WO2023097891A1 - 一种分段换热的脱硫浆液闪蒸系统 - Google Patents

一种分段换热的脱硫浆液闪蒸系统 Download PDF

Info

Publication number
WO2023097891A1
WO2023097891A1 PCT/CN2022/076415 CN2022076415W WO2023097891A1 WO 2023097891 A1 WO2023097891 A1 WO 2023097891A1 CN 2022076415 W CN2022076415 W CN 2022076415W WO 2023097891 A1 WO2023097891 A1 WO 2023097891A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
slurry
heat exchange
desulfurization
nozzle
Prior art date
Application number
PCT/CN2022/076415
Other languages
English (en)
French (fr)
Inventor
彭烁
周贤
钟迪
姚国鹏
黄永琪
安航
白烨
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023097891A1 publication Critical patent/WO2023097891A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • This application relates to the field of power plant flue gas treatment technology, specifically a desulfurization slurry flash system with staged heat exchange.
  • the recovery of flue gas waste heat mainly adopts the method of partition wall heat exchanger, and the partition wall heat exchanger will be worn and corroded due to the acid-containing and ash-containing gas in the flue gas, and the reliability of the equipment is poor, which will affect the performance of flue gas waste heat. Recycling, the loss of waste heat is relatively large, and the heat transfer coefficient is related to the heat transfer area, which often requires large-scale equipment and high cost. Moreover, when performing maintenance, it is necessary to stop the machine for maintenance, which affects the normal operation of the unit.
  • this application provides a desulfurization slurry flash system with staged heat exchange, which adopts two-stage heat exchange to realize rapid cooling and heat recovery of flash steam.
  • a desulfurization slurry flash system with staged heat exchange including a tower body, a slurry distribution mechanism, packing, a heat exchange mechanism, and a vacuum pump located outside the tower body, and the tower body includes a connected first cavity and a second cavity , the first cavity and the second cavity are arranged in an inverted U shape; the slurry distributing mechanism is located in the first cavity, the heat exchange mechanism is located at the top of the second cavity, and the vacuum pump and the second cavity communicated, the filler is located inside the second cavity and below the heat exchange mechanism.
  • the slurry distribution mechanism includes a slurry distribution tube bundle and a slurry nozzle, the slurry distribution tube bundle is connected to the slurry nozzle, and the opening of the slurry nozzle faces the bottom of the first cavity.
  • one end of the cloth slurry tube bundle extends out of the first cavity and is connected to the slurry pump.
  • the heat exchange mechanism includes a liquid distribution pipe and a nozzle, and the liquid distribution pipe is connected to the nozzle.
  • one end of the liquid distribution pipe protrudes from the second cavity and is connected to the cooling water inlet pump.
  • a first mist eliminator is also included, and the first mist eliminator is located above the grout distribution tube bundle.
  • a second demister is also included, and the second demister is located at the connection between the first cavity and the second cavity.
  • a baffle is further provided at the connection between the vacuum pump and the second cavity, and the baffle is connected to the inside of the second cavity.
  • a staged heat exchange desulfurization slurry flash system cools the desulfurization slurry by means of flash evaporation, and the flash steam adopts a two-stage heat exchange method.
  • the temperature difference of stage heat transfer is small, combining spray heat transfer and packing heat transfer, and dividing the heat transfer process into two stages for processing, which has the advantages of both spray tower and packing tower, thus realizing the fast steam evaporation Cooling and heat recovery.
  • the packing layer is used for heat exchange to eliminate the influence of the drift and eddy current of the flue gas flow in the spray heat exchange, and avoid the vibration of the tower body caused by it, thereby increasing the service life of the tower and enhancing the safety and reliability of the tower. , improve the stability of gas-liquid heat exchange.
  • Spray heat exchange is used in the second stage of heat exchange, which greatly increases the contact area of the gas-liquid two-phase to achieve the purpose of strengthening heat exchange, so that water vapor and cooling water can achieve stable contact heat exchange under a small temperature difference, and the operation There is little resistance.
