WO2023080755A1 - Method for preparing stem cell-derived cardiomyopathy model cell line by using crispr-based base editing technology, and cardiomyopathy cell line prepared by same method - Google Patents

Method for preparing stem cell-derived cardiomyopathy model cell line by using crispr-based base editing technology, and cardiomyopathy cell line prepared by same method Download PDF

Info

Publication number
WO2023080755A1
WO2023080755A1 PCT/KR2022/017408 KR2022017408W WO2023080755A1 WO 2023080755 A1 WO2023080755 A1 WO 2023080755A1 KR 2022017408 W KR2022017408 W KR 2022017408W WO 2023080755 A1 WO2023080755 A1 WO 2023080755A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell line
gene
cardiomyopathy
cells
stem cells
Prior art date
Application number
PCT/KR2022/017408
Other languages
French (fr)
Korean (ko)
Inventor
임도선
김경미
노지민
정태영
주성진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220147060A external-priority patent/KR20230068327A/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023080755A1 publication Critical patent/WO2023080755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Definitions

  • the present invention relates to a method for preparing a cardiomyopathy model cell line based on 4th generation base editing technology, and the like.
  • Cardiomyopathy is a disease that occurs primarily in the muscle of the heart itself, and it is often impossible to determine the cause of the disease, so it is classified into hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM).
  • HCM hypertrophic cardiomyopathy
  • DCM dilated cardiomyopathy
  • Familial hypertrophic cardiomyopathy is an autosomal genetic disorder caused by mutations in genes that make up sarcomere proteins.
  • Currently, about 50-60% of patients with hypertrophic cardiomyopathy have been identified as having mutations in the sarcomere protein gene.
  • GWAS genome-wide association studies
  • NGS next-generation sequencing
  • big data studies have been actively conducted, which is expected to have a high correlation with the pathophysiology of cardiovascular disease.
  • VUS Variant unknown significance
  • SNP single nucleotide polymorphism
  • Hereditary hypertrophic cardiomyopathy comprises a group of highly penetrant, monogenic, autosomal dominant cardiomyopathy, characterized by over 1,000 point mutations in any one of the proteins contributing to sarcomere, a functional unit of the myocardium. It can be caused by more than one, and generally about 1 in 500 people have left ventricular hypertrophy due to other causes, such as hypertension and valvular disease, and other hereditary disorders, such as lysosomal storage disorders, metabolic or invasive causes. Hypertrophic cardiomyopathy may occur.
  • cardiovascular diseases such as heart failure, arrhythmia, or cardiomyopathy
  • the efficacy and toxicity of the drug must be determined using cells derived from cardiovascular disease patients, but it is difficult to secure various cardiovascular disease patients-derived cells having mutations.
  • cardiovascular diseases since there are various genetic mutations in cardiovascular diseases seen in humans, it is quite difficult to evaluate new drugs using patient-derived cells for each genetic mutation.
  • Most cardiovascular diseases such as heart failure, arrhythmia, or cardiomyopathy induce disease by translating an incorrect amino acid into a single nucleotide mutation in a disease-inducing gene. Therefore, for cardiovascular disease modeling, a technique that can be precisely changed at the level of a single base is required.
  • CRISPR/Cas9 gene editing technology gene scissors
  • TALENs First-generation zinc fingers
  • TALENs second-generation tallens
  • Gene editing technology is developing rapidly, up to the development of CRISPRs, a third-generation gene editing technology that has a simpler structure than TALENs, is easier to manufacture, has a wider target range, and has higher DNA editing efficiency.
  • the main problem is that part of the gene is deleted because even CRISPR, a third-generation gene editing technology, cuts and repairs the target DNA.
  • the recently reported fourth-generation base-editors-based gene editing technology can accurately edit only 1 bp of base without DNA cutting.
  • the present inventors intend to prepare a human pluripotent stem cell cell line of a genetic hypertrophic cardiomyopathy model using CRISPR/Cas9 gene editing technology and provide it as a model for cardiomyopathy research and drug development.
  • the purpose of the present invention is to improve the limitations of disease modeling due to the diversity of genetic mutations, TTN, the target gene of DCM, a cardiomyopathy, by using 4th generation Base-Editors gene editing technology capable of single base mutations. , Methods for constructing human pluripotent stem cells and fibroblast-derived cardiomyopathy human pluripotent stem cell lines corrected for MYH7, the target gene of LMNA, DES and HCM, and providing guide RNA (gRNA) for the production of the cell lines there is.
  • gRNA guide RNA
  • the present invention provides DCM target genes TTN, LMNA, DES and HCM target gene MYH7 correction guide RNA for preparing a cardiomyopathy model.
  • the guide RNA is applied to embryonic stem cells, induced pluripotent stem cells, and fibroblasts together with the CRISPR/Cas system to induce mutations in DES, LMNA, MYH7 or TTN genes, and the fibroblasts are dedifferentiated to produce induced pluripotent stem cells , and ultimately, pluripotent stem cells in which mutations in DES, LMNA, MYH7 or TTN genes are induced can differentiate into cardiomyocytes, and the guide RNA is used to prepare pluripotent stem cell-derived cardiomyopathy model cell lines can be provided.
  • guide RNA for DES gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 1.
  • the guide RNA for LMNA gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 2.
  • guide RNA for MYH7 gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 3.
  • the guide RNA for TTN gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 4.
  • the cardiomyopathy model cell line constructed using guide RNA for DES gene correction, guide RNA for LMNA gene correction, or guide RNA for TTN gene correction may be a dilated cardiomyopathy (DCM) model cell line.
  • DCM dilated cardiomyopathy
  • the cardiomyopathy model cell line prepared using the guide RNA for correcting the MHY7 gene may be a hypertrophic cardiomyopathy (HCM) model cell line.
  • HCM hypertrophic cardiomyopathy
  • the present invention relates to DES, LMNA, MYH7 or A vector for TTN gene correction is provided.
  • the vector may further include a gene encoding the Cas protein, and the guide RNA and/or the gene encoding the Cas protein are preferably operably linked to a promoter.
  • the present invention provides a DES, LMNA, MYH7 or TTN gene correction composition comprising the guide RNA or a vector for expressing the guide RNA.
  • composition may further include a vector expressing the Cas protein, or the vector for expressing the guide RNA may further include a gene encoding Cas.
  • the present invention provides a method for preparing a cardiomyopathy model cell line comprising the step of transforming mammalian cells using the gene correction composition.
  • the mammalian cells may be pluripotent stem cells or somatic cells capable of dedifferentiation.
  • the pluripotent stem cells may be embryonic stem cells or induced pluripotent stem cells.
  • the method for preparing the cardiomyopathy model cell line may further include the step of isolating the cells into single cells after the transformation and culturing the cells to form clusters, and after isolating the cells from each cluster, gene sequences are analyzed. A step of determining whether editing has occurred may be further included.
  • the cardiomyopathy model cell line prepared through the method may be used for other purposes depending on the purpose of production.
  • patients with cardiomyopathy have a heterotype mutant gene, so the heterotype cluster can be used for patient-specific drug screening, the homotype cluster can be used for each mutation and mechanism study of cardiomyopathy, and the wild type can be used as a control.
  • a step of differentiating the cells into cardiomyocytes may be further included after the step of determining whether gene editing has occurred. If the cells are somatic cells, a step of dedifferentiating into induced pluripotent stem cells through reprogramming and differentiating them into cardiomyocytes may be further included after the step of determining whether gene editing has occurred.
  • the present invention provides a cardiomyopathy model cell line produced by the above method.
  • the present invention can provide a cell line of an accurate genetic hypertrophic cardiomyopathy model by accurately inducing mutation of only 1 bp base using 4th generation gene editing technology.
  • the sgRNA of the present invention can be applied to various human-derived cells, and the cell line of the cardiomyopathy model prepared by generating in an intron that does not generate off-targets or does not affect cell phenotype is suitable for research on cardiomyopathy and its therapeutic agents and patient-specific treatment. can be used
  • Figure 1 shows the nucleotide sequence of the sgRNA target region for DES, LMNA, MYH7 or TTN gene editing of the present invention.
  • the target region is marked in red (underlined), and the PAM binding site is marked in blue.
  • FIG. 2 shows the result of Sanger sequencing of the cloning of each sgRNA encoding gene in the sgRNA expression vector for DES, LMNA, MYH7 or TTN gene correction of the present invention.
  • Figure 3 shows the results of performing gene editing in embryonic stem cells using sgRNA for DES gene correction and BE4max and performing targeted deep sequencing.
  • 5 shows the results of performing gene editing in embryonic stem cells using sgRNA for DES gene correction and BE4max and performing Sanger sequencing.
  • FIG. 6 shows the results of performing gene editing in fibroblasts using sgRNA for DES gene correction and BE4max and performing targeted deep sequencing.
  • 8 is a result of performing gene editing in human-derived embryonic stem cells using sgRNA for DES gene correction and BE4max, and confirming whether off-target cleaved sequences are mutated by a targeted deep sequencing method.
  • FIG. 10 shows the results of gene editing and targeted deep sequencing in human-derived embryonic stem cells using LMNA gene correction sgRNA and NG_BE4max.
  • FIG. 11 shows the results of gene editing and targeted deep sequencing in human-derived induced pluripotent stem cells and human-derived fibroblasts using LMNA gene-editing sgRNA and BE4max.
  • 13 is a result of performing gene editing in human-derived embryonic stem cells using LMNA gene editing sgRNA and BE4max, and confirming whether off-target cleavage sequences are mutated by a targeted deep sequencing method.
  • Figure 14 induces the differentiation of cells of Wild type, Hetero type, and Homo type colonies of human-derived embryonic stem cells subjected to gene editing using LMNA gene correction sgRNA and BE4max into cardiomyocytes, and cardiomyocyte markers (cTnT, cTnI, MLC2v, MLC2a, TBX18) and mature differentiation markers (Bin-1, JPH2, HCN4) were confirmed by Western blotting and immunofluorescence.
  • 16 shows the results of gene editing and targeted deep sequencing in human-derived embryonic stem cells using sgRNA for MYH7 gene correction and BE4max.
  • 17 shows the results of performing gene editing in human-derived embryonic stem cells using MYH7 gene editing sgRNA and BE4max and performing Sanger sequencing.
  • 20 is a result of performing gene editing in human-derived embryonic stem cells using MYH7 gene editing sgRNA and BE4max, and confirming whether off-target cleavage sequences are mutated by a targeted deep sequencing method.
  • 21 shows the results of performing gene editing and targeted deep sequencing in human-derived embryonic stem cells using sgRNA for TTN gene editing, and confirming the deletion efficiency in TTN exon 336 of 5 cell lines obtained.
  • Cardiomyopathy is a disease that occurs in the muscle itself of the heart and causes damage to the structure and function of the muscle wall. Cardiomyopathy is divided into dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and restrictive cardiomyopathy. known to occur. Currently, about 50-60% of patients with hypertrophic cardiomyopathy have been found to be caused by mutations in the sarcomere protein gene, and in the case of patients with dilated cardiomyopathy, dominant mutations in the TTN (titin) gene have been known to be the cause.
  • DCM dilated cardiomyopathy
  • HCM hypertrophic cardiomyopathy
  • restrictive cardiomyopathy restrictive cardiomyopathy
  • the present inventors used the previously reported TTN gene mutation sequence of dilated cardiomyopathy as a positive control group and, in addition to the TTN gene mutation, conducted a GWAS study on three previously unreported genes (DES, LMNA, and MYH7 genes) to determine their relevance to cardiomyopathy. These known SNP sequences were selected as targets for cell line construction of the cardiomyopathy model.
  • the TTN mutation designed sgRNA to delete the base at position exon336 and used the CRISPR/Cas9 system
  • the LMNA mutation designed sgRNA to induce His222Try mutation with C to T base substitution and used a base editor.
  • DES for the mutation, a base editor was used by designing sgRNA to induce Arg454Trp mutation with C to T base substitution, and for the MYH7 mutation, sgRNA was designed to induce Arg249Gln mutation with C to T base substitution and a base editor was used.
  • the specific sequence of sgRNA for editing each gene is shown in Figure 1 below (see Example 1).
  • the present inventors constructed DES, LMNA, or MYH7 mutant cell lines using a cytocine base editor (CBE).
  • CBE cytocine base editor
  • human-derived embryonic stem cells ESC
  • human-derived induced pluripotent stem cells iPSC
  • human-derived fibroblasts were transformed with sgRNA expression vectors, respectively, and gene editing was performed. The results were confirmed.
  • Human-derived embryonic stem cells and human-derived induced pluripotent stem cells were separated into single cells after transformation, cultured into colonies, and cells were collected from each colony, and nucleotide substitution from C to T was confirmed by targeted deep sequencing analysis.
  • human-derived fibroblasts were separated into single cells, each was cultured, and base substitution from C to T was confirmed by targeted deep sequencing (see Example 1).
  • sgRNA for DES gene mutation induction As a result of transformation using sgRNA for DES gene mutation induction, wild type without gene editing, heterotype with 50% substitution, and homotype with 100% substitution were identified in human embryonic stem cells. Human-derived fibroblasts were also identified as wild type without gene editing and homotyped cells with 100% substitution. sgRNA for DES gene editing did not induce gene editing in human induced pluripotent stem cells.
  • off-target in order to confirm whether the designed sgRNA induces the operation of CBE off-target, that is, to verify the safety of the DES mutagenized cell line in the manufactured cell line, off-target cleavage (off-target) by the sgRNA for editing the DES gene
  • off-target off-target cleavage by the sgRNA for editing the DES gene
  • sgRNA for inducing LMNA gene mutation As a result of transformation using sgRNA for inducing LMNA gene mutation, wild-type colonies without gene editing, heterotype with 50% substitution, and homotype with 100% substitution were confirmed in human-derived embryonic stem cells. In addition, in human-derived fibroblasts, wild type without gene editing and homotype cells with 100% substitution were identified. sgRNA for LMNA gene editing did not induce gene editing in human induced pluripotent stem cells. In addition, as a result of confirming the presence or absence of off-target cleavage for verification of the produced mutant cell line, it was confirmed that base substitution did not occur in all of the target sequences with promising editing potential (see Example 3).
  • the sgRNA for inducing mutation of the TTN gene induces deletion of the TTN gene in embryonic stem cells, and it was possible to secure 5 cell lines usable as positive controls for cardiomyopathy (see Example 5).
  • a cardiomyopathy cell line can be constructed by inducing a mutation by correcting one nucleotide sequence in human pluripotent stem cells, and provide an sgRNA for preparing a cardiomyopathy model cell line.
  • cardiomyopathy model cell line means a cell line containing a DES, LMNA, MYH7, or TTN gene mutation associated with cardiomyopathy
  • the present invention is a stem cell line inducing the gene mutation Since differentiation into cardiomyocytes was confirmed, stem cells prior to cardiomyocyte differentiation may be referred to as cardiomyopathy model cell lines.
  • the gene mutation refers to a mutation that has a difference in phenotype from normal cells.
  • Gene editing may be used in the same sense as gene editing or genome editing. Genetic editing refers to a mutation (substitution, insertion or deletion) that causes mutations in one or more bases at a target site in a target gene, but in the present invention, gene editing aims to induce mutations in only one base .
  • the mutation or gene correction that induces mutation with respect to the one base inactivates the target gene by generating a stop codon at the target site or generating a codon encoding an amino acid different from the wild type ( loss of function, knock-out). or inactivating a gene or correcting a genetic mutation by changing the initiation codon to another amino acid, inactivating a gene by frameshift by insertion or deletion, correcting a gene mutation, or not producing a protein It may be in various forms, such as introducing a mutation into a non-coding DNA sequence that does not cause a disease, or changing a DNA sequence different from the wild type that causes a disease to the same sequence as the wild type, but is not limited thereto.
  • base sequence refers to a nucleotide sequence including a corresponding base, and may be used in the same sense as a nucleotide sequence, a nucleic acid sequence, or a DNA sequence.
  • target gene refers to a gene to be subjected to gene correction
  • the present invention provides DES, LMNA, MYH7, and TTN as target genes for preparing a cardiomyopathy model cell line.
  • target site refers to a site where gene editing or correction by a target-specific nuclease within a target gene occurs.
  • the target gene is TTN
  • the target site is located in the TTN exon. It is the 336th base
  • DES it is a site that causes mutation of Arg454 in the protein expressed by DES
  • LMNA it is a site that causes mutation of His222 in the protein encoded by LMNA
  • the target When the gene is MYH7, it is a site where mutation occurs in Arg249 in the protein encoded by MYH7.
  • guide RNA refers to an RNA comprising a targeting sequence hybridizable to a specific nucleotide sequence (target sequence) within a target site in a target gene, in vitro or in vivo (or cell). ), binds to a nuclease protein such as Cas and guides it to a target gene (or target site), and is used interchangeably with the term sgRNA (single guide RNA) in the present specification.
  • the present invention provides a composition for gene correction for preparing a cardiomyopathy model cell line by inducing TTN, LMNA, DES, or MYH7 gene mutations, and the composition includes the guide RNA described above.
  • the guide RNA may be used in the form of RNA (or included in the composition) or in the form of a vector containing DNA encoding the same (or included in the composition).
  • the vector may encode Cas 9, and Cas 9 may be provided as a vector separate from a vector for expressing guide RNA.
  • Cas9 CRISPR associated protein 9
  • CRISPR/Cas9 recognizes, cuts, and edits a specific nucleotide sequence to be used as a third-generation gene scissors, and inserts a specific gene into the target site of the genome or stops the activity of a specific gene simply, quickly, and efficiently.
  • useful for carrying out Cas9 protein or gene information may be obtained from a known database such as GenBank of National Center for Biotechnology Information (NCBI), but is not limited thereto.
  • the Cas9 protein may include not only wild-type Cas9, but also variants of Cas9 as long as they have a function of a nuclease for gene editing.
  • Cas9 may be mutated to lose endonuclease activity for cleaving DNA double strands.
  • the origin of the Cas9 protein or variant thereof is not limited, and as non-limiting examples, Streptococcus pyogenes, Francisella novicida, Streptococcus thermophilus, Legionella pneumophila It may be from Legionella pneumophila, Listeria innocua, or Streptococcus mutans.
  • the Cas9 protein or variant thereof may be isolated from a microorganism or produced artificially or non-naturally, such as by a recombinant or synthetic method.
  • the Cas9 may be used in the form of pre-transcribed mRNA or pre-produced protein in vitro, or in the form included in a recombinant vector or virus such as AAV or lenti for expression in a target cell or in vivo.
  • the Cas9 may be a recombinant protein made by recombinant DNA (rDNA).
  • Recombinant DNA refers to DNA molecules artificially created by genetic recombination methods such as molecular cloning to contain heterologous or homologous genetic material obtained from various organisms.
  • the “base editor (BE)” is not limited as long as it can induce substitution or deletion of the base of the target site described above, and is not limited to cytosine base editor (CBE) and adenine base editor (adenine base editor). editor, ABE), or a guanine base editor (GBE).
  • pluripotent stem cell means a stem cell capable of induced differentiation into any type of cell constituting the human body, and includes embryonic stem cells (ESCs) and It is used to mean including induced pluripotent stem cells (iPSCs, dedifferentiated stem cells).
  • ESCs embryonic stem cells
  • iPSCs induced pluripotent stem cells
  • embryonic stem cells are derived from the inner cell mass of a blastocyst in the pre-implantation stage. Induced. Induced cells are maintained in a specific environment and are capable of unlimited culture and pluripotent differentiation.
  • induced pluripotent stem cells may refer to pluripotent differentiated cells made by de-differentiation from body somatic cells, and cells Pluripotent stem cells are formed by making somatic cells into a state very similar to embryonic stem cells through a process called reprogramming, such as fusion, nuclear transfer, and overexpression of pluripotency regulators. It is not limited to cells, and may include both cells having differentiation pluripotency and self-renewal ability.However, pluripotent stem cells are preferably mammalian cells, more preferably human-derived pluripotent stem cells. there is.
  • Cardiomyopathy target genes were designed to construct a cardiomyopathy human pluripotent stem cell line using 4th-generation base-correction factor-based gene editing technology. NCBI ClineVar database was used to find DCM and HCM-induced genetic mutations, which are cardiomyopathy.
  • the DCM target gene (i) TTN was designed using Cas9, a Cas9 gene editing technique, to induce gene deletion mutations in exon336.
  • DCM target gene (ii) LMNA gene was designed to induce His222Try mutation through cytosine nucleotide correction technique with C to T base substitution.
  • DCM target gene (iii) DES gene was designed to induce Arg454Trp mutation through cytosine base correction technique by replacing C to T base.
  • MYH7 gene an HCM target gene, was designed to induce Arg249Gln mutation through cytosine nucleotide correction technique by substituting C to T nucleotides.
  • the sgRNA sequence targeting the target gene region is as follows.
  • MYH7-rs3218713-sgRNA Gx20 (-): 5'-GAAUUCGAAUGAAUUUCCCC-3' (SEQ ID NO: 3)
  • Cytosine nucleotide correction was used for C to T base conversion, and Cas9 expression vector was purchased from Addgene. After that, it was cloned into a Cas9 expression vector so that the green fluorescent protein was co-expressed.
  • a backbone vector having a U6 promoter was purchased from Addgene.
  • target guide RNAs were designed using the RGEN tools program.
  • a target guide RNA expression sequence was cloned into the vector so that it could be expressed under the U6 promoter. Cloning of the guide RNA expression sequence in the vector was confirmed by performing Sanger sequencing (FIG. 2).
  • sgRNA In order to confirm the efficiency of gene editing using the designed sgRNA, three cell lines were used: human embryonic stem cells, human induced pluripotent stem cells, and human fibroblasts. In addition, the following two methods were used to construct myocardial hypertrophy cell lines of induced pluripotent stem cells. (1) Cell lines were constructed using base correction factors in induced pluripotent stem cell lines, and (2) cell lines were constructed through cell conversion to induced pluripotent stem cells after substitution with base correction factors in fibroblast cell lines.
  • the DES gene is involved in the Desmosome complex among the target genes of hereditary myocardial hypertrophy.
  • gRNA designed for DES gene editing in Example 1 was applied to human-derived embryonic stem cells, human-derived pluripotent stem cells, and human-derived fibroblasts to obtain a DES knock-out cardiomyopathy cell line in each cell It was confirmed that production was possible.
  • DES gene mutations were transfected with BE4max and sgRNA plasmids in human embryonic stem cells and induced pluripotent stem cells using Lipofectamine.
  • Embryonic stem cell lines were transfected with BE4max, a base editing method, and sgRNA using Lipofectamine, and the efficiency of base substitution from C to T was confirmed by targeted deep sequencing of colonies grown from single cells.
  • BE4max and sgRNA which are base correction methods, are base-corrected using lipofectamine 3000 and lipofectamine stem, and then base substitution from C to T is performed on colonies grown from single cells by targeted deep sequencing. Efficiency was confirmed.
  • the LMNA gene is involved in mechano signaling.
  • the gRNA designed for LMNA gene editing in Example 1 was applied to embryonic stem cells, induced pluripotent stem cells, and fibroblasts to confirm whether LMNA knock-out cardiomyopathy cell lines could be prepared in each cell.
  • NG_BE4max is a base correction method capable of substituting T from C, but if a target sequence is recognized as an NGG sequence among existing target sequences, NG_BE4max recognizes the NG sequence and edits the target sequence. Therefore, it has the advantage of being able to target a wider range of bases C.
  • Human embryonic stem cell lines were transfected with NG_BE4max and sgRNA using Lipofectamine.
  • Human-derived pluripotent stem cells and human-derived fibroblasts were transfected with NG_BE4max and sgRNA using Lipofectamine.
  • off-target cleavage which is off-target cleavage at the cellular level.
  • Targets judged to have off-target cleavage potential for the LMNA target were allowed up to 3 base mismatches through the RGEN tools program to select possible sequences.
  • an NGS library was constructed using a library primer designed for the LMNA target through a cell line into which the desired genetic mutation was introduced, and the selected off-target cleavage sequences were analyzed by targeted deep sequencing analysis.
  • Sequences with potential off-target cleavage for the LMNA target were selected by allowing up to 3 base mismatches through the RGEN tools program, and 5 possible sequences were identified. It was confirmed by a targeted deep sequencing method that mutations were not induced in all five off-target cleavage target sequences (FIG. 12 and FIG. 13).
  • LMNA gene mutation characterization of cardiomyopathy organoids derived from cardiomyopathy cell lines
  • the MYH7 gene is involved in Sarcomere organization among the target genes of genetic myocardial hypertrophy.
  • MYH7 knock-out cardiomyopathy cell line in each cell by applying the gRNA designed for MYH7 gene editing in Example 1 to human-derived embryonic stem cells, human-derived pluripotent stem cells, and human-derived fibroblasts It was confirmed that production was possible.
  • Embryonic stem cell lines were transfected using BE4max and sgRNA, which are base editing methods, and the efficiency of base substitution from C to T was confirmed by targeted deep sequencing for colonies grown from single cells. As a result, it was confirmed that about 25% of substitution occurred in MYH7.
  • BE4max and sgRNA targeting MYH7 were substituted from C to T through lipofection. After observing the green fluorescence expressed by BE4max through a fluorescence microscope, it was separated into single cells through flow cytometry. The isolated single cells were cultured to obtain colonies, and targeted deep sequencing was performed on the obtained colonies. As a result, it was possible to acquire 2 cell lines of Homo type with 100% substitution.
  • Human-derived embryonic stem cells were induced to mutate the TTN gene by using the sgRNA designed in Example 1 to cause deletion. Deletion was confirmed in the transformed cells, and 5 cell lines usable as positive controls for cardiomyopathy were secured (FIG. 21).
  • the present inventors screened DCM and HCM-induced gene mutations, which are human cardiomyopathy, using human-derived embryonic stem cell lines, induced pluripotent stem cells, and fibroblasts.
  • a cell line in a non-differentiated state was secured by analysis of additional mutation-induced cell lines in TTN, DES, LMNA, and MYH7 genes, which are targets of human cardiomyopathy-induced gene mutations (FIG. 22).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for preparing a cardiomyopathy model cell line on the basis of 4th generation base editing technology, and the like. The present invention can provide a cell line of an accurate genetic hypertrophic cardiomyopathy model by accurately inducing mutation of only 1 bp base, sgRNA of the present invention is applicable to various human-derived cells, and a cardiomyopathy model cell line prepared by means of generation in an intron that does not have off-target occurrence or does not affect cell phenotype can be used for research on cardiomyopathy, and a therapeutic agent and patient-specific treatment thereof.

