硫酸亚铁的相对分子质量为278.05,铁元素平均相对原子质量为55.845,亚铁离子添加量为0.8×1000×55.845÷278.05=160.68mg,160.68÷837=0.19<0.25。),未能将废水中的总氰化物浓度处理至0.5mg/L以下。
上面结合实施例对本发明作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种含氰化物和草酸盐废水的处理方法,其特征在于,包括以下步骤:
    S1:调节废水的pH至5~8;
    S2:向废水中依次投加亚铁盐和絮凝剂,静置沉降后进行过滤;
    S3:向步骤S2过滤后的废水中依次投加碱处理剂和絮凝剂,固液分离,调节废水的pH至6~9。
  2. 根据权利要求1所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,所述含氰化物和草酸盐废水中,总氰化物含量为40mg/~900mg/L,化学需氧量为2000mg/L~5000mg/L,Mn 2+含量为50mg/L~300mg/L。
  3. 根据权利要求1所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,步骤S3处理后,废水中的总氰化物含量≤0.5mg/L,化学需氧量≤500mg/L,Mn 2+含量≤0.5mg/L。
  4. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,步骤S1中,调节废水pH所用的试剂包括硫酸或盐酸中的至少一种。
  5. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,所述亚铁盐包括硫酸亚铁、氯化亚铁和硝酸亚铁中的至少一种。
  6. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,步骤S2中,所述亚铁盐的投加量为废水化学需氧量的0.25倍~8倍。
  7. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,步骤S2中,静置沉降前,对废水进行搅拌处理。
  8. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,所述絮凝剂为浓度0.5‰~1.5‰的阴离子聚丙烯酰胺。
  9. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,步骤S3中,所述碱处理剂包括氢氧化钙和氢氧化钠中的至少一种。
  10. 根据权利要求1至3任一项所述的一种含氰化物和草酸盐废水的处理方法,其特征在于,步骤S3中,所述碱处理剂的投加量为废水化学需氧量的15倍~30倍。
PCT/CN2022/116260 2021-12-01 2022-08-31 一种含氰化物和草酸盐废水的处理方法 WO2023098190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111459133.1A CN114180753A (zh) 2021-12-01 2021-12-01 一种含氰化物和草酸盐废水的处理方法
CN202111459133.1 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098190A1 true WO2023098190A1 (zh) 2023-06-08

Family

ID=80603262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116260 WO2023098190A1 (zh) 2021-12-01 2022-08-31 一种含氰化物和草酸盐废水的处理方法

Country Status (2)