  • Fig. 1 is a structural schematic diagram of a desulfurization slurry flash evaporation system with staged heat exchange in the present application.
  • This application discloses a desulfurization slurry flash system with heat exchange in sections.
  • a tower body 1 includes a slurry distribution mechanism, a filler 10, a heat exchange mechanism, and a vacuum pump 8 located outside the tower body 1.
  • the tower body 1 includes The connected first cavity and the second cavity are arranged in an inverted U shape.
  • the slurry distribution mechanism is located in the first cavity, the slurry distribution mechanism includes a slurry distribution tube bundle 4 and a slurry nozzle 5, the slurry distribution tube bundle 4 is connected to the slurry nozzle 5, and the opening of the slurry nozzle 5 faces the bottom of the first cavity, and the slurry distribution tube bundle 4 One end stretches out of the first chamber and is connected with the slurry pump 6.
  • the bottom of the first cavity is provided with an opening, and a cold slurry pump 12 is connected to the opening, and the cold slurry can return to the desulfurization tower after being boosted by the cold slurry pump 12 .
  • the heat exchange mechanism is located on the top of the second chamber, and the heat exchange mechanism includes a liquid distribution pipe 7 and a nozzle 14.
  • the liquid distribution pipe 7 is connected to the nozzle 14, and one end of the liquid distribution pipe 7 extends out of the second chamber, and is connected to the cooling water inlet pump. 3 connections.
  • the vacuum pump 8 communicates with the second cavity, and the connection between the vacuum pump 8 and the second cavity is also provided with a partition 11.
  • the partition 11 is connected to the inside of the second cavity, and the partition 11 can reduce the droplet in the second cavity from entering. Vacuum pump 8.
  • the filler 10 is located inside the second cavity and below the heat exchange mechanism.
  • An opening is provided at the bottom of the second cavity, and a cooling water outlet pump 9 is connected to the opening.
  • the first cavity is also provided with a first demister 2, the first demister 2 is located above the distribution slurry tube bundle 4, the first demister 2 can play the role of primary cooling, and the condensed water can also affect the distribution The slurry tube bundle 4 is flushed.
  • a second demister 13 is also provided at the connection between the first cavity and the second cavity, and the second demister 13 can prevent the liquid droplets ejected from the nozzle 14 from splashing into the first cavity.
  • the implementation principle of a segmental heat exchange desulfurization slurry flash system in this application is as follows: the desulfurization slurry from the desulfurization tower enters the slurry distribution tube bundle 4, after the slurry pump 6 boosts the pressure, it is sprayed and broken into small liquid by the slurry nozzle 5 Since the inner chamber of the tower body 1 is in a negative pressure environment, the slurry droplets flash, and the flashed water vapor enters the second chamber after being demistered by the first demister 2. After cooling down, the cold slurry gathers in the first cavity, and returns to the desulfurization tower after being boosted by the cold slurry pump 12 .
  • the cooling water enters the liquid distribution pipe 7, and after being boosted by the cooling water inlet pump 3, the cooling water is broken into small droplets through the nozzle 14, and the first-stage heat exchange is performed with the flash-evaporated water vapor, and the cooling water after heat exchange Enter the packing 10, increase the gas-liquid contact area, and perform a second-stage heat exchange with the flashed water vapor, cool down and condense the flashed water vapor, and mix with it, gather in the lower part of the second cavity, pass through the cooling Water outlet pump 9 pressurization enters in follow-up equipment.
  • a staged heat exchange desulfurization slurry flash system cools the desulfurization slurry by means of flash evaporation, and adopts a two-stage heat exchange method.
  • the small feature combines spray heat exchange and packing 10 heat exchange, and divides the heat exchange process into two stages for treatment, which has the advantages of both spray tower and packing 10 tower, thus realizing the rapid cooling and cooling of flash steam heat recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种分段换热的脱硫浆液闪蒸系统,包括塔体(1)、布浆机构、填料(10)、换热机构和位于塔体(1)外侧的真空泵(8),塔体(1)包括连通的第一腔体和第二腔体,第一腔体和第二腔体呈倒U型设置;布浆机构位于第一腔体中,换热机构位于第二腔体顶部,真空泵(8)与第二腔体连通,填料(10)位于第二腔体内部,且位于换热机构下方。

Description

一种分段换热的脱硫浆液闪蒸系统 技术领域
本申请涉及电厂烟气处理技术的领域,具体为一种分段换热的脱硫浆液闪蒸系统。
背景技术
目前多数燃煤热电联产机组都采取了多项节能措施,冷端损失基本消除后,减少排烟损失成为机组节能潜力最大的一部分。回收烟气余热以降低排烟温度,减少排烟损失,可以有效提高机组能源利用效率。
目前烟气余热回收主要采用间壁式换热器的方式,而间壁式换热器会因为烟气中的含酸含灰气体收到磨损和腐蚀,设备的可靠性较差,影响烟气余热的回收,余热损失较大,换热系数与换热面积有关,往往需要大型设备,成本较高。而且进行维修时,需要停机进行维修,影响机组的正常运行。
发明内容
针对现有技术中烟气余热损失较大的问题,本申请提供一种分段换热的脱硫浆液闪蒸系统,采用两级换热的方式,实现闪蒸蒸汽的快速降温和热量回收。
本申请是通过以下技术方案来实现:
一种分段换热的脱硫浆液闪蒸系统,包括塔体、布浆机构、填料、换热机构和位于塔体外侧的真空泵,所述塔体包括连通的第一腔体和第二腔体,所述第一腔体和第二腔体呈倒U型设置;所述布浆机构位于第一腔体中,所述换热机构位于第二腔体顶部,所述真空泵与第二腔体连通,所述填料位于第二腔体内部,且位于换热机构下方。
可选的,所述布浆机构包括布浆液管束和浆液喷嘴,所述布浆液管束与浆液喷嘴连接,所述浆液喷嘴的开口朝向第一腔体的底部。
可选的,所述布浆液管束的一端伸出第一腔体,并与浆液泵连接。
可选的,所述换热机构包括布液管和喷嘴,所述布液管与喷嘴连接。
可选的,所述布液管的一端伸出第二腔体,并与冷却水进口泵连接。
可选的,还包括第一除雾器,所述第一除雾器位于布浆液管束的上方。
可选的,还包括第二除雾器,所述第二除雾器位于第一腔体与第二腔体的连通处。
可选的,所述真空泵与第二腔体的连接处还设有隔板,所述隔板连接于第二腔体内部。
与现有技术相比,本申请具有以下有益效果:
本申请一种分段换热的脱硫浆液闪蒸系统通过闪蒸的方式使脱硫浆液降温,闪蒸的蒸汽采用两级换热的方式,根据换热过程前一阶段换热温差大、后一阶段换热温差小的特点,将喷淋换热和填料换热相结合,将换热过程分为两阶段进行处理,兼具喷淋塔和填料塔的优点,从而实现了闪蒸蒸汽的快速降温和热量回收。
在换热第一阶段采用填料层换热,消除喷淋换热的烟气流动的偏流和涡流的影响,避免由此引起的塔体振动,从而增加塔的使用寿命,增强塔的安全可靠性,提高气液换热的稳定性。
在换热第二阶段采用喷淋换热,极大地增加了气-液两相接触面积,达到强化换热目的,使水蒸气和冷却水在较小温差下即可实现稳定接触换热,运行阻力小。
附图说明
图1是本申请一种分段换热的脱硫浆液闪蒸系统的结构示意图。
图中,1、塔体;2、第一除雾器;3、冷却水进口泵;4、布浆液管束;5、浆液喷嘴;6、浆液泵;7、布液管;8、真空泵;9、冷却水出口泵;10、填料;11、隔板;12、冷浆液泵;13、第二除雾器;14、喷嘴。
具体实施方式
下面结合具体的实施例对本申请做进一步的详细说明,所述是对本申请的解释而不是限定。
本申请公开了一种分段换热的脱硫浆液闪蒸系统,参照图1,包括塔体1、布浆机构、填料10、换热机构和位于塔体1外侧的真空泵8,塔体1包括连通的第一腔体和第二腔体,第一腔体和第二腔体呈倒U型设置。
布浆机构位于第一腔体中,布浆机构包括布浆液管束4和浆液喷嘴5,布浆液管束4与浆液喷嘴5连接,浆液喷嘴5的开口朝向第一腔体的底部,布浆液管束4的一端伸出第一腔体,并与浆液泵6连接。第一腔体的底部设有开口,开口处连接有冷浆液泵12,冷浆液经冷浆液泵12升压后可回到脱硫塔中。
换热机构位于第二腔体顶部,换热机构包括布液管7和喷嘴14,布液管7与喷嘴14连接,布液管7的一端伸出第二腔体,并与冷却水进口泵3连接。
真空泵8与第二腔体连通,真空泵8与第二腔体的连通处还设有隔板11,隔板11连接于第二腔体内部,隔板11可以减少第二腔体内的液滴进入真空泵8。
填料10位于第二腔体内部,且位于换热机构下方。
第二腔体底部设有开口,开口处连接有冷却水出口泵9。
第一腔体中还设有第一除雾器2,第一除雾器2位于布浆液管束4的上方,第一除雾器2可以起到初级降温的作用,冷凝的水分还可以对布浆液管束4进行冲洗。
第一腔体与第二腔体的连通处还设有第二除雾器13,第二除雾器13可以避免喷嘴14喷出的液滴飞溅到第一腔体中。
本申请一种分段换热的脱硫浆液闪蒸系统的实施原理为:从脱硫塔来的脱硫浆液进入布浆液管束4,经过浆液泵6升压后,通过浆液喷嘴5喷淋破 碎成小液滴,由于塔体1的内腔为负压环境,浆液液滴发生闪蒸,闪蒸出的水蒸气经过第一除雾器2除雾后进入第二腔体。降温后的冷浆液在第一腔体中聚集后,通过冷浆液泵12升压后回到脱硫塔。
冷却水进入布液管7,经过冷却水进口泵3升压后,通过喷嘴14将冷却水破碎成小液滴,与闪蒸出的水蒸气进行第一级换热,换热后的冷却水进入填料10,增加气液接触面积,与闪蒸出的水蒸气进行第二级换热,将闪蒸出的水蒸气降温冷凝,并与之混合后,在第二腔体下部聚集,通过冷却水出口泵9升压进入后续设备中。
本申请一种分段换热的脱硫浆液闪蒸系统通过闪蒸的方式使脱硫浆液降温,采用两级换热的方式,根据换热过程前一阶段换热温差大、后一阶段换热温差小的特点,将喷淋换热和填料10换热相结合,将换热过程分为两阶段进行处理,兼具喷淋塔和填料10塔的优点,从而实现了闪蒸蒸汽的快速降温和热量回收。

Claims (8)

  1. 一种分段换热的脱硫浆液闪蒸系统,其特征在于,包括塔体(1)、布浆机构、填料(10)、换热机构和位于塔体(1)外侧的真空泵(8),所述塔体(1)包括连通的第一腔体和第二腔体,所述第一腔体和第二腔体呈倒U型设置;所述布浆机构位于第一腔体中,所述换热机构位于第二腔体顶部,所述真空泵(8)与第二腔体连通,所述填料(10)位于第二腔体内部,且位于换热机构下方。
  2. 根据权利要求1所述的分段换热的脱硫浆液闪蒸系统,其特征在于,所述布浆机构包括布浆液管束(4)和浆液喷嘴(5),所述布浆液管束(4)与浆液喷嘴(5)连接,所述浆液喷嘴(5)的开口朝向第一腔体的底部。
  3. 根据权利要求2所述的分段换热的脱硫浆液闪蒸系统,其特征在于,所述布浆液管束(4)的一端伸出第一腔体,并与浆液泵(6)连接。
  4. 根据权利要求1所述的分段换热的脱硫浆液闪蒸系统,其特征在于,所述换热机构包括布液管(7)和喷嘴(14),所述布液管(7)与喷嘴(14)连接。
  5. 根据权利要求4所述的分段换热的脱硫浆液闪蒸系统,其特征在于,所述布液管(7)的一端伸出第二腔体,并与冷却水进口泵(3)连接。
  6. 根据权利要求1所述的分段换热的脱硫浆液闪蒸系统,其特征在于,还包括第一除雾器(2),所述第一除雾器(2)位于布浆液管束(4)的上方。
  7. 根据权利要求1所述的分段换热的脱硫浆液闪蒸系统,其特征在于,还包括第二除雾器(13),所述第二除雾器(13)位于第一腔体与第二腔体的连通处。
  8. 根据权利要求1所述的分段换热的脱硫浆液闪蒸系统,其特征在于,所述真空泵(8)与第二腔体的连接处还设有隔板(11),所述隔板(11)连接于第二腔体内部。
PCT/CN2022/076415 2021-11-30 2022-02-16 一种分段换热的脱硫浆液闪蒸系统 WO2023097891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111456967.7A CN113975840A (zh) 2021-11-30 2021-11-30 一种分段换热的脱硫浆液闪蒸系统
CN202111456967.7 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023097891A1 true WO2023097891A1 (zh) 2023-06-08

Family

ID=79732943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076415 WO2023097891A1 (zh) 2021-11-30 2022-02-16 一种分段换热的脱硫浆液闪蒸系统

Country Status (2)

Country Link
CN (1) CN113975840A (zh)
WO (1) WO2023097891A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113975840A (zh) * 2021-11-30 2022-01-28 中国华能集团清洁能源技术研究院有限公司 一种分段换热的脱硫浆液闪蒸系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103641A (ja) * 1995-10-13 1997-04-22 Mitsubishi Heavy Ind Ltd 排煙脱硫装置及びボイラ設備
CN104906818A (zh) * 2015-06-08 2015-09-16 山东大学 一种基于湿法烟气脱硫的浆液真空蒸馏系统及工艺
CN209464873U (zh) * 2018-09-21 2019-10-08 大唐东北电力试验研究院有限公司 一种脱硫浆液降温与烟气余热利用系统
CN110425924A (zh) * 2019-08-27 2019-11-08 中国华能集团清洁能源技术研究院有限公司 一种烟气余热回收的分阶段换热喷淋填料塔、烟气处理方法
CN111167144A (zh) * 2020-02-27 2020-05-19 中国华能集团清洁能源技术研究院有限公司 一种分区冷凝的脱硫浆液闪蒸提热取水装置及方法
CN111536816A (zh) * 2020-05-29 2020-08-14 华能国际电力股份有限公司 一种燃煤机组脱硫浆液闪蒸提热取水装置及方法
CN112791579A (zh) * 2020-12-22 2021-05-14 山东大学 一种脱硫浆液多级闪蒸余热利用的系统及工艺
CN113975840A (zh) * 2021-11-30 2022-01-28 中国华能集团清洁能源技术研究院有限公司 一种分段换热的脱硫浆液闪蒸系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280114A (zh) * 2019-08-12 2019-09-27 南京凯盛国际工程有限公司 一种冷凝式脱硫系统
CN210426247U (zh) * 2019-08-27 2020-04-28 中国华能集团清洁能源技术研究院有限公司 一种烟气余热回收的分阶段换热喷淋填料塔
CN214809736U (zh) * 2021-01-27 2021-11-23 山东祥桓环境科技有限公司 一种立式闪蒸装置及脱硫浆液余热利用系统
CN216629699U (zh) * 2021-11-30 2022-05-31 中国华能集团清洁能源技术研究院有限公司 一种分段换热的脱硫浆液闪蒸系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103641A (ja) * 1995-10-13 1997-04-22 Mitsubishi Heavy Ind Ltd 排煙脱硫装置及びボイラ設備
CN104906818A (zh) * 2015-06-08 2015-09-16 山东大学 一种基于湿法烟气脱硫的浆液真空蒸馏系统及工艺
CN209464873U (zh) * 2018-09-21 2019-10-08 大唐东北电力试验研究院有限公司 一种脱硫浆液降温与烟气余热利用系统
CN110425924A (zh) * 2019-08-27 2019-11-08 中国华能集团清洁能源技术研究院有限公司 一种烟气余热回收的分阶段换热喷淋填料塔、烟气处理方法
CN111167144A (zh) * 2020-02-27 2020-05-19 中国华能集团清洁能源技术研究院有限公司 一种分区冷凝的脱硫浆液闪蒸提热取水装置及方法
CN111536816A (zh) * 2020-05-29 2020-08-14 华能国际电力股份有限公司 一种燃煤机组脱硫浆液闪蒸提热取水装置及方法
CN112791579A (zh) * 2020-12-22 2021-05-14 山东大学 一种脱硫浆液多级闪蒸余热利用的系统及工艺
CN113975840A (zh) * 2021-11-30 2022-01-28 中国华能集团清洁能源技术研究院有限公司 一种分段换热的脱硫浆液闪蒸系统

Also Published As

Publication number Publication date
CN113975840A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN111167144B (zh) 一种分区冷凝的脱硫浆液闪蒸提热取水装置及方法
CN102287841B (zh) 一种增压富氧燃煤锅炉排烟冷凝除尘的方法
CN102580437A (zh) 转炉一次烟气双塔净化方法及转炉一次烟气净化塔
CN104089430A (zh) 一种回收含湿气流余热的喷淋式开式吸收式热泵系统
CN108561756A (zh) 一种初冷器前荒煤气管道冷凝液处理工艺
CN103352735A (zh) 火电机组汽轮机凝结水过冷增效处理方法及装置
CN209338155U (zh) 一种燃煤电厂脱硫废水蒸发浓缩及淡水回收装置
WO2023097891A1 (zh) 一种分段换热的脱硫浆液闪蒸系统
CN200993357Y (zh) 一种除氧器排汽收能器
CN201485272U (zh) 硫磺回收单元管壳式废热锅炉系统设备
CN201093467Y (zh) 一种纯蒸汽发生器
CN216629699U (zh) 一种分段换热的脱硫浆液闪蒸系统
WO2023097895A1 (zh) 一种开式热泵的脱硫浆液闪蒸分级取热取水系统及方法
CN211119603U (zh) 一种烟气低温余热间接加热热网补水系统
CN106989607A (zh) 一种高温烟气余热回收及深度净化系统
CN110894954A (zh) 一种高温尾气净化和余热回收利用系统
CN216712015U (zh) 循环氨水余热用于碳酸钾脱硫再生热源的循环系统
CN106225005A (zh) 一种直接空冷塔余热循环系统
CN217410304U (zh) 一种两级抽真空的脱硫浆液闪蒸提热系统
CN216366665U (zh) 一种上下一体式脱硫浆液闪蒸提热系统
CN207907205U (zh) 一种大型联合循环机组余热锅炉
CN216342353U (zh) 一种利用机组抽汽的脱硫浆液提热取水装置
CN212227436U (zh) 直通式热泵
CN212227437U (zh) 直热式热泵
CN211650305U (zh) 一种高温尾气净化和余热回收利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22899715

Country of ref document: EP

Kind code of ref document: A1