Description

크리스퍼 기반 염기교정 기술을 이용하여 줄기세포 유래 심근병증 모델 세포주 제조방법 및 이의 방법으로 제조된 심근병증 세포주Method for manufacturing stem cell-derived cardiomyopathy model cell line using CRISPR-based base correction technology and cardiomyopathy cell line prepared by the method
본 발명은 4세대 염기 편집 기술 기반의 심근병증 모델 세포주 제조방법 등에 관한 것이다. The present invention relates to a method for preparing a cardiomyopathy model cell line based on 4th generation base editing technology, and the like.
심장질환은 전세계적으로 매우 높은 유병률을 보이고 있으며, 단일질환 전체 사망원인 중 1위를 차지하고 있다. 심근병증은 심장의 근육 자체에 일차적으로 생기는 질환이며, 원인 질환의 판별이 불가능한 경우가 많아 비후성 심근병증(hypertrophic cardiomyopathy, HCM) 및 확장성 심근병증(dilated cardiomyopathy, DCM)으로 분류한다. 가족성 비후성 심근증(familial hypertrophic cardiomyopathy)은 상염색체 유전질환으로 근절 단백질(sarcomere proteins)을 구성하는 유전자들의 돌연변이로 인해 발생한다. 현재, 비후성 심근증 환자의 약 50~60%는 근절 단백질 유전자의 돌연변이가 원인으로 밝혀졌다. Heart disease has a very high prevalence worldwide and ranks first among all causes of death from a single disease. Cardiomyopathy is a disease that occurs primarily in the muscle of the heart itself, and it is often impossible to determine the cause of the disease, so it is classified into hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Familial hypertrophic cardiomyopathy is an autosomal genetic disorder caused by mutations in genes that make up sarcomere proteins. Currently, about 50-60% of patients with hypertrophic cardiomyopathy have been identified as having mutations in the sarcomere protein gene.
최근에는 전유전체연관분석(genome-wide association studies, GWAS), 차세대 염기서열 기술(next generation sequencing, NGS), 빅데이터(big data) 연구가 활발히 수행됨으로써 심혈관질환 병리 생리와 높은 상관성을 가질 것으로 추정되는 미확인변이(variant unknown significance; VUS) 또는 단일염기변이(single nucleotide polymorphism, SNP) 자료가 축적되고 있다.Recently, genome-wide association studies (GWAS), next-generation sequencing (NGS), and big data studies have been actively conducted, which is expected to have a high correlation with the pathophysiology of cardiovascular disease. Variant unknown significance (VUS) or single nucleotide polymorphism (SNP) data are accumulating.
유전적 비후성 심근병증 (HCM)은 고도의 침투성, 일유전자성, 상염색체 우성의 심근 질환의 그룹을 포함하며, 심근의 기능적 단위인 근절에 기여하는 단백질 중 임의의 하나에서 1,000개가 넘는 점 돌연변이 중 하나 이상에 의하여 야기될 수 있으며, 일반적으로 500명 중 약 1명이 고혈압 및 판막 질환과 같은 다른 원인에 의하여 좌심실 비대증을 가지고, 리소좀 축적 질환과 같은 다른 유전가능한 질환, 대사, 또는 침윤성이 원인이 되어 비대성 심근병증이 나타날 수 있다.Hereditary hypertrophic cardiomyopathy (HCM) comprises a group of highly penetrant, monogenic, autosomal dominant cardiomyopathy, characterized by over 1,000 point mutations in any one of the proteins contributing to sarcomere, a functional unit of the myocardium. It can be caused by more than one, and generally about 1 in 500 people have left ventricular hypertrophy due to other causes, such as hypertension and valvular disease, and other hereditary disorders, such as lysosomal storage disorders, metabolic or invasive causes. Hypertrophic cardiomyopathy may occur.
성인의 심부전, 부정맥 또는 심근병증과 같은 심혈관질환 관련 신약후보 물질의 경우 심혈관질환 환자 유래 세포를 사용하여 약의 효능 및 독성을 판단하여야 하지만, 변이를 갖는 다양한 심혈관질환자 유래 세포를 확보하기 어렵다. 또한, 인간에게서 보이는 심혈관질환의 경우 유전자 변이가 다양하므로 유전자 변이 별 환자 유래 세포를 이용한 신약 평가는 상당히 어려운 상황이다. 심부전, 부정맥 또는 심근병증과 같은 심혈관질환들 대부분은 질환 유도 유전자에서 하나의 염기 변이로 잘못된 아미노산으로 번역되어 질환을 유도한다. 따라서, 심혈관질환 모델링을 위해서는 단일 염기 수준에서 정밀하게 변경할 수 있는 기술이 필요하다.In the case of new drug candidates related to cardiovascular diseases such as heart failure, arrhythmia, or cardiomyopathy in adults, the efficacy and toxicity of the drug must be determined using cells derived from cardiovascular disease patients, but it is difficult to secure various cardiovascular disease patients-derived cells having mutations. In addition, since there are various genetic mutations in cardiovascular diseases seen in humans, it is quite difficult to evaluate new drugs using patient-derived cells for each genetic mutation. Most cardiovascular diseases such as heart failure, arrhythmia, or cardiomyopathy induce disease by translating an incorrect amino acid into a single nucleotide mutation in a disease-inducing gene. Therefore, for cardiovascular disease modeling, a technique that can be precisely changed at the level of a single base is required.
단순한 구조와 높은 효율을 갖는 CRISPR/Cas9 유전자 편집기술(유전자 가위)의 개발로 세포/동식물 유전체 교정에 쉽게 적용될 수 있는 시스템 적용법이 2012년 처음 보고된 이후 1세대 징크 핑거(ZNFs), 2세대 탈렌(TALENs)보다 구조가 단순하여 제작이 쉽고, 표적 범위가 넓으며, DNA 편집 효율이 높은 3세대 유전자 편집기술인 크리스퍼(CRISPRs) 기술의 개발까지 유전자 교정기술이 급속하게 발달하고 있다. 그러나, 3세대 유전자 편집 기술인 크리스퍼까지도 표적 DNA를 절단하여 수리하기 때문에 유전자의 일부가 삭제되는 것이 주요 문제이다. 반면 최근 보고된 4세대 염기교정 인자(Base-Editors) 기반 유전자 편집기술은 DNA의 절단 없이 1bp의 염기만을 정확하게 편집하는 것이 가능하다. With the development of CRISPR/Cas9 gene editing technology (gene scissors) with a simple structure and high efficiency, a system application method that can be easily applied to cell/animal and plant genome editing was first reported in 2012. First-generation zinc fingers (ZNFs) and second-generation tallens Gene editing technology is developing rapidly, up to the development of CRISPRs, a third-generation gene editing technology that has a simpler structure than TALENs, is easier to manufacture, has a wider target range, and has higher DNA editing efficiency. However, the main problem is that part of the gene is deleted because even CRISPR, a third-generation gene editing technology, cuts and repairs the target DNA. On the other hand, the recently reported fourth-generation base-editors-based gene editing technology can accurately edit only 1 bp of base without DNA cutting.
본 발명자들은 CRISPR/Cas9 유전자 편집기술을 이용하여 유전적 비후성 심근병증 모델의 인간 다능성 줄기세포 세포주를 제작하여 심근병증 연구 및 신약 개발의 모델로 제공하고자 한다.The present inventors intend to prepare a human pluripotent stem cell cell line of a genetic hypertrophic cardiomyopathy model using CRISPR/Cas9 gene editing technology and provide it as a model for cardiomyopathy research and drug development.
본 발명의 목적은 유전자 변이의 다양성으로 인한 질병 모델링의 한계점을 개선하기 위해, 단일 염기변이가 가능한 4세대 염기교정 인자(Base-Editors) 유전자 편집기술을 이용하여 심근병증인 DCM의 표적유전자인 TTN, LMNA, DES와 HCM의 표적 유전자인 MYH7가 교정된 인간 다능성줄기세포 및 섬유아세포 유래 심근병증 인간 다능성줄기세포주를 구축하는 방법과 상기 세포주 제작을 위한 가이드 RNA(guide RNA, gRNA) 제공에 있다.The purpose of the present invention is to improve the limitations of disease modeling due to the diversity of genetic mutations, TTN, the target gene of DCM, a cardiomyopathy, by using 4th generation Base-Editors gene editing technology capable of single base mutations. , Methods for constructing human pluripotent stem cells and fibroblast-derived cardiomyopathy human pluripotent stem cell lines corrected for MYH7, the target gene of LMNA, DES and HCM, and providing guide RNA (gRNA) for the production of the cell lines there is.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기 과제를 해결하기 위하여, 본 발명은 심근병증 모델 제작을 위하여 DCM의 표적 유전자인 TTN, LMNA, DES와 HCM의 표적 유전자인 MYH7 교정용 가이드 RNA를 제공한다. In order to solve the above problems, the present invention provides DCM target genes TTN, LMNA, DES and HCM target gene MYH7 correction guide RNA for preparing a cardiomyopathy model.
상기 가이드 RNA는 CRISPR/Cas 시스템과 함께 배아줄기세포, 유도만능줄기세포, 및 섬유아세포에 적용되어 DES, LMNA, MYH7 또는 TTN 유전자에 돌연변이를 유도하며, 상기 섬유아세포는 역분화되어 유도만능줄기세포로 제작가능하고, 궁극적으로 DES, LMNA, MYH7 또는 TTN 유전자에 돌연변이가 유도된 다능성 줄기세포는 심근세포로 분화가 가능한바, 상기 가이드 RNA는 다능성 줄기세포 유래의 심근병증 모델 세포주 제작을 위하여 제공될 수 있다. The guide RNA is applied to embryonic stem cells, induced pluripotent stem cells, and fibroblasts together with the CRISPR/Cas system to induce mutations in DES, LMNA, MYH7 or TTN genes, and the fibroblasts are dedifferentiated to produce induced pluripotent stem cells , and ultimately, pluripotent stem cells in which mutations in DES, LMNA, MYH7 or TTN genes are induced can differentiate into cardiomyocytes, and the guide RNA is used to prepare pluripotent stem cell-derived cardiomyopathy model cell lines can be provided.
본 발명에서 심근병증 모델 제작을 위한 DES 유전자 교정용 가이드 RNA는 서열번호 1의 염기서열을 포함하거나 이로 이루어질 수 있다. In the present invention, guide RNA for DES gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 1.
본 발명에서 심근병증 모델 제작을 위한 LMNA 유전자 교정용 가이드 RNA는 서열번호 2의 염기서열을 포함하거나 이로 이루어질 수 있다.In the present invention, the guide RNA for LMNA gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 2.
본 발명에서 심근병증 모델 제작을 위한 MYH7 유전자 교정용 가이드 RNA는 서열번호 3의 염기서열을 포함하거나 이로 이루어질 수 있다.In the present invention, guide RNA for MYH7 gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 3.
본 발명에서 심근병증 모델 제작을 위한 TTN 유전자 교정용 가이드 RNA는 서열번호 4의 염기서열을 포함하거나 이로 이루어질 수 있다.In the present invention, the guide RNA for TTN gene correction for preparing a cardiomyopathy model may include or consist of the nucleotide sequence of SEQ ID NO: 4.
DES 유전자 교정용 가이드 RNA, LMNA 유전자 교정용 가이드 RNA 또는 TTN 유전자 교정용 가이드 RNA를 이용하여 제작된 심근병증 모델 세포주는 확장성 심근병증(dilated cardiomyopathy, DCM) 모델 세포주일 수 있다. The cardiomyopathy model cell line constructed using guide RNA for DES gene correction, guide RNA for LMNA gene correction, or guide RNA for TTN gene correction may be a dilated cardiomyopathy (DCM) model cell line.
또한, MHY7 유전자 교정용 가이드 RNA를 이용하여 제작된 심근병증 모델 세포주는 비후성 심근병증(hypertrophic cardiomyopathy, HCM) 모델 세포주일 수 있다.또한, 본 발명은 상기 가이드 RNA를 발현하는 DES, LMNA, MYH7 또는 TTN 유전자 교정용 벡터를 제공한다. In addition, the cardiomyopathy model cell line prepared using the guide RNA for correcting the MHY7 gene may be a hypertrophic cardiomyopathy (HCM) model cell line. In addition, the present invention relates to DES, LMNA, MYH7 or A vector for TTN gene correction is provided.
상기 벡터는 Cas 단백질을 암호화하는 유전자를 추가로 포함할 수 있으며, 상기 가이드 RNA 및/또는 Cas 단백질을 암호화하는 유전자는 프로모터와 작동 가능하게 연결됨이 바람직하다. The vector may further include a gene encoding the Cas protein, and the guide RNA and/or the gene encoding the Cas protein are preferably operably linked to a promoter.
또한, 본 발명은 상기 가이드 RNA 또는 상기 가이드 RNA 발현용 벡터를 포함하는 DES, LMNA, MYH7 또는 TTN 유전자 교정용 조성물을 제공한다. In addition, the present invention provides a DES, LMNA, MYH7 or TTN gene correction composition comprising the guide RNA or a vector for expressing the guide RNA.
상기 조성물은 Cas 단백질을 발현하는 벡터를 추가로 포함하거나, 상기 가이드 RNA 발현용 벡터가 Cas를 암호화하는 유전자를 추가로 포함할 수 있다. The composition may further include a vector expressing the Cas protein, or the vector for expressing the guide RNA may further include a gene encoding Cas.
또한, 본 발명은 상기 유전자 교정용 조성물을 이용하여 포유동물의 세포를 형질전환 하는 단계를 포함하는 심근병증 모델 세포주 제작방법을 제공한다. In addition, the present invention provides a method for preparing a cardiomyopathy model cell line comprising the step of transforming mammalian cells using the gene correction composition.
상기 포유동물의 세포는 다능성 줄기세포이거나 역분화 가능한 체세포일 수 있다.The mammalian cells may be pluripotent stem cells or somatic cells capable of dedifferentiation.
상기 다능성 줄기세포는 배아줄기세포 또는 유도만능줄기세포일 수 있다. The pluripotent stem cells may be embryonic stem cells or induced pluripotent stem cells.
상기 심근병증 모델 세포주 제작방법은 상기 형질전환 이후에 세포를 단일 세포로 분리하고 군집이 형성되도록 배양하는 단계를 추가로 포함할 수 있으며, 상기 각 군집에서 세포를 분리한 후 염기서열 분석을 통해 유전자 편집 발생 여부를 판별하는 단계를 추가로 포함할 수 있다. The method for preparing the cardiomyopathy model cell line may further include the step of isolating the cells into single cells after the transformation and culturing the cells to form clusters, and after isolating the cells from each cluster, gene sequences are analyzed. A step of determining whether editing has occurred may be further included.
상기 유전자 편집 발생 여부 판별의 결과 유전자 교정이 발생하지 않은 wild type의 군집, 50% 유전자 교정이 발생한 hetero type 군집, 100% 유전자 교정이 발생한 homo type 군집이 확인될 수 있으며, 각각의 군집은 본 발명 방법을 통해 제작된 심근병증 모델 세포주 제작의 목적에 따라 다른 용도로 이용될 수 있다. 일반적으로 심근병증 환자의 경우 hetero type 돌연변이 유전자를 가지며, 따라서 상기 hetero type 군집은 환자 맞춤형 약물 스크리닝에 이용될 수 있고, homo type 군집은 각 돌연변이와 심근병증의 메커니즘 연구에 이용될 수 있고, wild type은 대조군으로 이용될 수 있다. As a result of determining whether gene editing has occurred, wild-type clusters in which gene editing has not occurred, heterotype clusters in which 50% gene editing has occurred, and homotype clusters in which 100% gene editing has occurred can be identified. The cardiomyopathy model cell line prepared through the method may be used for other purposes depending on the purpose of production. In general, patients with cardiomyopathy have a heterotype mutant gene, so the heterotype cluster can be used for patient-specific drug screening, the homotype cluster can be used for each mutation and mechanism study of cardiomyopathy, and the wild type can be used as a control.
한편, 상기 제작방법에서 형질전환 세포가 배아줄기세포 또는 유도만능 줄기세포인 경우 유전자 편집 발생 여부 판별 단계 이후에 세포를 심근세포로 분화하는 단계를 추가로 포함할 수 있으며, 상기 제작방법에서 형질전환 세포가 체세포인 경우 유전자 편집 발생 여부 판별 단계 이후에 리프로그래밍을 통해 유도만능줄기세포로 역분화시키고 이를 심근세포로 분화하는 단계를 추가로 포함할 수 있다.On the other hand, if the transformed cells are embryonic stem cells or induced pluripotent stem cells in the manufacturing method, a step of differentiating the cells into cardiomyocytes may be further included after the step of determining whether gene editing has occurred. If the cells are somatic cells, a step of dedifferentiating into induced pluripotent stem cells through reprogramming and differentiating them into cardiomyocytes may be further included after the step of determining whether gene editing has occurred.
또한, 본 발명은 상기 방법으로 제작된 심근병증 모델 세포주를 제공한다. In addition, the present invention provides a cardiomyopathy model cell line produced by the above method.
본 발명은 4세대 유전자 편집 기술을 이용하여 1bp의 염기만을 정확하게 변이를 유도하여정확한 유전적 비후성 심근병증 모델의 세포주를 제공할 수 있다. 본 발명의 sgRNA는 다양한 인간 유래 세포에 적용가능하며, 오프타겟 발생이 없거나 세포 표현형에 영향을 미치지 않는 인트론에 발생하여 제작된 심근병증 모델의 세포주는 심근병증 및 그 치료제 연구와 환자 맞춤형 치료 연구에 이용될 수 있다. The present invention can provide a cell line of an accurate genetic hypertrophic cardiomyopathy model by accurately inducing mutation of only 1 bp base using 4th generation gene editing technology. The sgRNA of the present invention can be applied to various human-derived cells, and the cell line of the cardiomyopathy model prepared by generating in an intron that does not generate off-targets or does not affect cell phenotype is suitable for research on cardiomyopathy and its therapeutic agents and patient-specific treatment. can be used
도 1은 본 발명의 DES, LMNA, MYH7 또는 TTN 유전자 교정용 sgRNA 타겟 영역의 염기서열로서 표적 부위는 붉은색(밑줄)로 표시되었으며, PAM 결합부위는 파란색으로 표시되었다.Figure 1 shows the nucleotide sequence of the sgRNA target region for DES, LMNA, MYH7 or TTN gene editing of the present invention. The target region is marked in red (underlined), and the PAM binding site is marked in blue.
도 2는 본 발명의 DES, LMNA, MYH7 또는 TTN 유전자 교정용 sgRNA 발현용 벡터에서 각각의 sgRNA 암호화 유전자의 클로닝을 생어 염기서열 분석(Sanger sequencing)을 통해 확인한 결과이다. FIG. 2 shows the result of Sanger sequencing of the cloning of each sgRNA encoding gene in the sgRNA expression vector for DES, LMNA, MYH7 or TTN gene correction of the present invention.
도 3은 DES 유전자 교정용 sgRNA와 BE4max를 이용하여 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.Figure 3 shows the results of performing gene editing in embryonic stem cells using sgRNA for DES gene correction and BE4max and performing targeted deep sequencing.
도 4는 DES 유전자 교정용 sgRNA와 BE4max를 이용하여 유도만능줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.4 shows the results of gene editing and targeted deep sequencing in induced pluripotent stem cells using DES gene correction sgRNA and BE4max.
도 5는 DES 유전자 교정용 sgRNA와 BE4max를 이용하여 배아줄기세포에서 유전자 편집을 수행하고 생어 염기서열 분석을 수행한 결과이다.5 shows the results of performing gene editing in embryonic stem cells using sgRNA for DES gene correction and BE4max and performing Sanger sequencing.
도 6은 DES 유전자 교정용 sgRNA와 BE4max를 이용하여 섬유아세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.6 shows the results of performing gene editing in fibroblasts using sgRNA for DES gene correction and BE4max and performing targeted deep sequencing.
도 7은 DES 유전자 교정용 sgRNA에 의한 유전자 편집이 가능할 것으로 예상되는 타겟 외의 영역으로 sgRNA와 상보적이지 않은 염기는 붉은색(소문자)로 표시하였다.7 shows regions other than the target where gene editing by the DES gene editing sgRNA is expected to be possible, and bases that are not complementary to the sgRNA are indicated in red (lowercase letters).
도 8은 DES 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석 (Targeted deep sequencing) 방법으로 표적 외 절단 서열들의 변이 여부를 확인한 결과이다. 8 is a result of performing gene editing in human-derived embryonic stem cells using sgRNA for DES gene correction and BE4max, and confirming whether off-target cleaved sequences are mutated by a targeted deep sequencing method.
도 9는 LMNA 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.9 shows the results of gene editing and targeted deep sequencing in human-derived embryonic stem cells using LMNA gene correction sgRNA and BE4max.
도 10는 LMNA 유전자 교정용 sgRNA와 NG_BE4max를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.10 shows the results of gene editing and targeted deep sequencing in human-derived embryonic stem cells using LMNA gene correction sgRNA and NG_BE4max.
도 11은 LMNA 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 유도만능줄기세포와 인간유래 섬유아세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.11 shows the results of gene editing and targeted deep sequencing in human-derived induced pluripotent stem cells and human-derived fibroblasts using LMNA gene-editing sgRNA and BE4max.
도 12는 LMNA 유전자 교정용 sgRNA에 의한 유전자 편집이 가능할 것으로 예상되는 타겟 외의 영역으로 sgRNA와 상보적이지 않은 염기는 붉은색(소문자)로 표시하였다.12 shows regions other than the target where gene editing by the LMNA gene editing sgRNA is expected to be possible.
도 13은 LMNA 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 배아줄기세포 에서 유전자 편집을 수행하고 표적심층서열분석 (Targeted deep sequencing) 방법으로 표적 외 절단 서열들의 변이 여부를 확인한 결과이다. 13 is a result of performing gene editing in human-derived embryonic stem cells using LMNA gene editing sgRNA and BE4max, and confirming whether off-target cleavage sequences are mutated by a targeted deep sequencing method.
도 14는 LMNA 유전자 교정용 sgRNA와 BE4max를 이용하여 유전자 편집을 수행한 인간유래 배아줄기세포의 Wild type, Hetero type, 및 Homo type 콜로니의 세포를 심근세포로 분화를 유도하고 심근세포 마커(cTnT, cTnI, MLC2v, MLC2a, TBX18)와 성숙분화 마커(Bin-1, JPH2, HCN4)의 발현을 웨스턴 블롯과 면역형광법으로 확인한 결과이다. Figure 14 induces the differentiation of cells of Wild type, Hetero type, and Homo type colonies of human-derived embryonic stem cells subjected to gene editing using LMNA gene correction sgRNA and BE4max into cardiomyocytes, and cardiomyocyte markers (cTnT, cTnI, MLC2v, MLC2a, TBX18) and mature differentiation markers (Bin-1, JPH2, HCN4) were confirmed by Western blotting and immunofluorescence.
도 15는 LMNA 유전자 교정용 sgRNA와 BE4max를 이용하여 유전자 편집을 수행한 인간유래 배아줄기세포의 Wild type, Hetero type, 및 Homo type 세포를 오가노이드로 제작하고 LaminA/C, H3k9me2, 및 Emerin의 발현을 웨스턴 블롯과 면역형광법으로 확인한 결과이다. 15 shows the expression of LaminA/C, H3k9me2, and Emerin in Wild type, Hetero type, and Homo type cells of human-derived embryonic stem cells subjected to gene editing using LMNA gene correction sgRNA and BE4max as organoids. This is the result confirmed by Western blot and immunofluorescence.
도 16은 MYH7 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.16 shows the results of gene editing and targeted deep sequencing in human-derived embryonic stem cells using sgRNA for MYH7 gene correction and BE4max.
도 17은 MYH7 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 생어 염기서열 분석을 수행한 결과이다.17 shows the results of performing gene editing in human-derived embryonic stem cells using MYH7 gene editing sgRNA and BE4max and performing Sanger sequencing.
도 18은 MYH7 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 유도만능줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과이다.18 shows the results of performing gene editing and targeted deep sequencing in human-derived induced pluripotent stem cells using sgRNA for MYH7 gene correction and BE4max.
도 19는 MYH7 유전자 교정용 sgRNA에 의한 유전자 편집이 가능할 것으로 예상되는 타겟 외의 영역으로 sgRNA와 상보적이지 않은 염기는 붉은색(소문자)로 표시하였다.19 shows regions other than the target where gene editing by the MYH7 gene editing sgRNA is expected to be possible, and bases that are not complementary to the sgRNA are indicated in red (lowercase letters).
도 20은 MYH7 유전자 교정용 sgRNA와 BE4max를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석 (Targeted deep sequencing) 방법으로 표적 외 절단 서열들의 변이 여부를 확인한 결과이다. 20 is a result of performing gene editing in human-derived embryonic stem cells using MYH7 gene editing sgRNA and BE4max, and confirming whether off-target cleavage sequences are mutated by a targeted deep sequencing method.
도 21은 TTN 유전자 편집용 sgRNA를 이용하여 인간유래 배아줄기세포에서 유전자 편집을 수행하고 표적심층서열분석을 수행한 결과와 확보된 5종 세포주의 TTN exon 336에서 결실 효율을 확인한 결과이다. 21 shows the results of performing gene editing and targeted deep sequencing in human-derived embryonic stem cells using sgRNA for TTN gene editing, and confirming the deletion efficiency in TTN exon 336 of 5 cell lines obtained.
도 22는 본 발명의 sgRNA를 이용하여 유전자 편집 수행 결과 확보되는 세포주의 간략하게 정리한 결과이다. 22 is a brief summary of cell lines secured as a result of performing gene editing using the sgRNA of the present invention.
인간 심혈관질환의 경우 유전자변이가 다양하고 전체 염기서열 확보가 어렵기 때문에 유전자 변이별 환자 유래 세포를 이용한 신약 평가가 어렵다. 4세대 염기 편집기(base editor)는 DNA 절단 없이 1bp 염기에 정확하게 돌연변이를 유도할 수 있는바, 본 발명자들은 4세대 염기 편집기술을 기반으로 인간 다능성 줄기세포를 이용하여 표적 유전자에서 표적 서열만 특이적으로 선택하여 유전적 심근병증을 반영한 심근병증 세포 모델을 제작하고자 하였다. In the case of human cardiovascular disease, it is difficult to evaluate new drugs using patient-derived cells for each gene mutation because genetic mutations are diverse and it is difficult to secure the entire nucleotide sequence. Since the 4th generation base editor can accurately induce mutations in 1bp bases without cutting DNA, the present inventors use human pluripotent stem cells based on the 4th generation base editing technology to specifically target only the target sequence in a target gene. We tried to create a cardiomyopathy cell model that reflects genetic cardiomyopathy by selectively selecting it.
심근병증(Cardiomyopathy)은 심장의 근육 자체에 발생하는 질환으로서 근육벽의 구조 및 기능에 손상을 야기하는 질환이다. 심근병증은 확장성 심근병증(dilated cardiomyopathy, DCM), 비후성 심근병증(hypertrophic cardiomyopathy, HCM), 및 제한성 심근병증으로 구분되며 유전적 비후성 심근증은 상염색체 상에 근절단백질을 구성하는 유전자의 돌연변이에 의해 발생한다고 알려져 있다. 현재, 비후성 심근증 환자의 약 50~60%는 근절 단백질 유전자에 돌연변이가 원인인 것으로 밝혀졌으며, 확장성 심근증 환자의 경우 TTN(titin) 유전자 내의 우성 돌연변이가 원인인 것으로 알려졌다. Cardiomyopathy is a disease that occurs in the muscle itself of the heart and causes damage to the structure and function of the muscle wall. Cardiomyopathy is divided into dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and restrictive cardiomyopathy. known to occur. Currently, about 50-60% of patients with hypertrophic cardiomyopathy have been found to be caused by mutations in the sarcomere protein gene, and in the case of patients with dilated cardiomyopathy, dominant mutations in the TTN (titin) gene have been known to be the cause.
본 발명자들은 기 보고된 확장성 심근병증의 TTN 유전자 돌연변이 서열을 양성대조군으로 이용하여 TTN 유전자 돌연변이 외에도 기 보고되지 않은 3종 유전자(DES, LMNA, 및 MYH7 유전자)에서 GWAS 연구를 통해 심근병증과 관련성이 알려진 SNPs 서열 심근병증 모델의 세포주 제작을 위한 타겟으로 선정하였다. The present inventors used the previously reported TTN gene mutation sequence of dilated cardiomyopathy as a positive control group and, in addition to the TTN gene mutation, conducted a GWAS study on three previously unreported genes (DES, LMNA, and MYH7 genes) to determine their relevance to cardiomyopathy. These known SNP sequences were selected as targets for cell line construction of the cardiomyopathy model.
구체적으로, TTN 돌연변이는 exon336 위치의 염기가 결실되도록 sgRNA를 설계하여 CRISPR/Cas9 시스템을 이용하였으며, LMNA 돌연변이는 C에서 T 염기 치환으로 His222Try 변이를 유도하도록 sgRNA를 설계하여 염기 편집기를 이용하였으며, DES 돌연변이는 C에서 T 염기 치환으로 Arg454Trp 변이를 유도하도록 sgRNA를 설계하여 염기 편집기를 이용하였고, MYH7 돌연변이는 C에서 T 염기 치환으로 Arg249Gln 변이를 유도하도록 sgRNA를 설계하여 염기 편집기를 이용하였다. 각 유전자의 편집을 위한 sgRNA의 구체적인 서열은 하기 도 1에 나타내었다(실시예 1 참조). Specifically, the TTN mutation designed sgRNA to delete the base at position exon336 and used the CRISPR/Cas9 system, and the LMNA mutation designed sgRNA to induce His222Try mutation with C to T base substitution and used a base editor. DES For the mutation, a base editor was used by designing sgRNA to induce Arg454Trp mutation with C to T base substitution, and for the MYH7 mutation, sgRNA was designed to induce Arg249Gln mutation with C to T base substitution and a base editor was used. The specific sequence of sgRNA for editing each gene is shown in Figure 1 below (see Example 1).
이어서, 본 발명자들은 시토신 염기교정기(cytocine base editor: CBE)를 이용하여 DES, LMNA, 또는 MYH7 유전자 돌연변이 세포주를 제작하였다. 다양한 세포주에서 설계된 sgRNA의 적용가능성을 확인하기 위하여 인간유래 배아 줄기세포(ESC), 인간유래 유도만능줄기세포(iPSC), 및 인간유래 섬유아세포(fibroblast)를 각각 sgRNA 발현 벡터로 형질전환하여 유전자 편집 결과를 확인하였다. 인간유래 배아 줄기세포 및 인간유래 유도만능 줄기세포를 형질전환 후 single cell로 분리하여 콜로니(colony)로 배양한 후 각 콜로니에서 세포를 채취하여 표적심층서열분석으로 C에서 T로 염기 치환을 확인하였으며, 인간유래 섬유아세포를 형진전환 후 single cell로 분리하여 각각을 세포배양 하여 표적심층 서열분석으로 C에서 T로 염기 치환을 확인하였다(실시예 1 참조). Subsequently, the present inventors constructed DES, LMNA, or MYH7 mutant cell lines using a cytocine base editor (CBE). In order to confirm the applicability of the sgRNA designed in various cell lines, human-derived embryonic stem cells (ESC), human-derived induced pluripotent stem cells (iPSC), and human-derived fibroblasts were transformed with sgRNA expression vectors, respectively, and gene editing was performed. The results were confirmed. Human-derived embryonic stem cells and human-derived induced pluripotent stem cells were separated into single cells after transformation, cultured into colonies, and cells were collected from each colony, and nucleotide substitution from C to T was confirmed by targeted deep sequencing analysis. After transformation, human-derived fibroblasts were separated into single cells, each was cultured, and base substitution from C to T was confirmed by targeted deep sequencing (see Example 1).
DES 유전자 돌연변이 유도를 위한 sgRNA를 이용한 형질전환 결과 인간유래 배아줄기세포, 에서 유전자 편집이 이루어지지 않은 wild type, 50% 치환이 발생한 hetero type, 100% 치환이 발생한 homo type의 콜로니를 확인할 수 있었다. 인간유래 섬유아세포 또한 유전자 편집이 이루어지지 않은 wild type, 100% 치환이 발생한 homo type의 세포를 확인할 수 있었다. DES 유전자 편집을 위한 sgRNA는 인간유래 유도만능줄기세포에서는 유전자 편집이 유도되지 않았다. 한편, 설계된 sgRNA가 표적 외에서 CBE의 작동을 유도하는지 여부를 확인하기 위하여, 즉, 제작된 세포주가 DES 변이도입 세포주의 안전성 검증을 위하여 DES 유전자 편집용 sgRNA에 의한 표적 외 절단(off-target) 유무를 확인한 결과, 표적 외 절단 가능성이 있는 1 영역을 확인하였으나, 상기 영역이 intron에 위치하여 표적 외 절단에 의하여 세포 표현형에 영향을 미치지 않음을 알 수 있었다(실시예 2 참조). As a result of transformation using sgRNA for DES gene mutation induction, wild type without gene editing, heterotype with 50% substitution, and homotype with 100% substitution were identified in human embryonic stem cells. Human-derived fibroblasts were also identified as wild type without gene editing and homotyped cells with 100% substitution. sgRNA for DES gene editing did not induce gene editing in human induced pluripotent stem cells. On the other hand, in order to confirm whether the designed sgRNA induces the operation of CBE off-target, that is, to verify the safety of the DES mutagenized cell line in the manufactured cell line, off-target cleavage (off-target) by the sgRNA for editing the DES gene As a result of checking, it was confirmed that 1 region with the possibility of off-target cleavage was identified, but it was found that the region was located in an intron and did not affect the cell phenotype by off-target cleavage (see Example 2).
LMNA 유전자 돌연변이 유도를 위한 sgRNA를 이용한 형질전환 결과 인간유래 배아줄기세포에서 유전자 편집이 이루어지지 않은 wild type, 50% 치환이 발생한 hetero type, 100% 치환이 발생한 homo type의 콜로니를 확인할 수 있었다. 또한, 인간유래 섬유아세포에서 유전자 편집이 이루어지지 않은 wild type, 100% 치환이 발생한 homo type의 세포를 확인할 수 있었다. LMNA 유전자 편집을 위한 sgRNA는 인간유래 유도만능줄기세포에서는 유전자 편집을 유도하지 않았다. 그리고, 제작된 돌연변이 세포주의 검증을 위하여 표적 외 절단 유무를 확인한 결과, 편집 가능성이 유망한 표적 서열 모두에서 염기 치환이 발생하지 않음을 확인하였다(실시예 3 참조). As a result of transformation using sgRNA for inducing LMNA gene mutation, wild-type colonies without gene editing, heterotype with 50% substitution, and homotype with 100% substitution were confirmed in human-derived embryonic stem cells. In addition, in human-derived fibroblasts, wild type without gene editing and homotype cells with 100% substitution were identified. sgRNA for LMNA gene editing did not induce gene editing in human induced pluripotent stem cells. In addition, as a result of confirming the presence or absence of off-target cleavage for verification of the produced mutant cell line, it was confirmed that base substitution did not occur in all of the target sequences with promising editing potential (see Example 3).
MYH7 유전자 돌연변이 유도를 위한 sgRNA를 이용한 형질전환 결과 인간유래 유도만능줄기세포에서 유전자 편집이 이루어지지 않은 wild type, 100% 치환이 발생한 homo type의 콜로니를 확인할 수 있었다. 나아가 제작된 돌연변이 세포주의 검증 결과 MYH7 편집용 sgRNA에 의한 표적 외 절단은 발생하지 않았다(실시예 4 참조).As a result of transformation using sgRNA for inducing MYH7 gene mutation, wild-type colonies without gene editing and homotype colonies with 100% substitution were confirmed in human-derived induced pluripotent stem cells. Furthermore, as a result of verification of the prepared mutant cell line, off-target cleavage by the sgRNA for editing MYH7 did not occur (see Example 4).
또한, TTN 유전자의 돌연변이 유도를 위한 sgRNA는 배아줄기세포에서 TTN 유전자에 결실을 유도함을 확인하였으며, 심근병증 양성대조군으로 사용가능한 5종 세포주 확보가 가능하였다(실시예 5 참조). In addition, it was confirmed that the sgRNA for inducing mutation of the TTN gene induces deletion of the TTN gene in embryonic stem cells, and it was possible to secure 5 cell lines usable as positive controls for cardiomyopathy (see Example 5).
한편, 염기 치환을 통해 제작된 돌연변이 세포주를 심근병증 모델로 이용가능성을 확인하기 위하여 DES, LMNA, 또는 MYH7 돌연변이 세포주 중에서 LMNA 돌연변이 세포주를 심근세포로 분화를 유도하고 오가노이드로 제작하였다. 형질전환 섬유아세포의 경우 리프로그래밍을 통해 역분화 줄기세포로 제작한 후 다시 심근세포로 분화하였다. 그 결과 각 세포에서 심근세포의 마커인 cTnT, cTnI, MLC2v, MLC2a, 및 TBX18과 성숙 분화 마커인 Bin-1, JPH2, 및 HCN4의 발현을 확인하였으며, 제작된 돌연변이 세포주가 심근세포로의 분화를 통해 심근병증 모델 세포주로 이용가능함을 알 수 있었다(실시예 3-4 및 3-5 참조).On the other hand, in order to confirm the applicability of the mutant cell line prepared through base substitution as a cardiomyopathy model, differentiation of the LMNA mutant cell line among DES, LMNA, or MYH7 mutant cell lines into cardiomyocytes was induced and organoids were prepared. In the case of transformed fibroblasts, dedifferentiated stem cells were prepared through reprogramming and then differentiated into cardiomyocytes. As a result, the expression of cTnT, cTnI, MLC2v, MLC2a, and TBX18, which are cardiomyocyte markers, and Bin-1, JPH2, and HCN4, which are mature differentiation markers, were confirmed in each cell. Through this, it was found that it can be used as a cardiomyopathy model cell line (see Examples 3-4 and 3-5).
상기로부터, 본 발명자들은 인간 다능성 줄기세포에서 하나의 염기서열을 교정하여 돌연변이를 유도함으로써 심근병증 세포주를 구축할 수 있음을 확인하고, 심근병증 모델 세포주 제작을 위한 sgRNA를 제공한다. From the above, the present inventors confirm that a cardiomyopathy cell line can be constructed by inducing a mutation by correcting one nucleotide sequence in human pluripotent stem cells, and provide an sgRNA for preparing a cardiomyopathy model cell line.
본 발명에서 “심근병증 모델 세포주”는 심근병증과 관련성이 있는 DES, LMNA, MYH7, 또는 TTN 유전자 돌연변이를 포함하는 세포주(cell line)을 의미하고, 본 발명은 상기 유전자 돌연변이를 유도한 줄기세포의 심근세포로의 분화를 확인하였는바, 심근세포 분화 이전의 줄기세포를 심근병증 모델 세포주라고 표현할 수도 있다. 한편, 상기 유전자 돌연변이는 정상 세포와 표현형에 차이가 있는 돌연변이를 의미한다. In the present invention, "cardiomyopathy model cell line" means a cell line containing a DES, LMNA, MYH7, or TTN gene mutation associated with cardiomyopathy, and the present invention is a stem cell line inducing the gene mutation Since differentiation into cardiomyocytes was confirmed, stem cells prior to cardiomyocyte differentiation may be referred to as cardiomyopathy model cell lines. On the other hand, the gene mutation refers to a mutation that has a difference in phenotype from normal cells.
본 발명에서 “유전자 교정 (gene editing)”은 유전자 편집, 게놈 편집 등과 동일한 의미로 사용될 수 있다. 유전자 교정은 표적 유전자 내의 표적 부위에 하나 이상의 염기에 대하여 돌연변이를 유발하는 변이 (치환, 삽입 또는 결실)를 의미하는 것이나, 본 발명에서 유전자 교정은 하나의 염기에 대해서만 돌연변이를 유도하는 것을 목표로 한다. In the present invention, “gene editing” may be used in the same sense as gene editing or genome editing. Genetic editing refers to a mutation (substitution, insertion or deletion) that causes mutations in one or more bases at a target site in a target gene, but in the present invention, gene editing aims to induce mutations in only one base .
본 발명의 일 구현예에서, 상기 하나의 염기에 대하여 돌연변이를 유발하는 변이 또는 유전자 교정은 표적부위에 종결코돈을 생성시키거나, 야생형과 다른 아미노산을 코딩하는 코돈을 생성시킴으로써 표적 유전자를 불활성화 (loss of function, knock-out) 시킨다. 또는 개시 코돈을 다른 아미노산으로 바꾸어서 유전자를 불활성화 시키거나 또는 유전자 변이를 교정하거나, 삽입 또는 결실에 의한 프레임쉬프트로(frameshift)로 유전자를 불활성화 시키거나 또는 유전자 변이를 교정하거나, 단백질을 생성하지 않는 비코딩 DNA 서열에 변이를 도입하거나, 질병을 유발하는 야생형과 다른 서열의 DNA를 야생형과 동일한 서열로 변화시키는 등의 다양한 형태일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the mutation or gene correction that induces mutation with respect to the one base inactivates the target gene by generating a stop codon at the target site or generating a codon encoding an amino acid different from the wild type ( loss of function, knock-out). or inactivating a gene or correcting a genetic mutation by changing the initiation codon to another amino acid, inactivating a gene by frameshift by insertion or deletion, correcting a gene mutation, or not producing a protein It may be in various forms, such as introducing a mutation into a non-coding DNA sequence that does not cause a disease, or changing a DNA sequence different from the wild type that causes a disease to the same sequence as the wild type, but is not limited thereto.
본 발명에서 “염기서열”은 해당 염기를 포함하는 뉴클레오타이드의 서열을 의미하는 것으로, 뉴클레오타이드 서열, 핵산 서열 또는 DNA 서열과 동일한 의미로 사용될 수 있다.In the present invention, “base sequence” refers to a nucleotide sequence including a corresponding base, and may be used in the same sense as a nucleotide sequence, a nucleic acid sequence, or a DNA sequence.
본 발명에서 “표적 유전자 (target gene)”는 유전자 교정의 대상이 되는 유전자를 의미하는 것으로서 본 발명은 심근병증 모델 세포주 제작을 위한 표적 유전자로서 DES, LMNA, MYH7 및 TTN을 제공한다. In the present invention, “target gene” refers to a gene to be subjected to gene correction, and the present invention provides DES, LMNA, MYH7, and TTN as target genes for preparing a cardiomyopathy model cell line.
본 발명에서 “표적 부위 (target site 또는 target region)”는 표적 유전자 내의 표적 특이적 뉴클레아제에 의한 유전자 편집 또는 교정이 일어나는 부위를 의미하는 것으로, 표적유전자가 TTN인 경우 표적 부위는 TTN exon에 336번째 염기이고, 표적 유전자가 DES인 경우 DES가 발현하는 단백질에서 Arg454에 변이가 발생되도록 하는 부위이고, 표적 유전자가 LMNA인 경우 LMNA가 코딩하는 단백질에서 His222에 변이가 발생하도록 하는 부위이고, 표적 유전자가 MYH7인 경우 MYH7이 코딩하는 단백질에서 Arg249에 변이가 발생하도록 하는 부위이다. In the present invention, "target site (target site)" refers to a site where gene editing or correction by a target-specific nuclease within a target gene occurs. When the target gene is TTN, the target site is located in the TTN exon. It is the 336th base, and if the target gene is DES, it is a site that causes mutation of Arg454 in the protein expressed by DES, and if the target gene is LMNA, it is a site that causes mutation of His222 in the protein encoded by LMNA, and the target When the gene is MYH7, it is a site where mutation occurs in Arg249 in the protein encoded by MYH7.
본 발명에서 "가이드 RNA (guide RNA)"는 표적 유전자 내 표적 부위 내의 특이적인 염기 서열(표적서열)에 혼성화 가능한 표적화 서열을 포함하는 RNA를 의미하며, 생체 외 (in vitro) 또는 생체 (또는 세포) 내에서 Cas와 같은 뉴클레아제 단백질과 결합하여 이를 표적 유전자 (또는 표적 부위)로 인도하는 역할을 하며, 본 명세서에서 sgRNA(single guide RNA)의 용어와 혼용된다.In the present invention, "guide RNA" refers to an RNA comprising a targeting sequence hybridizable to a specific nucleotide sequence (target sequence) within a target site in a target gene, in vitro or in vivo (or cell). ), binds to a nuclease protein such as Cas and guides it to a target gene (or target site), and is used interchangeably with the term sgRNA (single guide RNA) in the present specification.
본 발명은 TTN, LMNA, DES, 또는 MYH7 유전자 변이를 유도하여 통해 심근병증 모델 세포주 제작을 위한 유전자 교정용 조성물을 제공하며, 상기 조성물에는 상술한 가이드 RNA가 포함된다. 상기 가이드 RNA는 RNA 형태로 사용 (또는 상기 조성물에 포함)되거나, 이를 코딩하는 DNA를 포함하는 벡터 형태로 사용 (또는 상기 조성물에 포함)될 수 있다. The present invention provides a composition for gene correction for preparing a cardiomyopathy model cell line by inducing TTN, LMNA, DES, or MYH7 gene mutations, and the composition includes the guide RNA described above. The guide RNA may be used in the form of RNA (or included in the composition) or in the form of a vector containing DNA encoding the same (or included in the composition).
상기 벡터는 Cas 9을 코딩할 수 있으며, Cas 9은 가이드 RNA 발현용 벡터와 별개의 벡터로 제공될 수 있다. The vector may encode Cas 9, and Cas 9 may be provided as a vector separate from a vector for expressing guide RNA.
본 발명에서 “Cas9 (CRISPR associated protein 9)”은 DNA 바이러스에 대한 특정 박테리아의 면역학적 방어에서 중요한 역할을 하는 단백질로 유전공학 응용에 많이 사용되는데, 상기 단백질의 주요 기능이 DNA를 절단하는 것이기 때문에 세포의 게놈을 변형하는 데에 적용할 수 있다. 구체적으로, CRISPR/Cas9은 3세대 유전자 가위로써 이용하고자 하는 특정 염기서열을 인식하여 절단하고 편집하며, 게놈의 목적 장소에 특정 유전자를 삽입하거나 특정 유전자의 활동을 정지시키는 조작을 간단하고 신속하고 효율성 있게 실시하는데 유용하다. Cas9 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있으나, 이에 제한되는 것은 아니다. 또한, Cas9 단백질은 그 목적에 따라 당업자가 추가적인 도메인을 적절하게 연결할 수 있다. 본 발명에 있어서, Cas9 단백질은 야생형 Cas9뿐만 아니라, 유전자 편집을 위한 핵산분해효소의 기능을 갖는 것이라면 Cas9의 변이체를 모두 포함할 수 있다. 또한, 본 발명에서 Cas9은 DNA 이중 가닥을 절단하는 엔도뉴클라아제 활성을 상실하도록 변이된 것을 이용할 수도 있다.In the present invention, "Cas9 (CRISPR associated protein 9)" is a protein that plays an important role in the immunological defense of certain bacteria against DNA viruses and is widely used in genetic engineering applications. Since the main function of the protein is to cleave DNA, It can be applied to modify the genome of a cell. Specifically, CRISPR/Cas9 recognizes, cuts, and edits a specific nucleotide sequence to be used as a third-generation gene scissors, and inserts a specific gene into the target site of the genome or stops the activity of a specific gene simply, quickly, and efficiently. useful for carrying out Cas9 protein or gene information may be obtained from a known database such as GenBank of National Center for Biotechnology Information (NCBI), but is not limited thereto. In addition, a person skilled in the art can appropriately connect additional domains to the Cas9 protein depending on its purpose. In the present invention, the Cas9 protein may include not only wild-type Cas9, but also variants of Cas9 as long as they have a function of a nuclease for gene editing. In addition, in the present invention, Cas9 may be mutated to lose endonuclease activity for cleaving DNA double strands.
상기 Cas9 단백질 또는 이의 변이체는 그 유래가 제한되지 않으며, 비제한적인 예시로써 스트렙토코커스 피요제네스 (Streptococcus pyogenes), 프란시셀라 노비시다 (Francisella novicida), 스트렙토코커스 써모필러스 (Streptococcus thermophilus), 레지오넬라 뉴모필라 (Legionella pneumophila), 리스테리아 이노큐아 (Listeria innocua), 또는 스트렙토코커스 뮤탄스 (Streptococcus mutans) 유래일 수 있다.The origin of the Cas9 protein or variant thereof is not limited, and as non-limiting examples, Streptococcus pyogenes, Francisella novicida, Streptococcus thermophilus, Legionella pneumophila It may be from Legionella pneumophila, Listeria innocua, or Streptococcus mutans.
상기 Cas9 단백질 또는 이의 변이체는 미생물에서 분리된 것 또는 재조합적 방법 또는 합성적 방법 등과 같이 인위적 또는 비자연적 생산된 것 (non-naturally occurring)일 수 있다. 상기 Cas9은 in vitro에서 미리 전사된 mRNA 또는 미리 생산된 단백질 형태, 또는 표적 세포 또는 생체 내에서 발현하기 위하여 재조합 벡터 또는 AAV, lenti와 같은 바이러스에 포함된 형태로 사용될 수 있다. 일 실시예에서, 상기 Cas9은 재조합 DNA(Recombinant DNA, rDNA)에 의하여 만들어진 재조합 단백질일 수 있다. 재조합 DNA는 다양한 유기체로부터 얻어진 이종 또는 동종 유전 물질을 포함하기 위하여 분자 클로닝과 같은 유전자 재조합 방법에 의해 인공적으로 만들어진 DNA 분자를 의미한다The Cas9 protein or variant thereof may be isolated from a microorganism or produced artificially or non-naturally, such as by a recombinant or synthetic method. The Cas9 may be used in the form of pre-transcribed mRNA or pre-produced protein in vitro, or in the form included in a recombinant vector or virus such as AAV or lenti for expression in a target cell or in vivo. In one embodiment, the Cas9 may be a recombinant protein made by recombinant DNA (rDNA). Recombinant DNA refers to DNA molecules artificially created by genetic recombination methods such as molecular cloning to contain heterologous or homologous genetic material obtained from various organisms.
본 발명에서 “염기 편집기(base editor, BE)”는 상술한 표적부위의 염기의 치환 내지 결실을 유도할 수 있는 것이라면 제한되지 아니하며, 시토신 염기 편집기(cytosine base editor, CBE) 아데닌 염기 편집기(adenine base editor, ABE), 또는 구아닌 염기 편집기(guanine base editor, GBE)일 수 있다. In the present invention, the “base editor (BE)” is not limited as long as it can induce substitution or deletion of the base of the target site described above, and is not limited to cytosine base editor (CBE) and adenine base editor (adenine base editor). editor, ABE), or a guanine base editor (GBE).
본 발명에서 “다능성 줄기세포(pluripotent stem cell, PSC)"는 인간의 몸을 구성하는 어떠한 형태의 세포로도 유도 분화가 가능한 줄기세포를 의미하며, 배아줄기세포(embryonic stem cells, ESCs)와 유도 만능 줄기세포 (induced pluripotent stem cells, iPSCs, 역분화 줄기세포)를 포함하는 의미로 사용된다. 구체적으로, 배아 줄기세포는 착상 이전 단계에 배반포(blastocyst)의 내부 세포 덩어리(inner cell mass)로부터 유도된다. 유도된 세포는 특정한 환경에서 유지되며, 무제한적인 배양 및 다능성 분화가 가능하다. 한편, 유도 만능 줄기세포는 신체 체세포로부터 역분화되어 만들어지는 다능성 분화 세포를 의미할 수 있으며, 세포 융합, 핵 치환, 다분화성 조절 인자의 과발현과 같은 재프로그래밍(reprograming)이라는 과정을 통해 체세포를 배아 줄기세포와 매우 유사한 상태로 만들어줌으로써 형성된다. 나아가, 만능 줄기세포는 배아 줄기세포 및 유도 만능 줄기세포에 제한되는 것은 아니며, 분화 다능성 및 자기 복제능을 겸비한 세포를 모두 포함할 수 있다. 그러나, 바람직하게 만능 줄기세포는 포유동물의 세포, 더욱 바람직하게는 인간 유래의 다능성 줄기세포일 수 있다.In the present invention, "pluripotent stem cell (PSC)" means a stem cell capable of induced differentiation into any type of cell constituting the human body, and includes embryonic stem cells (ESCs) and It is used to mean including induced pluripotent stem cells (iPSCs, dedifferentiated stem cells). Specifically, embryonic stem cells are derived from the inner cell mass of a blastocyst in the pre-implantation stage. Induced. Induced cells are maintained in a specific environment and are capable of unlimited culture and pluripotent differentiation. On the other hand, induced pluripotent stem cells may refer to pluripotent differentiated cells made by de-differentiation from body somatic cells, and cells Pluripotent stem cells are formed by making somatic cells into a state very similar to embryonic stem cells through a process called reprogramming, such as fusion, nuclear transfer, and overexpression of pluripotency regulators. It is not limited to cells, and may include both cells having differentiation pluripotency and self-renewal ability.However, pluripotent stem cells are preferably mammalian cells, more preferably human-derived pluripotent stem cells. there is.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. However, since various changes can be made to the embodiments, the scope of the patent application is not limited or limited by these embodiments. It should be understood that all changes, equivalents or substitutes to the embodiments are included within the scope of rights.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the examples are used only for descriptive purposes and should not be construed as limiting. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the art to which the embodiment belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same reference numerals are given to the same components regardless of reference numerals, and overlapping descriptions thereof will be omitted. In describing the embodiment, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the embodiment, the detailed description will be omitted.
[실시예][Example]
실시예 1. sgRNA 설계 및 염기 편집기를 이용한 돌연변이 유도Example 1. Mutagenesis using sgRNA design and base editor
1-1. sgRNA 설계 1-1. sgRNA design
4세대 염기교정 인자 기반 유전자 편집기술을 이용한 심근병증 인간 다능성 줄기세포주를 구축하기 위해서 심근병증 표적 유전자를 설계하였다. 심근병증인 DCM과 HCM 유발 유전자 변이를 찾기 위해 NCBI ClineVar 데이터베이스를 활용하였다.Cardiomyopathy target genes were designed to construct a cardiomyopathy human pluripotent stem cell line using 4th-generation base-correction factor-based gene editing technology. NCBI ClineVar database was used to find DCM and HCM-induced genetic mutations, which are cardiomyopathy.
DCM 표적 유전자인 (i) TTN은 exon336에 유전자 결실 변이가 유도되도록 Cas9 유전자 편집 기술인 Cas9을 사용하도록 설계되었다.The DCM target gene (i) TTN was designed using Cas9, a Cas9 gene editing technique, to induce gene deletion mutations in exon336.
DCM 표적 유전자인 (ii) LMNA 유전자는 C에서 T 염기 치환으로 His222Try 변이가 시토신염기 교정기법을 통해 유도되도록 설계하였다.DCM target gene (ii) LMNA gene was designed to induce His222Try mutation through cytosine nucleotide correction technique with C to T base substitution.
DCM 표적 유전자인 (iii) DES 유전자는 C에서 T 염기 치환으로 Arg454Trp 변이가 시토신염기 교정기법을 통해 유도되도록 설계하였다.DCM target gene (iii) DES gene was designed to induce Arg454Trp mutation through cytosine base correction technique by replacing C to T base.
HCM 표적 유전자인 (iv) MYH7 유전자는 C에서 T 염기 치환으로 Arg249Gln 변이가 시토신염기 교정기법을 통해 유도되도록 설계하였다.(iv) MYH7 gene, an HCM target gene, was designed to induce Arg249Gln mutation through cytosine nucleotide correction technique by substituting C to T nucleotides.
모든 표적은 C에서 T 염기 전환 위치를 가장 활성화된 편집창인 20개의 표적 염기 중 5' 방향에서 4번째~8번째 사이에 위치하도록 설계하였다(도 1).All targets were designed so that the C to T base conversion site was located between the 4th and 8th positions in the 5' direction among the 20 target bases, which are the most active editing windows (FIG. 1).
상기 표적 유전자 영역을 타겟팅하는 sgRNA 서열은 아래와 같다.The sgRNA sequence targeting the target gene region is as follows.
DES-rs267607490-sgRNA Gx20 (+): 5'-ACACGGGAUGGGGAGGUAAG-3' (서열번호 1)DES-rs267607490-sgRNA Gx20 (+): 5'-ACACGGGAUGGGGAGGUAAG-3' (SEQ ID NO: 1)
LMNA-rs28928901-sgRNA Gx20 (+):5'-CCGUCAUGAGACCCGACUGG-3 (서열번호 2)LMNA-rs28928901-sgRNA Gx20 (+):5'-CCGUCAUGAGACCCGACUGG-3 (SEQ ID NO: 2)
MYH7-rs3218713-sgRNA Gx20 (-): 5'-GAAUUCGAAUGAAUUUCCCC-3' (서열번호 3)MYH7-rs3218713-sgRNA Gx20 (-): 5'-GAAUUCGAAUGAAUUUCCCC-3' (SEQ ID NO: 3)
TTN sgRNA-2, gx20 (+): 5'-UGAAACUACAGAGCCAGUGA-3' (서열번호 4)TTN sgRNA-2, gx20 (+): 5'-UGAAACUACAGAGCCAGUGA-3' (SEQ ID NO: 4)
1-2. 유전자 편집1-2. gene editing
C에서 T 염기 전환은 시토신 염기교정 (CBE)를 이용하였으며, Cas9 발현 벡터는 에드진(Addgene)에서 구입하였다. 이후 Cas9 발현 벡터에 녹색 형광 단백질이 함께 발현되도록 클로닝 하였다. 표적 가이드 RNA 발현용 벡터 제작을 위하여 U6 프로모터를 가지는 backbone 벡터는 에드진 (Addgene)에서 구입하였다. 표적 유전자에서 가이드 RNA를 설계하기 위해서 RGEN tools 프로그램을 이용하여 표적 가이드 RNA를 설계하였다. 상기 벡터 내에 U6 프로모터에서 발현될 수 있도록 표적 가이드 RNA 발현 서열을 클로닝하였다. 상기 벡터에서 가이드 RNA 발현 서열의 클로닝은 생어 염기서열 분석 (Sanger sequencing)을 수행하여 확인하였다(도 2).Cytosine nucleotide correction (CBE) was used for C to T base conversion, and Cas9 expression vector was purchased from Addgene. After that, it was cloned into a Cas9 expression vector so that the green fluorescent protein was co-expressed. To construct a vector for expressing target guide RNA, a backbone vector having a U6 promoter was purchased from Addgene. In order to design guide RNAs in target genes, target guide RNAs were designed using the RGEN tools program. A target guide RNA expression sequence was cloned into the vector so that it could be expressed under the U6 promoter. Cloning of the guide RNA expression sequence in the vector was confirmed by performing Sanger sequencing (FIG. 2).
설계된 sgRNA를 이용한 유전자 편집의 효율을 확인하기 위하여 인간유래 배아줄기세포, 인간유래 유도만능줄기세포, 및 인간유래 섬유아세포의 총 3종 세포주를 이용하였다. 그리고, 유도 만능 줄기세포의 심근 비대증 세포주를 구축하기 위하여 다음 두 가지 방법을 이용하였다. (1) 유도 만능 줄기세포 세포주에서 염기교정인자를 이용하여 세포주 구축 및 (2) 섬유아세포 세포주에서 염기교정 인자를 이용하여 치환 후, 유도 만능 줄기세포로 세포 전환을 통하여 세포주 구축하였다.In order to confirm the efficiency of gene editing using the designed sgRNA, three cell lines were used: human embryonic stem cells, human induced pluripotent stem cells, and human fibroblasts. In addition, the following two methods were used to construct myocardial hypertrophy cell lines of induced pluripotent stem cells. (1) Cell lines were constructed using base correction factors in induced pluripotent stem cell lines, and (2) cell lines were constructed through cell conversion to induced pluripotent stem cells after substitution with base correction factors in fibroblast cell lines.
실시예 2. DES 돌연변이 세포주 구축Example 2. DES mutant cell line construction
DES 유전자는 유전적 심근 비대증의 표적 유전자 중 Desmosome complex에 관여한다. 실시예 1에서 DES 유전자 편집을 위해 설계한 gRNA를 인간유래 배아줄기세포, 인간유래 유도만능줄기세포, 및 인간유래 섬유아세포에 적용하여 각각의 세포에서 DES 넉-아웃(knock-out) 심근병증 세포주 제작이 가능한지 확인하였다. The DES gene is involved in the Desmosome complex among the target genes of hereditary myocardial hypertrophy. gRNA designed for DES gene editing in Example 1 was applied to human-derived embryonic stem cells, human-derived pluripotent stem cells, and human-derived fibroblasts to obtain a DES knock-out cardiomyopathy cell line in each cell It was confirmed that production was possible.
2-1. 인간유래 배아줄기세포와 유도만능 줄기세포에서 DES 유전자 돌연변이 세포주 구축2-1. Establishment of DES gene mutant cell lines from human-derived embryonic stem cells and induced pluripotent stem cells
인간유래 배아줄기세포와 유도만능 줄기세포에서 DES 유전자 변이를 BE4max와 sgRNA 플라스미드(plasmid)를 Lipofectamine을 이용하여 형질감염 시켰다. DES gene mutations were transfected with BE4max and sgRNA plasmids in human embryonic stem cells and induced pluripotent stem cells using Lipofectamine.
배아줄기세포의 경우, 형질감염 후 형광현미경을 통해 녹색 형광이 발현되는 것을 확인하였으며, 아큐테아제(Accutase)를 이용하여 단일세포(single cell)로 분리하였다.In the case of embryonic stem cells, it was confirmed that green fluorescence was expressed through a fluorescence microscope after transfection, and separated into single cells using Accutase.
인간유래 유도만능 줄기세포의 경우, 형질감염 후 형광현미경을 통해 녹색 형광이 발현되는 것을 확인하였으며, 유세포분석기(flowcytometry)를 이용하여 녹색 형광 발현되는 세포만 분리하였다.In the case of human-derived pluripotent stem cells, it was confirmed that green fluorescence was expressed through a fluorescence microscope after transfection, and only cells expressing green fluorescence were isolated using flow cytometry.
분리 후 단일세포로부터 증식한 콜로니(colony)의 치환 효율을 표적 심층 서열분석법을 통해 확인하였다. 그 결과, 치환이 되지 않은 Wild type, 50%의 치환이 일어난 Hetero type, 100%로 치환이 일어난 Homo type을 확인하였고, 각각의 세포주를 선별하였다.After isolation, the replacement efficiency of colonies grown from single cells was confirmed through targeted deep sequencing. As a result, Wild type with no substitution, Hetero type with 50% substitution, and Homo type with 100% substitution were confirmed, and each cell line was selected.
2-2. 인간유래 배아줄기세포에서 DES 유전자 돌연변이 유도 확인2-2. Confirmation of DES gene mutation induction in human-derived embryonic stem cells
배아 줄기세포 세포주에서 염기교정방법인 BE4max와 sgRNA를 Lipofectamine 이용하여 형질감염을 시킨 후 단일세포로부터 증식한 콜로니를 대상으로 표적심층서열분석 방법으로 C에서 T 로 염기 치환 효율을 확인하였다. Embryonic stem cell lines were transfected with BE4max, a base editing method, and sgRNA using Lipofectamine, and the efficiency of base substitution from C to T was confirmed by targeted deep sequencing of colonies grown from single cells.
배아 줄기세포 세포주에서 치환 효율을 확인한 결과, 치환이 되지 않은 Wild type, 50%의 치환이 일어난 Hetero type, 100%로 치환이 일어난 Homo type의 colony들을 확인할 수 있었다. 그 외에 60% 변이율을 가지는 mosaic 패턴의 변이의 colony를 추가적으로 선별할 수 있었다. 본 실험에서 구축된 WT, hetero, homozygote 세포주들의 Sanger sequencing을 통해 유전자형을 다시 확인할 수 있었다(도 5).As a result of confirming the replacement efficiency in embryonic stem cell lines, colonies of the Wild type with no replacement, the Hetero type with 50% replacement, and the Homo type with 100% replacement were identified. In addition, it was possible to additionally screen mutation colony of mosaic pattern with 60% mutation rate. Genotypes were confirmed again through Sanger sequencing of the WT, hetero, and homozygote cell lines constructed in this experiment (FIG. 5).
2-3. 인간유래 유도만능 줄기세포와 섬유아세포에서 DES 유전자 돌연변이 유도 확인2-3. Confirmation of DES gene mutation induction in human-derived induced pluripotent stem cells and fibroblasts
유도만능 줄기세포 및 섬유아세포에서 염기교정 방법인 BE4max와 sgRNA를 lipofectamine 3000 및 lipofectamine stem을 이용하여 염기교정을 시킨 후 단일세포로부터 증식한 콜로니를 대상으로 표적심층서열분석 방법으로 C에서 T로 염기 치환 효율을 확인하였다.In induced pluripotent stem cells and fibroblasts, BE4max and sgRNA, which are base correction methods, are base-corrected using lipofectamine 3000 and lipofectamine stem, and then base substitution from C to T is performed on colonies grown from single cells by targeted deep sequencing. Efficiency was confirmed.
인간유래 섬유아세포에서 Wild type 및 100%의 치환 효율을 가지는 Homo type을 획득하였다 (도면 6). 또한, 획득된 Homo type에서 표적 외 절단이 나타나지 않음을 Sanger sequencing을 통해 확인하였다.In human-derived fibroblasts, Wild type and Homo type with 100% substitution efficiency were obtained (Fig. 6). In addition, it was confirmed through Sanger sequencing that off-target cleavage did not appear in the acquired Homo type.
2-4. DES 돌연변이 세포주 검증: 표적 외 절단 (off-target) 효과 확인2-4. Verification of DES mutant cell lines: confirmation of off-target effects
DES 표적에 대한 안전성 검증을 위해 세포 수준에서의 표적 외 절단 유무를 확인하고자 하였다. DES 표적에 대한 표적 외 절단 가능성이 있을 것으로 판단되는 표적들을 RGEN tools 프로그램을 통해 3개의 염기 불일치까지 허용하여 가능성 있는 서열들을 선별하는 작업을 진행하였다. 또한, 선별된 표적 외 절단 서열들을 원하는 유전자 변이가 도입된 세포주를 통해 DES 표적에 대해 디자인된 library primer를 이용하여 NGS library를 제작하고 표적심층서열 분석방법으로 분석하였다.To verify the safety of the DES target, we wanted to confirm the presence or absence of off-target cleavage at the cellular level. Targets that were judged to have off-target cleavage potential for the DES target were allowed up to 3 base mismatches through the RGEN tools program to select possible sequences. In addition, an NGS library was constructed using a library primer designed for the DES target through a cell line into which the desired genetic mutation was introduced, and the selected off-target cleavage sequences were analyzed by targeted deep sequencing analysis.
DES 표적에 대한 표적 외 절단 가능성이 있는 서열들로 RGEN tools 프로그램을 통해 3개의 염기 불일치까지 허용하여 가능성 있는 서열들을 선별하였고, 22개의 가능성 있는 서열들을 확인할 수 있었다 (도 6). 표적심층서열분석 (Targeted deep sequencing) 방법으로 표적 외 절단 서열들의 변이 여부를 확인하였다. 분석한 결과를 통해 표적 외 절단 18번 표적 (OT-18)의 경우 DES 변이가 도입된 세포주에서 높은 효율로 편집이 유도된 것을 확인할 수 있었다. 그러나 OT-18은 CLMN 유전자의 intron에 존재하는 변이라 세포 표현형에 영향을 주지 않을 것으로 판단된다 (도 7 및 도 8).Sequences with potential off-target cleavage for the DES target were selected through the RGEN tools program by allowing up to 3 base mismatches, and 22 possible sequences were identified (FIG. 6). Mutations in off-target cleavage sequences were confirmed by targeted deep sequencing. Through the analysis results, it was confirmed that in the case of off-target cleavage target 18 (OT-18), editing was induced with high efficiency in the cell line into which the DES mutation was introduced. However, since OT-18 is a mutation present in the intron of the CLMN gene, it is judged that it will not affect the cell phenotype (FIG. 7 and FIG. 8).
실시예 3. LMNA 돌연변이 세포주 구축Example 3. LMNA mutant cell line construction
LMNA 유전자는 기계신호 (Mechano signaling)에 관여한다. The LMNA gene is involved in mechano signaling.
실시예 1에서 LMNA 유전자 편집을 위해 설계한 gRNA를 배아줄기세포, 유도만능줄기세포, 및 섬유아세포에 적용하여 각각의 세포에서 LMNA 넉-아웃(knock-out) 심근병증 세포주 제작이 가능한지 확인하였다.The gRNA designed for LMNA gene editing in Example 1 was applied to embryonic stem cells, induced pluripotent stem cells, and fibroblasts to confirm whether LMNA knock-out cardiomyopathy cell lines could be prepared in each cell.
3-1. 배아줄기세포에서 LMNA 유전자 돌연변이 세포주 구축3-1. Establishment of LMNA gene mutant cell line in embryonic stem cells
배아줄기세포에서 LMNA 유전자 돌연변이 도입은 기계신호에 관여하는 LMNA 유전자를 표적으로 NG_BE4max를 이용하여 C에서 T로 치환을 유도하였다. NG_BE4max는 기존 C에서 T로 치환이 가능한 염기교정 방법이나, 기존 표적서열 중 NGG 서열로 표적 서열을 인지한다면 NG_BE4max는 NG 서열을 인지하여 표적서열을 편집한다. 그래서 더 넓은 범위의 염기 C를 표적화 할 수 있는 장점이 있다. 인간유래 배아 줄기세포주에서 NG_BE4max와 sgRNA를 Lipofectamine을 이용하여 형질감염 시켰다. Introduction of LMNA gene mutation in embryonic stem cells induced C to T substitution using NG_BE4max as a target for the LMNA gene involved in mechano-signaling. NG_BE4max is a base correction method capable of substituting T from C, but if a target sequence is recognized as an NGG sequence among existing target sequences, NG_BE4max recognizes the NG sequence and edits the target sequence. Therefore, it has the advantage of being able to target a wider range of bases C. Human embryonic stem cell lines were transfected with NG_BE4max and sgRNA using Lipofectamine.
형질감염 후 형광현미경을 통해 녹색 형광이 발현되는 것을 확인하였으며, 아큐테아제를 이용하여 단일세포로 분리하였다.After transfection, it was confirmed that green fluorescence was expressed through a fluorescence microscope, and separated into single cells using accutease.
분리 후 단일세포(single cell)로부터 증식한 콜로니(colony)의 치환 효율을 표적 심층 서열분석법을 통해 확인하였다.After isolation, the replacement efficiency of colonies grown from single cells was confirmed through targeted deep sequencing.
표적심층서열분석 방법을 통해 확인한 결과, 치환이 되지 않은 정상의 WT type으로는 cell line 3개를 확인하였고, 50%의 치환이 일어난 Hetero type으로는 4 cell line을 확인하였다. 100%로 치환이 일어나진 않았지만, Homo type의 10 cell line을 확인하였다. 또한, 각각의 유전자형은 Sanger sequencing으로 다시 확인하였다 (도 10).As a result of confirmation through the targeted deep sequencing method, 3 cell lines were identified as normal WT type without substitution, and 4 cell lines were identified as heterotype with 50% substitution. Although substitution did not occur at 100%, 10 cell lines of the Homo type were identified. In addition, each genotype was confirmed again by Sanger sequencing (FIG. 10).
3-2. 인간유래 섬유아세포에서 LMNA 유전자 돌연변이 세포주 구축3-2. Construction of LMNA gene mutant cell line in human-derived fibroblasts
인간유래 만능줄기세포 및 인간유래 섬유아세포에서 NG_BE4max와 sgRNA를 Lipofectamine을 이용하여 형질감염 시켰다.Human-derived pluripotent stem cells and human-derived fibroblasts were transfected with NG_BE4max and sgRNA using Lipofectamine.
형질감염 후 형광현미경을 통해 녹색 형광이 발현되는 것을 확인하였고 유세포분석기(flowcytometry)를 이용하여 녹색 형광 발현되는 세포만 분리하였다.After transfection, it was confirmed that green fluorescence was expressed through a fluorescence microscope, and only cells expressing green fluorescence were isolated using flow cytometry.
분리 후 단일세포(single cell)로부터 증식한 콜로니(colony)의 치환 효율을 표적 심층 서열분석법을 통해 확인하였다.그 결과, 섬유아세포에서 100%로 치환이 일어난 Homo type의 세포주를 3 cell line을 획득하였다 (도 11).After isolation, the replacement efficiency of the colony proliferated from a single cell was confirmed through targeted deep sequencing. As a result, 3 cell lines of the Homo type in which 100% substitution occurred in fibroblasts were obtained. (FIG. 11).
3-3. LMNA 돌연변이 세포주 검증: 표적 외 절단 (off-target) 효과 확인3-3. Verification of LMNA mutant cell lines: confirmation of off-target effects
LMNA 표적에 대한 안전성 검증을 위해 세포 수준에서의 표적 외 절단인 표적 외 절단 유무를 확인하고자 하였다. LMNA 표적에 대한 표적 외 절단 가능성이 있을 것으로 판단되는 표적들을 RGEN tools 프로그램을 통해 3개의 염기 불일치까지 허용하여 가능성 있는 서열들을 선별하는 작업을 진행하였다. 또한, 선별된 표적 외 절단 서열들을 원하는 유전자 변이가 도입된 세포주를 통해 LMNA 표적에 대해 디자인된 library primer를 이용하여 NGS library를 제작하고 표적심층서열 분석방법으로 분석하였다.To verify the safety of the LMNA target, we wanted to confirm the presence or absence of off-target cleavage, which is off-target cleavage at the cellular level. Targets judged to have off-target cleavage potential for the LMNA target were allowed up to 3 base mismatches through the RGEN tools program to select possible sequences. In addition, an NGS library was constructed using a library primer designed for the LMNA target through a cell line into which the desired genetic mutation was introduced, and the selected off-target cleavage sequences were analyzed by targeted deep sequencing analysis.
LMNA 표적에 대한 표적 외 절단 가능성이 있는 서열들로 RGEN tools 프로그램을 통해 3개의 염기 불일치까지 허용하여 가능성 있는 서열들을 선별하였고, 5개의 가능성 있는 서열들을 확인할 수 있었다. 표적 외 절단 표적서열 5군데에서 모두 변이가 유도되지 않았음을 표적심층서열분석 (Targeted deep sequencing) 방법으로 확인할 수 있었다 (도 12 및 도 13).Sequences with potential off-target cleavage for the LMNA target were selected by allowing up to 3 base mismatches through the RGEN tools program, and 5 possible sequences were identified. It was confirmed by a targeted deep sequencing method that mutations were not induced in all five off-target cleavage target sequences (FIG. 12 and FIG. 13).
3-4. LMNA 유전자 변이 심근병증 모델 인간 다능성 줄기세포주 특성 규명3-4. Characterization of human pluripotent stem cell line in LMNA gene mutation cardiomyopathy model
표적 유전자 변이세포주를 확보 후 각 세포주의 특성 규명을 위하여 심근세포로의 분화를 유도 후 특성평가를 위하여 심근세포 발현 유전자의 정성, 정량적 차이 등을 이용하여 심근세포 성숙분화 정도를 비교 평가를 실시하였다. After securing target gene mutant cell lines, differentiation into cardiomyocytes was induced to identify the characteristics of each cell line, and the degree of cardiomyocyte maturation and differentiation was compared and evaluated using qualitative and quantitative differences in cardiomyocyte expression genes for characteristic evaluation. .
His222Try 변이를 유도한 LMNA 유전자 세포주를 이용하여 심근세포 분화 정도를 평가한 결과 Wild type, Hetero type, 및 Homo type의 3종 세포주 모두 심근세포로의 분화가 유도됨을 확인하였다. 분화 유도 15일 후 심근세포 마커(cTnT, cTnI, MLC2v, MLC2a, TBX18) 및 성숙분화 마커(Bin-1, JPH2, HCN4)의 발현을 중합효소연쇄반응 및 웨스턴 블롯을 통하여 확인한 결과, 전체 심근세포 마커인 cTnT의 발현은 중합효소연쇄반응을 통해 Homo type의 세포주에서 발현이 증가됨을 확인하였다. 형광염색을 통하여 심근세포 마커(cTnT), 성숙 심근세포 마커(cTnI)의 발현을 비교한 결과 전체 심근세포 마커는 Homo type에서 발현이 강했으나 성숙 심근세포 마커의 경우 Wild type 및 Hetero type의 발현이 강함을 확인하였으며 이는 웨스턴 블롯의 결과와 일치함을 확인하였다 (도 14).As a result of evaluating the degree of cardiomyocyte differentiation using the His222Try mutation-induced LMNA gene cell line, it was confirmed that differentiation into cardiomyocytes was induced in all three cell lines, wild type, hetero type, and homo type. As a result of confirming the expression of cardiomyocyte markers (cTnT, cTnI, MLC2v, MLC2a, TBX18) and mature differentiation markers (Bin-1, JPH2, HCN4) through polymerase chain reaction and Western blot after 15 days of induction of differentiation, all cardiomyocytes It was confirmed that the expression of cTnT, a marker, was increased in Homo type cell lines through polymerase chain reaction. As a result of comparing the expression of the cardiomyocyte marker (cTnT) and the mature cardiomyocyte marker (cTnI) through fluorescence staining, the expression of all cardiomyocyte markers was strong in the Homo type, but in the case of the mature cardiomyocyte marker, the expression of the Wild type and Hetero type was high. It was confirmed that it was strong and it was confirmed that it was consistent with the results of Western blot (FIG. 14).
3-5. LMNA 유전자 변이 심근병증 세포주 유래 심근병증 오가노이드 특성 규명3-5. LMNA gene mutation = characterization of cardiomyopathy organoids derived from cardiomyopathy cell lines
표적 유전자 변이세포주를 확보 후 각 세포주의특성 규명을 위하여 Wild type와 His222Try 변이를 유도한 Homo Type를 3D(Organoid)로 심근세포로의 분화를 유도하였다. LMNA 유전자 관련 Marker를 이용하여 Wild type Organoid와 Homo Type Organoid의 유전자 발현의 정도를 비교 평가하였다. 각 세포주를 오가노이드(Organoid)로 분화 유도 20일 후 샘플을 채취하고 각 샘플에서 LADs (Laminassociated Domains) 마커 (LaminA/C, H3k9me2, Emerin)의 발현을 웨스턴 블롯, 면역형광법(Immunofluorescence Staining)을 수행하여 확인하였다 (도 15).After securing the target gene mutant cell lines, differentiation into cardiomyocytes was induced in 3D (Organoid) for wild type and Homo type inducing His222Try mutation in order to identify the characteristics of each cell line. Gene expression levels of wild type organoid and homo type organoid were compared and evaluated using LMNA gene-related markers. Samples were taken 20 days after induction of differentiation of each cell line into organoids, and the expression of LADs (Laminassociated Domains) markers (LaminA/C, H3k9me2, Emerin) was measured by western blotting and immunofluorescence staining in each sample. and confirmed (FIG. 15).
실시예 4. MYH7 돌연변이 세포주 구축Example 4. MYH7 mutant cell line construction
MYH7 유전자 유전적 심근 비대증의 표적 유전자 중 Sarcomere organization에 관여한다. 실시예 1에서 MYH7 유전자 편집을 위해 설계한 gRNA를 인간유래 배아줄기세포, 인간유래 유도만능줄기세포, 및 인간유래 섬유아세포에 적용하여 각각의 세포에서 MYH7 넉-아웃(knock-out) 심근병증 세포주 제작이 가능한지 확인하였다.The MYH7 gene is involved in Sarcomere organization among the target genes of genetic myocardial hypertrophy. MYH7 knock-out cardiomyopathy cell line in each cell by applying the gRNA designed for MYH7 gene editing in Example 1 to human-derived embryonic stem cells, human-derived pluripotent stem cells, and human-derived fibroblasts It was confirmed that production was possible.
4-1. 인간유래 배아줄기세포에서 MYH7 유전자 돌연변이 세포주 구축4-1. Establishment of MYH7 gene mutant cell line in human-derived embryonic stem cells
4-1-1. 배아 줄기세포 세포주에서 염기교정방법인 BE4max와 sgRNA를 이용하여 형질감염을 시킨 후 단일세포로부터 증식한 콜로니를 대상으로 표적심층서열분석 방법으로 C 에서 T 로 염기 치환 효율을 확인하였다. 그 결과 MYH7은 약 25% 정도의 치환이 일어남을 확인하였다.4-1-1. Embryonic stem cell lines were transfected using BE4max and sgRNA, which are base editing methods, and the efficiency of base substitution from C to T was confirmed by targeted deep sequencing for colonies grown from single cells. As a result, it was confirmed that about 25% of substitution occurred in MYH7.
4-1-2. 배아 줄기세포 세포주에서 BE4max에 selection marker를 추가한 vector를 이용하여 C에서 T로 치환을 진행하였다. BE4max뒤에 녹색 형광이 함께 발현되는 벡터를 이용해 녹색 형광을 selection marker로 사용하였다. 따라서 녹색 형광이 발현되는 BE4max와 sgRNA를 lipofection을 통해 형질감염하였다.4-1-2. Substitution from C to T was performed using a vector in which a selection marker was added to BE4max in an embryonic stem cell line. Green fluorescence was used as a selection marker using a vector expressing green fluorescence behind BE4max. Therefore, BE4max and sgRNA expressing green fluorescence were transfected through lipofection.
이후 단일 세포로 분리하여 배양하였으며 단일세포로부터 증식한 콜로니를 대상으로 표적심층서열분석을 수행하였고, 그 결과, 치환이 되지 않은 정상의 WT type으로는 cell line 4개를 확인하였고, 50%의 치환이 일어난 Hetero type으로는 1 cell line을 확인하였으며, 100% 치환이 일어난 Homo type의 4 cell line을 확인하였다. 각각의 유전자형은 Sanger sequencing으로 다시 확인하였다 (도 17).Afterwards, it was isolated and cultured as single cells, and targeted deep sequencing was performed on the colonies proliferated from single cells. 1 cell line was confirmed as the heterotype in which this occurred, and 4 cell lines of the Homo type in which 100% substitution occurred were confirmed. Each genotype was confirmed again by Sanger sequencing (FIG. 17).
4-2. 인간유래 유도만능줄기세포에서 MYH7 유전자 돌연변이 세포주 구축4-2. Establishment of MYH7 gene mutant cell line in human-derived induced pluripotent stem cells
유도만능줄기세포에서 MYH7을 표적하는 BE4max와 sgRNA를 Lipofection을 통하여 C에서 T로 치환하였다. BE4max에 의해 발현되는 녹색형광을 형광 현미경을 통하여 관찰한 후, 유세포분석을 통하여 단일세포로 분리하였다. 분리된 단일세포를 배양하여 콜로니를 획득하였으며, 획득된 콜로니를 대상으로 표적심층서열분석을 진행하였다. 그 결과, 100%의 치환이 나타난 Homo type을 2 cell line 획득할 수 있었다. In induced pluripotent stem cells, BE4max and sgRNA targeting MYH7 were substituted from C to T through lipofection. After observing the green fluorescence expressed by BE4max through a fluorescence microscope, it was separated into single cells through flow cytometry. The isolated single cells were cultured to obtain colonies, and targeted deep sequencing was performed on the obtained colonies. As a result, it was possible to acquire 2 cell lines of Homo type with 100% substitution.
4-3. MYH7 돌연변이 세포주 검증: 표적 외 절단 (off-target) 확인4-3. Verification of MYH7 mutant cell line: confirmation of off-target cleavage
MYH7 표적에 대한 안전성 검증을 위해 세포 수준에서의 표적 외 절단인 비표적 유무를 확인하고자 하였다. MYH7 표적에 대한 표적 외 절단 가능성이 있는 서열들로 RGEN tools 프로그램을 통해 3개의 염기 불일치까지 허용하여 가능성 있는 서열들을 선별하였고, 6개의 가능성 있는 서열들을 확인할 수 있었다 (도 19 및 도 20). 표적심층서열분석 (Targeted deep sequencing) 방법으로 분석한 결과를 통해 비표적 표적서열 6군데에서 모두 변이가 유도되지 않았음을 확인할 수 있었다.To verify the safety of the MYH7 target, we tried to confirm the presence or absence of off-target cleavage at the cellular level. Sequences with potential off-target cleavage for the MYH7 target were selected by allowing up to 3 base mismatches through the RGEN tools program, and 6 possible sequences were identified (FIG. 19 and FIG. 20). As a result of analysis by the targeted deep sequencing method, it was confirmed that mutations were not induced in all 6 off-target sequences.
실시예 5. TTN 돌연변이 세포주 구축Example 5. TTN mutant cell line construction
인간유래 배아줄기세포에 실시예 1에서 설계한 sgRNA를 이용하여 TTN 유전자에 결실(deletion)이 발생하도록 변이를 유도하였다. 형질전환 세포에서 결실을 확인하고, 심근병증 양성대조군으로 사용가능한 5종 세포주를 확보하였다(도 21). Human-derived embryonic stem cells were induced to mutate the TTN gene by using the sgRNA designed in Example 1 to cause deletion. Deletion was confirmed in the transformed cells, and 5 cell lines usable as positive controls for cardiomyopathy were secured (FIG. 21).
본 발명자들은 인간유래 배아 줄기세포 세포주, 유도만능줄기세포 및 섬유아세포를 사용하여 인간 심근병증인 DCM과 HCM 유발 유전자 변이를 선별하였고 크리스퍼유전자편집방법 중 염기 수준에서 변이 유도가 가능한 염기교정방법을 적용하여 인간의 심근병증유도 유전자 변이 표적인 TTN, DES, LMNA, 및 MYH7유전자에서 추가적인 변이 유도 세포주분석으로 분화가 일어나지 않은 상태의 세포주를 확보하였다 (도 22).The present inventors screened DCM and HCM-induced gene mutations, which are human cardiomyopathy, using human-derived embryonic stem cell lines, induced pluripotent stem cells, and fibroblasts. In addition, a cell line in a non-differentiated state was secured by analysis of additional mutation-induced cell lines in TTN, DES, LMNA, and MYH7 genes, which are targets of human cardiomyopathy-induced gene mutations (FIG. 22).
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with limited drawings, those skilled in the art can apply various technical modifications and variations based on the above. For example, the described techniques may be performed in an order different from the method described, and/or components of the described system, structure, device, circuit, etc. may be combined or combined in a different form than the method described, or other components may be used. Or even if it is replaced or substituted by equivalents, appropriate results can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents of the claims are within the scope of the following claims.

Claims (12)

  1. 인간유래 다능성 줄기세포 유래의 심근병증 모델 세포주 제작을 위한 가이드 RNA (guide RNA)로서, As a guide RNA for preparing a cardiomyopathy model cell line derived from human-derived pluripotent stem cells,
    상기 심근병증 모델 세포주는 TTN, LMNA, DES, 또는 MYH7 유전자가 넉-아웃 (Knock-out)된 것이며, The cardiomyopathy model cell line is one in which TTN, LMNA, DES, or MYH7 genes are knocked out (Knock-out),
    상기 가이드 RNA는 20~30 bp의 길이를 가지고, The guide RNA has a length of 20 to 30 bp,
    상기 가이드 RNA는 서열번호 1 내지 4로 이루어진 군으로부터 선택된 1종의 염기서열을 포함하는 것인, 가이드 RNA.The guide RNA is a guide RNA comprising one base sequence selected from the group consisting of SEQ ID NOs: 1 to 4.
  2. 제1항의 가이드 RNA를 암호화하는 유전자를 포함하는, 심근병증 모델 세포주 제작용 벡터.A vector for constructing a cardiomyopathy model cell line comprising a gene encoding the guide RNA of claim 1.
  3. 제2항에 있어서, According to claim 2,
    상기 벡터는 Cas 단백질을 암호화하는 유전자를 추가로 포함하는 것인, 심근병증 모델 세포주 제작용 벡터.The vector further comprises a gene encoding a Cas protein, a vector for constructing a cardiomyopathy model cell line.
  4. 제2항에 있어서, According to claim 2,
    상기 가이드 RNA를 암호화하는 유전자는 U6 프로모터와 작동 가능하게 연결된 것인, 심근병증 모델 세포주 제작용 벡터. A vector for constructing a cardiomyopathy model cell line, wherein the gene encoding the guide RNA is operably linked to the U6 promoter.
  5. 제1항의 가이드 RNA 또는 상기 가이드 RNA를 발현하는 벡터를 포함하는, 심근병증 모델 세포주 제작용 조성물.A composition for preparing a cardiomyopathy model cell line comprising the guide RNA of claim 1 or a vector expressing the guide RNA.
  6. 제5항에 있어서, According to claim 5,
    상기 조성물은 Cas 단백질을 발현하는 벡터를 추가로 포함하는 것인, 심근병증 모델 세포주 제작용 조성물.The composition further comprises a vector expressing the Cas protein, a composition for preparing a cardiomyopathy model cell line.
  7. 제5항의 조성물을 이용하여 배아줄기세포, 유도만능줄기세포 또는 섬유아세포를 형질전환하는 단계를 포함하는 심근병증 모델 세포주 제작 방법.A method for preparing a cardiomyopathy model cell line comprising transforming embryonic stem cells, induced pluripotent stem cells, or fibroblasts using the composition of claim 5.
  8. 제7항에 있어서, According to claim 7,
    상기 방법은 형질전환 단계 이후에 세포를 단일 세포로 분리하여 군집(colony)가 형성되도록 배양하는 단계를 추가로 포함하는 것인 심근병증 모델 세포주 제작 방법. The method further comprises the step of separating the cells into single cells after the transformation step and culturing to form a colony.
  9. 제8항에 있어서, According to claim 8,
    상기 방법은 상기 배양 단계 이후에 각 군집에서 세포를 획득하고, 획득된 세포에서 DNA를 분리하여 염기서열 분석을 수행하는 단계를 추가로 포함하는 것인, 심근병증 모델 세포주 제작 방법. The method further comprises the step of obtaining cells from each colony after the culturing step, isolating DNA from the obtained cells, and performing sequencing, a cardiomyopathy model cell line production method.
  10. 제9항에 있어서, According to claim 9,
    상기 형질전환 세포가 배아줄기세포 또는 유도만능줄기세포인 경우, When the transformed cells are embryonic stem cells or induced pluripotent stem cells,
    염기서열 분석을 통해 TTN, LMNA, DES 또는 MYH7 유전자에 교정이 확인된 군집의 세포를 심근세포로 분화하는 단계를 추가로 포함하는, 심근병증 모델 세포주 제작 방법.A method for preparing a cardiomyopathy model cell line, further comprising differentiating cells of a population in which correction of TTN, LMNA, DES, or MYH7 genes has been confirmed through sequencing analysis into cardiomyocytes.
  11. 제9항에 있어서, According to claim 9,
    상기 형질전환 세포가 섬유아세포인 경우, When the transformed cells are fibroblasts,
    염기서열 분석을 통해 TTN, LMNA, DES 또는 MYH7 유전자에 교정이 확인된 군집의 세포를 역분화하여 유도만능줄기세포로 제작하고, induced pluripotent stem cells were produced by dedifferentiation of cells in the population in which TTN, LMNA, DES or MYH7 gene correction was confirmed through sequencing analysis,
    상기 유도만능줄기세포를 심근세포로 분화하는 단계를 추가로 포함하는, 심근병증 모델 세포주 제작 방법.A method for producing a cardiomyopathy model cell line, further comprising differentiating the induced pluripotent stem cells into cardiomyocytes.
  12. 제7항 내지 제11항 중 하나의 항의 방법으로 제작된 심근병증 모델 세포주.A cardiomyopathy model cell line produced by the method of any one of claims 7 to 11.
PCT/KR2022/017408 2021-11-08 2022-11-08 Method for preparing stem cell-derived cardiomyopathy model cell line by using crispr-based base editing technology, and cardiomyopathy cell line prepared by same method WO2023080755A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210152399 2021-11-08
KR10-2021-0152399 2021-11-08
KR10-2022-0147060 2022-11-07
KR1020220147060A KR20230068327A (en) 2021-11-08 2022-11-07 Method for producing a stem cell-derived cardiomyopathy model cell line using CRISPR-based base correction technology and a cardiomyopathy cell line prepared by the method