Country Link
CN (1) CN114180753A (zh)
WO (1) WO2023098190A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180753A (zh) * 2021-12-01 2022-03-15 湖南邦普循环科技有限公司 一种含氰化物和草酸盐废水的处理方法
CN115043475B (zh) 2022-05-31 2023-06-13 广东邦普循环科技有限公司 含铁氰络合物和草酸盐废水的处理方法
CN115124165B (zh) * 2022-06-30 2024-04-30 赣州福默斯科技有限公司 一种草酸废水综合利用的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312760A (en) * 1980-02-19 1982-01-26 Neville Roy G Method for the removal of free and complex cyanides from water
US4543189A (en) * 1984-06-13 1985-09-24 Bethlehem Steel Corp. Removal of complexed zinc-cyanide from wastewater
CN109534556A (zh) * 2018-12-21 2019-03-29 广西森合高新科技股份有限公司 一种含铁锌元素的氰化物废水的处理方法
CN110104829A (zh) * 2019-05-16 2019-08-09 山东金创金银冶炼有限公司 一种含氰化物废水的处理方法
CN114180753A (zh) * 2021-12-01 2022-03-15 湖南邦普循环科技有限公司 一种含氰化物和草酸盐废水的处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778754B1 (ko) * 2006-10-18 2007-11-29 주식회사 포스코 시안화합물을 함유한 폐수의 화학적 처리방법
CN109019945B (zh) * 2017-06-12 2021-07-20 鞍钢股份有限公司 一种含氰废水的处理方法
CN109336288A (zh) * 2018-11-02 2019-02-15 长春黄金研究院有限公司 一种含氰废水循环利用的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312760A (en) * 1980-02-19 1982-01-26 Neville Roy G Method for the removal of free and complex cyanides from water
US4543189A (en) * 1984-06-13 1985-09-24 Bethlehem Steel Corp. Removal of complexed zinc-cyanide from wastewater
CN109534556A (zh) * 2018-12-21 2019-03-29 广西森合高新科技股份有限公司 一种含铁锌元素的氰化物废水的处理方法
CN110104829A (zh) * 2019-05-16 2019-08-09 山东金创金银冶炼有限公司 一种含氰化物废水的处理方法
CN114180753A (zh) * 2021-12-01 2022-03-15 湖南邦普循环科技有限公司 一种含氰化物和草酸盐废水的处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO, CHONGWU: "Development of Processes for Treatment of Trivalent Chromium Passivation Wastewater", ELECTROPLATING & FINISHING, vol. 39, no. 13, 15 July 2020 (2020-07-15), XP009546856, ISSN: 1004-227X *
XIONG, ZHENGWEI: "Treatment of Electroplating CN-Contained Wastewater by Ferrous Sulfate", JOURNAL OF HUNAN UNIVERSITY OF SCIENCE AND ENGINEERING, vol. 28, no. 9, 30 September 2007 (2007-09-30), XP009546903, ISSN: 1004-227X *
YIN, LIUYU: "Study on The Removal of Cyanide-containing in Electroplating Wastewater", LIAONING URBAN AND RURAL ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 26, no. 6, 31 December 2006 (2006-12-31), XP009546902, ISSN: 1674-1021 *

Also Published As

Publication number Publication date
CN114180753A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2023098190A1 (zh) 一种含氰化物和草酸盐废水的处理方法
US9499420B2 (en) Formulations and methods for removing heavy metals from waste solutions containing chelating agents
CN107857426B (zh) 一种含磷废水综合处理方法
CN105948336B (zh) 一种含氰含铬电镀废水的处理工艺
CN109081518B (zh) 一种处理水中六价铬污染的方法
CN109987750B (zh) 一种由钙和有机酸类络合物介导的促进芬顿氧化的方法
CN110092502B (zh) 一种焦磷酸盐-柠檬酸锌镍合金电镀废水的处理方法
CN213060470U (zh) 一种硫酸法钛白废水处理装置
WO2023231507A1 (zh) 含铁氰络合物和草酸盐废水的处理方法
CN110981018B (zh) 氯化钾镉钴合金电镀废水的处理方法
CN105110515B (zh) 一种dsd酸废水的处理方法
CN111995167A (zh) 一种酸性重金属废水的处理方法
CN110818123B (zh) 三价铬镀铬废水的处理方法
CN107381940B (zh) 一种焦化废水的回用方法
CN110759512B (zh) 处理氯化钾无氰镀镉废水的方法
CN110540336A (zh) 一种氨肟化废水的处理方法及其应用
CN110759511B (zh) 枪黑色锡镍合金电镀废水的处理方法
CN110790417B (zh) 五金和电子电镀废水的处理方法
CN112645428A (zh) 一种芬顿反应强化剂及其应用
CN115140862A (zh) 一种采用臭氧和芬顿工艺协同前处理电镀废水的方法
CN111018204A (zh) 化学沉淀法与膜分离法联合处理电镀废水
JPH11319889A (ja) セレン含有排水の処理方法及び装置
CN111087081B (zh) 一种废水处理方法及其应用
CN110577269A (zh) 一种去除废水中锰与氨氮的复合药剂及其应用方法
CN108017136A (zh) 一种采用有机物将有毒的六价铬转变为三价铬的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE