WO2023085006A1 - 電気化学アッセイ装置 - Google Patents

電気化学アッセイ装置 Download PDF

Info

Publication number
WO2023085006A1
WO2023085006A1 PCT/JP2022/038699 JP2022038699W WO2023085006A1 WO 2023085006 A1 WO2023085006 A1 WO 2023085006A1 JP 2022038699 W JP2022038699 W JP 2022038699W WO 2023085006 A1 WO2023085006 A1 WO 2023085006A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
assay device
forming member
path forming
Prior art date
Application number
PCT/JP2022/038699
Other languages
English (en)
French (fr)
Inventor
雄介 渕脇
昌平 山村
栄一 民谷
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN202280071323.2A priority Critical patent/CN118159840A/zh
Priority to JP2023559504A priority patent/JPWO2023085006A1/ja
Publication of WO2023085006A1 publication Critical patent/WO2023085006A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to an assay device, and more particularly to an electrochemical assay device that uses a very small amount of liquid and is capable of performing an assay by an electrochemical method.
  • Patent Document 1 describes an example of a conventional assay device that performs an assay using a very small amount of liquid.
  • the assay device described in Patent Document 1 has a microchannel configured to allow a fluid to flow, and one end of the microchannel located on one end side in the direction of flow of the fluid.
  • a porous absorbent medium disposed; a separation space disposed between one end of the microchannel and the porous absorbent medium; , and two side air passages that are adjacent to each other in the width direction perpendicular to the flow direction and that allow air to flow.
  • the assay device described in Patent Document 1 detects an optical signal (color development, chemiluminescence, etc.) by an enzymatic reaction or the like in the microchannel, and does not have a configuration capable of performing an assay by an electrochemical method.
  • sensors that use the electrochemical method enable quick measurement, are relatively immune to noise, and allow miniaturization of analyzer devices.
  • many sensor devices based on bioelectronics technology such as semiconductor biosensors such as small blood sugar level sensors that measure blood sugar levels by collecting blood from fingertips, such as SMBG (self-monitoring of blood sugar), use the electrochemical method. has been put into practical use. Therefore, it is desired that the assay device can also use the electrochemical method.
  • an object of the present invention is to provide an electrochemical assay device that uses a very small amount of liquid and is capable of performing an assay by an electrochemical method.
  • an electrochemical assay device has an internal channel through which a liquid injected from an injection port flows, and a liquid absorbent material that absorbs the liquid that has passed through the internal channel, and It is configured to allow assay by
  • the internal channel is provided between a microchannel that communicates with the injection port and between the microchannel and the liquid absorbent, and the liquid in the internal channel is injected when the injection of the liquid is stopped. It includes a separation channel for separating the portion to be retained in the microchannel and the portion to be absorbed by the liquid absorbent.
  • the electrochemical assay device includes an electrode section arranged in the microchannel, a connection section connected to an external measurement device, and a conductor section electrically connecting the electrode section and the connection section. have.
  • an electrochemical assay device has an internal channel through which a liquid injected from an injection port flows, and a liquid absorbent material that absorbs the liquid that has passed through the internal channel. It is configured to allow assay by the method.
  • the internal channel is provided between a microchannel that communicates with the injection port and between the microchannel and the liquid absorbent, and the liquid in the internal channel is injected when the injection of the liquid is stopped. It includes a separation channel for separating the portion to be retained in the microchannel and the portion to be absorbed by the liquid absorbent.
  • the electrochemical assay device includes a plurality of electrode units arranged in the microchannel and separated from each other in the flow direction of the liquid, and each of the electrode units having a flow rate of the liquid relative to one of the plurality of electrode units. It has a plurality of connection portions spaced apart in a width direction orthogonal to the direction and connected to an external measuring device, and a plurality of conductor portions for electrically connecting the corresponding electrode portions and the connection portions.
  • an electrochemical assay device that uses a minute amount of liquid and is capable of performing an assay by an electrochemical method.
  • FIG. 1 is a perspective view of an electrochemical assay device according to a first embodiment
  • FIG. 1 is a schematic cross-sectional view of an electrochemical assay device according to a first embodiment
  • FIG. FIG. 4 is a diagram showing an upper flow path forming member, (a) is a top view of the upper flow path forming member, (b) is a side view of the upper flow path forming member, and (c) is a bottom view of the upper flow path forming member.
  • FIG. 4 is a diagram showing a lower flow path forming member, (a) is a top view of the lower flow path forming member, (b) is a side view of the lower flow path forming member, and (c) is a lower flow path forming member. is a bottom view of the.
  • FIG. 4 is a diagram showing an intermediate member, where (a) is a top view of the intermediate member and (b) is a cross-sectional view taken along line AA of (a).
  • FIG. 11 is a diagram showing a structure (including a liquid absorbent) in which an upper flow path forming member, a lower flow path forming member, and an intermediate member are stacked and integrated; ) is a cross-sectional view taken along line BB of (a).
  • 1 is an exploded perspective view of an electrochemical assay device according to a first embodiment;
  • FIG. FIG. 4 is a diagram for explaining the movement of the first liquid injected into the electrochemical assay device, and is a diagram schematically showing internal flow paths and the like when the electrochemical assay device is viewed from above.
  • FIG. 4 is a diagram for explaining the movement of the first liquid and the second liquid when the second liquid is injected after the injection of the first liquid into the electrochemical assay apparatus is stopped, and the electrochemical assay apparatus is viewed from above;
  • FIG. 10 is a diagram schematically showing an internal flow path and the like when closed.
  • FIG. 4 is a diagram showing a modified example of the electrochemical assay device according to the first embodiment;
  • FIG. 3 is a perspective view of an electrochemical assay device according to a second embodiment;
  • FIG. 4 is a schematic cross-sectional view of an electrochemical assay device according to a second embodiment;
  • FIG. 10 is an exploded perspective view of an electrochemical assay device according to a second embodiment;
  • FIG. 10 is a diagram showing a modified example of the electrochemical assay device according to the second embodiment
  • FIG. 11 is a perspective view of an electrochemical assay device according to a third embodiment
  • FIG. 11 is an exploded perspective view of an electrochemical assay device according to a third embodiment
  • FIG. 10A is a top view of the lower flow path forming member
  • FIG. 8B is a side view of the lower flow path forming member
  • (c) is a bottom view of the lower flow path forming member.
  • FIG. 10 is a diagram showing a modified example of the electrochemical assay device according to the third embodiment
  • FIG. 11 is a perspective view of an electrochemical assay device according to a fourth embodiment
  • FIG. 11 is a schematic cross-sectional view of an electrochemical assay device according to a fourth embodiment; FIG. 11 is an exploded perspective view of an electrochemical assay device according to a fourth embodiment; FIG. 11 is a perspective view of an electrochemical assay device according to a fifth embodiment; FIG. 11 is a schematic cross-sectional view of an electrochemical assay device according to a fifth embodiment; FIG. 11 is an exploded perspective view of an electrochemical assay device according to a fifth embodiment;
  • the electrochemical assay device is configured so that it can use a very small amount of liquid and perform an assay by an electrochemical method.
  • the electrochemical assay device may be capable of performing assays by methods other than electrochemical methods.
  • the liquid used in the electrochemical assay device is not particularly limited as long as it can flow through the channel (internal channel) in the device. Such liquids are typically aqueous solutions.
  • Liquids used in electrochemical assay devices are, for example, foods, food suspensions, food extracts, drinking water, river water, soil suspensions, industrial wastewater, or liquids containing components collected from living organisms. could be.
  • Liquids containing components collected from living bodies can be, for example, human or animal whole blood, serum, plasma, urine, fecal diluents, saliva, or liquids derived from living bodies such as cerebrospinal fluid, but are not limited to these. not.
  • an electrochemical assay device can identify pathogens in food and drinking water. can be measured, or contaminants in river water, soil, and wastewater.
  • the electrochemical assay device can be used for pregnancy test, urine test, stool test, adult disease test, allergy test, infectious disease test, drug test and cancer test of diagnostically effective analytes can be measured.
  • the term "specimen” refers to a compound or composition that is detected or measured mainly using a liquid.
  • “Analytes” include sugars (e.g., glucose), cells, proteins or peptides (e.g., serum proteins, hormones, enzymes, immunomodulators, lymphokines, monokines, cytokines, glycoproteins, vaccine antigens, antibodies, growth factors, proliferation factors), fats, amino acids, nucleic acids, steroids, vitamins, pathogens or their antigens, natural or synthetic chemicals, contaminants, therapeutic or illicit drugs, or metabolites or antibodies of these substances , but not limited to.
  • sugars e.g., glucose
  • cells proteins or peptides
  • proteins or peptides e.g., serum proteins, hormones, enzymes, immunomodulators, lymphokines, monokines, cytokines, glycoproteins, vaccine antigens, antibodies, growth factors, proliferation factors
  • fats amino acids, nucleic acids, steroids, vitamins, pathogens or their anti
  • microchannel means a minute amount of liquid on the order of ⁇ l (microliter), that is, an assay that enables detection or measurement of a specimen using a minute amount of liquid of 1 ⁇ l or more and less than 1000 ⁇ l. Refers to the flow path in the device.
  • assay reagent refers to any substance that produces a detectable result by reacting with, for example, a liquid or an analyte that may be contained therein. Detectable results include electrochemical signals, luminescence and fluorescence.
  • the assay reagent preferably contains an electrochemiluminescent label and a reducing agent, particularly when assaying by an electrochemiluminescent method.
  • Electrochemiluminescent labels include, but are not limited to, luminol, ruthenium (Ru) metal complexes, gold nanoparticles, adamantyl dioxetane derivatives, and acridinium esters.
  • the term “porous body” refers to a member that has a plurality (a large number) of micropores and is capable of absorbing liquid, and may include paper, cellulose membranes, non-woven fabrics, plastics, and the like.
  • the "porous body” preferably has hydrophilicity when the liquid is hydrophilic, and preferably has hydrophobicity when the liquid is hydrophobic.
  • the "porous body” should be hydrophilic and be paper.
  • the "porous body” can be one of cellulose, nitrocellulose, cellulose acetate, filter paper, tissue paper, toilet paper, paper towels, fabric, or a hydrophilic porous polymer that is permeable to water.
  • the electrochemical assay device is simply referred to as "assay device”.
  • FIG. 1 is a perspective view of the assay device 1 according to the first embodiment
  • FIG. 2 is a schematic cross-sectional view of the assay device 1 according to the first embodiment.
  • the assay device 1 is formed into a substantially rectangular parallelepiped as a whole, and has an injection port 2 into which a liquid is injected (mainly drip injection) on the upper surface.
  • the injection port 2 is formed in a circular shape when viewed from above, and is located on one side of the longitudinal direction L on the upper surface of the assay device 1, and is an abbreviation for the short direction (hereinafter referred to as the “width direction”) W that is orthogonal to the longitudinal direction L. It is open in the center.
  • the assay device 1 has an internal channel 3 through which the liquid injected from the inlet 2 flows, and a first liquid absorbent 4 that absorbs the liquid that has passed through the internal channel 3. ing.
  • the internal channel 3 extends inside the assay device 1 from the one side (the left side in FIG. 2) in the longitudinal direction L toward the other side (the right side in FIG. 2).
  • the first liquid absorbent material 4 is formed in a block shape from a flexible porous material capable of absorbing liquid or the like, and is arranged on the other side of the longitudinal direction L in the assay device 1 .
  • the longitudinal direction L is also the liquid flow direction in the assay device 1, and the one side of the longitudinal direction L where the injection port 2 is located can be referred to as the upstream side in the liquid flow direction. 1
  • the other side in the longitudinal direction L where the liquid absorbent 4 is located can be referred to as the downstream side in the liquid flow direction.
  • the internal flow path 3 has an upper wall and a lower wall, as is clear from FIG. Moreover, in this embodiment the internal channel 3 is defined by upper and lower walls and has no side walls.
  • the internal channel 3 also includes a microchannel 31 and a separation channel 32 .
  • the microchannel 31 constitutes the channel on the side closer to the injection port 2 of the internal channel 3 , that is, the channel on the upstream side of the internal channel 3 .
  • the microchannel 31 communicates with the injection port 2, and extends horizontally from the vicinity of the injection port 2, preferably directly below the injection port 2, to a substantially central portion in the longitudinal direction L of the assay device 1 (it does not have to be strictly horizontal). It is formed as a flow path extending in the direction of the horizontal direction, and the same applies hereinafter.
  • the separation channel 32 constitutes the channel on the side closer to the first liquid absorbent 4 in the internal channel 3 , that is, the channel on the downstream side of the internal channel 3 .
  • the separation channel 32 is formed as a channel from (the downstream end of) the microchannel 31 to the first liquid absorbent 4 .
  • the first liquid absorbent 4 is provided apart from the microchannel 31 (downstream end) in the longitudinal direction L, and the separation channel 32 is separated from the microchannel 31 and the first liquid. It is provided between the absorbent materials 4 .
  • the separation channel 32 is a channel for separating the liquid inside the internal channel 3 when the injection of the liquid into the injection port 2 is stopped. Specifically, as will be described later, when the injection of the liquid into the injection port 2 is stopped, the liquid in the internal channel 3 is separated in the separation channel 32, and the liquid in the internal channel 3 is separated into micro The liquid is separated into the liquid retained in the channel 31 and the liquid absorbed by the first liquid absorbent material 4 .
  • a pair of first electrodes are provided adjacent to the microchannel 31 on both sides in the width direction W of the microchannel 31, as will be described later.
  • Side spaces 5, 5 are provided, and a pair of second side spaces 6, 6 are provided adjacent to the separation channel 32 on both sides of the separation channel 32 in the width direction W (Fig. 6 ( a) see).
  • the internal channel 3 does not have side walls. Therefore, the microchannel 31 communicates with the pair of first lateral spaces 5,5, and the separation channel 32 communicates with the pair of second lateral spaces 6,6.
  • the upper and lower walls of the microchannel 31 extend horizontally.
  • the channel height of the microchannel 31, that is, the distance between the upper wall and the lower wall of the microchannel 31 in the height direction H is constant (it does not have to be strictly constant, it may be approximately constant). The same applies hereinafter).
  • the channel height of the microchannel 31 is such that interfacial tension of the liquid that can prevent the liquid from leaking into the pair of first side spaces 5, 5 when the liquid flows through the microchannel 31 can be generated. It is set so that
  • the channel height (dimension in the height direction H) of the microchannel 31 can be set, for example, in the range of 1 ⁇ m to 1 mm.
  • the width of the microchannel 31 (the dimension in the width direction W) can be set, for example, in the range of 100 ⁇ m to 1 cm
  • the length of the microchannel 31 (the dimension in the longitudinal direction L) can be set, for example, in the range of 10 ⁇ m to 10 cm. can be set with
  • the bottom wall of the separation channel 32 is formed by extending the bottom wall of the microchannel 31 as it is, and extends horizontally.
  • the upper wall of the separation channel 32 is inclined upward so that the higher the distance from (the downstream end of) the microchannel 31 , in other words, the closer the first liquid absorbent 4 , the higher the height position.
  • the surface of the internal channel 3 (the microchannel 31 and the separation channel 32) with which the liquid comes into contact may contain substances of biological origin, antigens, antibodies, or the like.
  • blocking treatment, plasma treatment, or the like is preferably performed.
  • Blocking agents used for blocking treatment include commercially available blocking agents, bovine serum albumin, casein, skimmed milk, gelatin, surfactants, polyvinyl alcohol, globulin, serum (eg, fetal bovine serum or normal rabbit serum), ethanol, MPC. including polymers.
  • commercially available blocking agents include, but are not limited to, Immunoblock, Block Ace, Pierce Blocking Buffer, StartingBlock, StabilGuard, StabilBrock, StabilCoat, ChonBlock, and the like.
  • the assay device 1 has an observation window 7 for observing the inside of the microchannel 31 .
  • the observation window 7 is formed in a rectangular shape when viewed from above, and opens on the upper surface of the assay device 1 . More specifically, the observation window 7 opens at a portion of the upper surface of the assay device 1 above the electrode section 51 (described later) arranged in the microchannel 31 .
  • the internal flow path 3 will be explained in more detail.
  • the internal flow path 3 is formed by stacking an upper flow path forming member 11, a lower flow path forming member 12, and an intermediate member 13 functioning as a spacer therebetween.
  • the upper flow path forming member 11, the lower flow path forming member 12 and the intermediate member 13 will be described in order.
  • FIG. 3 shows the upper flow path forming member 11.
  • FIG. 3A is a top view of the upper flow path forming member 11
  • FIG. 3B is a side view of the upper flow path forming member 11
  • FIG. 3C is a bottom view of the upper flow path forming member 11.
  • the upper flow path forming member 11 is made of transparent synthetic resin and is flexible.
  • the upper flow path forming member 11 is made of a transparent synthetic resin molding.
  • synthetic resins include PS (polystyrene), PMMA (acrylic), PC (polycarbonate), COP (cycloolefin polymer), COC (cycloolefin copolymer), ABS (acrylonitrile butadiene styrene), and AS (acrylonitrile styrene).
  • the contact angle of the surface of the upper flow path forming member 11 with respect to water is preferably 90 degrees or less.
  • the upper flow path forming member 11 is formed as a plate-like member having a rectangular outer shape when viewed from above.
  • the upper flow path forming member 11 has a first circular hole 111 that is circular when viewed from above, a pair of first slit holes 112 and 112 that are rectangular when viewed from above, and a first U-shaped substantially sideways U shape when viewed from above.
  • a shaped hole 113 is formed. The first circular hole 111, the pair of first slit holes 112, 112, and the first U-shaped hole 113 penetrate the upper flow path forming member 11 in the height direction H.
  • the first circular hole 111 is formed on the one side of the upper flow path forming member 11 in the longitudinal direction L and substantially in the center of the upper flow path forming member 11 in the width direction W.
  • the first circular hole 111 forms part of the injection port 2 .
  • the pair of first slit holes 112, 112 are separated from each other in the width direction W.
  • Each of the pair of first slit holes 112 , 112 extends from the vicinity of the first circular hole 111 toward the other side in the longitudinal direction L to substantially the central portion in the longitudinal direction L of the upper flow path forming member 11 .
  • the U-shaped open portion of the first U-shaped hole 113 faces the one side in the longitudinal direction L of the upper flow path forming member 11 .
  • the first U-shaped hole 113 is formed on the other side in the longitudinal direction L of the upper flow path forming member 11 from the pair of first slit holes 112 , 112 .
  • An upper wall portion 117 that constitutes the upper wall of the internal flow path 3 is formed by the first connection portion 116 that connects the inner portion 115 and the first connection portion 116 . That is, the upper flow path forming member 11 has the upper wall portion 117 that constitutes the upper wall of the internal flow path 3 .
  • the first inter-slit portion 114 and the first connection portion 116 constitute the upper wall of the microchannel 31
  • the inner portion 115 constitutes the upper wall of the separation channel 32 .
  • the width of the first inter-slit portion 114 is constant, but the width of the inner portion 115 gradually decreases with increasing distance from the first connecting portion 116 .
  • the distance d1 between the pair of first slit holes 112, 112 and the first U-shaped hole 113 in the longitudinal direction L is smaller than the width of the first inter-slit region 114. It is set to 2/3 or less of the width of the portion 114, preferably 1/2 or less of the width of the first inter-slit portion 114.
  • FIG. 4 shows the lower flow path forming member 12.
  • FIG. 4(a) is a top view of the lower flow path forming member 12
  • FIG. 4(b) is a side view of the lower flow path forming member 12
  • FIG. 4(c) is a bottom view of the lower flow path forming member 12. is.
  • the lower flow path forming member 12 is made of synthetic resin and has flexibility.
  • the lower flow path forming member 12 is preferably made of synthetic resin molded in white, black, or the like.
  • the lower flow path forming member 12 may be made of, for example, PEEK material (polyetherketone resin), PE (polyethylene), PET (polyethylene terephthalate), PMMA (acrylic), PS (polystyrene), PP (polypropylene), It can be made of PC (polycarbonate), ABS (acrylonitrile butadiene styrene), PVC (vinyl chloride), COC (cycloolefin copolymer), COP (cycloolefin polymer).
  • the contact angle of the surface of the lower flow path forming member 12 with respect to water is preferably 90 degrees or less.
  • the lower flow path forming member 12 includes a flat body portion 121 having substantially the same outer shape as the upper flow path forming member 11 when viewed from above.
  • the body portion 121 of the lower flow path forming member 12 is formed with a pair of second slit holes 122, 122 having a rectangular shape when viewed from the top and a pair of third slit holes 123, 123 having a rectangular shape when viewed from the top. ing.
  • the pair of second slit holes 122 and 122 and the pair of third slit holes 123 and 123 pass through the lower flow path forming member 12 in the height direction H.
  • the pair of second slit holes 122 , 122 are formed so as to correspond to the pair of first slit holes 112 , 112 of the upper flow path forming member 11 . That is, the pair of second slit holes 122, 122 form the pair of first slits of the upper flow path forming member 11 when the upper flow path forming member 11, the lower flow path forming member 12, and the intermediate member 13 are stacked. It is formed so as to be positioned below the holes 112 , 112 .
  • the pair of third slit holes 123 , 123 are formed to correspond to the pair of linear portions of the first U-shaped hole 113 of the upper flow path forming member 11 . That is, the pair of third slit holes 123 , 123 are formed by the first U-shaped hole of the upper flow path forming member 11 when the upper flow path forming member 11 , the lower flow path forming member 12 and the intermediate member 13 are stacked. It is formed so as to be positioned below the pair of straight portions of 113 .
  • a lower wall portion 127 that constitutes the lower wall of the internal flow path 3 is formed by the second connection portion 126 that connects the second inter-slit portion 124 and the third inter-slit portion 125 . That is, the lower flow path forming member 12 has a lower wall portion 127 that constitutes the lower wall of the internal flow path 3 .
  • the second inter-slit portion 124 and the second connection portion 126 constitute the lower wall of the microchannel 31
  • the third inter-slit portion 125 constitutes the lower wall of the separation channel 32 .
  • the width of the second inter-slit region 124 and the width of the third inter-slit region 125 are the same as the width of the first inter-slit region 114 of the upper flow path forming member 11, and
  • the distance d2 between the pair of second slit holes 122, 122 and the pair of third slit holes 123, 123 in the upper flow path forming member 11 is the distance d2 between the pair of first slit holes 112, 112 in the longitudinal direction L of the upper flow path forming member 11 and the first U It is the same as the distance d1 between the character-shaped holes 113.
  • the lower flow path forming member 12 has a protruding portion 128 that protrudes outward from the end portion of the body portion 121 on the other side in the longitudinal direction L.
  • the projecting portion 128 is formed in a rectangular shape when viewed from above.
  • the protruding portion 128 has substantially the same width as the third inter-slit portion 125 and is positioned on the extension of the third inter-slit portion 125 in the longitudinal direction L to the other side. .
  • electrode portions 51 , connecting portions 52 , and conductor portions 53 are formed in the lower flow path forming member 12 .
  • the electrode portion 51 , the connection portion 52 , and the conductor portion 53 are formed by printing a conductive material on the upper surface of the lower flow path forming member 12 .
  • formed integrally with the Conductive materials include conductive carbon, gold, silver, silver chloride, platinum, nickel, graphite, palladium, iron, copper, zinc, carbon paste, mesh electrodes, diamond, and ITO (Indium-Tin Oxide) electrodes. , but not limited to these.
  • the electrode portion, the connection portion, and the conductor portion are preferably printed with the same material, they may be printed with different materials.
  • the electrode portion 51 is formed (printed) on the upper surface of the second inter-slit portion 124 that constitutes the lower wall of the microchannel 31 .
  • the electrode section 51 includes a working electrode 51a, a counter electrode 51b, and a reference electrode 51c.
  • the connecting portion 52 is formed (printed) on the upper surface of the projecting portion 128 .
  • the connection portion 52 includes a first terminal portion 52a corresponding to the working electrode 51a, a second terminal portion 52b corresponding to the counter electrode 51b, and a third terminal portion 52c corresponding to the reference electrode 51c.
  • An external measuring device specifically, an electrochemical analyzer capable of performing electrochemical measurement, an electrochemiluminescence analyzer capable of performing electrochemiluminescence measurement, or the like is mainly connected to the connecting portion 52 .
  • the electrochemical measurements referred to here include cyclic voltammetry, linear sweep voltammetry, stepped voltammetry, Tafel plot, chronoamperometry, chronocoulometry, differential pulse voltammetry, normal pulse voltammetry, square wave voltammetry, alternating current voltammetry, and Perometry, second harmonic voltammetry, Fourier transform ac voltammetry, differential pulse amperometry, double differential pulse amperometry, triple pulse amperometry, integrated pulse amperometry detection, bulk electrolysis/coulometry, hydrodynamic modulation voltammetry , AC Impedance, Impedance/Time, Impedance/Potential, Chronopotentiometry, Chronopotentiometry/Time Potentiometric Stripping Analysis, Electrochemical Noise Measurement, Open Circuit Potential-Time, Sweep Step Function, Multipotential Step, Multi Current Step, etc.
  • electrochemiluminescence measurement refers to a measurement method for measuring an electrochemiluminescence signal based on the electrochemical measurement method described above, and devices for measuring electrochemiluminescence include a cooled CCD, a photoelectron multiplier, and the like. There are, but not limited to, these.
  • the conductor portion 53 electrically connects the electrode portion 51 and the connection portion 52 .
  • the conducting wire portion 53 is formed (printed) on the upper surface of the portion between the electrode portion 51 and the connecting portion 52 of the lower flow path forming member 12 so as to connect the electrode portion 51 and the connecting portion 52 .
  • the conductor portion 53 extends from the electrode portion 51 over the upper surface of the second inter-slit portion 124 , the upper surface of the second connection portion 126 , and the upper surface of the third inter-slit portion 125 to the connection portion 52 . formed to reach.
  • the conducting wire portion 53 includes a first conducting wire portion 53a connecting the working electrode 51a and the first terminal portion 52a, a second conducting wire portion 53b connecting the counter electrode 51b and the second terminal portion 52b, a reference electrode 51c and a third terminal portion. and a third conductor portion 53c connecting with 52c. 4(a) and 4(b), most of the conductor portion 53 (first to third conductor portions 53a to 53c) is covered with an electrical insulating material 54, as indicated by the dashed line in FIGS. there is Although polyimide can be typically used as the electrical insulating material 54, it is not limited to this.
  • One of the functions of the electrical insulating material 54 is to determine the area of the liquid that directly contacts the electrode section 51 so that the electrode section 51 can perform stable electrochemical measurements every time.
  • a portion of the lower flow path forming member 12 located between the electrode portion 51 and the connecting portion 52 is covered with an electrical insulating material 54 .
  • an electrical insulating material 54 As a coating method, for example, when polyimide is used as the electrical insulating material 54, there is a method of immersing the lower flow path forming member 12 in a polyimide liquid. In this case, masking or the like is applied in advance to the portions that are not to be covered. Other methods include, but are not limited to, printing the polyimide liquid only on the areas that need to be coated, or direct contact screen printing.
  • FIG. 5 shows the intermediate member 13.
  • FIG. 5(a) is a top view of the intermediate member 13, and
  • FIG. 5(b) is a sectional view taken along line AA of FIG. 5(a).
  • the intermediate member 13 has substantially the same outer shape as the upper flow path forming member 11 when viewed from above, and is formed in a frame shape having an opening 131 inside. ing.
  • the dimension (that is, thickness) of the intermediate member 13 in the height direction H is appropriately set according to the required channel height of the microchannel 31 .
  • the opening 131 is defined by the first circular hole 111 of the upper flow path forming member 11 and the pair of first circular holes 111 in top view. It is formed with a size capable of enclosing the slit holes 112 and 112 and the first U-shaped hole 113 .
  • the upper and lower surfaces of the intermediate member 13 are formed as surfaces having adhesive properties.
  • the intermediate member 13 can be formed by placing double-sided adhesive sheets on the upper and lower surfaces of a sheet material.
  • the size of the intermediate member 13 in the height direction H, and thus the channel height of the microchannel 31 can be freely changed by appropriately selecting a sheet material having an arbitrary thickness.
  • the upper flow path forming member 11 By joining the lower surface of the upper flow path forming member 11 to the upper surface of the intermediate member 13 and the upper surface of the lower flow path forming member 12 to the lower surface of the intermediate member 13, the upper flow path forming member 11, The lower flow path forming member 12 and the intermediate member 13 are stacked and integrated. At that time, the first liquid absorbent 4 is arranged on the other side in the longitudinal direction L within the opening 131 of the intermediate member 13 .
  • FIG. 6 shows a structure 20 (including the first liquid absorbent 4) in which the upper flow path forming member 11, the lower flow path forming member 12 and the intermediate member 13 are stacked and integrated.
  • 6(a) is a perspective view of the structure 20, and
  • FIG. 6(b) is a cross-sectional view taken along line BB of FIG. 6(a).
  • the first inter-slit portion 114 and the first connection portion 116 of the upper channel forming member 11 constitute the upper wall of the microchannel 31, and the lower channel forming member 12
  • the second inter-slit portion 124 and the second connection portion 126 constitute the lower wall of the microchannel 31 .
  • An electrode portion 51 is formed on the upper surface of the second inter-slit portion 124 of the lower flow path forming member 12 . Therefore, by stacking and integrating the upper flow path forming member 11, the lower flow path forming member 12, and the intermediate member 13, as shown in FIGS.
  • a microchannel 31 extending horizontally, having a constant channel height, and having an electrode portion 51 disposed thereon is formed.
  • the electrode portion 51 arranged in the microchannel 31 is electrically connected to the connecting portion 52 via the conducting wire portion 53, and the conducting wire portion 53 is connected to the bottom portion of the microchannel 31 and the separation channel. After extending the bottom of 32 (that is, the bottom in the internal flow path 3), it further extends under the first liquid absorbent material 4. As shown in FIG.
  • the inner part 115 of the upper flow path forming member 11 constitutes the upper wall of the separation flow path 32, and the third inter-slit part 125 of the lower flow path forming member 12 forms the separation flow path 32. Construct the bottom wall.
  • the first liquid absorption By arranging the material 4 on the other end side in the longitudinal direction L in the opening 131 of the intermediate member 13 , the tip side of the inner part 115 of the upper flow path forming member 11 contacts the first liquid absorbent material 4 .
  • the separation channel 32 extends from the microchannel 31 toward the first liquid absorbent 4, and the upper wall of the separation channel 32 becomes higher as it approaches the first liquid absorbent 4 (farther from the microchannel 31). is formed as an upwardly sloping channel.
  • the width direction W of the micro flow path 31 is A pair of first side spaces 5, 5 located on both sides of the separation channel 32 are formed, and a pair of second side spaces 6, 6 located on both sides in the width direction W of the separation channel 32 are formed.
  • the pair of first side spaces 5, 5 are defined by the pair of first slit holes 112, 112 of the upper flow path forming member 11, the pair of second slit holes 122, 122 of the lower flow path forming member 12, and the intermediate space.
  • the pair of second side spaces 6, 6 are defined by the pair of straight portions of the first U-shaped hole 113 of the upper flow path forming member 11 and the opening 131 of the member 13 and the opening 131 of the lower flow path forming member 12. and the opening 131 of the intermediate member 13 .
  • FIG. 7 is an exploded perspective view of the assay device 1.
  • the assay device 1 includes an upper housing 14, an upper cover 15, a pair of second liquid absorbers, in addition to the first liquid absorbent 4, the upper flow path forming member 11, the lower flow path forming member 12, and the intermediate member 13 described above. It further comprises members 16 , 16 , a third liquid absorbent 17 , a lower housing 18 and a lower cover 19 .
  • the upper housing 14 is made of, for example, a synthetic resin molding.
  • the upper housing 14 has substantially the same outer shape as the upper flow path forming member 11 when viewed from above, and is attached to the upper surface of the upper flow path forming member 11 using a double-sided adhesive sheet (not shown) or the like.
  • the upper housing 14 is formed with a second circular hole 141 that is circular in top view, a first window hole 142 that is rectangular in top view, and an opening hole 143 that is rectangular in top view.
  • the second circular hole 141, the first window hole 142, and the opening hole 143 pass through the upper housing 14 in the height direction H. As shown in FIG.
  • the second circular hole 141 is formed at a position corresponding to the first circular hole 111 of the upper flow path forming member 11 .
  • the second circular hole 141 has approximately the same size as the first circular hole 111 and forms part of the injection port 2 like the first circular hole 111 .
  • the first window hole 142 is formed so as to be positioned above the electrode portion 51 of the lower flow path forming member 12 .
  • the first window hole 142 forms part of the observation window 7 .
  • the opening hole 143 is formed at a position corresponding to the first U-shaped hole 113 of the upper flow path forming member 11 .
  • the opening hole 143 has a size capable of including the first U-shaped hole 113 of the upper flow path forming member 11 inside when viewed from above.
  • the upper cover 15 is composed of, for example, a synthetic resin molding.
  • the upper cover 15 is formed in a flat plate shape.
  • the upper cover 15 has substantially the same outer shape as the upper housing 14 when viewed from above, and is attached to the upper surface of the upper housing 14 using a double-sided adhesive sheet (not shown) or the like.
  • the upper cover 15 is formed with a third circular hole 151 having a circular shape in top view and a second window hole 152 having a rectangular shape in top view.
  • the third circular hole 151 and the second window hole 152 pass through the upper cover 15 in the height direction H. As shown in FIG.
  • the third circular hole 151 is formed at a position corresponding to the first circular hole 111 of the upper flow path forming member 11 and the second circular hole 141 of the upper housing 14 .
  • the third circular hole 151 has approximately the same size as the first circular hole 111 and the second circular hole 141, and constitutes a part of the injection port 2 like the first circular hole 111 and the second circular hole 141. . That is, in this embodiment, the injection port 2 is formed by the first circular hole 111 of the upper flow path forming member 11 , the second circular hole 141 of the upper housing 14 and the third circular hole 151 of the upper cover 15 .
  • the second window hole 152 is formed above the electrode portion 51 of the lower flow path forming member 12 .
  • the second window hole 152 has substantially the same size as the first window hole 142 and constitutes a part of the observation window 7 like the first window hole 142 . That is, in this embodiment, the observation window 7 is formed by the first window hole 142 of the upper housing 14 and the second window hole 152 of the upper cover 15 .
  • the pair of second liquid absorbents 16 , 16 are made of porous material capable of absorbing liquid, like the first liquid absorbent 4 .
  • a pair of second liquid absorbents 16 , 16 are arranged below the first liquid absorbent 4 in contact with the first liquid absorbent 4 .
  • the pair of second liquid absorbents 16 , 16 are each formed in a long and narrow block shape, and extend along the longitudinal direction L in the pair of third slit holes 123 , 123 of the lower flow path forming member 12 . placed on the side.
  • the third liquid absorbent material 17 is made of a porous material capable of absorbing liquid, like the first liquid absorbent material 4 and the pair of second liquid absorbent materials 16 , 16 .
  • the third liquid absorbent material 17 is formed in a block shape larger than the first liquid absorbent material 4 and is positioned under the pair of second liquid absorbent materials 16 and 16 while in contact with the pair of second liquid absorbent materials 16 and 16 . placed on the side.
  • the lower housing 18 is made of, for example, a synthetic resin molding.
  • the lower housing 18 has substantially the same outer shape as the upper flow path forming member 11 and the upper housing 14 when viewed from above, and is attached to the lower surface of the lower flow path forming member 12 using a double-sided adhesive sheet (not shown) or the like. It is attached.
  • the lower housing 18 has a rectangular first accommodation hole 181 for accommodating the third liquid absorbent 17 when viewed from above.
  • the lower cover 19 is composed of, for example, a synthetic resin molding.
  • the lower cover 19 is formed in a flat plate shape.
  • the lower cover 19 has substantially the same outer shape as the lower housing 18 when viewed from above, and is attached to the lower surface of the lower housing 18 using a double-sided adhesive sheet (not shown) or the like.
  • the assay device 1 shown in FIGS. 1 and 2 is obtained.
  • the obtained assay device 1 has an injection port 2 into which a liquid is injected on the upper surface, an internal channel 3 through which the liquid injected from the injection port 2 flows, and an internal channel 3. and a first liquid absorbent material 4 that absorbs liquid.
  • the internal channel 3 is provided between a microchannel 31 communicating with the injection port 2 and between the microchannel 31 and the first liquid absorbent 4. and a separation channel 32 for separating liquids.
  • the assay device 1 also includes an electrode portion 51 arranged in the microchannel 31, a connection portion 52 connected to an external measuring device, and a conductor portion 53 electrically connecting the electrode portion 51 and the connection portion 52. and
  • the connecting portion 52 is provided on the opposite side of the electrode portion 51 with the first liquid absorbent 4 interposed therebetween in the longitudinal direction L (that is, the liquid flow direction), and protrudes to the outside.
  • the conducting wire portion 53 extends parallel to the longitudinal direction L in the internal flow path 3 from the electrode portion 51 toward the connecting portion 52 (there is no need to be strictly parallel, and it is sufficient to be approximately parallel. The same applies hereinafter). extended.
  • the assay reagent may be appropriately injected from the injection port 2, or may be placed in the microchannel 31 in advance.
  • the assay reagent is, for example, on the top wall of the microchannel 31, on the bottom wall of the microchannel 31, on the electrode section 51, and/or on the electrode section. 51 can be immobilized.
  • Assay reagents to be immobilized may be, for example, antibodies, antigens, peptides, electrochemically active substances, etc., but are not limited to these.
  • FIG. 8 Next, movement of the liquid in the assay device 1 will be described with reference to FIGS. 8 and 9.
  • FIG. 8 is a diagram for explaining the movement of the liquid injected into the assay device 1 (hereinafter referred to as "first liquid LQ1"), and schematically shows the internal flow path 3 and the like when the assay device 1 is viewed from above. clearly shown. 8 corresponds to a top view of the structure 20 shown in FIGS. 6A and 6B from which the upper flow path forming member 11 has been removed. Also, in FIG. 8, the first liquid LQ1 is indicated by hatching.
  • FIG. 8(a) shows the state before the first liquid LQ1 is injected into the injection port 2.
  • FIG. 8(b) shows the state before the first liquid LQ1 is injected into the injection port 2.
  • the first liquid LQ1 is supplied (flows) into the microchannel 31 as shown in FIG. 8(b).
  • the first liquid LQ1 flows into the separation channel 32 .
  • the first liquid LQ1 that has flowed into the separation channel 32 flows through the separation channel 32 toward the first liquid absorbent 4 and contacts (is absorbed by) the first liquid absorbent 4 .
  • the first liquid LQ1 in the internal channel 3 is subjected to a force to stay in the microchannel 31 due to the interfacial tension and a capillary force of the first liquid absorbent 4, which is shown in FIG. 8(c).
  • the first liquid LQ1 is pulled between the microchannel 31 and the first liquid absorbent 4 as indicated by an arrow.
  • the injection of the first liquid LQ1 is stopped, as shown in FIG. It is absorbed by the liquid absorbent material 4 and the rest is retained in the microchannel 31 .
  • the first liquid LQ1 in the internal channel 3 is separated into the part retained in the microchannel 31 and the part absorbed by the first liquid absorbent 4 .
  • an electrochemical-related measuring device that is, the electrochemical analyzer, the electrochemiluminescence analyzer, or the like, is connected to the connecting portion 52, whereby the electric power to the first liquid LQ1 is It is possible to stably perform an assay by a chemical method.
  • FIG. 9 shows the movements of the first liquid LQ1 and the second liquid LQ2 when a new liquid (hereinafter referred to as "second liquid LQ2") is injected after the injection of the first liquid LQ1 into the assay device 1 is stopped. It is a diagram for explanation, and schematically shows the internal flow path 3 and the like when the assay device 1 is viewed from above. As with FIG. 8, FIG. 9 also corresponds to a top view of the structure 20 shown in FIGS. 6A and 6B with the upper flow path forming member 11 removed. In FIG. 9, the first liquid LQ1 is indicated by the same hatching as in FIG. 8, and the second liquid LQ2 is indicated by hatching different from that of the first liquid LQ1.
  • the second liquid LQ2 When the second liquid LQ2 is injected after the injection of the first liquid LQ1 is stopped, the second liquid LQ2 is supplied to the microchannel 31 as shown in FIG. 9(a).
  • the first liquid LQ1 is retained in the microchannel 31, and the first liquid LQ1 retained in the microchannel 31 is the newly supplied second liquid. It is pushed out from the microchannel 31 by LQ2, flows through the separation channel 32, and is absorbed by the first liquid absorbent 4.
  • the injection of the second liquid LQ2 is continued, and the amount of the second liquid LQ2 exceeding the capacity of the microchannel 31, in other words, the amount exceeding the amount of the first liquid LQ1 retained in the microchannel 31
  • the second liquid LQ2 is supplied, the first liquid LQ1 retained in the microchannel 31 is pushed out from the microchannel 31 as shown in FIG. 9B.
  • the second liquid LQ2 is further injected, the second liquid LQ2 flows from the microchannel 31 into the separation channel 32 .
  • the second liquid LQ2 that has flowed into the separation channel 32 flows through the separation channel 32 toward the first liquid absorbent 4 and contacts (is absorbed by) the first liquid absorbent 4 .
  • the second liquid LQ2 in the internal channel 3 is subjected to a force to stay in the microchannel 31 due to the interfacial tension and a capillary force of the first liquid absorbent 4, which acts as shown in FIG. 9(c).
  • the second liquid LQ2 is pulled between the microchannel 31 and the first liquid absorbent 4 as indicated by an arrow.
  • the injection of the second liquid LQ2 is stopped, as shown in FIG. It is absorbed by the liquid absorbent material 4 and the rest is retained in the microchannel 31 . That is, the second liquid LQ2 in the internal channel 3 is separated into the part retained in the microchannel 31 and the part absorbed by the first liquid absorbent 4 .
  • the first liquid LQ1 in the microchannel 31 is replaced with the second liquid LQ2, and a predetermined amount of the second liquid LQ2 remains in the microchannel 31, in other words, on the electrode section 51.
  • the liquid in the microchannel 31 can be easily replaced, and the new liquid after the replacement can be stably assayed by the electrochemical method. .
  • the assay device 1 has an observation window 7 for observing the vicinity of the electrode section 51 in the microchannel 31 .
  • the observation window 7 may be omitted.
  • the upper flow path forming member 11 does not necessarily have to be made of transparent synthetic resin.
  • the electrode section 51 , the connection section 52 , and the lead section 53 are formed integrally with the lower flow path forming member 12 .
  • the electrode portion 51 , the connecting portion 52 , and the conductor portion 53 may be formed integrally with the upper flow path forming member 11 instead of the lower flow path forming member 12 .
  • the upper flow path forming member 11 is made of a synthetic resin colored white or black, and the upper flow path forming member 11 is provided with a projecting portion in which the connection portion 52 is formed, and the lower flow path is formed.
  • the forming member 12 may be made of a transparent synthetic resin, and an observation window 7 for observing the vicinity of the electrode section 51 in the microchannel 31 may be formed so as to open to the bottom surface of the assay device 1 .
  • a plurality of (here, three) assay devices 1 according to the first embodiment may be arranged in the width direction and integrated to form one assay device 1'. In this way, multiple liquids can be conveniently assayed simultaneously and in parallel.
  • FIG. 11 to 13 show an assay device 10 according to a second embodiment.
  • 11 is a perspective view of the assay device 10 according to the second embodiment
  • FIG. 12 is a cross-sectional view of the assay device 10 according to the second embodiment
  • FIG. 13 is an assay device according to the second embodiment.
  • 10 is an exploded perspective view of FIG. 11 to 13, the same reference numerals are used for elements common to the assay device 1 according to the first embodiment.
  • the configuration that is different from the assay device 1 according to the first embodiment will mainly be described below.
  • the main differences between the assay device 1 according to the first embodiment and the assay device 10 according to the second embodiment are as follows.
  • the lower flow path forming member 12 has a protrusion 128 that protrudes outward from the other end of the main body 121 in the longitudinal direction L.
  • a connecting portion 52 is formed (printed) on the upper surface of the projecting portion 128 . Therefore, in the assay device 1 according to the first embodiment, the connecting portion 52 is arranged on the opposite side of the electrode portion 51 with the first liquid absorbent 4 interposed therebetween in the longitudinal direction L (that is, the liquid flow direction). , and protrudes to the outside. Further, the conductor portion 53 extends parallel to the longitudinal direction L from the electrode portion 51 toward the connection portion 52 .
  • the conductor portion 53 extends from the electrode portion 51 over the upper surface of the second inter-slit portion 124 of the main body portion 121, the upper surface of the second connection portion 126, and the upper surface of the third inter-slit portion 125. It is formed so as to reach the connecting portion 52 .
  • the lower flow path forming member 12 does not have the protruding portion 128 that protrudes outward from the other end of the main body portion 121 in the longitudinal direction L.
  • a projecting portion 129 projecting outward from the one end of the main body portion 121 in the longitudinal direction L is provided, and the connecting portion 52 is formed (printed) on the upper surface of the projecting portion 129 .
  • the connecting portion 52 is arranged on the opposite side of the electrode portion 51 across the injection port 2 in the longitudinal direction L (that is, the flow direction of the liquid).
  • the conductor portion 53 extends parallel to the longitudinal direction L from the electrode portion 51 toward the connection portion 52 . Specifically, the conductor portion 53 extends from the electrode portion 51 over the upper surface of the portion on the one side in the longitudinal direction L of the main body portion 121 including the portion below the inlet 2 to reach the connection portion 52 . formed.
  • the assay device 10 according to the second embodiment also provides the same effects as the assay device 1 according to the first embodiment. That is, the injected liquid can be stably assayed by the electrochemical method, and the microchannel 31 can be washed. In addition, the liquid in the microchannel 31 can be easily replaced, and the new liquid after the replacement can be stably assayed by the electrochemical method.
  • Modifications applicable to the assay device 1 according to the first embodiment are also applicable to the assay device 10 according to the second embodiment. Further, as shown in FIG. 14, a plurality (here, three) of the assay devices 10 according to the second embodiment may be arranged in the width direction and integrated into one assay device 10'.
  • FIG. 15 and 16 show an assay device 100 according to a third embodiment.
  • FIG. 15 is a perspective view of the assay device 100 according to the third embodiment
  • FIG. 16 is an exploded perspective view of the assay device 100 according to the third embodiment.
  • 15 and 16 the same reference numerals are used for elements common to the assay device 1 according to the first embodiment. The configuration that is different from the assay device 1 according to the first embodiment will mainly be described below.
  • the main differences between the assay device 1 according to the first embodiment and the assay device 100 according to the third embodiment are as follows.
  • the assay device 1 according to the first embodiment has one observation window 7 , one electrode section 51 , one connecting section 52 and one conducting wire section 53 .
  • the assay device 100 according to the third embodiment has a plurality of observation windows 7, electrode portions 51, connection portions 52, and conductor portions 53 (three each in this case). Therefore, the lower flow path forming member 12, the upper housing 14 and the upper cover 15 of the assay device 100 according to the third embodiment are different from those of the assay device 1 according to the first embodiment. A specific description will be given below.
  • FIG. 17 shows the lower channel forming member 12 of the assay device 100 according to the third embodiment.
  • 17(a) is a top view of the lower flow path forming member 12
  • FIG. 17(b) is a side view of the lower flow path forming member 12
  • FIG. 17(c) is a bottom view of the lower flow path forming member 12. is.
  • the lower flow path forming member 12 of the assay device 100 has substantially the same outer shape as the upper flow path forming member 11 when viewed from above. It has a body portion 221 . Further, the main body portion 221 of the lower flow path forming member 12 has a fourth slit hole 222 that is rectangular in top view, first to third rectangular holes 223 to 225 that are rectangular in top view, and A rectangular fifth slit hole 226 is formed. The fourth slit hole 222, the first to third rectangular holes 223 to 225, and the fifth slit hole 226 penetrate the lower flow path forming member 12 in the height direction H.
  • the fourth slit hole 222 corresponds to one of the pair of first slit holes 112 , 112 of the upper flow path forming member 11 and one of the pair of linear portions of the first U-shaped hole 113 of the upper flow path forming member 11 . is formed in That is, the fourth slit holes 222 are formed so as to form a pair of first slit holes 112, 112 of the upper flow path forming member 11 when the upper flow path forming member 11, the lower flow path forming member 12, and the intermediate member 13 are stacked. and below one of the pair of straight portions of the first U-shaped hole 113 of the upper flow path forming member 11 .
  • the first to third rectangular holes 223 to 225 and the fifth slit hole 226 are spaced apart from each other in this order from the one side to the other side in the longitudinal direction L, and the upper flow path forming member 11 and the other of the pair of straight portions of the first U-shaped hole 113 of the upper flow path forming member 11 .
  • the first to third rectangular holes 223 to 225 form a pair of upper flow path forming members 11 when the upper flow path forming member 11, the lower flow path forming member 12 and the intermediate member 13 are stacked. is formed so as to be located below the other of the first slit holes 112, 112 of the .
  • the fifth slit hole 226 has a portion of the one side in the longitudinal direction L of the upper flow path forming member 11 when the upper flow path forming member 11, the lower flow path forming member 12, and the intermediate member 13 are stacked. Positioned below the other of the pair of first slit holes 112, 112, and most of the remaining portion is positioned below the other of the pair of linear portions of the first U-shaped holes 113 of the upper flow path forming member 11. It is
  • the lower wall that constitutes the lower wall of the internal flow path 3 is formed by the portions sandwiched between the fourth slit hole 222 and the first to third rectangular holes 223 to 225 and the fifth slit hole 226.
  • a portion 227 is formed. That is, the lower flow path forming member 12 has the lower wall portion 227 that constitutes the lower wall of the internal flow path 3 .
  • the bottom wall of the microchannel 31 is configured by the one side portion 228 which is the portion on the one side in the longitudinal direction L of the bottom wall portion 227, and the other side portion in the longitudinal direction L of the fourth slit hole 222 is formed.
  • the other side portion 229 which is the other side portion in the longitudinal direction of the lower wall portion 227, is sandwiched between the side portion and the remaining portion of the fifth slit hole 226.
  • a lower wall is constructed.
  • the width of the lower wall portion 227 forming the lower wall of the internal flow path 3 is the same as the width of the first inter-slit portion 114 of the upper flow path forming member 11 .
  • the dimension of the first inter-hole portion 230 between the first rectangular hole 223 and the second rectangular hole 224 in the longitudinal direction L, the dimension of the second inter-hole portion 231 between the second rectangular hole 224 and the third rectangular hole 225, The dimension in the longitudinal direction L and the dimension in the longitudinal direction L of the third inter-hole portion 232 between the third rectangular hole 225 and the fifth slit hole 226 are smaller than the width of the lower wall portion 227. Specifically, It is set to 2/3 or less of the width of the lower wall portion 227, preferably 1/2 or less of the width of the lower wall portion 227. As shown in FIG.
  • the lower flow path forming member 12 has three protrusions 233 that protrude outward from one end of the main body 221 in the width direction W.
  • the protruding portion 233 is formed in a rectangular shape when viewed from above, and is positioned on the side of the one side portion 228 that constitutes the lower wall of the microchannel 31 .
  • the lower flow path forming member 12 is formed with the same number of electrode portions 51 , connection portions 52 and conductor portions 53 as the protrusions 233 (that is, three).
  • the electrode portion 51 , the connection portion 52 , and the conductor portion 53 are formed integrally with the lower flow path forming member 12 by printing the conductive material on the lower flow path forming member 12 .
  • the three electrode portions 51 are formed on the upper surface of the one side portion 228 forming the lower wall of the microchannel 31 at intervals in the longitudinal direction L.
  • Each electrode portion 51 is formed at a position corresponding to one of the three projecting portions 233, and includes a working electrode 51a, a counter electrode 51b, and a reference electrode 51c.
  • the three connecting portions 52 are formed on the upper surface of one of the three projecting portions 233, respectively.
  • Each connection portion 52 is provided at a position separated in the width direction W with respect to one of the three electrode portions 51, a first terminal portion 52a corresponding to the working electrode 51a, and a second terminal portion corresponding to the counter electrode 51b. 52b and a third terminal portion 52c corresponding to the reference electrode 51c.
  • the three conductor portions 53 are formed to electrically connect the three electrode portions 51 to the corresponding connection portions 52, respectively.
  • the three conductor portions 53 extend over the upper surface of the first inter-hole portion 230 , the upper surface of the second inter-hole portion 231 , or the upper surface of the third inter-hole portion 232 to form the three electrode portions 51 .
  • Each conductor portion 53 includes a first conductor portion 53a that connects the working electrode 51a and the first terminal portion 52a, a second conductor portion 53b that connects the counter electrode 51b and the second terminal portion 52b, a reference electrode 51c and a third terminal. and a third conductor portion 53c connecting with the portion 52c. 17(a) and 17(b), most of each conductor portion 53 (first to third conductor portions 53a to 53c) is covered with an electrical insulating material 54, as indicated by a dashed line. ing.
  • the upper housing 14 has observation windows positioned above the three electrode portions 51 of the lower flow path forming member 12, respectively. 7 are formed in the upper cover 15, and the observation windows 7 are positioned above the three electrode portions 51 of the lower flow path forming member 12, respectively. Three second window holes 152 are formed.
  • the three electrode portions 51 are formed on the upper surface of the one side portion 228 forming the lower wall of the microchannel 31 and spaced apart from each other in the longitudinal direction L.
  • the three electrode portions 51 are arranged in the microchannel 31 and separated from each other in the longitudinal direction L (that is, the liquid flow direction).
  • the three connection portions 52 are provided separately from any of the three electrode portions 51 in the width direction W orthogonal to the longitudinal direction L.
  • the three connection portions 52 are formed on the upper surfaces of the three projecting portions 233 projecting outward from the one end portion of the main body portion 221 of the lower flow path forming member 12 in the width direction W. and protruding outside.
  • the three conductor portions 53 extend parallel to the width direction W and electrically connect the corresponding electrode portions 51 and connecting portions 52 .
  • the same effect as the assay device 1 according to the first embodiment can be obtained in the assay device 100 according to the third embodiment. Further, according to the assay device 100 according to the third embodiment, it is possible to perform electrochemical assays for up to three items on the injected liquid.
  • the assay device 100 according to the above-described third embodiment has three electrode sections 51, three connection sections 52, and three conductor sections 53, respectively. However, it is not limited to this. As with the assay device 1 according to the first embodiment and the assay device 10 according to the second embodiment, the assay device 100 according to the third embodiment includes one electrode section 51, one connection section 52, and one conductor section 53. You may have, you may have two each, and you may have four or more each. Further, modifications applicable to the assay device 1 according to the first embodiment are also applicable to the assay device 100 according to the third embodiment. Furthermore, as shown in FIG. 18, two assay devices 100 according to the third embodiment, in which the arrangement of the connecting portions 52 are opposite to each other, may be arranged in the width direction and integrated into one assay device 100'. good.
  • FIG. 19-21 show an assay device 200 according to a fourth embodiment.
  • 19 is a perspective view of the assay device 200 according to the fourth embodiment
  • FIG. 20 is a cross-sectional view of the assay device 200 according to the fourth embodiment
  • FIG. 21 is an assay device according to the fourth embodiment.
  • 200 is an exploded perspective view of FIG. 19 to 21, the same reference numerals are used for elements common to the assay device 1 according to the first embodiment.
  • the configuration that is different from the assay device 1 according to the first embodiment will mainly be described below.
  • the main differences between the assay device 1 according to the first embodiment and the assay device 200 according to the fourth embodiment are as follows.
  • the pair of second liquid absorbents 16, 16 and the lower housing 18 are omitted from the assay device 1 according to the first embodiment, and instead the second upper housing 201 and the spacer A member 202 is provided (see FIGS. 7 and 21).
  • the upper flow path forming member 11, the lower flow path forming member 12, the third liquid absorbent 17 and the lower cover 19 of the assay device 200 according to the fourth embodiment are similar to those of the assay device 1 according to the first embodiment. is different in shape.
  • the second upper housing 201, the third liquid absorbent 17, the upper flow path forming member 11, the lower flow path forming member 12, the spacer member 202, and the lower cover 19 will be described in this order.
  • the second upper housing 201 is arranged between the upper cover 15 and the upper housing 14 .
  • the outer shape of the second upper housing 201 when viewed from above is substantially the same as that of the upper housing 14 .
  • the dimension in the height direction H of the second upper housing 201 is larger than that of the upper housing 14 .
  • a fourth circular hole 2011 and a third window hole 2012 corresponding to the second circular hole 141 and the first window hole 142 of the upper housing 14 are formed in the second upper housing 201 .
  • the fourth circular hole 2011 and the third window hole 2012 pass through the second upper housing 201 in the height direction H.
  • the fourth circular hole 2011 forms part of the inlet 2 and the third window hole 2012 forms part of the observation window 7 .
  • a second receiving hole 2013 is also formed in the second upper housing 201 .
  • the second receiving hole 2013 is provided at a position corresponding to the opening hole 143 of the upper housing 14 and penetrates the second upper housing 201 in the height direction H.
  • the second accommodation hole 2013 of the second upper housing 201 corresponds to the first accommodation hole 181 for accommodating the third liquid absorbent material 17 provided in the lower housing 18 of the assay device 1 according to the first embodiment. do.
  • the second upper housing 201 is made of synthetic resin, for example, and is attached to the upper surface of the upper housing 14 and the lower surface of the upper cover 15 using a double-sided adhesive sheet (not shown).
  • the third liquid absorbent 17 has a protruding portion 17a protruding downward on the other side in the longitudinal direction L.
  • the third liquid absorbent 17 is housed in the second housing hole 2013 of the second upper housing 201 with the projecting portion 17a in contact with (the upper surface of) the first liquid absorbent 4 . That is, in the assay device 200 according to the fourth embodiment, the third liquid absorbent material 17 is arranged above the first liquid absorbent material 4 .
  • the upper flow path forming member 11 is formed with a first circular hole 111 and a second U-shaped hole 2014 that is approximately U-shaped horizontally when viewed from above.
  • the second U-shaped hole 2014 is formed on the other side in the longitudinal direction L of the upper flow path forming member 11 from the first circular hole 111, and the open portion of the U-shape extends in the longitudinal direction L of the upper flow path forming member 11. facing said one side.
  • the second U-shaped hole 2014 has a shape combining the pair of first slit holes 112, 112 and the first U-shaped hole 113 of the upper flow path forming member 11 of the assay device 1 according to the first embodiment. .
  • the second U-shaped hole 2014 penetrates the upper flow path forming member 11 in the height direction H.
  • the upper wall portion 117 that constitutes the upper wall of the internal channel 3 is formed by the portion inside the second U-shaped hole 2014 in the upper channel forming member 11. ing.
  • the upper wall portion 117 has a first straight portion 117a, a narrow portion 117b, and a second straight portion 117c in order from the one side in the longitudinal direction L, that is, the side closer to the first circular hole 111 (injection port 2). and have
  • the first straight portion 117a linearly extends from the first circular hole 111 (injection port 2) toward the other side in the longitudinal direction L.
  • the width of the first straight portion 117a is smaller than the diameter of the first circular hole 111 (injection port 2) and constant.
  • the narrow portion 117b is a portion where the width of the upper wall portion 117 is narrowed.
  • the narrow portion 117b is provided between and connects the first straight portion 117a and the second straight portion 117c.
  • the narrow portion 117b is formed in a tapered shape in which the width gradually narrows toward the other side in the longitudinal direction L from the width of the first straight portion 117a.
  • the second straight portion 117c extends linearly toward the other side in the longitudinal direction L from the narrow portion 117b.
  • the width of the second straight portion 117c is smaller and constant than the width of the first straight portion 117a.
  • the narrow portion 117b is not limited to the tapered shape as long as it is a portion where the width of the upper wall portion 117 is narrowed.
  • the narrow portion 117b may be formed in a stepped shape in which the width changes from the width of the first straight portion 117a to the width of the second straight portion 117c in one step or a plurality of steps.
  • a pair of sixth slit holes 2015, 2015 are formed in the body portion 121 of the lower flow path forming member 12.
  • the pair of sixth slit holes 2015, 2015 are formed in the second U-shaped hole 2014 of the upper flow path forming member 11 when the upper flow path forming member 11, the lower flow path forming member 12 and the intermediate member 13 are stacked. It is formed so as to be positioned below the pair of straight portions.
  • the portion sandwiched between the pair of sixth slit holes 2015, 2015 in the lower channel forming member 12 forms the lower wall of the internal channel 3.
  • a portion 127 is formed.
  • the electrode portion 51 and the conductor portion 53 are formed on the upper surface of the portion sandwiched between the pair of sixth slit holes 2015 , 2015 , and the connecting portion 52 is formed on the upper surface of the projecting portion 128 .
  • the spacer member 202 is arranged between the lower flow path forming member 12 and the lower cover 19 .
  • the outer shape of the spacer member 202 when viewed from above is substantially the same as that of the main body portion 121 of the lower flow path forming member 12 .
  • a pair of seventh slit holes 2016 , 2016 corresponding to the pair of sixth slit holes 2015 , 2015 of the lower flow path forming member 12 are formed in the spacer member 202 .
  • the dimension of the spacer member 202 in the height direction H can be set arbitrarily. That is, the dimension in the height direction H of the spacer member 202 may be the same as or different from that of the main body portion 121 of the lower flow path forming member 12 .
  • the spacer member 202 is made of, for example, a synthetic resin molding, and is attached to the lower surface of the lower flow path forming member 12 using a double-sided adhesive sheet (not shown) or the like. If the dimension of the spacer member 202 in the height direction H is the same as that of the main body portion 121 of the lower flow path forming member 12, the part forming the main body portion 121 of the lower flow path forming member 12 is used as the spacer member 202. obtain.
  • the lower cover 19 corresponds to the pair of sixth slit holes 2015, 2015 of the lower flow path forming member 12 and the pair of seventh slit holes 2016, 2016 of the spacer member 202.
  • a pair of slit grooves 2017, 2017 are formed.
  • the lower cover 19 is attached to the lower surface of the spacer member 202 using a double-sided adhesive sheet (not shown) or the like.
  • the pair of slit grooves 2017, 2017 may be a pair of slit holes.
  • the first straight portion 117a and the narrow width portion 117b of the upper wall portion 117 constitute the upper wall of the microchannel 31
  • the second straight portion 117c of the upper wall portion 117 constitutes the upper wall of the microchannel 31.
  • the upper wall of the separation channel 32 is constructed.
  • the lower wall of the microchannel 31 is constituted by the portions of the lower wall portion 127 corresponding to the first straight portion 117a and the narrow portion 117b of the upper wall portion 117, A portion corresponding to the straight portion 117c constitutes the lower wall of the separation channel 32. As shown in FIG.
  • a pair of straight portions of the second U-shaped hole 2014 of the upper flow path forming member 11, a pair of sixth slit holes 2015, 2015 of the lower flow path forming member 12, and a pair of seventh slits of the spacer member 202 A pair of first lateral spaces 5 and 5 and a pair of second lateral spaces 6 and 6 are formed by the holes 2016 and 2016 and the pair of slit grooves 2017 and 2017 of the lower cover 19 .
  • the assay device 200 according to the fourth embodiment also provides the same effects as the assay device 1 according to the first embodiment.
  • the spacer member 202 can be replaced by appropriately adjusting the dimension of the lower flow path forming member 12 in the height direction H and/or the dimension of the lower cover 19 in the height direction. It is also possible to omit it. Further, modifications applicable to the assay device 1 according to the first embodiment are also applicable to the assay device 200 according to the fourth embodiment. Furthermore, although illustration is omitted, a plurality of assay devices 200 according to the fourth embodiment may be arranged in the width direction and integrated to form one assay device.
  • [Fifth embodiment] 22-24 show an assay device 210 according to a fifth embodiment.
  • 22 is a perspective view of the assay device 210 according to the fifth embodiment
  • FIG. 23 is a cross-sectional view of the assay device 210 according to the fifth embodiment
  • FIG. 24 is an assay device according to the fifth embodiment.
  • 210 is an exploded perspective view of 210.
  • FIG. The configuration that is different from the assay device 200 according to the fourth embodiment will mainly be described below.
  • the main difference between the assay device 200 according to the fourth embodiment and the assay device 210 according to the fifth embodiment is that the assay device 210 according to the fifth embodiment has the second part of the assay device 200 according to the fourth embodiment.
  • an absorbent housing 211 for containing the third liquid absorbent 17 and its cover member 212 are provided (see FIGS. 21 and 24).
  • the absorber housing 211 is formed in a rectangular shape when viewed from above.
  • the dimension in the longitudinal direction L of the absorbent housing 211 is not particularly limited, but may be about 1/2 that of the upper housing 14 .
  • the widthwise dimension of the absorbent housing 211 is substantially equal to that of the upper housing 14 , and the heightwise dimension of the absorbent housing 211 is larger than that of the upper housing 14 .
  • the absorbent housing 211 is formed with a third receiving hole 2111 corresponding to the second receiving hole 2013 of the second upper housing 201 of the assay device 200 according to the fourth embodiment.
  • the third liquid absorbent 17 is inserted into the third accommodation hole of the absorbent housing 211 with the projecting portion 17a in contact with (the upper surface of) the first liquid absorbent 4. 2111.
  • the absorber housing 211 is made of, for example, a synthetic resin molding, and a double-sided adhesive sheet (not shown) is used so that the third receiving hole 2111 is positioned above the opening 143 of the upper housing 14 . , is attached to the upper housing 14 .
  • the cover member 212 is composed of, for example, a synthetic resin molding.
  • the cover member 212 is formed in a flat plate shape, and has substantially the same outer shape as the absorber housing 211 when viewed from above.
  • the cover member 212 is attached to the upper surface of the absorbent housing 211 so as to cover the third receiving hole 2111 using a double-sided adhesive sheet (not shown) or the like.
  • the same effect as the assay device 200 according to the fourth embodiment, more specifically, the same effect as the assay device 1 according to the first embodiment can be obtained in the assay device 210 according to the fifth embodiment.
  • Modifications applicable to the assay device 1 according to the first embodiment and/or the assay device 200 according to the fourth embodiment are also applicable to the assay device 210 according to the fifth embodiment.
  • a plurality of assay devices 210 according to the fifth embodiment may be arranged in the width direction and integrated to form one assay device.
  • Example 1 In Example 1, the assay device according to the embodiment was connected to a potentiostat, and a K 3 [Fe(CN) 6 ] (potassium ferricyanide) solution was measured by cyclic voltammetry. When the K 3 [Fe(CN) 6 ] solution was dropped into the injection port 2, a current value associated with the oxidation-reduction reaction was observed. After that, instead of the K 3 [Fe(CN) 6 ] solution, a solvent that does not contain the K 3 [Fe(CN) 6 ] solution was added dropwise to the inlet 2, and the characteristics of the K 3 [Fe(CN) 6 ] solution were peak current was no longer observed. From these, it was confirmed that the assay device according to the embodiment is capable of performing an assay by the cyclic voltammetry method, and that the liquid in the assay device can be replaced and allowed to stand still.
  • K 3 [Fe(CN) 6 ] potassium ferricyanide
  • Example 2 the assay device according to the embodiment was incorporated into an electrochemiluminescence measurement device, and the electrochemiluminescence of luminol was measured by the cyclic voltammetry method.
  • Luminol is oxidized on the electrode surface at around 0.2 to 0.3 V to become radicals and diazoquinone, and the oxidized luminol (radical and diazoquinone) has a negative charge (-0.5 to -1.0 V). is applied to react (oxidize) with active oxygen species (H 2 O 2 and O 2 ⁇ ) generated by an electrochemical reduction reaction from dissolved oxygen to emit light.
  • active oxygen species H 2 O 2 and O 2 ⁇
  • Example 3 the assay device according to the embodiment was incorporated into an electrochemiluminescence measurement device, and electrochemiluminescence measurement of luminol using gold nanoparticles was performed. Specifically, in Example 3, a 10 mM luminol solution was adjusted to a 0.2 mM luminol solution with a Tris-HCl buffer (pH 8, 200 mM), and a gold nanoparticle solution and a Tris-HCl buffer (pH 8, 200 mM) were prepared. were mixed at a ratio of 1:4, and a mixture of these at a ratio of 1:1 was used. As a result, it was confirmed that electrochemiluminescence of luminol could be measured without problems. In this case, the gold nanoparticles in the Tris-HCl buffer solution react with dissolved oxygen to generate reactive oxygen species, so unlike Example 2, generation of reactive oxygen species by electrochemical reaction is unnecessary.
  • a 10 mM luminol solution was adjusted to a 0.2 mM luminol solution with a Tri

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

電気化学アッセイ装置1は、注入口2から注入された液体が流れる内部流路3と、内部流路3を通過した液体を吸収する第1液体吸収材4とを有し、電気化学法によるアッセイが可能に構成されている。内部流路3は、注入口2に連通するマイクロ流路31と、マイクロ流路31と第1液体吸収材4との間に設けられ、液体の注入が停止されたときに内部流路3内の液体をマイクロ流路31に留置される分と第1液体吸収材4に吸収される分に分離させるための分離流路32とを含む。電気化学アッセイ装置1は、マイクロ流路31内に配置された電極部51と、外部の測定装置に接続される接続部52と、電極部51と接続部52を電気的に接続する導線部53とを有する。

Description

電気化学アッセイ装置
 本発明は、アッセイ装置に関し、特に、微量な液体を用いると共に電気化学法によるアッセイを行うことができる電気化学アッセイ装置に関する。
 特許文献1には、微量な液体を用いてアッセイを行う従来のアッセイ装置の一例が記載されている。特許文献1に記載されたアッセイ装置は、流体を流すことができるように構成されるマイクロ流路と、前記流体の流れ方向の一端側に位置する前記マイクロ流路の一端部と間隔を空けて配置される吸収用多孔質媒体と、前記マイクロ流路の一端部と前記吸収用多孔質媒体の間に配置される分離空間と、前記マイクロ流路と連通するように前記マイクロ流路に対して、前記流れ方向に直交する幅方向の両側にそれぞれ隣接し、かつ空気を流通可能とする2つの側方通気路とを備えている。
国際公開第2020/045551号
 特許文献1に記載されたアッセイ装置は、前記マイクロ流路内における酵素反応などにより光学的シグナル(発色や化学発光など)を検出するものであり、電気化学法によるアッセイが可能な構成にはなっていない。
 一般に、電気化学法を利用するセンサ等は、迅速な計測が可能であること、ノイズの影響を比較的受けにくいこと、及びアナライザー装置の小型化が可能であることなどから、現場での計測作業に適している。実際、SMBG(血糖自己測定)のような指先から採血して血糖値を測る小型の血糖値センサをはじめとする半導体バイオセンサなど、バイオエレクトロニクス技術によるセンサデバイスの多くは、電気化学法を利用して実用化されている。このため、アッセイ装置においても電気化学法を利用できるようにすることが望まれている。
 そこで、本発明は、微量な液体を用いると共に電気化学法によるアッセイを行うことができる電気化学アッセイ装置を提供することを目的とする。
 本発明の一側面によると、電気化学アッセイ装置は、注入口から注入された液体が流れる内部流路と、前記内部流路を通過した液体を吸収する液体吸収材とを有し、電気化学法によるアッセイが可能に構成されている。前記内部流路は、前記注入口に連通するマイクロ流路と、前記マイクロ流路と前記液体吸収材の間に設けられ、液体の注入が停止されたときに前記内部流路内の液体を前記マイクロ流路に留置される分と前記液体吸収材に吸収される分に分離するための分離流路とを含む。また、電気化学アッセイ装置は、前記マイクロ流路内に配置された電極部と、外部の測定装置に接続される接続部と、前記電極部と前記接続部を電気的に接続する導線部とを有する。
 本発明の他の側面によると、電気化学アッセイ装置は、注入口から注入された液体が流れる内部流路と、前記内部流路を通過した液体を吸収する液体吸収材とを有し、電気化学法によるアッセイが可能に構成されている。前記内部流路は、前記注入口に連通するマイクロ流路と、前記マイクロ流路と前記液体吸収材の間に設けられ、液体の注入が停止されたときに前記内部流路内の液体を前記マイクロ流路に留置される分と前記液体吸収材に吸収される分に分離するための分離流路とを含む。また、電気化学アッセイ装置は、前記マイクロ流路内に配置されると共に前記液体の流れ方向に互いに離隔した複数の電極部と、それぞれが前記複数の電極部のいずれかに対して前記液体の流れ方向に直交する幅方向に離隔して設けられると共に外部の測定装置に接続される複数の接続部と、それぞれが対応する電極部と接続部を電気的に接続する複数の導線部とを有する。
 本発明によれば、微量な液体を用いると共に電気化学法によるアッセイを行うことができる電気化学アッセイ装置を提供することができる。
第1実施形態に係る電気化学アッセイ装置の斜視図である。 第1実施形態に係る電気化学アッセイ装置の概略断面図である。 上側流路形成部材を示す図であり、(a)は上側流路形成部材の上面図、(b)は上側流路形成部材の側面図、(c)は上側流路形成部材の下面図である。 下側流路形成部材を示す図であり、(a)は下側流路形成部材の上面図、(b)は下側流路形成部材の側面図、(c)は下側流路形成部材の下面図である。 中間部材を示す図であり、(a)は中間部材の上面図、(b)は(a)のA-A断面図である。 上側流路形成部材、下側流路形成部材及び中間部材が積み重ねられて一体化された構造体(液体吸収材を含む)を示す図であり、(a)は構造体の斜視図、(b)は(a)のB-B断面図である。 第1実施形態に係る電気化学アッセイ装置の分解斜視図である。 電気化学アッセイ装置に注入された第1液体の動きを説明するための図であり、電気化学アッセイ装置を上方から見たときの内部流路などを模式的に示す図である。 電気化学アッセイ装置に対する第1液体の注入が停止された後に第2液体が注入されたときの第1液体及び第2液体の動きを説明するための図であり、電気化学アッセイ装置を上方から見たときの内部流路などを模式的に示す図である。 第1実施形態に係る電気化学アッセイ装置の一変形例を示す図である。 第2実施形態に係る電気化学アッセイ装置の斜視図である。 第2実施形態に係る電気化学アッセイ装置の概略断面図である。 第2実施形態に係る電気化学アッセイ装置の分解斜視図である。 第2実施形態に係る電気化学アッセイ装置の一変形例を示す図である。 第3実施形態に係る電気化学アッセイ装置の斜視図である。 第3実施形態に係る電気化学アッセイ装置の分解斜視図である。 第3実施形態に係る電気化学アッセイ装置の下側流路形成部材を示す図であり、(a)は下側流路形成部材の上面図、(b)は下側流路形成部材の側面図、(c)は下側流路形成部材の下面図である。 第3実施形態に係る電気化学アッセイ装置の一変形例を示す図である。 第4実施形態に係る電気化学アッセイ装置の斜視図である。 第4実施形態に係る電気化学アッセイ装置の概略断面図である。 第4実施形態に係る電気化学アッセイ装置の分解斜視図である。 第5実施形態に係る電気化学アッセイ装置の斜視図である。 第5実施形態に係る電気化学アッセイ装置の概略断面図である。 第5実施形態に係る電気化学アッセイ装置の分解斜視図である
 以下、本発明の実施形態に係る電気化学アッセイ装置について説明する。
 実施形態に係る電気化学アッセイ装置は、微量な液体を用いると共に電気化学法によるアッセイを行うことができるように構成される。電気化学アッセイ装置は、電気化学法以外の方法によりアッセイを行うことが可能であってもよい。電気化学アッセイ装置で用いられる液体は、装置内の流路(内部流路)を流れることができる液体であればよく、特に限定されない。このような液体は、典型的には、水溶液である。
 電気化学アッセイ装置に用いられる液体は、例えば、食品、食品の懸濁液、食品の抽出液、飲用水、河川の水、土壌懸濁物、産業排水、又は生体から採取した成分を含む液体であり得る。生体から採取した成分を含む液体は、例えば、ヒト又は動物の全血、血清、血漿、尿、糞便希釈液、唾液、又は脳脊髄液等の生体由来の液体であり得るが、これらには限定されない。
 例えば、食品、食品の懸濁液、食品の抽出液、飲用水、河川の水、土壌懸濁物、又は産業排水が用いられた場合、電気化学アッセイ装置により、食品や飲用水の中の病原体が測定され、又は河川の水の中や土壌中や排水中の汚染物質が測定され得る。例えば、生体由来の液体が用いられた場合、電気化学アッセイ装置により、妊娠検査、尿検査、便検査、成人病検査、アレルギー検査、感染症検査、薬物検査及びがん検査などの用途で液体中の診断上有効な検体が測定され得る。
 本明細書において、「検体」とは、主に液体を用いて検出又は測定される化合物又は組成物のことをいう。「検体」には、糖類(例えば、グルコース)、細胞、タンパク質若しくはペプチド(例えば、血清タンパク質、ホルモン、酵素、免疫調節因子、リンホカイン、モノカイン、サイトカイン、糖タンパク質、ワクチン抗原、抗体、成長因子、増殖因子)、脂肪、アミノ酸、核酸、ステロイド、ビタミン、病原体若しくはその抗原、天然物質若しくは合成化学物質、汚染物質、治療目的の薬物若しくは違法な薬物、又はこれらの物質の代謝物若しくは抗体が含まれるが、これらに限定されない。
 本明細書において、「マイクロ流路」とは、μl(マイクロリットル)オーダーの微量な液体、すなわち、1μl以上1000μl未満の微量な液体を用いて検体を検出又は測定することを可能とする、アッセイ装置内の流路のことをいう。
 本明細書において、「アッセイ試薬」とは、例えば、液体又はそこに含まれ得る検体と反応することによって検出可能な結果を生じさせる任意の物質のことをいう。検出可能な結果とは、電気化学的な信号、発光及び蛍光などのことである。ここで、特に電気化学発光法によるアッセイを行う場合のアッセイ試薬は、電気化学発光標識と還元剤を含むことが好ましい。電気化学発光標識としては、ルミノール、ルテニウム(Ru)金属錯体、金ナノ粒子、アダマンチルジオキセタン誘導体、及びアクリジニウムエステルなどがあるが、これらに限定されない。
 本明細書において、「多孔質体」とは、複数(多数)の微細孔を有し、液体を吸収可能な部材のことをいい、紙、セルロース膜、不織布、プラスチックなどが含まれ得る。ここで、特に限定されないが、「多孔質体」は、液体が親水性である場合には親水性を有するとよく、液体が疎水性である場合には疎水性を有するとよい。好ましくは、「多孔質体」は、親水性を有するとよく、かつ紙であるとよい。さらに、「多孔質体」は、セルロース、ニトロセルロース、セルロースアセテート、濾紙、ティッシュペーパー、トイレットペーパー、ペーパータオル、布地、又は水を透過する親水性多孔質ポリマーのうちの1つとすることができる。
 なお、以下の説明においては、電気化学アッセイ装置を単に「アッセイ装置」という。
[第1実施形態]
 まず、図1及び図2を参照して第1実施形態に係るアッセイ装置の基本構成について説明する。図1は、第1実施形態に係るアッセイ装置1の斜視図であり、図2は、第1実施形態に係るアッセイ装置1の概略断面図である。
 図1に示されるように、アッセイ装置1は、全体として略直方体に形成され、上面に液体が注入(主に滴下注入)される注入口2を有している。注入口2は、上面視で円形に形成され、アッセイ装置1の上面における長手方向Lの一方側であって、且つ長手方向Lに直交する短手方向(以下「幅方向」という)Wの略中央部に開口している。
 図2に示されるように、アッセイ装置1は、注入口2から注入された液体が流れる内部流路3と、内部流路3を通過した液体を吸収する第1液体吸収材4とを有している。内部流路3は、アッセイ装置1の内部を長手方向Lの前記一方側(図2における左側)から他方側(図2における右側)に向かって延びている。第1液体吸収材4は、液体を吸収可能な柔軟な多孔質材などでブロック状に形成されており、アッセイ装置1内の長手方向Lの前記他方側に配置されている。つまり、本実施形態において、長手方向Lは、アッセイ装置1内における液体の流れ方向でもあり、注入口2がある長手方向Lの前記一方側を液体の流れ方向の上流側ということができ、第1液体吸収材4がある長手方向Lの前記他方側を液体の流れ方向の下流側ということができる。
 本実施形態において、内部流路3は、図2からも明らかなように、上壁及び下壁を有している。さらに言えば、本実施形態において、内部流路3は、上壁及び下壁によって画定されており、側壁を有していない。また、内部流路3は、マイクロ流路31と、分離流路32とを含む。
 マイクロ流路31は、内部流路3のうちの注入口2に近い側の流路、すなわち、内部流路3の上流側流路を構成している。マイクロ流路31は、注入口2に連通しており、注入口2の近傍、好ましくは注入口2の真下からアッセイ装置1における長手方向Lの略中央部まで水平(厳密に水平である必要はなく、概ね水平であればよい。以下同じ。)に延びる流路として形成されている。
 分離流路32は、内部流路3のうちの第1液体吸収材4に近い側の流路、すなわち、内部流路3の下流側流路を構成している。分離流路32は、マイクロ流路31(の下流端)から第1液体吸収材4に至る流路として形成されている。
 つまり、本実施形態において、第1液体吸収材4は、マイクロ流路31(下流端)から長手方向Lに離隔して設けられており、分離流路32は、マイクロ流路31と第1液体吸収材4の間に設けられている。
 分離流路32は、注入口2への液体の注入が停止されたときに内部流路3内の液体を分離させるための流路である。具体的には、後述するように、注入口2への液体の注入が停止されたときに、内部流路3内の液体が分離流路32において分断され、内部流路3内の液体がマイクロ流路31に留置される分と第1液体吸収材4に吸収される分に分離されるようになっている。
 また、図1、図2には示されていないが、後述するように、アッセイ装置1において、マイクロ流路31の幅方向Wの両側には、マイクロ流路31に隣接して一対の第1側方空間5,5が設けられ、分離流路32の幅方向Wの両側には、分離流路32に隣接して一対の第2側方空間6,6が設けられている(図6(a)参照)。上述のように、本実施形態において、内部流路3は、側壁を有していない。このため、マイクロ流路31は一対の第1側方空間5,5に連通し、分離流路32は一対の第2側方空間6,6に連通している。
 本実施形態において、マイクロ流路31の上壁及び下壁は水平に延びている。そして、マイクロ流路31の流路高さ、すなわち、高さ方向Hにおけるマイクロ流路31の上壁と下壁の間の距離は、一定(厳密に一定である必要はなく、概ね一定であればよい。以下同じ。)である。また、マイクロ流路31の流路高さは、液体がマイクロ流路31を流れるときに一対の第1側方空間5,5への液体の漏出を防止し得る液体の界面張力が発生され得るように、設定されている。
 特に限定されないが、マイクロ流路31の流路高さ(高さ方向Hの寸法)は、例えば1μm~1mmの範囲で設定され得る。また、マイクロ流路31の幅(幅方向Wの寸法)は、例えば100μm~1cmの範囲で設定され得、マイクロ流路31の長さ(長手方向Lの寸法)は、例えば10μm~10cmの範囲で設定され得る。
 分離流路32の下壁は、マイクロ流路31の下壁がそのまま延長されたもので構成されており、水平に延びている。他方、分離流路32の上壁は、マイクロ流路31(の下流端)から離れるほど、換言すれば、第1液体吸収材4に近づくほど高さ位置が高くなるように上向きに傾斜している。
 ここで、液体が生化学検査における検体液である場合、液体が接することになる内部流路3(マイクロ流路31及び分離流路32)の表面には、生体由来物質、抗原又は抗体などが非特異的に吸着するのを防ぐため、ブロッキング処理やプラズマ処理などが施されるのが好ましい。ブロッキング処理に用いられるブロッキング剤には、市販のブロッキング剤、ウシ血清アルブミン、カゼイン、スキムミルク、ゼラチン、界面活性剤、ポリビニルアルコール、グロブリン、血清(例えば、ウシ胎仔血清又は正常ウサギ血清)、エタノール、MPCポリマーなどが含まれる。また、市販のブロッキング剤としては、イムノブロック、ブロックエース、Pierce Blocking Buffer、StartingBlock、StabilGuard、StabilBrock、StabilCoat、ChonBlockなどがあるが、これらに限定されない。
 さらに、本実施形態において、アッセイ装置1は、マイクロ流路31内を観察するための観察窓7を有している。観察窓7は、上面視で矩形状に形成され、アッセイ装置1の上面に開口している。より具体的には、観察窓7は、アッセイ装置1の上面における、マイクロ流路31内に配置された電極部51(後述する)の上方の部位に開口している。
 内部流路3についてさらに詳しく説明する。
 本実施形態において、内部流路3は、上側流路形成部材11と、下側流路形成部材12と、これらの間でスペーサとして機能する中間部材13とが積み重ねられて形成されている。以下、上側流路形成部材11、下側流路形成部材12及び中間部材13について順に説明する。
 図3は、上側流路形成部材11を示している。図3(a)は上側流路形成部材11の上面図、図3(b)は上側流路形成部材11の側面図、図3(c)は上側流路形成部材11の下面図である。
 本実施形態において、上側流路形成部材11は、透明な合成樹脂で可撓性を有するように形成されている。好ましくは、上側流路形成部材11は、透明な合成樹脂の成型品で構成される。このような合成樹脂としては、PS(ポリスチレン)、PMMA(アクリル)、PC(ポリカーボネート)、COP(シクロオレフィンポリマー)、COC(シクロオレフィンコポリマー)、ABS(アクリロニトリルブタジエンスチレン)、AS(アクリロニトリル・スチレン)、及びシリコーン樹脂などがあるが、これらに限られない。また、上側流路形成部材11の表面の接触角は、水に対して90度以下であるのが好ましい。
 図3(a)~(c)を参照すると、上側流路形成部材11は、上面視における外形が矩形の平板状部材として形成されている。上側流路形成部材11には、上面視で円形の第1円形孔111と、上面視で矩形状の一対の第1スリット孔112,112と、上面視で横向き略U字状の第1U字状孔113とが形成されている。第1円形孔111、一対の第1スリット孔112,112、及び第1U字状孔113は、上側流路形成部材11を高さ方向Hに貫通している。
 第1円形孔111は、上側流路形成部材11の長手方向Lの前記一方側であって、且つ上側流路形成部材11の幅方向Wの略中央部に形成されている。第1円形孔111は、注入口2の一部を構成する。
 一対の第1スリット孔112,112は、互いに幅方向Wに互いに離隔している。一対の第1スリット孔112,112のそれぞれは、第1円形孔111の近傍から長手方向Lの前記他方側に向かって上側流路形成部材11の長手方向Lの略中央部まで延びている。
 第1U字状孔113は、U字の開放部分が上側流路形成部材11の長手方向Lの前記一方側を向いている。第1U字状孔113は、一対の第1スリット孔112,112よりも上側流路形成部材11の長手方向Lの前記他方側に形成されている。
 そして、本実施形態においては、一対の第1スリット孔112,112に挟まれた第1スリット間部位114と、第1U字状孔113の内側の内側部位115と、第1スリット間部位114と内側部位115との間をつなぐ第1接続部位116とにより、内部流路3の上壁を構成する上壁部117が形成されている。つまり、上側流路形成部材11は、内部流路3の上壁を構成する上壁部117を有している。また、第1スリット間部位114及び第1接続部位116によってマイクロ流路31の上壁が構成され、内側部位115によって分離流路32の上壁が構成されるようになっている。
 ここで、本実施形態において、第1スリット間部位114の幅は一定であるが、内側部位115の幅は第1接続部位116から離れるにしたがって徐々に小さくなっている。また、長手方向Lにおける一対の第1スリット孔112,112と第1U字状孔113の間の距離d1は、第1スリット間部位114の幅よりも小さく、具体的には、第1スリット間部位114の幅の2/3以下、好ましくは、第1スリット間部位114の幅の1/2以下に設定されている。
 図4は、下側流路形成部材12を示している。図4(a)は下側流路形成部材12の上面図、図4(b)は下側流路形成部材12の側面図、図4(c)は下側流路形成部材12の下面図である。
 本実施形態において、下側流路形成部材12は、合成樹脂で可撓性を有して形成されている。下側流路形成部材12は、好ましくは、白色や黒色などに着色された合成樹脂の成型品で構成される。特に限定されないが、下側流路形成部材12は、例えばPEEK材(ポリエーテルケトン樹脂)、PE(ポリエチレン)、PET(ポリエチレンテレフタレート)、PMMA(アクリル)、PS(ポリスチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、ABS(アクリロニトリルブタジエンスチレン)、PVC(塩化ビニール)、COC(シクロオレフィンコポリマー)、COP(シクロオレフィンポリマー)で形成され得る。また、下側流路形成部材12の表面の接触角は、水に対して90度以下であるのが好ましい。
 図4(a)~(c)を参照すると、下側流路形成部材12は、上面視において上側流路形成部材11の外形とほぼ同じ外形を有した平板状の本体部121を含む。下側流路形成部材12の本体部121には、上面視で矩形状の一対の第2スリット孔122,122と、上面視で矩形状の一対の第3スリット孔123,123とが形成されている。一対の第2スリット孔122,122及び一対の第3スリット孔123,123は、下側流路形成部材12を高さ方向Hに貫通している。
 一対の第2スリット孔122,122は、上側流路形成部材11の一対の第1スリット孔112,112に対応するように形成されている。すなわち、一対の第2スリット孔122,122は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたときに、上側流路形成部材11の一対の第1スリット孔112,112の下方に位置するように形成されている。
 一対の第3スリット孔123,123は、上側流路形成部材11の第1U字状孔113の一対の直線部分に対応するように形成されている。すなわち、一対の第3スリット孔123,123は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたときに、上側流路形成部材11の第1U字状孔113の一対の直線部分の下方に位置するように形成されている。
 そして、本実施形態においては、一対の第2スリット孔122,122に挟まれた第2スリット間部位124と、一対の第3スリット孔123,123に挟まれた第3スリット間部位125と、第2スリット間部位124と第3スリット間部位125との間をつなぐ第2接続部位126とにより、内部流路3の下壁を構成する下壁部127が形成されている。つまり、下側流路形成部材12は、内部流路3の下壁を構成する下壁部127を有している。また、第2スリット間部位124及び第2接続部位126によってマイクロ流路31の下壁が構成され、第3スリット間部位125によって分離流路32の下壁が構成されるようになっている。
 ここで、本実施形態において、第2スリット間部位124の幅及び第3スリット間部位125の幅は、上側流路形成部材11の第1スリット間部位114の幅と同じであり、長手方向Lにおける一対の第2スリット孔122,122と一対の第3スリット孔123,123の間の距離d2は、上側流路形成部材11の長手方向Lにおける一対の第1スリット孔112,112と第1U字状孔113の間の距離d1と同じである。
 また、下側流路形成部材12は、本体部121の長手方向Lの前記他方側の端部から外方に突出する突出部128を有している。突出部128は、上面視で矩形状に形成されている。本実施形態において、突出部128は、第3スリット間部位125の幅とほぼ同じ幅を有し、及び第3スリット間部位125の長手方向Lの前記他方側への延長上に位置している。
 さらに、下側流路形成部材12には、電極部51と、接続部52と、導線部53とが形成されている。具体的には、本実施形態において、電極部51、接続部52、及び導線部53は、導電材料が下側流路形成部材12の上面上に印刷されることによって下側流路形成部材12に一体に形成されている。導電材料としては、導電性カーボン、金、銀、塩化銀、白金、ニッケル、グラファイト、パラジウム、鉄、銅、亜鉛、カーボンペースト、メッシュ電極、ダイヤモンド、ITO(Indium-Tin Oxide)電極などがあるが、これらに限定されるものではない。また、電極部、接続部、及び導線部は、同一の材料で印刷されるのが好ましいが、それぞれ別の材料で印刷されてもよい。
 電極部51は、マイクロ流路31の下壁を構成する第2スリット間部位124の上面上に形成(印刷)されている。電極部51は、作用極51aと、対極51bと、参照極51cとを含む。
 接続部52は、突出部128の上面上に形成(印刷)されている。接続部52は、作用極51aに対応する第1端子部52aと、対極51bに対応する第2端子部52bと、参照極51cに対応する第3端子部52cを含む。接続部52には、外部の測定装置、具体的には、電気化学測定が行える電気化学アナライザーや電気化学発光測定が行える電気化学発光アナライザーなどが主に接続される。なお、ここでいう電気化学測定としては、サイクリックボルタンメトリー、リニアースイープボルタンメトリー、階段状ボルタンメトリー、ターフェルプロット、クロノアンペロメトリー、クロノクーロメトリー、微分パルスボルタンメトリー、ノーマルパルスボルタンメトリー、矩形波ボルタンメトリー、交流ボルタンメトリー、アンペロメトリー、第二高調波ボルタンメトリー、フーリエ変換交流ボルタンメトリー、微分パルスアンペロメトリー、ダブル微分パルスアンペロメトリー、トリプルパルスアンペロメトリー、積分パルスアンペロメトリー検出、バルク電気分解/クーロメトリー、ハイドロダイナミックモジュレーションボルタンメトリー、交流インピーダンス、インピーダンス/タイム、インピーダンス/ポテンシャル、クロノポテンショメトリー、クロノポテンショメトリー/タイムポテンショメトリックストリッピング分析、Electrochemical Noise Measurement、Open Circuit Potential-Time、スイープステップファンクション、マルチポテンシャルステップ、マルチ電流ステップなどがあるが、これらに限定されない。また、ここでいう電気化学発光測定とは、前述の電気化学測定法に基づいて電気化学発光するシグナルを測定する測定法を指し、電気化学発光を測定する装置としては冷却CCDや光電子倍増菅などがあるが、これらに限定されるものではない。
 導線部53は、電極部51と接続部52を電気的に接続する。導線部53は、電極部51と接続部52をつなぐように、下側流路形成部材12における電極部51と接続部52の間の部位の上面上に形成(印刷)されている。本実施形態において、導線部53は、電極部51から第2スリット間部位124の上面上、第2接続部位126の上面上、及び第3スリット間部位125の上面上を延びて接続部52に至るように形成されている。導線部53は、作用極51aと第1端子部52aを接続する第1導線部53aと、対極51bと第2端子部52bを接続する第2導線部53bと、参照極51cと第3端子部52cとを接続する第3導線部53cとを含む。ここで、図4(a)、(b)中に一点鎖線で示されるように、導線部53(第1~第3導線部53a~53c)の大部分は、電気絶縁材54によって被覆されている。電気絶縁材54としては代表的にはポリイミドが用いられ得るが、これに限定されるものではない。電気絶縁材54の機能の1つは、電極部51で毎回安定した電気化学測定を行うために電極部51に直接触れる液の面積を確定させることである。本実施形態においては、下側流路形成部材12における電極部51と接続部52の間に位置する部位が電気絶縁材54によって被覆されている。被覆方法としては、例えば電気絶縁材54としてポリイミドが用いられる場合、ポリイミド液に下側流路形成部材12を浸漬させる方法がある。この場合、被覆させない部分は予めマスキングなどが施される。このほかに被覆が必要な部分だけにポリイミド液を印刷するか、或いは直接コンタクトスクリーン印刷する方法もあるが、これらに限定されるものではない。
 図5は、中間部材13を示している。図5(a)は中間部材13の上面図、図5(b)は図5(a)のA-A断面図である。
 図5(a)、(b)を参照すると、中間部材13は、上面視において上側流路形成部材11の外形とほぼ同じ外形を有すると共に、内側に開口部131を有した枠状に形成されている。中間部材13の高さ方向Hの寸法(すなわち、厚さ)は、要求されるマイクロ流路31の流路高さに応じて適宜設定される。開口部131は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたとき、上面視において、上側流路形成部材11の第1円形孔111、一対の第1スリット孔112,112、及び第1U字状孔113を内包し得る大きさを有して形成されている。
 また、本実施形態において、中間部材13の上面及び下面は、接着性を有する面として形成されている。一例として、中間部材13は、シート材の上面及び下面に両面接着シートを配置することで形成され得る。この場合、任意の厚さを有したシート材を適宜選択することにより、中間部材13の高さ方向Hの寸法、ひいては、マイクロ流路31の流路高さを自由に変更することができる。
 そして、上側流路形成部材11の下面が中間部材13の上面に接合され、及び下側流路形成部材12の上面が中間部材13の下面に接合されることで、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられて一体化される。その際、第1液体吸収材4が、中間部材13の開口部131内の長手方向Lの前記他方側に配置される。
 図6は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられて一体化された構造体20(第1液体吸収材4を含む)を示している。図6(a)は構造体20の斜視図、図6(b)は図6(a)のB-B断面図である。
 上述のように、本実施形態において、上側流路形成部材11の第1スリット間部位114及び第1接続部位116がマイクロ流路31の上壁を構成し、及び下側流路形成部材12の第2スリット間部位124及び第2接続部位126がマイクロ流路31の下壁を構成する。また、下側流路形成部材12の第2スリット間部位124の上面上には、電極部51が形成されている。このため、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられて一体化されることにより、図2及び図6(b)に示されるように、長手方向Lに水平に延び、流路高さが一定であり、且つ電極部51が配置されたマイクロ流路31が形成される。ここで、マイクロ流路31内に配置された電極部51は、導線部53を介して接続部52に電気的に接続されており、導線部53は、マイクロ流路31の底部及び分離流路32の底部(すなわち、内部流路3内の底部)を延びた後、第1液体吸収材4の下側をさらに延びている。
 また、本実施形態において、上側流路形成部材11の内側部位115が分離流路32の上壁を構成し、及び下側流路形成部材12の第3スリット間部位125が分離流路32の下壁を構成する。ここで、図6(a)、(b)に示されるように、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられて一体化される際に第1液体吸収材4が中間部材13の開口部131内の長手方向Lの前記他端側に配置されることにより、上側流路形成部材11の内側部位115の先端側が第1液体吸収材4に当接する。これにより、第1液体吸収材4が潰れるように変形すると共に、上側流路形成部材11の内側部位115が上方に撓み変形する。このため、分離流路32は、マイクロ流路31から第1液体吸収材4に向かって延びると共に、上壁が第1液体吸収材4に近づくほど(マイクロ流路31から離れるほど)高くなるように上向きに傾斜した流路として形成される。
 さらに、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられて一体化されることにより、図6(a)に示されるように、マイクロ流路31の幅方向Wの両側に位置する一対の第1側方空間5,5が形成されると共に、分離流路32の幅方向Wの両側に位置する一対の第2側方空間6,6が形成される。一対の第1側方空間5,5は、上側流路形成部材11の一対の第1スリット孔112,112と、下側流路形成部材12の一対の第2スリット孔122,122と、中間部材13の開口部131とによって形成され、一対の第2側方空間6,6は、上側流路形成部材11の第1U字状孔113の一対の直線部と、下側流路形成部材12の一対の第3スリット孔123,123と、中間部材13の開口部131とによって形成されている。
 次に、図7を参照してアッセイ装置1の構成についてさらに説明する。図7は、アッセイ装置1の分解斜視図である。
 アッセイ装置1は、上述の第1液体吸収材4、上側流路形成部材11、下側流路形成部材12、中間部材13に加えて、上側ハウジング14、上部カバー15、一対の第2液体吸収材16,16、第3液体吸収材17、下側ハウジング18、及び下部カバー19をさらに有している。
 上側ハウジング14は、例えば、合成樹脂の成型品で構成される。上側ハウジング14は、上面視において上側流路形成部材11の外形とほぼ同じ外形を有しており、図示省略の両面接着シートなどを利用して上側流路形成部材11の上面に取り付けられる。上側ハウジング14には、上面視で円形状の第2円形孔141と、上面視で矩形状の第1窓用孔142と、上面視で矩形状の開口孔143とが形成されている。第2円形孔141、第1窓用孔142、及び開口孔143は、上側ハウジング14を高さ方向Hに貫通している。
 第2円形孔141は、上側流路形成部材11の第1円形孔111に対応する位置に形成されている。第2円形孔141は、第1円形孔111とほぼ同じ大きさを有し、第1円形孔111と同様、注入口2の一部を構成する。
 第1窓用孔142は、下側流路形成部材12の電極部51の上方に位置するように形成されている。第1窓用孔142は、観察窓7の一部を構成する。
 開口孔143は、上側流路形成部材11の第1U字状孔113に対応する位置に形成されている。開口孔143は、上面視において、上側流路形成部材11の第1U字状孔113を内側に包含し得る大きさを有している。
 上部カバー15は、例えば、合成樹脂の成型品で構成される。上部カバー15は、平板状に形成される。上部カバー15は、上面視において上側ハウジング14の外形とほぼ同じ外形を有しており、図示省略の両面接着シートなどを利用して上側ハウジング14の上面に取り付けられる。上部カバー15には、上面視で円形状の第3円形孔151及び上面視で矩形状の第2窓用孔152が形成されている。第3円形孔151及び第2窓用孔152は、上部カバー15を高さ方向Hに貫通している。
 第3円形孔151は、上側流路形成部材11の第1円形孔111及び上側ハウジング14の第2円形孔141に対応する位置に形成されている。第3円形孔151は、第1円形孔111及び第2円形孔141とほぼ同じ大きさを有し、第1円形孔111及び第2円形孔141と同様、注入口2の一部を構成する。つまり、本実施形態においては、上側流路形成部材11の第1円形孔111、上側ハウジング14の第2円形孔141及び上部カバー15の第3円形孔151によって注入口2が形成されている。
 第2窓用孔152は、上側ハウジング14の第1窓用孔142と同様、下側流路形成部材12の電極部51の上方に位置するように形成されている。第2窓用孔152は、第1窓用孔142とほぼ同じ大きさを有し、第1窓用孔142と同様、観察窓7の一部を構成する。つまり、本実施形態においては、上側ハウジング14の第1窓用孔142及び上部カバー15の第2窓用孔152によって観察窓7が形成されている。
 一対の第2液体吸収材16,16は、第1液体吸収材4と同様に、液体を吸収可能な多孔質材などで形成されている。一対の第2液体吸収材16,16は、第1液体吸収材4の下側に第1液体吸収材4に接触した状態で配置される。本実施形態において、一対の第2液体吸収材16,16は、それぞれ細長いブロック状に形成され、下側流路形成部材12の一対の第3スリット孔123,123内の長手方向Lの前記他方側に配置される。
 第3液体吸収材17は、第1液体吸収材4及び一対の第2液体吸収材16,16と同様に、液体を吸収可能な多孔質材などで形成されている。第3液体吸収材17は、第1液体吸収材4よりも大きなブロック状に形成され、一対の第2液体吸収材16,16に接触した状態で一対の第2液体吸収材16,16の下側に配置される。
 下側ハウジング18は、例えば、合成樹脂の成型品で構成される。下側ハウジング18は、上面視において上側流路形成部材11及び上側ハウジング14の外形とほぼ同じ外形を有し、図示省略の両面接着シートなどを利用して下側流路形成部材12の下面に取り付けられる。下側ハウジング18は、第3液体吸収材17を収容するための上面視で矩形状の第1収容孔181を有している。
 下部カバー19は、例えば、合成樹脂の成型品で構成される。下部カバー19は、平板状に形成される。下部カバー19は、上面視において下側ハウジング18の外形とほぼ同じ外形を有しており、図示省略の両面接着シートなどを利用して下側ハウジング18の下面に取り付けられる。
 そして、図7に示された各部材(部品)が組み立てられることにより、図1、図2に示されるアッセイ装置1が得られる。得られたアッセイ装置1は、上述のように、液体が注入される注入口2を上面に有すると共に、注入口2から注入された液体が流れる内部流路3と、内部流路3を通過した液体を吸収する第1液体吸収材4とを有している。内部流路3は、注入口2に連通するマイクロ流路31と、マイクロ流路31と第1液体吸収材4の間に設けられ、液体の注入が停止されたときに内部流路3内の液体を分離させるための分離流路32とを含む。
 また、アッセイ装置1は、マイクロ流路31内に配置された電極部51と、外部の測定装置に接続される接続部52と、電極部51と接続部52を電気的に接続する導線部53とを有している。接続部52は、長手方向L(すなわち、液体の流れ方向)において第1液体吸収材4を挟んで電極部51と反対側に設けられ、且つ外部に突出している。また、導線部53は、電極部51から接続部52に向かって内部流路3内を長手方向Lに平行(厳密に平行である必要はなく、概ね平行であればよい。以下同じ。)に延びている。
 ここで、アッセイ装置1において、アッセイ試薬は、注入口2から適宜注入されてもよいし、マイクロ流路31内にあらかじめ配置されていてもよい。アッセイ試薬をマイクロ流路31内に配置する場合、アッセイ試薬は、例えば、マイクロ流路31の上壁上に、マイクロ流路31の下壁上に、電極部51上に、及び/又は電極部51の近傍に固相化され得る。固相化されるアッセイ試薬は、例えば、抗体や抗原、ペプチド、電気化学活性物質などであり得るが、これらに限定されない。
 次に、図8及び図9を参照してアッセイ装置1における液体の動きを説明する。
 図8は、アッセイ装置1に注入された液体(以下「第1液体LQ1」という)の動きを説明するための図であり、アッセイ装置1を上方から見たときの内部流路3などを模式的に示している。なお、図8は、図6(a)、(b)に示される構造体20から上側流路形成部材11が取り除かれた状態を上方から見た図に相当する。また、図8において、第1液体LQ1は、ハッチングで示されている。
 図8(a)は、注入口2に第1液体LQ1が注入される前の状態を示している。第1液体LQ1が注入口2から注入されると、図8(b)に示されるように、第1液体LQ1がマイクロ流路31に供給される(流入する)。第1液体LQ1の注入が継続されて、マイクロ流路31にその容量を超える量の第1液体LQ1が供給されると、第1液体LQ1は分離流路32に流入する。分離流路32に流入した第1液体LQ1は、分離流路32を第1液体吸収材4に向かって流れて第1液体吸収材4に接触する(吸収される)。すると、内部流路3内の第1液体LQ1には、界面張力によってマイクロ流路31内に留まろうとする力と、第1液体吸収材4の毛管力とが作用し、図8(c)に矢印で示されるように、マイクロ流路31と第1液体吸収材4の間で第1液体LQ1を引っ張り合う状態となる。その後、第1液体LQ1の注入が停止されると、図8(d)に示されるように、内部流路3内の第1液体LQ1が分離流路32において分断され、その一部が第1液体吸収材4に吸収され、残りはマイクロ流路31内に留置される。つまり、内部流路3内の第1液体LQ1が、マイクロ流路31内に留置される分と第1液体吸収材4に吸収される分に分離される。
 この結果、所定量の第1液体LQ1がマイクロ流路31内に、換言すれば、電極部51上に留まることになる。したがって、第1実施形態に係るアッセイ装置1では、接続部52に電気化学関連の測定装置、すなわち、前記電気化学アナライザーや前記電気化学発光アナライザーなどが接続されることにより、第1液体LQ1に対する電気化学法によるアッセイを安定して行うことが可能である。
 図9は、アッセイ装置1に対する第1液体LQ1の注入が停止された後に新たな液体(以下「第2液体LQ2」という)が注入されたときの第1液体LQ1及び第2液体LQ2の動きを説明するための図であり、アッセイ装置1を上方から見たときの内部流路3などを模式的に示している。なお、図9も、図8と同様に、図6(a)、(b)に示される構造体20から上側流路形成部材11が取り除かれた状態を上方から見た図に相当する。また、図9において、第1液体LQ1は、図8と同じハッチングで示され、第2液体LQ2は、第1液体LQ1とは異なるハッチングで示されている。
 第1液体LQ1の注入が停止された後、第2液体LQ2が注入されると、図9(a)に示されるように、第2液体LQ2がマイクロ流路31に供給される。ここで、上述のように、マイクロ流路31内には第1液体LQ1が留置されているが、マイクロ流路31内に留置されている第1液体LQ1は、新たに供給された第2液体LQ2によってマイクロ流路31から押し出され、分離流路32を流れて第1液体吸収材4に吸収される。
 第2液体LQ2の注入が継続され、マイクロ流路31にその容量を超える量の第2液体LQ2、換言すれば、マイクロ流路31内に留置されていた第1液体LQ1の量を超える量の第2液体LQ2が供給されると、図9(b)に示されるように、マイクロ流路31内に留置されていた第1液体LQ1がマイクロ流路31から押し出される。そして、第2液体LQ2がさらに注入されると、第2液体LQ2がマイクロ流路31から分離流路32に流入する。分離流路32に流入した第2液体LQ2は、分離流路32を第1液体吸収材4に向かって流れて第1液体吸収材4に接触する(吸収される)。すると、内部流路3内の第2液体LQ2には、界面張力によってマイクロ流路31内に留まろうとする力と、第1液体吸収材4の毛管力とが作用し、図9(c)に矢印で示されるように、マイクロ流路31と第1液体吸収材4との間で第2液体LQ2を引っ張り合う状態となる。その後、第2液体LQ2の注入が停止されると、図9(d)に示されるように、内部流路3内の第2液体LQ2が分離流路32において分断され、その一部が第1液体吸収材4に吸収され、残りはマイクロ流路31内に留置される。つまり、内部流路3内の第2液体LQ2が、マイクロ流路31内に留置される分と第1液体吸収材4に吸収された分に分離される。
 この結果、マイクロ流路31内の第1液体LQ1が第2液体LQ2に入れ替えられ、及び所定量の第2液体LQ2がマイクロ流路31内に、換言すれば、電極部51上に留まることになる。したがって、第1実施形態に係るアッセイ装置1では、第2液体LQ2として例えば蒸留水を連続的に注入することにより、マイクロ流路31の洗浄を行うことが可能である。また、第1実施形態に係るアッセイ装置1では、マイクロ流路31内の液体の入れ替えを容易に行えると共に、入れ替え後の新たな液体に対する電気化学法によるアッセイを安定して行うことも可能である。
 なお、上述の第1実施形態に係るアッセイ装置1は、マイクロ流路31内の電極部51の近傍を観察するための観察窓7を有している。しかし、これに限られるものではない。例えばマイクロ流路31内の電極部51の近傍を観察する必要がないような場合には観察窓7が省略され得る。この場合、上側流路形成部材11は、必ずしも透明な合成樹脂で形成される必要はない。
 また、上述の第1実施形態に係るアッセイ装置1において、電極部51、接続部52、及び導線部53は、下側流路形成部材12に一体に形成されている。しかし、これに限られるものではない。電極部51、接続部52、及び導線部53は、下側流路形成部材12に代えて、上側流路形成部材11に一体に形成されてもよい。この場合、例えば、上側流路形成部材11が白色や黒色などに着色された合成樹脂で形成され、上側流路形成部材11に接続部52が形成される突出部が設けられ、下側流路形成部材12が透明な合成樹脂で形成され、及び、マイクロ流路31内の電極部51の近傍を観察するための観察窓7がアッセイ装置1の下面に開口するように形成され得る。
 さらに、図10に示されるように、第1実施形態に係るアッセイ装置1を幅方向に複数(ここでは3つ)並べて一体化して一つのアッセイ装置1´として構成してもよい。このようにすると、複数の液体について同時に且つ並行してアッセイを行うことができるので便宜である。
[第2実施形態]
 図11~図13は、第2実施形態に係るアッセイ装置10を示している。図11は、第2実施形態に係るアッセイ装置10の斜視図であり、図12は、第2実施形態に係るアッセイ装置10の断面図であり、図13は、第2実施形態に係るアッセイ装置10の分解斜視図である。図11~図13において、第1実施形態に係るアッセイ装置1と共通する要素については同一の符号が用いられている。以下では、主に第1実施形態に係るアッセイ装置1と相違する構成について説明する。
 第1実施形態に係るアッセイ装置1と第2実施形態に係るアッセイ装置10との主な相違は、次のとおりである。
 第1実施形態に係るアッセイ装置1において、下側流路形成部材12は、本体部121の長手方向Lの前記他方側の端部から外方に突出する突出部128を有しており、この突出部128の上面上に接続部52が形成(印刷)されている。このため、第1実施形態に係るアッセイ装置1において、接続部52は、長手方向L(すなわち、液体の流れ方向)において第1液体吸収材4を挟んで電極部51とは反対側に配置され、且つ外部に突出している。また、導線部53は、電極部51から接続部52に向かって長手方向Lに平行に延びている。具体的には、導線部53は、電極部51から本体部121の第2スリット間部位124の上面上、第2接続部位126の上面上、及び第3スリット間部位125の上面上を延びて接続部52に至るように形成されている。
 これに対し、第2実施形態に係るアッセイ装置10において、下側流路形成部材12には、本体部121の長手方向Lの前記他方側の端部から外方に突出する突出部128ではなく、本体部121の長手方向Lの前記一方側の端部から外方に突出する突出部129が設けられており、この突出部129の上面上に接続部52が形成(印刷)されている。このため、第2実施形態に係るアッセイ装置10において、接続部52は、長手方向L(すなわち、液体の流れ方向)において注入口2を挟んで電極部51とは反対側に配置され、且つ外部に突出している。また、導線部53は、電極部51から接続部52に向かって長手方向Lに平行に延びている。具体的には、導線部53は、電極部51から、注入口2の下方の部位を含む本体部121の長手方向Lの前記一方側の部位の上面上を延びて接続部52に至るように形成されている。
 第2実施形態に係るアッセイ装置10の上記以外の構成については、基本的に第1実施形態に係るアッセイ装置1と同じである。
 第2実施形態に係るアッセイ装置10においても第1実施形態に係るアッセイ装置1と同様の効果が得られる。すなわち、注入された液体に対する電気化学法によるアッセイを安定して行うことができ、マイクロ流路31の洗浄を行うこともできる。また、マイクロ流路31内の液体の入れ替えを容易に行え、入れ替え後の新たな液体に対する電気化学法によるアッセイを安定して行うことも可能である。
 なお、第1実施形態に係るアッセイ装置1に適用可能な変形は、第2実施形態に係るアッセイ装置10にも適用可能である。また、図14に示されるように、第2実施形態に係るアッセイ装置10を幅方向に複数(ここでは3つ)並べて一体化して一つのアッセイ装置10´として構成してもよい。
[第3実施形態]
 図15、図16は、第3実施形態に係るアッセイ装置100を示している。図15は、第3実施形態に係るアッセイ装置100の斜視図であり、図16は、第3実施形態に係るアッセイ装置100の分解斜視図である。図15、図16において、第1実施形態に係るアッセイ装置1と共通する要素については同一の符号が用いられている。以下では、主に第1実施形態に係るアッセイ装置1と相違する構成について説明する。
 第1実施形態に係るアッセイ装置1と第3実施形態に係るアッセイ装置100との主な相違は、次のとおりである。第1実施形態に係るアッセイ装置1は、観察窓7、電極部51、接続部52、及び導線部53をそれぞれ1つずつ有している。これに対し、第3実施形態に係るアッセイ装置100は、観察窓7、電極部51、接続部52、及び導線部53をそれぞれ複数(ここでは3つずつ)有している。このため、第3実施形態に係るアッセイ装置100の下側流路形成部材12、上側ハウジング14及び上部カバー15は、第1実施形態に係るアッセイ装置1のそれらとは相違している。以下、具体的に説明する。
 図17は、第3実施形態に係るアッセイ装置100の下側流路形成部材12を示している。図17(a)は下側流路形成部材12の上面図、図17(b)は下側流路形成部材12の側面図、図17(c)は下側流路形成部材12の下面図である。
 図17(a)~(c)を参照すると、第3実施形態に係るアッセイ装置100の下側流路形成部材12は、上面視において上側流路形成部材11の外形とほぼ同じ外形を有した本体部221を有している。また、下側流路形成部材12の本体部221には、上面視で矩形状の第4スリット孔222と、上面視で矩形状の第1~第3矩形孔223~225と、上面視で矩形状の第5スリット孔226とが形成されている。第4スリット孔222、第1~第3矩形孔223~225、及び第5スリット孔226は、下側流路形成部材12を高さ方向Hに貫通している。
 第4スリット孔222は、上側流路形成部材11の一対の第1スリット孔112,112の一方及び上側流路形成部材11の第1U字状孔113の一対の直線部分の一方に対応するように形成されている。すなわち、第4スリット孔222は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたときに、上側流路形成部材11の一対の第1スリット孔112,112の一方の下方、及び上側流路形成部材11の第1U字状孔113の一対の直線部分の一方の下方に位置するように形成されている。
 第1~第3矩形孔223~225及び第5スリット孔226は、長手方向Lの前記一方側から前記他方側に向かってこの順に互いに間隔をあけて配置されていると共に、上側流路形成部材11の一対の第1スリット孔112,112の他方及び上側流路形成部材11の第1U字状孔113の一対の直線部分の他方に対応するように形成されている。
 具体的には、第1~第3矩形孔223~225は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたときに、上側流路形成部材11の一対の第1スリット孔112,112の他方の下方に位置するように形成されている。第5スリット孔226は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたときに、長手方向Lの前記一方側の一部が上側流路形成部材11の一対の第1スリット孔112,112の他方の下方に位置し、残りの大部分が上側流路形成部材11の第1U字状孔113の一対の直線部分の他方の下方に位置するように形成されている。
 そして、本実施形態においては、第4スリット孔222と、第1~第3矩形孔223~225及び第5スリット孔226とに挟まれた部位によって内部流路3の下壁を構成する下壁部227が形成される。つまり、下側流路形成部材12は、内部流路3の下壁を構成する下壁部227を有している。
 また、第4スリット孔222の長手方向Lの前記一方側の部位と、第1~第3矩形孔223~225及び第5スリット孔226の長手方向Lの前記一方側の前記一部とに挟まれた部位、すなわち、下壁部227における長手方向Lの前記一方側の部位である一方側部位228によってマイクロ流路31の下壁が構成され、第4スリット孔222の長手方向Lの前記他方側の部位と、第5スリット孔226の前記残りの大部分とに挟まれた部位、すなわち、下壁部227における長手方向の前記他方側の部位である他方側部位229によって分離流路32の下壁が構成される。
 ここで、内部流路3の下壁を構成する下壁部227の幅は、上側流路形成部材11の第1スリット間部位114の幅と同じである。また、第1矩形孔223と第2矩形孔224の間の第1孔間部位230の長手方向Lの寸法、第2矩形孔224と第3矩形孔225の間の第2孔間部位231の長手方向Lの寸法、及び第3矩形孔225と第5スリット孔226の間の第3孔間部位232の長手方向Lの寸法は、下壁部227の幅よりも小さく、具体的には、下壁部227の幅の2/3以下、好ましくは、下壁部227の幅の1/2以下に設定されている。
 また、下側流路形成部材12は、本体部221の幅方向Wの一方側の端部から外方に突出する3つの突出部233を有している。突出部233は、上面視で矩形状に形成されており、マイクロ流路31の下壁を構成する一方側部位228の側方に位置している。
 さらに、下側流路形成部材12には、突出部233と同数(すなわち、3つ)の、電極部51、接続部52及び導線部53が形成されている。電極部51、接続部52、及び導線部53は、前記導電材料が下側流路形成部材12上に印刷されることによって下側流路形成部材12に一体に形成されている。
 3つの電極部51は、マイクロ流路31の下壁を構成する一方側部位228の上面上に長手方向Lに互いに間隔をあけて形成されている。各電極部51は、3つの突出部233のいずれかに対応した位置に形成されており、作用極51aと、対極51bと、参照極51cとを含む。
 3つの接続部52は、それぞれ3つの突出部233のうちのいずれかの上面上に形成されている。各接続部52は、3つの電極部51のいずれかに対して幅方向Wに離隔した位置に設けられ、作用極51aに対応する第1端子部52aと、対極51bに対応する第2端子部52bと、参照極51cに対応する第3端子部52cを含む。
 3つの導線部53は、3つの電極部51のそれぞれを対応する接続部52に電気的に接続するように形成されている。本実施形態において、3つの導線部53は、第1孔間部位230の上面上、第2孔間部位231の上面上、又は第3孔間部位232の上面上を延びて3つの電極部51のそれぞれと対応する接続部52を接続するように形成されている。各導線部53は、作用極51aと第1端子部52aを接続する第1導線部53aと、対極51bと第2端子部52bを接続する第2導線部53bと、参照極51cと第3端子部52cとを接続する第3導線部53cとを含む。ここで、図17(a)、(b)中に一点鎖線で示されるように、各導線部53(第1~第3導線部53a~53c)の大部分は、電気絶縁材54によって被覆されている。
 また、図16に示されるように、第3実施形態に係るアッセイ装置100において、上側ハウジング14には、下側流路形成部材12の3つの電極部51の上方に位置する共にそれぞれが観察窓7を構成する3つの第1窓用孔142が形成されており、上部カバー15には、下側流路形成部材12の3つの電極部51の上方に位置する共にそれぞれが観察窓7を構成する3つの第2窓用孔152が形成されている。
 第3実施形態に係るアッセイ装置100において、3つの電極部51は、マイクロ流路31の下壁を構成する一方側部位228の上面上に長手方向Lに互いに間隔をあけて形成されている。つまり、3つの電極部51は、マイクロ流路31内に配置されると共に、長手方向L(すなわち、液体の流れ方向)に互いに離隔して設けられている。また、3つの接続部52は、それぞれ3つの電極部51のいずれかに対して長手方向Lに直交する幅方向Wに離隔して設けられている。ここで、3つの接続部52は、下側流路形成部材12の本体部221の幅方向Wの前記一方側の端部から外方に突出する3つの突出部233の上面上に形成されており、外部に突出している。そして、3つの導線部53は、それぞれ幅方向Wに平行に延びて対応する電極部51と接続部52を電気的に接続している。
 第3実施形態に係るアッセイ装置100の上記以外の構成については、基本的に第1実施形態に係るアッセイ装置1と同じである。
 第3実施形態に係るアッセイ装置100においても第1実施形態に係るアッセイ装置1と同様の効果が得られる。また、第3実施形態に係るアッセイ装置100によれば、注入された液体に対して、最大3項目についての電気化学法によるアッセイを行うことが可能である。
 なお、上述の第3実施形態に係るアッセイ装置100は、電極部51、接続部52、及び導線部53をそれぞれ3つずつ有している。しかし、これに限られるものではない。第3実施形態に係るアッセイ装置100は、第1実施形態に係るアッセイ装置1及び第2実施形態に係るアッセイ装置10と同様、電極部51、接続部52、及び導線部53をそれぞれ1つずつ有してもよいし、2つずつ有してもよいし、4つ以上ずつ有してもよい。また、第1実施形態に係るアッセイ装置1に適用可能な変形は、第3実施形態に係るアッセイ装置100にも適用可能である。さらに、図18に示されるように、接続部52の配置が互いに逆である2つの第3実施形態に係るアッセイ装置100を幅方向に並べて一体化して一つのアッセイ装置100´として構成してもよい。
[第4実施形態]
 図19~図21は、第4実施形態に係るアッセイ装置200を示している。図19は、第4実施形態に係るアッセイ装置200の斜視図であり、図20は、第4実施形態に係るアッセイ装置200の断面図であり、図21は、第4実施形態に係るアッセイ装置200の分解斜視図である。図19~図21において、第1実施形態に係るアッセイ装置1と共通する要素については同一の符号が用いられている。以下では、主に第1実施形態に係るアッセイ装置1と相違する構成について説明する。
 第1実施形態に係るアッセイ装置1と第4実施形態に係るアッセイ装置200との主な相違は、次のとおりである。第4実施形態に係るアッセイ装置200においては、第1実施形態に係るアッセイ装置1から一対の第2液体吸収材16,16及び下側ハウジング18が省略され、代わりに第2上側ハウジング201及びスペーサ部材202が設けられている(図7、図21参照)。また、第4実施形態に係るアッセイ装置200の上側流路形成部材11、下側流路形成部材12、第3液体吸収材17及び下部カバー19は、第1実施形態に係るアッセイ装置1のそれらとは形状が相違している。以下、第2上側ハウジング201、第3液体吸収材17、上側流路形成部材11、下側流路形成部材12、スペーサ部材202、下部カバー19の順に説明する。
 第2上側ハウジング201は、上部カバー15と上側ハウジング14との間に配置されている。第2上側ハウジング201の上面視における外形は、上側ハウジング14のそれとほぼ同じである。但し、第2上側ハウジング201の高さ方向Hの寸法は、上側ハウジング14のそれよりも大きい。第2上側ハウジング201には、上側ハウジング14の第2円形孔141及び第1窓用孔142に対応する第4円形孔2011及び第3窓用孔2012が形成されている。第4円形孔2011及び第3窓用孔2012は、第2上側ハウジング201を高さ方向Hに貫通している。第4円形孔2011は、注入口2の一部を構成し、第3窓用孔2012は、観察窓7の一部を構成する。
 また、第2上側ハウジング201には、第2収容孔2013が形成されている。第2収容孔2013は、上側ハウジング14の開口孔143に対応する位置に設けられ、第2上側ハウジング201を高さ方向Hに貫通している。第2上側ハウジング201の第2収容孔2013は、第1実施形態に係るアッセイ装置1の下側ハウジング18に設けられた、第3液体吸収材17を収容するための第1収容孔181に相当する。第2上側ハウジング201は、例えば、合成樹脂の成型品で構成され、図示省略の両面接着シートなどを利用して、上側ハウジング14の上面に取り付けられると共に上部カバー15の下面に取り付けられる。
 第4実施形態に係るアッセイ装置200において、第3液体吸収材17は、長手方向Lの前記他方側に下方に突出する突出部17aを有している。第3液体吸収材17は、突出部17aが第1液体吸収材4(の上面)に接触した状態で第2上側ハウジング201の第2収容孔2013に収容される。つまり、第4実施形態に係るアッセイ装置200においては、第3液体吸収材17が第1液体吸収材4の上側に配置される。
 第4実施形態に係るアッセイ装置200において、上側流路形成部材11には、第1円形孔111と、上面視で横向き略U字状の第2U字状孔2014とが形成されている。第2U字状孔2014は、第1円形孔111よりも上側流路形成部材11の長手方向Lの前記他方側に形成され、U字の開放部分が上側流路形成部材11の長手方向Lの前記一方側を向いている。第2U字状孔2014は、第1実施形態に係るアッセイ装置1の上側流路形成部材11の一対の第1スリット孔112,112と第1U字状孔113とを合わせたような形状を有する。すなわち、第2U字状孔2014は、上側流路形成部材11を高さ方向Hに貫通している。そして、第4実施形態に係るアッセイ装置200においては、上側流路形成部材11における第2U字状孔2014の内側の部位によって、内部流路3の上壁を構成する上壁部117が形成されている。
 上壁部117は、長手方向Lの前記一方側、すなわち、第1円形孔111(注入口2)に近い側から順に、第1ストレート部117aと、幅狭部117bと、第2ストレート部117cと、を有する。
 第1ストレート部117aは、第1円形孔111(注入口2)から長手方向Lの前記他方側に向かって直線状に延びている。第1ストレート部117aの幅は、第1円形孔111(注入口2)の直径よりも小さく、且つ一定である。幅狭部117bは、上壁部117の幅が狭くなる部位のことである。幅狭部117bは、第1ストレート部117aと第2ストレート部117cの間に設けられて両者を接続している。本実施形態において、幅狭部117bは、長手方向Lの前記他方側に向かってその幅が第1ストレート部117aの幅から徐々に狭くなるテーパ形状に形成されている。第2ストレート部117cは、幅狭部117bから長手方向Lの前記他方側に向かって直線状に延びている。第2ストレート部117cの幅は、第1ストレート部117aの幅よりも小さく、且つ一定である。幅狭部117bは、上壁部117の幅が狭くなる部位であればよく、前記テーパ形状に限られない。例えば、幅狭部117bは、第1ストレート部117aの幅から第2ストレート部117cの幅に1段階又は複数段階で変化する段差形状に形成されてもよい。
 第4実施形態に係るアッセイ装置200において、下側流路形成部材12の本体部121には、一対の第6スリット孔2015,2015が形成されている。一対の第6スリット孔2015,2015は、上側流路形成部材11、下側流路形成部材12及び中間部材13が積み重ねられたときに、上側流路形成部材11の第2U字状孔2014の一対の直線部分の下方に位置するように形成されている。そして、第4実施形態に係るアッセイ装置200においては、下側流路形成部材12における一対の第6スリット孔2015,2015に挟まれた部位によって、内部流路3の下壁を構成する下壁部127が形成されている。また、電極部51及び導線部53は一対の第6スリット孔2015,2015に挟まれた部位の上面上に形成され、接続部52は突出部128の上面上に形成されている。
 スペーサ部材202は、下側流路形成部材12と下部カバー19との間に配置されている。スペーサ部材202の上面視における外形は、下側流路形成部材12の本体部121とそれとほぼ同じである。また、スペーサ部材202には、下側流路形成部材12の一対の第6スリット孔2015,2015に対応する一対の第7スリット孔2016、2016が形成されている。スペーサ部材202の高さ方向Hの寸法は、任意に設定され得る。すなわち、スペーサ部材202の高さ方向Hの寸法は、下側流路形成部材12の本体部121のそれと同じであってもよいし、異なっていてもよい。スペーサ部材202は、例えば、合成樹脂の成型品で構成され、図示省略の両面接着シートなどを利用して、下側流路形成部材12の下面に取り付けられる。なお、スペーサ部材202の高さ方向Hの寸法が下側流路形成部材12の本体部121のそれと同じ場合、下側流路形成部材12の本体部121となる部品がスペーサ部材202として用いられ得る。
 第4実施形態に係るアッセイ装置200において、下部カバー19には、下側流路形成部材12の一対の第6スリット孔2015,2015及びスペーサ部材202の一対の第7スリット孔2016,2016に対応する一対のスリット溝2017,2017が形成されている。第4実施形態に係るアッセイ装置200において、下部カバー19は、図示省略の両面接着シートなどを利用して、スペーサ部材202の下面に取り付けられる。なお、一対のスリット溝2017,2017は、一対のスリット孔であってもよい。
 第4実施形態に係るアッセイ装置200においては、上壁部117の第1ストレート部117a及び幅狭部117bによってマイクロ流路31の上壁が構成され、上壁部117の第2ストレート部117cによって分離流路32の上壁が構成される。また、下壁部127における上壁部117の第1ストレート部117a及び幅狭部117bに対応する部位によってマイクロ流路31の下壁が構成され、下壁部127における上壁部117の第2ストレート部117cに対応する部位によって分離流路32の下壁が構成される。さらに、上側流路形成部材11の第2U字状孔2014の一対の直線部分と、下側流路形成部材12の一対の第6スリット孔2015,2015と、スペーサ部材202の一対の第7スリット孔2016,2016と、下部カバー19の一対のスリット溝2017,2017とによって、一対の第1側方空間5,5及び一対の第2側方空間6,6が形成される。
 第4実施形態に係るアッセイ装置200の上記以外の構成については、基本的に第1実施形態に係るアッセイ装置1と同じである。
 第4実施形態に係るアッセイ装置200においても第1実施形態に係るアッセイ装置1と同様の効果が得られる。なお、第4実施形態に係るアッセイ装置200では、下側流路形成部材12の高さ方向Hの寸法及び/又は下部カバー19の高さ方向の寸法を適宜調整することにより、スペーサ部材202を省略することも可能である。また、第1実施形態に係るアッセイ装置1に適用可能な変形は、第4実施形態に係るアッセイ装置200にも適用可能である。さらに、図示は省略するが、第4実施形態に係るアッセイ装置200を幅方向に複数並べて一体化して一つのアッセイ装置として構成してもよい。
[第5実施形態]
 図22~図24は、第5実施形態に係るアッセイ装置210を示している。図22は、第5実施形態に係るアッセイ装置210の斜視図であり、図23は、第5実施形態に係るアッセイ装置210の断面図であり、図24は、第5実施形態に係るアッセイ装置210の分解斜視図である。以下では、主に第4実施形態に係るアッセイ装置200と相違する構成について説明する。
 第4実施形態に係るアッセイ装置200と第5実施形態に係るアッセイ装置210との主な相違は、第5実施形態に係るアッセイ装置210においては、第4実施形態に係るアッセイ装置200の第2上側ハウジング201及び上部カバー15に代えて、第3液体吸収材17を収容するための吸収材用ハウジング211及びそのカバー部材212が設けられていることである(図21、図24参照)。
 吸収材用ハウジング211は、上面視で矩形状に形成されている。吸収材用ハウジング211の長手方向Lの寸法は、特に限定されないが、上側ハウジング14のそれの約1/2であり得る。吸収材用ハウジング211の幅方向の寸法は、上側ハウジング14のそれとほぼ等しく、吸収材用ハウジング211の高さ方向の寸法は、上側ハウジング14のそれよりも大きい。吸収材用ハウジング211には、第4実施形態に係るアッセイ装置200の第2上側ハウジング201の第2収容孔2013に相当する第3収容孔2111が形成されている。つまり、第5実施形態に係るアッセイ装置210において、第3液体吸収材17は、突出部17aが第1液体吸収材4(の上面)に接触した状態で吸収材用ハウジング211の第3収容孔2111に収容される。吸収材用ハウジング211は、例えば、合成樹脂の成型品で構成され、図示省略の両面接着シートなどを利用して、第3収容孔2111が上側ハウジング14の開口孔143の上方に位置するように、上側ハウジング14に取り付けられる。
 カバー部材212は、例えば、合成樹脂の成型品で構成される。カバー部材212は、平板状に形成され、上面視において吸収材用ハウジング211の外形とほぼ同じ外形を有している。カバー部材212は、図示省略の両面接着シートなどを利用して、第3収容孔2111を覆うように吸収材用ハウジング211の上面に取り付けられる。
 第5実施形態に係るアッセイ装置210の上記以外の構成については、基本的に第4実施形態に係るアッセイ装置200と同じである。
 第5実施形態に係るアッセイ装置210においても第4実施形態に係るアッセイ装置200と同様の効果、さらに言えば、第1実施形態に係るアッセイ装置1と同様の効果が得られる。なお、第1実施形態に係るアッセイ装置1及び/又は第4実施形態に係るアッセイ装置200に適用可能な変形は、第5実施形態に係るアッセイ装置210にも適用可能である。また、図示は省略するが、第5実施形態に係るアッセイ装置210を幅方向に複数並べて一体化して一つのアッセイ装置として構成してもよい。
 以上、本発明の実施形態及びその変形例ついて説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて変形及び変更が可能であることはもちろんである。
[実施例1]
 実施例1では、実施形態に係るアッセイ装置にポテンシオスタットに接続し、サイクリックボルタンメトリー法によりK[Fe(CN)](フェリシアン化カリウム)溶液についての測定を行った。注入口2にK[Fe(CN)]溶液を滴下すると、酸化還元反応に伴う電流値が観察された。その後、K[Fe(CN)]溶液に代えてK[Fe(CN)]溶液を含まない溶媒を注入口2の滴下したところ、K[Fe(CN)]溶液の特徴的なピーク電流が観察されなくなった。これらのことから、実施形態に係るアッセイ装置では、サイクリックボルタンメトリー法によるアッセイが可能なこと、アッセイ装置内の液体の入れ替えと静置が可能であることが確認された。
[実施例2]
 実施例2では、実施形態に係るアッセイ装置を電気化学発光測定装置に組み込み、サイクリックボルタンメトリー法によるルミノールの電気化学発光の測定を行った。ルミノールは、0.2~0.3V付近にて電極表面で酸化されてラジカルやジアゾキノンになり、酸化されたルミノール(ラジカルやジアゾキノン)は、負の電荷(-0.5~-1.0V)を印加して溶存酸素から電気化学的な還元反応によって生成された活性酸素種(HやO2)と反応(酸化)して発光する。ここでは、活性酸素種がルミノールと抗酸化物質の間で競合的に反応することを利用して、アップルジュース、オレンジジュース、グレープジュース及びトマトジュースの抗酸化度(抗酸化作用)の測定を行った。いずれのジュースについても抗酸化度の測定を行うことができることが確認された。
[実施例3]
 実施例3では、実施形態に係るアッセイ装置を電気化学発光測定装置に組み込み、金ナノ粒子を用いたルミノールの電気化学発光の測定を行った。具体的には、実施例3においては、10mMのルミノール溶液をトリス塩酸緩衝液(pH8,200mM)で0.2mMのルミノール溶液に調整し、金ナノ粒子溶液とトリス塩酸緩衝液(pH8,200mM)を1:4で混合し、これらを1:1で混合したものを用いた。その結果、問題なくルミノールの電気化学発光の測定を行うことができることが確認された。なお、この場合、トリス塩酸緩衝液中の金ナノ粒子が溶存酸素と反応して活性酸素種を生成するため、実施例2とは異なり、電気化学反応による活性酸素種の生成は不要である。
 1,1´,10,10´,100,100´,200,210…アッセイ装置、2…注入口、3…内部流路、4…第1液体吸収材、11…上側流路形成部材、12…下側流路形成部材、13…中間部材、31…マイクロ流路、32…分離流路、51…電極部、52…接続部、53…導線部、54…電気絶縁材、117…上壁部、127,227…下壁部、LQ1…第1液体、LQ2…第2液体
 

Claims (10)

  1.  注入口から注入された液体が流れる内部流路と、前記内部流路を通過した液体を吸収する液体吸収材とを有し、電気化学法によるアッセイが可能に構成された電気化学アッセイ装置であって、
     前記内部流路は、前記注入口に連通するマイクロ流路と、前記マイクロ流路と前記液体吸収材の間に設けられ、液体の注入が停止されたときに前記内部流路内の液体を前記マイクロ流路に留置される分と前記液体吸収材に吸収される分に分離させるための分離流路とを含み、
     前記マイクロ流路内に配置された電極部と、外部の測定装置に接続される接続部と、前記電極部と前記接続部を電気的に接続する導線部とを有する、
     電気化学アッセイ装置。
  2.  前記内部流路は、前記内部流路の上壁を構成する上壁部を有する上側流路形成部材と、前記内部流路の下壁を構成する下壁部を有する下側流路形成部材と、前記上側流路形成部材と前記下側流路形成部材の間でスペーサとして機能する中間部材とが積み重ねられて形成されており、
     前記電極部、前記接続部、及び前記導線部は、前記上側流路形成部材又は前記下側流路形成部材に一体に形成されている、
     請求項1に記載の電気化学アッセイ装置。
  3.  前記電極部、前記接続部、及び前記導線部は、前記上側流路形成部材上に又は前記下側流路形成部材上に印刷された導電材料によって形成されている、請求項2に記載の電気化学アッセイ装置。
  4.  前記接続部は、液体の流れ方向において前記液体吸収材を挟んで前記電極部とは反対側に設けられ、且つ外部に突出している、請求項1に記載の電気化学アッセイ装置。
  5.  前記導線部は、前記内部流路内を延びている、請求項4に記載の電気化学アッセイ装置。
  6.  前記接続部は、液体の流れ方向において前記注入口を挟んで前記電極部とは反対側に設けられ、且つ外部に突出している、請求項1に記載の電気化学アッセイ装置。
  7.  前記導線部は、液体の流れ方向に平行に延びている、請求項4~6のいずれか一つに記載の電気化学アッセイ装置。
  8.  前記接続部は、液体の流れ方向に直交する幅方向において前記電極部から離隔して設けられ、且つ外部に突出している、請求項1に記載の電気化学アッセイ装置。
  9.  前記導線部は、液体の流れ方向に直交する幅方向に平行に延びている、請求項8に記載の電気化学アッセイ装置。
  10.  注入口から注入された液体が流れる内部流路と、前記内部流路を通過した液体を吸収する液体吸収材とを有し、電気化学法によるアッセイが可能に構成された電気化学アッセイ装置であって、
     前記内部流路は、前記注入口に連通するマイクロ流路と、前記マイクロ流路と前記液体吸収材の間に設けられ、液体の注入が停止されたときに前記内部流路内の液体を前記マイクロ流路に留置される分と前記液体吸収材に吸収される分に分離させるための分離流路とを含み、
     前記マイクロ流路内に配置されると共に前記液体の流れ方向に互いに離隔した複数の電極部と、それぞれが前記複数の電極部のいずれか対して前記液体の流れ方向に直交する幅方向に離隔して設けられ、外部の測定装置に接続される複数の接続部と、それぞれが対応する電極部と接続部を電気的に接続する複数の導線部とを有する、
     電気化学アッセイ装置。
     
PCT/JP2022/038699 2021-11-15 2022-10-18 電気化学アッセイ装置 WO2023085006A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280071323.2A CN118159840A (zh) 2021-11-15 2022-10-18 电化学测定装置
JP2023559504A JPWO2023085006A1 (ja) 2021-11-15 2022-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021185655 2021-11-15
JP2021-185655 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023085006A1 true WO2023085006A1 (ja) 2023-05-19

Family

ID=86335634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038699 WO2023085006A1 (ja) 2021-11-15 2022-10-18 電気化学アッセイ装置

Country Status (3)

Country Link
JP (1) JPWO2023085006A1 (ja)
CN (1) CN118159840A (ja)
WO (1) WO2023085006A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204339A (ja) * 2008-02-26 2009-09-10 Sharp Corp 送液構造体及びこれを用いたマイクロ分析チップ
JP2011220808A (ja) * 2010-04-08 2011-11-04 Sharp Corp 送液装置
JP2012112724A (ja) * 2010-11-22 2012-06-14 Sharp Corp 送液装置
JP2019113460A (ja) * 2017-12-25 2019-07-11 大日本印刷株式会社 検査デバイス
JP2019144133A (ja) * 2018-02-21 2019-08-29 国立研究開発法人産業技術総合研究所 アッセイ装置
WO2020045551A1 (ja) * 2018-08-31 2020-03-05 国立研究開発法人産業技術総合研究所 アッセイ装置
WO2021125173A1 (ja) * 2019-12-18 2021-06-24 株式会社イムノセンス 電気化学法ラテラルフロー式免疫検査方法とそのセンサーおよびその製造方法
JP2021143909A (ja) * 2020-03-11 2021-09-24 Tdk株式会社 分析チップ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204339A (ja) * 2008-02-26 2009-09-10 Sharp Corp 送液構造体及びこれを用いたマイクロ分析チップ
JP2011220808A (ja) * 2010-04-08 2011-11-04 Sharp Corp 送液装置
JP2012112724A (ja) * 2010-11-22 2012-06-14 Sharp Corp 送液装置
JP2019113460A (ja) * 2017-12-25 2019-07-11 大日本印刷株式会社 検査デバイス
JP2019144133A (ja) * 2018-02-21 2019-08-29 国立研究開発法人産業技術総合研究所 アッセイ装置
WO2020045551A1 (ja) * 2018-08-31 2020-03-05 国立研究開発法人産業技術総合研究所 アッセイ装置
WO2021125173A1 (ja) * 2019-12-18 2021-06-24 株式会社イムノセンス 電気化学法ラテラルフロー式免疫検査方法とそのセンサーおよびその製造方法
JP2021143909A (ja) * 2020-03-11 2021-09-24 Tdk株式会社 分析チップ

Also Published As

Publication number Publication date
CN118159840A (zh) 2024-06-07
JPWO2023085006A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
US20200124625A1 (en) Systems and methods for detecting a target analyte in a breath sample
EP1604204B1 (en) Agglutination based sample testing device
US6830668B2 (en) Small volume electrochemical sensor
MX2014012802A (es) Agrupamiento de sensores.
US20060141469A1 (en) Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
US7384791B2 (en) Method of analyzing blood
US20090242429A1 (en) Electrochemical Biosensor
Lakey et al. Impedimetric array in polymer microfluidic cartridge for low cost point-of-care diagnostics
CN101421616A (zh) 安培计检测优化的小型化生物传感器
US10514353B2 (en) Arrangement and method for the electrochemical analysis of liquid samples by means of lateral flow assays
KR101720281B1 (ko) 나노 와이어를 감지 채널로 이용하고 멤브레인을 유동 채널로 이용하는 fet 기반 바이오 센서, 및 이를 이용한 검출 방법
US20040099531A1 (en) Methods and apparatus for electrochemically testing samples for constituents
KR102153736B1 (ko) 수직 유체 흐름을 갖는 바이오 센서 및 이를 이용한 분석 방법
WO2023085006A1 (ja) 電気化学アッセイ装置
CN111051885A (zh) 检测系统及生产方法
KR102290258B1 (ko) 플렉서블 바이오 센서 및 이의 제조 방법
Chen et al. Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes
Wang et al. Electrochemical paper-based analytical device for flow injection analysis based on locally enhanced evaporation
KR20160134111A (ko) 바이오 센서
CA2159905A1 (en) Biological species detection method and biosensor therefor
WO2022029013A1 (en) Biosensor system for multiplexed detection of biomarkers
JP5086493B2 (ja) 生体物質を測定する装置及びその製造方法
TWI803097B (zh) 用於直流偏置交流電動力學之生物晶片與電極單元
US20210255140A1 (en) Fluidic stack and reference electrode for sample collection and analysis and related methods
WO2023204270A1 (ja) アッセイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280071323.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023559504

Country of ref document: JP

Kind code of ref document: A