Publications (1)

Publication Number Publication Date
WO2023080755A1 true WO2023080755A1 (en) 2023-05-11

Family

ID=86241948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017408 WO2023080755A1 (en) 2021-11-08 2022-11-08 Method for preparing stem cell-derived cardiomyopathy model cell line by using crispr-based base editing technology, and cardiomyopathy cell line prepared by same method

Country Status (1)

Country Link
WO (1) WO2023080755A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410911A (en) * 2018-03-09 2018-08-17 广西医科大学 The cell line of LMNA gene knockouts based on CRISPR/Cas9 technologies structure
WO2021041716A2 (en) * 2019-08-28 2021-03-04 The J. David Gladstone Institutes, a testamentary trust established under the Will of J. David Glads Therapeutic editing to treat cardiomyopathy
CN112522260A (en) * 2020-10-22 2021-03-19 南京启真基因工程有限公司 CRISPR system and application thereof in preparation of TTN gene mutated dilated cardiomyopathy cloned pig nuclear donor cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410911A (en) * 2018-03-09 2018-08-17 广西医科大学 The cell line of LMNA gene knockouts based on CRISPR/Cas9 technologies structure
WO2021041716A2 (en) * 2019-08-28 2021-03-04 The J. David Gladstone Institutes, a testamentary trust established under the Will of J. David Glads Therapeutic editing to treat cardiomyopathy
CN112522260A (en) * 2020-10-22 2021-03-19 南京启真基因工程有限公司 CRISPR system and application thereof in preparation of TTN gene mutated dilated cardiomyopathy cloned pig nuclear donor cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU JI-ZHEN; QIAO ZHI-BIN; ZHANG LU; CAO HONG-XIA; BAI ZHI-HUI; QI YI-YAO; ZHU HAN-YU; CHEN YA-QI; ZHANG SHOU-MEI; YAN XIU-HUA; BAO: "Generation of a laminopathies-specific iPSC line EHTJUi005-A-3 with homozygous knockout of the LMNA gene by CRISPR/Cas9 technology", STEM CELL RESEARCH, ELSEVIER, NL, vol. 56, 3 September 2021 (2021-09-03), NL , XP086841970, ISSN: 1873-5061, DOI: 10.1016/j.scr.2021.102530 *
MOSQUEIRA DIOGO, MANNHARDT INGRA, BHAGWAN JAMIE R, LIS-SLIMAK KATARZYNA, KATILI PUSPITA, SCOTT ELIZABETH, HASSAN MUSTAFA, PRONDZYN: "CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy", EUROPEAN HEART JOURNAL, OXFORD UNIVERSITY PRESS, GB, vol. 39, no. 43, 14 November 2018 (2018-11-14), GB , pages 3879 - 3892, XP055852374, ISSN: 0195-668X, DOI: 10.1093/eurheartj/ehy249 *

Similar Documents

Publication Publication Date Title
US11905521B2 (en) Methods and systems for targeted gene manipulation
Fire et al. Proper expression of myosin genes in transgenic nematodes.
WO2016021972A1 (en) Immune-compatible cells created by nuclease-mediated editing of genes encoding hla
WO2017061805A1 (en) Method for producing genome-modified plants from plant protoplasts at high efficiency
WO2015163733A1 (en) A method of selecting a nuclease target sequence for gene knockout based on microhomology
CN111304230A (en) Genome engineering
CA2502250A1 (en) Methods using gene trapped stem cells for marking pathways of stem cell differentiation and making and isolating differentiated cells
CN112048497B (en) Novel single-base editing technology and application thereof
CN110804628A (en) High-specificity non-off-target single-base gene editing tool
WO2022065689A1 (en) Prime editing-based gene editing composition with enhanced editing efficiency and use thereof
JP7288263B2 (en) Cultured cell production method
WO2019235907A1 (en) Composition for editing flavonoid biosynthetic gene by using crispr/cas9 system, and use thereof
WO2023080755A1 (en) Method for preparing stem cell-derived cardiomyopathy model cell line by using crispr-based base editing technology, and cardiomyopathy cell line prepared by same method
Bhargava et al. Development of an efficient single-cell cloning and expansion strategy for genome edited induced pluripotent stem cells
WO2019066378A1 (en) Factor viii or factor ix gene knockout rabbit, method for preparing same and use thereof
WO2023191428A1 (en) PPLAⅡη GENE FOR INDUCING HAPLOID PLANTS AND USE THEREOF
US7105313B2 (en) Cell-based drug screens for regulators of gene expression
WO2019147025A1 (en) Composition for embryonic development, comprising rad51 activator, and method for improving embryonic development rate using same
WO2022059928A1 (en) Novel enhanced base editing or revising fusion protein and use thereof
WO2020166943A1 (en) Method for editing microalgae by using gene gun method
KR20230068327A (en) Method for producing a stem cell-derived cardiomyopathy model cell line using CRISPR-based base correction technology and a cardiomyopathy cell line prepared by the method
WO2020005011A1 (en) Mutant mouse-derived pancreatic organoid and method for evaluating standardized drug for efficacy
WO2016093668A2 (en) Integrative method for generating induced pluripotent stem cells for gene therapy
Wang et al. Control of gametophytic self-incompatibility in the African wild rice
WO2016171625A1 (en) Targeting telomerase for cell therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE