WO2023077277A1 - Stretchable electronic component, method of manufacturing the same, and display device - Google Patents

Stretchable electronic component, method of manufacturing the same, and display device Download PDF

Info

Publication number
WO2023077277A1
WO2023077277A1 PCT/CN2021/128253 CN2021128253W WO2023077277A1 WO 2023077277 A1 WO2023077277 A1 WO 2023077277A1 CN 2021128253 W CN2021128253 W CN 2021128253W WO 2023077277 A1 WO2023077277 A1 WO 2023077277A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable
electronic component
young
functional element
modulus
Prior art date
Application number
PCT/CN2021/128253
Other languages
French (fr)
Inventor
Koji Ishizaki
Original Assignee
Huawei Technologies Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co.,Ltd. filed Critical Huawei Technologies Co.,Ltd.
Priority to PCT/CN2021/128253 priority Critical patent/WO2023077277A1/en
Publication of WO2023077277A1 publication Critical patent/WO2023077277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a stretchable electronic component, a method of manufacturing the same, and a display device.
  • Display devices such as an organic EL displays (OLEDs) of a self-luminous type and liquid crystal displays (LCDs) using backlights are used as monitors for electronic devices of various types such as computers, televisions, and mobile phones.
  • OLEDs organic EL displays
  • LCDs liquid crystal displays
  • display devices a larger area, space saving, and weight reduction are required, and studies have been madeto realize this.
  • a stretchable display device that uses a flexible material such as plastic to enable expansion and contraction in a specific direction and various deformations has been attracting attention as a next-generation display device.
  • TFTs thin film transistors
  • light emitting elements mounted on the substrate. Since it may be difficult to form functional elements using a flexible material and they are easily damaged by a stress, various types of design have been made to reduce an influence of stress. For example, a hybrid structure in which the stretchability of a portion of a substrate supporting a functional element is reduced and the stretchabilityof other portions is increased has been reported.
  • a substrate having such a hybrid structure is formed by joining two types of members having different stretchabilities. Therefore, there is a likelihood that peeling will occur between two types of members having different stretchabilities as the substrate expands and contracts, and a stable stretchability for the substrate as a whole may not be able to be obtained easily. Also, when a substrate is joined to a functional layer including a functional element, it takes time and effort to align a portion having a low stretchability to overlap the functional element. Also, a design is necessary such that the thicknesses of members of two types having different stretchabilities are made uniform when the substrate is formed.
  • the present disclosure has been made in view of the above circumstances, and an objective thereof is to provide a stretchable electronic component having a stable stretchability and enabling damage due to expansion and contraction to be reduced, a method of manufacturing a stretchable electronic component enabling the stretchable electronic component to be easily manufactured, and a display device including the stretchable electronic component.
  • the present disclosure employs the following means.
  • a stretchable electronic component includes a stretchable substrate, a functional element disposed on one surface side of the stretchable substrate, at least one inorganic member disposed between the one surface of the stretchable substrate and the functional element, and a protective film covering the functional element and the one surface of the stretchable substrate, wherein each of the at least one inorganic member has a Young’s modulus larger than a Young’s modulus of the stretchable substrate.
  • the inorganic member protecting the functional element is disposed between the stretchable substrate and the functional element and is not included inside the stretchable substrate. Accordingly, since at least some of a stress according to expansion and contraction of the stretchable substrate is blocked by the inorganic member, damage received by the functional element due to the stress can be reduced. Also, since the stretchable substrate is formed of one type of member, the stretchable substrate has a high stretchability, can avoid a problem that different members contained in the stretchable substrate peel off from each other, and thereby has a stable stretchability.
  • the inorganic member is preferably disposed symmetrically with respect to an axial line passing through a center of the functional element.
  • the functional element is stably supported by the inorganic member.
  • the inorganic member is preferably disposed to contact the stretchable substrate and the functional element.
  • the functional element is stably supported by the inorganic member.
  • the inorganic member preferably has a maximum elongation rate smaller than a maximum elongation rate of the stretchable substrate.
  • the Young’s modulus of the inorganic member is preferably in a range of 50,000 MPa or more and 1,000,000 MPa or less.
  • the maximum elongation rate of the inorganic member is preferably in a range of 0%or more and 2%or less.
  • the thickness of the inorganic member is in a range of 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the stretchable substrate preferably comprisesat least one stretchable support member in a plate shape, the stretchable support member supporting the functional element, and a first organic member disposed below the stretchable support member and having a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more.
  • the stretchable support member can relieve a stress generated according to expansion and contraction of the first organic member and can reduce the stress reaching the functional element via the inorganic member.
  • the stretchable support member is preferably a polyimide member.
  • the polyimide member can relieve the stress generated according to expansion and contraction of the first organic member and can reduce the stress reaching the functional element via the inorganic member.
  • the polyimide member also facilitates formation of the functional element.
  • a plurality of stretchable support members and inorganic members may be provided to be overlapped and the stretchable support members and the inorganic members may be alternately laminated.
  • a stress relief film having a Young’s modulus smaller than a Young’s modulus of the first organic member and a maximum elongation rate of 100%or more is preferably sandwiched between the stretchable support member and the first organic member.
  • a second organic member having a Young’s modulus larger than a Young’s modulus of the protective film and a maximum elongation rate smaller than a maximum elongation rate of the protective film may be disposed in at least a part between the functional element and the protective film.
  • a plurality of functional elements may be disposed on one surface of the stretchable substrate, and at least a pair of the functional elements may be electrically connected to each other via a metallic member having a Young’s modulus of 100,000 MPa or less and a maximum elongation rate of 10%or more.
  • the metallic member has a high stretchability, the metallic member contracts to absorb some of the stress generated by expansion and contraction of the first organic member side or the protective film side, and thereby the stress applied to the functional element can be reduced.
  • a residual stress of the stretchable substrate in a region at which the functional element is positioned is preferably larger than a residual stress of the stretchable substrate in a region between the functional elements.
  • the region between the functional elements does not include the inorganic member having a low stretchability, the region between the functional elements has a smaller residual stress than the region at which the functional element is positioned and can be significantly contracted accordingly.
  • a display device includes the stretchable electronic component according to any one of above-described (1) to (7) as a component driving a light emitting element, in which the functional element is a drive element of the light emitting element.
  • the stretchable electronic component can be utilized as a component for driving a light emitting element such as an OLED or a ⁇ LED.
  • a method of manufacturing a stretchable electronic component includes: a step of providing a functional element on a first surface of a stretchable support member with an inorganic member interposed therebetween; and a step of providing a protective film on the first surface of the stretchable support member and on the functional element, in which a Young’s modulus of the inorganic member is larger than a Young’s modulusof the stretchable support member, and a maximum elongation rate of the inorganic member is smaller than a maximum elongation rate of the stretchable support member.
  • the stretchable substrate used in the manufacturing method is formed of one type of a highly stretchable member in a pulling direction thereof. Therefore, expansion and contraction of the stretchable substrate can be easily controlled, and a thickness at the time of the formation can be freely set. Also, when the stretchable substrate is adhered to a functional layer including the functional element, since the functional element may overlap any portion of the stretchable substrate, work of aligning position is not required. Therefore, according to the manufacturing method, the stretchable electronic component in which the stretchability at a portion other than the functional element is high and a likelihood of breakage due to expansion and contraction is reduced to a low level can be easily manufactured.
  • the method of manufacturing a stretchable electronic component according to the above-described aspect may further comprise: a step of adhering a first organic member on a second surface of the stretchable support member opposite to the first surface after the step of providing the protective film in a state in which the first organic member is stretched in a predetermined direction, the first organic member has a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more, whereina Young’s modulus of the inorganic member is larger than a Young’s modulus of the first organic member, and a maximum elongation rate of the inorganic member is smaller than a maximum elongation rate of the first organic member.
  • the method of manufacturing a stretchable electronic component according to the above-described aspect may further comprise: a step of releasing stretched state of the first organic member after the step of adhering the first organic member.
  • a polyimide member is preferably used as the stretchable support member.
  • the polyimide member can relieve the stress generated according to expansion and contraction of the first organic member and can reduce the stress reaching the functional element via the inorganic member.
  • the polyimide member also facilitates formation of the functional element.
  • the method of manufacturing a stretchable electronic component according to the above-described aspect may further include a step of providing a stress relief film having a Young’s modulus smaller than a Young’s modulus of the first organic member and a maximum elongation rate of 100%or more between the stretchable support member and the first organic member.
  • the method of manufacturing a stretchable electronic component according to the above-described aspect may further include a step of providing a second organic member having a Young’s modulus larger than a Young’s modulus of the protective film and a maximum elongation rate smaller than a maximum elongation rate of the protective film in at least a part between the functional element and the protective film.
  • a stretchable electronic component having a stable stretchability and enabling damage due to expansion and contraction to be reduced, a method of manufacturing a stretchable electronic component enabling the stretchable electronic component to be easily manufactured, and a display device including the stretchable electronic component.
  • Fig. 1 is a cross-sectional view of a stretchable electronic component according to a first embodiment.
  • Fig. 2A is a cross-sectional view in a manufacturing process of the stretchable electronic component of the first embodiment.
  • Fig. 2B is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
  • Fig. 2C is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
  • Fig. 3A is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
  • Fig. 3B is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
  • Fig. 4 is a cross-sectional view of a stretchable electronic component according to a second embodiment.
  • Fig. 5 is a cross-sectional view of a stretchable electronic component according to a third embodiment.
  • Fig. 6 is a cross-sectional view of a stretchable electronic component according to a fourth embodiment.
  • Fig. 1 is a cross-sectional view schematically illustrating a configuration of a stretchable electronic component 100 according to a first embodiment of the present disclosure.
  • the stretchable electronic component 100 mainly includes a stretchable substrate 101, a functional element 102, an inorganic member 103, and a protective film 104.
  • the functional element 102 is disposed on one surface 101a side of the stretchable substrate.
  • the inorganic member 103 is disposed between the one surface 101a of the stretchable substrate and the functional element 102.
  • the protective film 104 is disposed to cover the functional element 102 and the one surface 101a of the stretchable substrate.
  • a metallic member (interconnection member) 107 connecting the functional elements 102 to each other or connecting a functional element 102 and a peripheral element (not illustrated) may be provided as necessary.
  • the stretchable substrate 101 is preferably configured such that a plate-shaped (preferably flat plate-shaped) stretchable support member 105 and a first organic member 106 are overlapped to form a laminated structure.
  • the stretchable support member 105 may be disposed on the one surface 101a side of the stretchable substrate to support the functional element 102 via the inorganic member 103.
  • the first organic member 106 may be disposed below the stretchable support member 105, that is, on the other surface 101b side of the stretchable substrate.
  • the functional element 102 may be a structure including an element and a circuit for electrically driving the stretchable electronic component 100.
  • the functional element 102 includes a light emitting element, a switch element such as a thin film transistor (TFT) for controlling turning on/off of a light emitting element, or the like.
  • a drive method of the stretchable electronic component 100 in this case may be an active-matrix method or a passive-matrix method.
  • the inorganic member 103 is a minimally stretchable member (hard member) having a Young’s modulus larger than a Young’s modulus of the stretchable substrate 101 and a maximum elongation rate smaller than a maximum elongation rate of the stretchable substrate 101.
  • the maximum elongation rate in the present specification refers to an elongation rate when a member breaks.
  • the elongation rate is calculated by the following expression.
  • an elongation rate of this member is 100%. If this member breaks when it is stretched to 2 m, a maximum elongation rate of this member is 100%.
  • a Young’s modulus of the inorganic member 103 is preferably 50,000 MPa or more and 1,000,000 MPa or less.
  • a maximum elongation rate of the inorganic member 103 is preferably about 0%or more and 2%or less.
  • silicon compounds such as SiO and SiN, metals such as Mo, Ti and Ta, and inorganic materials (metallic materials) such as oxides of these metals can be exemplified.
  • a mixture of the above-described inorganic materials and an organic material may also be used, and in this case, the inorganic member may contain the above-described inorganic materials as main components (about 80%or more) .
  • the inorganic member 103 need only have a shape that supports the functional element 102 so that at least the functional element 102 is not in contact with the stretchable substrate 101.
  • the inorganic member 103 is preferably formed to be small within a range in which stability of a disposition of the functional elements 102 is not impaired.
  • the inorganic member 103 is preferably disposed symmetrically with respect to an axial line passing through a center of the functional element102.
  • the inorganic member 103 is preferably disposed to contact the stretchable substrate 101 and the functional element 102. With these configuration, the functional element 102 is stably supported by the inorganic member 103.
  • a thickness of the inorganic member 103 can be reduced to about 1/100 of that when an organic member is used and is preferably 0.5 ⁇ m or more and 20 ⁇ m or less in accordance with a size of the functional element 102.
  • the thickness of the inorganic member 103 is 0.5 ⁇ m or more, a stress applied to the functional element 102 can be effectively blocked, and when the thickness thereof is 20 ⁇ m or less, the inorganic member 103 can be easily formed.
  • the metallic member 107 may be a highly stretchable member (soft member) . Since the metallic member 107 is deformed following deformation of the stretchable substrate 101, the metallic member 107 preferably has a Young’s modulus of 1,000 MPa or more and 100,000 MPa or less and a maximum elongation rate of 10%or more. The metallic member 107 may have the maximum elongation rate of about 10%or more and 50%or less. From the perspective of increasing thestretchability, a thickness of the metallic member 107 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the metallic member 107 is 0.1 ⁇ m or more, a sufficient breaking strength can be provided, and when the thickness of the metallic member 107 is 10 ⁇ m or less, a sufficient stretchability can be provided.
  • amorphous metals such as MoNi, NiW, NiTi, and CuZr, and low melting point metals can be exemplified.
  • the metallic member 107 has a high stretchability, the metallic member 107 contracts to absorb some of a stress generated by expansion and contraction of the first organic member 106 side or the protective film 104 side, and the stress applied to the functional element 102 can be reduced.
  • the protective film 104 is a film that protects the functional element 102 from external factors and films of various materials (oxide film, nitride film, and the like) are conceivable according to applications as the stretchable electronic component.
  • the protective film 104 may be a single layer film or a film formed of a plurality of layers.
  • an optically clear adhesive sheet (OCA) or an optically clear resin (OCR) may be used as the protective film 104 and a transparent member such as a glass plate may be mounted thereon.
  • the stretchable support member 105 may be a stretchable member that supports the functional element 102.
  • the stretchable support member 105 preferably has a Young’s modulus of 1,000 MPa or more and 10,000 MPa or less.
  • a maximum elongation rate of the stretchable support member 105 may be about 0.5%or more and 10%or less.
  • the stretchable support member 105 has a function of supporting the functional element 102 via the inorganic member 103 and relieving the stress applied from the first organic member 106 side. From the perspective of achieving both the support function and the stress relief function, a thickness of the stretchable support member 105 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less. When the thickness of the stretchable support member 105 is 0.5 ⁇ m or more, a sufficient support function and stress relief function can be provided, and when the thickness thereof is 10 ⁇ m or less, the stretchable substrate 101 having a high stretchability can be provided.
  • the stretchable support member 105 is preferably a polyimide member containing polyimide as a main component.
  • a material of the stretchable support member 105 is not limited to polyimide and may include a material having excellent heat resistance such as polyamide and a siloxane compound.
  • the first organic member 106 may be a highly stretchable member (soft member) .
  • the first organic member 106 may have a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more.
  • the maximum elongation rate of the first organic member 106 may be about 100%or more and 1,000%or less.
  • organic materials materials containing organic groups
  • silicone, urethane, and acryl, and modified compounds thereof can be exemplified.
  • a mixture of the above-described organic materials and inorganic materials may be used, and in that case, the above-described organic materials may be contained as main components (about 80%or more) .
  • a thickness of the first organic member 106 is preferably 50 ⁇ m or more from the perspective of maintaining a strength as a support member, and preferably 1,000 ⁇ m or less from the perspective of enhancing the stretchability.
  • a sufficient expanding/contracting function can be provided, and when the thickness thereof is 1,000 ⁇ m or less, a thinner stretchable electronic component can be provided.
  • the first organic member 106 is adhered to the stretchable support member 105 in a state of being pulled toward circumferentially outer sides along a surface facing the stretchable support member 105. Therefore, a compressive stress in a direction opposite to the pulling direction (compression direction D 1 ) is generated in the first organic member 106 after the adhesion. Accordingly, the compressive stress in the same direction is also applied to the stretchable support member 105 adhered to the first organic member 106 and to the inorganic member 103 and the metallic member 107 that are indirectly connected via the stretchable support member 105.
  • the inorganic member 103 is hardly deformed even when the compressive stress is applied, the stress applied to the functional element 102 in contact with the inorganic member 103 is substantially blocked by the inorganic member 103.
  • a residual stress of the stretchable substrate 101 in a region at which the functional element 102 is positioned can be larger than a residual stress of the stretchable substrate 101 in a region between the functional elements 102. Since the region between the functional elements 102 does not include the inorganic member 103 having a low stretchability, the region between the functional elements 102 has a smaller residual stress than the region at which the functional element 102 is positioned and can be significantly contracted accordingly.
  • the stretchable electronic component 100 can be manufactured mainly through the following steps.
  • Figs. 2A to 2C, 3A, and 3B are cross-sectional views of a stretchable electronic component in the manufacturing process of each step.
  • the inorganic member 103 having a predetermined pattern is formed on a first surface 105a of the flat plate-shaped stretchable support member 105 (for example, a polyimide member) , and the functional element 102 is provided (formed) thereon with the inorganic member 103 interposed (on the inorganic member 103) .
  • the flat plate-shaped stretchable support member 105 for example, a polyimide member
  • Formation of the inorganic member 103 and the functional element 102 can be performed by, for example, the following method.
  • a film of the inorganic member 103 is formed on the entire first surface 105a of the stretchable support member, and an unnecessary portion (a portion not overlapping the functional element 102 in a thickness direction, or the like) not involved in the support of the functional element 102 is removed using a photolithography method or an etching method.
  • the functional elements 102 of various types are formed on the remaining inorganic members 103 according to a predetermined process.
  • the metallic member 107 for connecting the functional elements 102 to each other or connecting the functional element 102 and a peripheral element is provided (formed) as necessary. Formation of the metallic member 107 can be performed, for example, by forming a metal film using a sputtering method and removing unnecessary portions using a photolithography method, an etching method, or the like.
  • the protective film 104 is provided (formed) on the first surface 105a of the stretchable support member and on the functional element 102. Formation of the protective film 104 can be performed using a known film forming method such as, for example, a CVD method. The protective film 104 is formed to cover at least the first surface 105a of the stretchable support member and an exposed surface of the functional element 102. Planarization may be performed for an outermost surface of the formed protective film using a polishing method or the like as necessary.
  • the first organic member 106 having a predetermined thickness is pulled toward circumferentially outer sides (pulling direction D 2 ) in a plan view from the thickness direction as illustrated by a broken line, and a stretched surface 106a is adhered to a second surface 105b (a surface on a side opposite to the first surface 105a) of the stretchable support member 105.
  • adhesion can be performed using a predetermined adhesive material.
  • the first organic member 106 after the adhesion is compressed toward a center in a plan view from the thickness direction (the compression direction D 1 ) .
  • a Young’s modulus of the inorganic member 103 is larger than Young's moduli of the stretchable support member 105 and the first organic member 106.
  • a maximum elongation rate of the inorganic member 103 is smaller than maximum elongation rates of the stretchable support member 105 and the first organic member 106.
  • the inorganic member 103 protecting the functional element 102 is disposed between the stretchable substrate 101 and the functional element 102 and is not included inside the stretchable substrate 101. Accordingly, since at least some of the stress according to expansion and contraction of the stretchable substrate 101 is blocked by the inorganic member 103, damage received by the functional element 102 due to the stress can be reduced. Also, since the stretchable substrate 101 is formed of one type of member, the stretchable substrate 101 has a high stretchability, can avoid a problem of breakage occurring due to different members contained in the stretchable substrate 101 peeling off from each other or the like, and thereby hasa stable stretchability.
  • the stretchable electronic component 100 can be utilized as a component for driving a light emitting element such as an OLED or a ⁇ LED.
  • the functional element 102 in this case is a drive element of a light emitting element and may include a light emitting element such as a light emitting diode and a switch element such as a thin film transistor which form a pixel structure of an active-matrix type or passive-matrix type.
  • the stretchable substrate 101 used in the method of manufacturing a stretchable electronic component of the present embodiment is formed of one type of a highly stretchable member in the pulling direction D 2 . Therefore, expansion and contraction of the stretchable substrate 101 can be easily controlled, and a thickness at the time of the formation can be freely set. Also, when the stretchable substrate 101 is adhered to a functional layer including the functional element 102, work of aligning position is not required since the functional element may overlap any portion of the stretchable substrate 101. Therefore, according to the method of manufacturing a stretchable electronic component of the present embodiment, the stretchable electronic component 100 in which a portion other than the functional element 102 has highstretchability and a risk of breakage due to expansion and contraction is reduced to a low level can be easily manufactured.
  • a stretchable substrate in which a portion overlapping a functional element is made of a minimally stretchable member and other portionsare made of a highly stretchable member is known.
  • the stretchable base material performs that the functional element is prevented from being expanded and contracted and a substrate as a whole is made possible to be expanded and contracted.
  • a stretchable substrate is adhered to a functional layer including the functional element, it is difficult to align a position of the minimally stretchable member to overlap a position of the functional element.
  • such a stretchable substrate is formed by joining two types of members having different stretchabilities, it takes time and effort to align the portion having a low stretchability to overlap the functional elementwhen the stretchable substrate is adhered to the functional layer including the functional element.
  • it is difficult to form such a stretchable substrate since it is necessary to make uniform the thicknesses of two portions having different stretchabilities.
  • Fig. 4 is a cross-sectional view schematically illustrating a configuration of a stretchable electronic component 200 according to a second embodiment of the present disclosure.
  • the stretchable electronic component 200 is different from the stretchable electronic component 100 of the first embodiment in that a stress relief film 108 is sandwiched between the stretchable support member 105 and the first organic member 106.
  • Other configurations are the same as those of the stretchable electronic component 100, and corresponding portions will be denoted by the same reference signs regardless of a difference in shape.
  • the stress relief film 108 may be a highly stretchable member (soft member) having adhesiveness, a high breaking strength, and a Young’s modulus smaller than a Young’s modulus of the first organic member 106.
  • a maximum elongation rate of the stress relief film 108 may be 100%or more.
  • the maximum elongation rate of the stress relief film 108 may be about 100%or more and 1,000%or less.
  • a Young’s modulus of the stress relief film 108 is preferably 0.01 MPa or more and 100 MPa or less.
  • an optically clear adhesive sheet (OCA) OCA
  • OCR optically clear resin
  • a thickness of the stress relief film 108 may be 5 ⁇ m or more and 50 ⁇ m or less.
  • a stress can be appropriately released, and when the thickness thereof is 50 ⁇ m or less, a thinner stretchable electronic component can be provided.
  • the stretchable electronic component 200 of the present embodiment may be obtained by adding a step of providing (sandwiching) a material of the stress relief film 108 between the first organic member 106 and the stretchable support member 105 in the step of adhering the first organic member 106 and the stretchable support member 105 (Fig. 3A) in the method of manufacturing the stretchable electronic component 100 described above.
  • the stress applied to the functional element 102 via the stretchable support member 105 and the inorganic member 103 can be reduced. Therefore, in the stretchable electronic component 200 of the present embodiment, in addition to the effects obtained by the stretchable electronic component 100 of the first embodiment, effects of significantly reducing damage due to the stress applied from the first organic member 106 side can be obtained.
  • Fig. 5 is a cross-sectional view schematically illustrating a configuration of a stretchable electronic component 300 according to a third embodiment of the present disclosure.
  • the stretchable electronic component 300 is different from the stretchable electronic component 100 of the first embodiment in that a second organic member 109 is disposed in at least a part between the functional element 102 and the protective film 104.
  • Fig. 5 illustrates a case in which the entire outer circumferential portion of the functional element 102 in contact with the protective film 104 is covered with the second organic member 109.
  • Other configurations are the same as those of the stretchable electronic component 100, and corresponding portions will be denoted by the same reference signs regardless of a difference in shape.
  • the second organic member 109 may be a minimally stretchable member (hard member) having a Young’s modulus larger than a Young’s modulus of the protective film 104 and a maximum elongation rate smaller than a maximum elongation rate of the protective film 104.
  • the Young’s modulus of the second organic member 109 is preferably 3,000 MPa or more and 6,000 MPa or less.
  • those containing a resin compound such as transparent polyimide, acryl, or epoxy as a main component (about 80%or more) can be exemplified.
  • a layer (film) of the second organic member 109 covers a wide range, preferably the entire, of the outer circumferential portion of the functional element 102, the layer (film) is preferably formed thick.
  • a thickness of the second organic member 109 may be 1 ⁇ m or more and 20 ⁇ m or less. When the thickness of the second organic member 109 is 1 ⁇ m or more, a stress can be effectively blocked, and when the thickness thereof is 20 ⁇ m or less, the second organic member 109 can be easily formed. Since the second organic member 109 is formed after the functional element 102 and does not go through a high-temperature thermal processing, there is no problem in heat resistance thereof. A maximum elongation rate of the second organic member 109 may be about 0%or more and 10%or less.
  • the stretchable electronic component 300 of the present embodiment can be obtained by providing (forming) a film of the second organic member 109 using a known film forming method such as a CVD method between the step of forming the functional element 102 (Fig. 2A) and the step of forming the protective film (Fig. 2B) in the method of manufacturing the stretchable electronic component 100 described above.
  • a known film forming method such as a CVD method between the step of forming the functional element 102 (Fig. 2A) and the step of forming the protective film (Fig. 2B) in the method of manufacturing the stretchable electronic component 100 described above.
  • the stretchable electronic component 300 of the present embodiment in addition to the effects obtained by the stretchable electronic component 100 of the first embodiment, effects of reducing damage due to the stress applied from the protective film 104 side can be obtained.
  • Fig. 6 is a cross-sectional view schematically illustrating a configuration of the stretchable electronic component 400 according to a fourth embodiment of the present disclosure.
  • the stretchable electronic component 400 is different from the stretchable electronic component 100 of the first embodiment in that a plurality of stretchable support members 105 and inorganic members 103 are provided to be overlapped.
  • the first organic member 106, the stretchable support member 105, and the inorganic member 103 are disposed in order from a lower layer side, and a stretchable support member 105A and an inorganic member 103A may be alternately laminated on the inorganic member 103.
  • an uppermost layer is the inorganic member 103A, and a functional element 102 is disposed thereon.
  • a case in which one layer of the stretchable support member 105A and one layer of the inorganic member 103A are provided is illustrated, but two or more layers may be provided for each of them.
  • Other configurations are the same as those of the stretchable electronic component 100, and corresponding portions will be denoted by the same reference signs regardless of a difference in shape.
  • Both Young’s moduli and maximum elongation rates of the stretchable support member 105A and the inorganic member 103A of a second and higher layers counted from the first organic member 106 side may be set in the same ranges as the stretchable support member 105 and the inorganic member 103 of the first embodiment.
  • the Young’s modulus and the maximum elongation rate may not be the same between the stretchable support members 105 or between the inorganic members 103 of different layers but are preferable the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A stretchable electronic component (100) includes a stretchable substrate (101), a functional element (102) disposed on a one surface side (101a) of the stretchable substrate (101), at least one inorganic member (103) disposed between the one surface side (101a) of the stretchable substrate (101) and the functional element (102), and a protective film (104) covering the functional element (102) and the one surface side (101a) of the stretchable substrate (101), wherein each of the at least one inorganic member (103) has a Young's modulus larger than a Young's modulus of the stretchable substrate (101).

Description

STRETCHABLE ELECTRONIC COMPONENT, METHOD OF MANUFACTURING THE SAME, AND DISPLAY DEVICE [Technical Field]
The present disclosure relates to a stretchable electronic component, a method of manufacturing the same, and a display device.
[Background Art]
Display devices such as an organic EL displays (OLEDs) of a self-luminous type and liquid crystal displays (LCDs) using backlights are used as monitors for electronic devices of various types such as computers, televisions, and mobile phones. In display devices, a larger area, space saving, and weight reduction are required, and studies have been madeto realize this. As a substrate on which functional elements for display devices are mounted, a stretchable display device that uses a flexible material such as plastic to enable expansion and contraction in a specific direction and various deformations has been attracting attention as a next-generation display device.
[SummaryofInvention]
As a substrate expands and contracts, a stress is generated on functional elements such as thin film transistors (TFTs) and light emitting elements mounted on the substrate. Since it may be difficult to form functional elements using a flexible material and they are easily damaged by a stress, various types of design have been made to reduce an influence of stress. For example, a hybrid structure in which the stretchability of a portion of a substrate supporting a functional element is reduced and the  stretchabilityof other portions is increased has been reported.
A substrate having such a hybrid structure is formed by joining two types of members having different stretchabilities. Therefore, there is a likelihood that peeling will occur between two types of members having different stretchabilities as the substrate expands and contracts, and a stable stretchability for the substrate as a whole may not be able to be obtained easily. Also, when a substrate is joined to a functional layer including a functional element, it takes time and effort to align a portion having a low stretchability to overlap the functional element. Also, a design is necessary such that the thicknesses of members of two types having different stretchabilities are made uniform when the substrate is formed.
The present disclosure has been made in view of the above circumstances, and an objective thereof is to provide a stretchable electronic component having a stable stretchability and enabling damage due to expansion and contraction to be reduced, a method of manufacturing a stretchable electronic component enabling the stretchable electronic component to be easily manufactured, and a display device including the stretchable electronic component.
In order to solve the above problems, the present disclosure employs the following means.
(1) A stretchable electronic component according to one aspect of the present disclosure includes a stretchable substrate, a functional element disposed on one surface side of the stretchable substrate, at least one inorganic member disposed between the one  surface of the stretchable substrate and the functional element, and a protective film covering the functional element and the one surface of the stretchable substrate, wherein each of the at least one inorganic member has a Young’s modulus larger than a Young’s modulus of the stretchable substrate.
With this configuration, the inorganic member protecting the functional element is disposed between the stretchable substrate and the functional element and is not included inside the stretchable substrate. Accordingly, since at least some of a stress according to expansion and contraction of the stretchable substrate is blocked by the inorganic member, damage received by the functional element due to the stress can be reduced. Also, since the stretchable substrate is formed of one type of member, the stretchable substrate has a high stretchability, can avoid a problem that different members contained in the stretchable substrate peel off from each other, and thereby has a stable stretchability.
(2) In the stretchable electronic component according to the above-described aspect, the inorganic member is preferably disposed symmetrically with respect to an axial line passing through a center of the functional element.
With this configuration, the functional element is stably supported by the inorganic member.
(3) In the stretchable electronic component according to the above-described aspect, the inorganic member is preferably disposed to contact the stretchable substrate and the functional element.
With this configuration, the functional element is stably supported by the inorganic member.
(4) In the stretchable electronic component according to the above-described aspect, the inorganic memberpreferably has a maximum elongation rate smaller than a maximum elongation rate of the stretchable substrate.
With this configuration, a stress according to expansion and contraction of the stretchable substrate is strongly blocked by the inorganic member. Therefore, damage received by the functional element due to the stress can be reduced.
(5) In the stretchable electronic component according to the above-described aspect, the Young’s modulus of the inorganic member is preferably in a range of 50,000 MPa or more and 1,000,000 MPa or less.
With this configuration, a stress according to expansion and contraction of the stretchable substrate is strongly blocked by the inorganic member. Therefore, damage received by the functional element due to the stress can be reduced.
(6) In the stretchable electronic component according to the above-described aspect, the maximum elongation rate of the inorganic member is preferably in a range of 0%or more and 2%or less.
With this configuration, a stress according to expansion and contraction of the stretchable substrate is strongly blocked by the inorganic member. Therefore, damage received by the functional element due to the stress can be reduced.
(7) In the stretchable electronic component according to the above-described aspect, the thickness of the inorganic member is in a range of 0.5 μm or more and 20 μm or less.
With this configuration, a stress applied to the functional element can be effectively blocked, and the inorganic member can be easily formed.
(8) In the stretchable electronic component according to the above-described aspect, the stretchable substrate preferably comprisesat least one stretchable support member in a plate shape, the stretchable support member supporting the functional element, and a first organic member disposed below the stretchable support member and having a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more.
With this configuration, the stretchable support member can relieve a stress generated according to expansion and contraction of the first organic member and can reduce the stress reaching the functional element via the inorganic member.
(9) In the stretchable electronic component according to the above-described aspect, the stretchable support member is preferably a polyimide member.
With this configuration, the polyimide member can relieve the stress generated according to expansion and contraction of the first organic member and can reduce the stress reaching the functional element via the inorganic member. The polyimide member also facilitates formation of the functional element.
(10) In the stretchable electronic component according to the above-described aspect, a plurality of stretchable support members and inorganic members may be provided to be overlapped and the stretchable support members and the inorganic members may be alternately laminated.
With this configuration, since a plurality of members are sandwiched between  the first organic member and the functional element, the stress generated according to the expansion and contraction of the first organic member can be significantly reduced before it reaches the functional element.
(11) In the stretchable electronic component according to the above-described aspect, a stress relief film having a Young’s modulus smaller than a Young’s modulus of the first organic member and a maximum elongation rate of 100%or more is preferably sandwiched between the stretchable support member and the first organic member.
With this configuration, since some of the stress generated according to expansion and contraction of the first organic member is released by the stress relief film, the stress applied to the functional element via the stretchable support member and the inorganic member can be reduced.
(12) In the stretchable electronic component according to the above-described aspect, a second organic member having a Young’s modulus larger than a Young’s modulus of the protective film and a maximum elongation rate smaller than a maximum elongation rate of the protective film may be disposed in at least a part between the functional element and the protective film.
With this configuration, since some of a stress generated according to expansion and contraction of the protective film is blocked (absorbed) by the second organic member, the stress applied to the functional element can be reduced.
(13) In the stretchable electronic component according to the above-described aspect, a plurality of functional elements may be disposed on one surface of the stretchable substrate, and at least a pair of the functional elements may be electrically  connected to each other via a metallic member having a Young’s modulus of 100,000 MPa or less and a maximum elongation rate of 10%or more.
With this configuration, the metallic member has a high stretchability, the metallic member contracts to absorb some of the stress generated by expansion and contraction of the first organic member side or the protective film side, and thereby the stress applied to the functional element can be reduced.
(14) In the stretchable electronic component according to the above-described aspect, a residual stress of the stretchable substrate in a region at which the functional element is positioned is preferably larger than a residual stress of the stretchable substrate in a region between the functional elements.
With this configuration, since the region between the functional elements does not include the inorganic member having a low stretchability, the region between the functional elements has a smaller residual stress than the region at which the functional element is positioned and can be significantly contracted accordingly.
(15) A display device according to one aspect of the present disclosure includes the stretchable electronic component according to any one of above-described (1) to (7) as a component driving a light emitting element, in which the functional element is a drive element of the light emitting element.
With this configuration, the stretchable electronic component can be utilized as a component for driving a light emitting element such as an OLED or a μLED.
(16) A method of manufacturing a stretchable electronic component according to one aspect of the present disclosure includes: a step of providing a functional element on  a first surface of a stretchable support member with an inorganic member interposed therebetween; and a step of providing a protective film on the first surface of the stretchable support member and on the functional element, in which a Young’s modulus of the inorganic member is larger than a Young’s modulusof the stretchable support member, and a maximum elongation rate of the inorganic member is smaller than a maximum elongation rate of the stretchable support member.
The stretchable substrate used in the manufacturing method is formed of one type of a highly stretchable member in a pulling direction thereof. Therefore, expansion and contraction of the stretchable substrate can be easily controlled, and a thickness at the time of the formation can be freely set. Also, when the stretchable substrate is adhered to a functional layer including the functional element, since the functional element may overlap any portion of the stretchable substrate, work of aligning position is not required. Therefore, according to the manufacturing method, the stretchable electronic component in which the stretchability at a portion other than the functional element is high and a likelihood of breakage due to expansion and contraction is reduced to a low level can be easily manufactured.
(17) The method of manufacturing a stretchable electronic component according to the above-described aspectmay further comprise: a step of adhering a first organic member on a second surface of the stretchable support member opposite to the first surface after the step of providing the protective film in a state in which the first organic member is stretched in a predetermined direction, the first organic member has a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more, whereina Young’s modulus of the inorganic member is larger than a Young’s modulus of the first organic member, and a maximum elongation rate of the  inorganic member is smaller than a maximum elongation rate of the first organic member.
(18) The method of manufacturing a stretchable electronic component according to the above-described aspectmay further comprise: a step of releasing stretched state of the first organic member after the step of adhering the first organic member.
(19) In the method of manufacturing a stretchable electronic component according to the above-described aspect, a polyimide member is preferably used as the stretchable support member.
With this manufacturing method, the polyimide member can relieve the stress generated according to expansion and contraction of the first organic member and can reduce the stress reaching the functional element via the inorganic member. The polyimide member also facilitates formation of the functional element.
(20) The method of manufacturing a stretchable electronic component according to the above-described aspect may further include a step of providing a stress relief film having a Young’s modulus smaller than a Young’s modulus of the first organic member and a maximum elongation rate of 100%or more between the stretchable support member and the first organic member.
With this manufacturing method, since some of the stress generated according to expansion and contraction of the first organic member is released by the stress relief film, the stress applied to the functional element via the stretchable support member and the inorganic member can be reduced.
(21) The method of manufacturing a stretchable electronic component according to the above-described aspect may further include a step of providing a second organic member having a Young’s modulus larger than a Young’s modulus of the protective film and a maximum elongation rate smaller than a maximum elongation rate of the protective film in at least a part between the functional element and the protective film.
With this manufacturing method, since some of the stress generated according to expansion and contraction of the protective film is blocked (absorbed) by the second organic member, the stress applied to the functional element can be reduced.
According to the present disclosure, it is possible to provide a stretchable electronic component having a stable stretchability and enabling damage due to expansion and contraction to be reduced, a method of manufacturing a stretchable electronic component enabling the stretchable electronic component to be easily manufactured, and a display device including the stretchable electronic component.
[BriefDescriptionofDrawings]
Fig. 1 is a cross-sectional view of a stretchable electronic component according to a first embodiment.
Fig. 2A is a cross-sectional view in a manufacturing process of the stretchable electronic component of the first embodiment.
Fig. 2B is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
Fig. 2C is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
Fig. 3A is a cross-sectional view in the manufacturing process of the stretchable  electronic component of the first embodiment.
Fig. 3B is a cross-sectional view in the manufacturing process of the stretchable electronic component of the first embodiment.
Fig. 4 is a cross-sectional view of a stretchable electronic component according to a second embodiment.
Fig. 5 is a cross-sectional view of a stretchable electronic component according to a third embodiment.
Fig. 6 is a cross-sectional view of a stretchable electronic component according to a fourth embodiment.
[Description of Embodiments]
Hereinafter, a stretchable electronic component, a method of manufacturing the same, and a display device according to an embodiment of the present disclosure will be described in detail with reference to the drawings. Further, in the drawings used in the following description, featured parts may be illustrated in an enlarged manner so that the features can be better understood, and dimensional ratios and the like between respective constituent elementsmay not be the same as the actual ones. Also, materials, dimensions, and the like illustrated in the following description are merely examples, and the present disclosure is not limited thereto and can be implemented with appropriate modifications within a range not changing the gist thereof.
<First embodiment>
(Stretchable electronic component)
Fig. 1 is a cross-sectional view schematically illustrating a configuration of a stretchable electronic component 100 according to a first embodiment of the present  disclosure. The stretchable electronic component 100 mainly includes a stretchable substrate 101, a functional element 102, an inorganic member 103, and a protective film 104. The functional element 102 is disposed on one surface 101a side of the stretchable substrate. The inorganic member 103 is disposed between the one surface 101a of the stretchable substrate and the functional element 102. The protective film 104 is disposed to cover the functional element 102 and the one surface 101a of the stretchable substrate. A metallic member (interconnection member) 107 connecting the functional elements 102 to each other or connecting a functional element 102 and a peripheral element (not illustrated) may be provided as necessary.
The stretchable substrate 101 is preferably configured such that a plate-shaped (preferably flat plate-shaped) stretchable support member 105 and a first organic member 106 are overlapped to form a laminated structure. The stretchable support member 105 may be disposed on the one surface 101a side of the stretchable substrate to support the functional element 102 via the inorganic member 103. The first organic member 106 may be disposed below the stretchable support member 105, that is, on the other surface 101b side of the stretchable substrate.
The functional element 102 may be a structure including an element and a circuit for electrically driving the stretchable electronic component 100. When the stretchable electronic component 100 is used as a component for driving a display device, the functional element 102 includes a light emitting element, a switch element such as a thin film transistor (TFT) for controlling turning on/off of a light emitting element, or the like. A drive method of the stretchable electronic component 100 in this case may be an active-matrix method or a passive-matrix method.
The inorganic member 103 is a minimally stretchable member (hard member) having a Young’s modulus larger than a Young’s modulus of the stretchable substrate 101 and a maximum elongation rate smaller than a maximum elongation rate of the stretchable substrate 101. The maximum elongation rate in the present specification refers to an elongation rate when a member breaks. The elongation rate is calculated by the following expression.
[Math. 1]
Figure PCTCN2021128253-appb-000001
For example, when a member having a length of 1 m is stretched to 2 m, an elongation rate of this member is 100%. If this member breaks when it is stretched to 2 m, a maximum elongation rate of this member is 100%.
A Young’s modulus of the inorganic member 103 is preferably 50,000 MPa or more and 1,000,000 MPa or less. A maximum elongation rate of the inorganic member 103 is preferably about 0%or more and 2%or less. As specific examples for the inorganic member 103, silicon compounds such as SiO and SiN, metals such as Mo, Ti and Ta, and inorganic materials (metallic materials) such as oxides of these metals can be exemplified. A mixture of the above-described inorganic materials and an organic material may also be used, and in this case, the inorganic member may contain the above-described inorganic materials as main components (about 80%or more) .
The inorganic member 103 need only have a shape that supports the functional element 102 so that at least the functional element 102 is not in contact with the stretchable substrate 101. When the inorganic member 103 is formed to be large, since it may hinder expansion and contraction of peripheral members, the inorganic member 103 is preferably formed to be small within a range in which stability of a disposition of the functional elements 102 is not impaired. Specifically, the inorganic member 103 is preferably disposed symmetrically with respect to an axial line passing through a center of the functional element102. Furthermore, the inorganic member 103 is preferably disposed to contact the stretchable substrate 101 and the functional element 102. With these configuration, the functional element 102 is stably supported by the inorganic member 103. A thickness of the inorganic member 103 can be reduced to about 1/100 of that when an organic member is used and is preferably 0.5 μm or more and 20 μm or less in accordance with a size of the functional element 102. When the thickness of the inorganic member 103 is 0.5 μm or more, a stress applied to the functional element 102 can be effectively blocked, and when the thickness thereof is 20 μm or less, the inorganic member 103 can be easily formed.
The metallic member 107 may be a highly stretchable member (soft member) . Since the metallic member 107 is deformed following deformation of the stretchable substrate 101, the metallic member 107 preferably has a Young’s modulus of 1,000 MPa or more and 100,000 MPa or less and a maximum elongation rate of 10%or more. The metallic member 107 may have the maximum elongation rate of about 10%or more and 50%or less. From the perspective of increasing thestretchability, a thickness of the metallic member 107 is preferably 0.1 μm or more and 10 μm or less. When the thickness of the metallic member 107 is 0.1 μm or more, a sufficient breaking strength  can be provided, and when the thickness of the metallic member 107 is 10 μm or less, a sufficient stretchability can be provided. As specific examples for the metallic member 107, amorphous metals such as MoNi, NiW, NiTi, and CuZr, and low melting point metals can be exemplified. When the metallic member 107 has a high stretchability, the metallic member 107 contracts to absorb some of a stress generated by expansion and contraction of the first organic member 106 side or the protective film 104 side, and the stress applied to the functional element 102 can be reduced.
The protective film 104 is a film that protects the functional element 102 from external factors and films of various materials (oxide film, nitride film, and the like) are conceivable according to applications as the stretchable electronic component. The protective film 104 may be a single layer film or a film formed of a plurality of layers. For example, as the protective film 104, an optically clear adhesive sheet (OCA) or an optically clear resin (OCR) may be used and a transparent member such as a glass plate may be mounted thereon.
The stretchable support member 105 may be a stretchable member that supports the functional element 102. The stretchable support member 105 preferably has a Young’s modulus of 1,000 MPa or more and 10,000 MPa or less. A maximum elongation rate of the stretchable support member 105 may be about 0.5%or more and 10%or less. The stretchable support member 105 has a function of supporting the functional element 102 via the inorganic member 103 and relieving the stress applied from the first organic member 106 side. From the perspective of achieving both the support function and the stress relief function, a thickness of the stretchable support member 105 is preferably 0.5 μm or more and 10 μm or less. When the thickness of the  stretchable support member 105 is 0.5 μm or more, a sufficient support function and stress relief function can be provided, and when the thickness thereof is 10 μm or less, the stretchable substrate 101 having a high stretchability can be provided.
The stretchable support member 105 is preferably a polyimide member containing polyimide as a main component. A material of the stretchable support member 105 is not limited to polyimide and may include a material having excellent heat resistance such as polyamide and a siloxane compound.
The first organic member 106 may be a highly stretchable member (soft member) . The first organic member 106 may have a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more. The maximum elongation rate of the first organic member 106 may be about 100%or more and 1,000%or less. As specific examples for the first organic member 106, organic materials (materials containing organic groups) such as silicone, urethane, and acryl, and modified compounds thereof can be exemplified. A mixture of the above-described organic materials and inorganic materials may be used, and in that case, the above-described organic materials may be contained as main components (about 80%or more) . A thickness of the first organic member 106 is preferably 50 μm or more from the perspective of maintaining a strength as a support member, and preferably 1,000 μm or less from the perspective of enhancing the stretchability. When the thickness of the first organic member 106 is 50 μm or more, a sufficient expanding/contracting function can be provided, and when the thickness thereof is 1,000 μm or less, a thinner stretchable electronic component can be provided.
The first organic member 106 is adhered to the stretchable support member 105 in a state of being pulled toward circumferentially outer sides along a surface facing the stretchable support member 105. Therefore, a compressive stress in a direction opposite to the pulling direction (compression direction D 1) is generated in the first organic member 106 after the adhesion. Accordingly, the compressive stress in the same direction is also applied to the stretchable support member 105 adhered to the first organic member 106 and to the inorganic member 103 and the metallic member 107 that are indirectly connected via the stretchable support member 105.
However, since the inorganic member 103 is hardly deformed even when the compressive stress is applied, the stress applied to the functional element 102 in contact with the inorganic member 103 is substantially blocked by the inorganic member 103. As a result, a residual stress of the stretchable substrate 101 in a region at which the functional element 102 is positioned can be larger than a residual stress of the stretchable substrate 101 in a region between the functional elements 102. Since the region between the functional elements 102 does not include the inorganic member 103 having a low stretchability, the region between the functional elements 102 has a smaller residual stress than the region at which the functional element 102 is positioned and can be significantly contracted accordingly.
(Method of manufacturing stretchable electronic component) 
The stretchable electronic component 100 can be manufactured mainly through the following steps. Figs. 2A to 2C, 3A, and 3B are cross-sectional views of a stretchable electronic component in the manufacturing process of each step.
As illustrated in Fig. 2A, the inorganic member 103 having a predetermined pattern is formed on a first surface 105a of the flat plate-shaped stretchable support member 105 (for example, a polyimide member) , and the functional element 102 is provided (formed) thereon with the inorganic member 103 interposed (on the inorganic member 103) .
Formation of the inorganic member 103 and the functional element 102 can be performed by, for example, the following method. A film of the inorganic member 103 is formed on the entire first surface 105a of the stretchable support member, and an unnecessary portion (a portion not overlapping the functional element 102 in a thickness direction, or the like) not involved in the support of the functional element 102 is removed using a photolithography method or an etching method. The functional elements 102 of various types are formed on the remaining inorganic members 103 according to a predetermined process.
As illustrated in Fig. 2B, the metallic member 107 for connecting the functional elements 102 to each other or connecting the functional element 102 and a peripheral element (not illustrated) is provided (formed) as necessary. Formation of the metallic member 107 can be performed, for example, by forming a metal film using a sputtering method and removing unnecessary portions using a photolithography method, an etching method, or the like.
Next, as illustrated in Fig. 2C, the protective film 104 is provided (formed) on the first surface 105a of the stretchable support member and on the functional element 102. Formation of the protective film 104 can be performed using a known film  forming method such as, for example, a CVD method. The protective film 104 is formed to cover at least the first surface 105a of the stretchable support member and an exposed surface of the functional element 102. Planarization may be performed for an outermost surface of the formed protective film using a polishing method or the like as necessary.
Next, as illustrated in Fig. 3A, the first organic member 106 having a predetermined thickness is pulled toward circumferentially outer sides (pulling direction D 2) in a plan view from the thickness direction as illustrated by a broken line, and a stretched surface 106a is adhered to a second surface 105b (a surface on a side opposite to the first surface 105a) of the stretchable support member 105. Here, adhesion can be performed using a predetermined adhesive material.
As illustrated in Fig. 3B, the first organic member 106 after the adhesion is compressed toward a center in a plan view from the thickness direction (the compression direction D 1) . A Young’s modulus of the inorganic member 103 is larger than Young's moduli of the stretchable support member 105 and the first organic member 106. A maximum elongation rate of the inorganic member 103 is smaller than maximum elongation rates of the stretchable support member 105 and the first organic member 106. Thereby, the stretchable support member 105 in contact with the first organic member 106 is contracted. A portion connected via the stretchable support member 105 other than the inorganic member 103 (interconnection portion or the like) is contracted. Thereby, the stretchable electronic component 100 compressed in the compression direction D 1 intersecting (preferably perpendicular to) the lamination direction as a whole can be obtained.
As described above, in the stretchable electronic component 100 of the present embodiment, the inorganic member 103 protecting the functional element 102 is disposed between the stretchable substrate 101 and the functional element 102 and is not included inside the stretchable substrate 101. Accordingly, since at least some of the stress according to expansion and contraction of the stretchable substrate 101 is blocked by the inorganic member 103, damage received by the functional element 102 due to the stress can be reduced. Also, since the stretchable substrate 101 is formed of one type of member, the stretchable substrate 101 has a high stretchability, can avoid a problem of breakage occurring due to different members contained in the stretchable substrate 101 peeling off from each other or the like, and thereby hasa stable stretchability.
Whena display device comprises the stretchable electronic component 100 of the present embodiment, the stretchable electronic component 100can be utilized as a component for driving a light emitting element such as an OLED or a μLED. The functional element 102 in this case is a drive element of a light emitting element and may include a light emitting element such as a light emitting diode and a switch element such as a thin film transistor which form a pixel structure of an active-matrix type or passive-matrix type.
The stretchable substrate 101 used in the method of manufacturing a stretchable electronic component of the present embodiment is formed of one type of a highly stretchable member in the pulling direction D 2. Therefore, expansion and contraction of the stretchable substrate 101 can be easily controlled, and a thickness at the time of the formation can be freely set. Also, when the stretchable substrate 101 is adhered to a  functional layer including the functional element 102, work of aligning position is not required since the functional element may overlap any portion of the stretchable substrate 101. Therefore, according to the method of manufacturing a stretchable electronic component of the present embodiment, the stretchable electronic component 100 in which a portion other than the functional element 102 has highstretchability and a risk of breakage due to expansion and contraction is reduced to a low level can be easily manufactured.
Further, a stretchable substrate in which a portion overlapping a functional element is made of a minimally stretchable member and other portionsare made of a highly stretchable member is known. The stretchable base material performs that the functional element is prevented from being expanded and contracted and a substrate as a whole is made possible to be expanded and contracted. However, when such a stretchable substrate is adhered to a functional layer including the functional element, it is difficult to align a position of the minimally stretchable member to overlap a position of the functional element. Also, since such a stretchable substrate is formed by joining two types of members having different stretchabilities, it takes time and effort to align the portion having a low stretchability to overlap the functional elementwhen the stretchable substrate is adhered to the functional layer including the functional element. Also, it is difficult to form such a stretchable substratesince it is necessary to make uniform the thicknesses of two portions having different stretchabilities.
<Second embodiment>
Fig. 4 is a cross-sectional view schematically illustrating a configuration of a stretchable electronic component 200 according to a second embodiment of the present  disclosure. The stretchable electronic component 200 is different from the stretchable electronic component 100 of the first embodiment in that a stress relief film 108 is sandwiched between the stretchable support member 105 and the first organic member 106. Other configurations are the same as those of the stretchable electronic component 100, and corresponding portions will be denoted by the same reference signs regardless of a difference in shape.
The stress relief film 108 may be a highly stretchable member (soft member) having adhesiveness, a high breaking strength, and a Young’s modulus smaller than a Young’s modulus of the first organic member 106. A maximum elongation rate of the stress relief film 108 may be 100%or more. The maximum elongation rate of the stress relief film 108 may be about 100%or more and 1,000%or less. A Young’s modulus of the stress relief film 108 is preferably 0.01 MPa or more and 100 MPa or less. As specific examples for the stress relief film 108, an optically clear adhesive sheet (OCA) , an optically clear resin (OCR) , and the like can be exemplified. Specifically, as specific examples for the stress relief film 108, acryl, urethane, and modified compounds thereof can be exemplified. A thickness of the stress relief film 108 may be 5 μm or more and 50 μm or less. When the thickness of the stress relief film 108 is 5 μm or more, a stress can be appropriately released, and when the thickness thereof is 50 μm or less, a thinner stretchable electronic component can be provided.
The stretchable electronic component 200 of the present embodiment may be obtained by adding a step of providing (sandwiching) a material of the stress relief film 108 between the first organic member 106 and the stretchable support member 105 in the step of adhering the first organic member 106 and the stretchable support member 105  (Fig. 3A) in the method of manufacturing the stretchable electronic component 100 described above.
Since some of a stress generated according to expansion and contraction of the first organic member 106 is released by the stress relief film 108, the stress applied to the functional element 102 via the stretchable support member 105 and the inorganic member 103 can be reduced. Therefore, in the stretchable electronic component 200 of the present embodiment, in addition to the effects obtained by the stretchable electronic component 100 of the first embodiment, effects of significantly reducing damage due to the stress applied from the first organic member 106 side can be obtained.
<Third embodiment>
Fig. 5 is a cross-sectional view schematically illustrating a configuration of a stretchable electronic component 300 according to a third embodiment of the present disclosure. The stretchable electronic component 300 is different from the stretchable electronic component 100 of the first embodiment in that a second organic member 109 is disposed in at least a part between the functional element 102 and the protective film 104. Fig. 5 illustrates a case in which the entire outer circumferential portion of the functional element 102 in contact with the protective film 104 is covered with the second organic member 109. Other configurations are the same as those of the stretchable electronic component 100, and corresponding portions will be denoted by the same reference signs regardless of a difference in shape.
The second organic member 109 may be a minimally stretchable member (hard member) having a Young’s modulus larger than a Young’s modulus of the protective film  104 and a maximum elongation rate smaller than a maximum elongation rate of the protective film 104. The Young’s modulus of the second organic member 109 is preferably 3,000 MPa or more and 6,000 MPa or less. As specific examples for the second organic member 109, those containing a resin compound such as transparent polyimide, acryl, or epoxy as a main component (about 80%or more) can be exemplified.
Since a layer (film) of the second organic member 109 covers a wide range, preferably the entire, of the outer circumferential portion of the functional element 102, the layer (film) is preferably formed thick. A thickness of the second organic member 109 may be 1 μm or more and 20 μm or less. When the thickness of the second organic member 109 is 1 μm or more, a stress can be effectively blocked, and when the thickness thereof is 20 μm or less, the second organic member 109 can be easily formed. Since the second organic member 109 is formed after the functional element 102 and does not go through a high-temperature thermal processing, there is no problem in heat resistance thereof. A maximum elongation rate of the second organic member 109 may be about 0%or more and 10%or less.
The stretchable electronic component 300 of the present embodiment can be obtained by providing (forming) a film of the second organic member 109 using a known film forming method such as a CVD method between the step of forming the functional element 102 (Fig. 2A) and the step of forming the protective film (Fig. 2B) in the method of manufacturing the stretchable electronic component 100 described above.
Since some of a stress generated according to expansion and contraction of the  protective film 104 is blocked (absorbed) by the second organic member 109, the stress applied to the functional element 102 can be reduced. Therefore, in the stretchable electronic component 300 of the present embodiment, in addition to the effects obtained by the stretchable electronic component 100 of the first embodiment, effects of reducing damage due to the stress applied from the protective film 104 side can be obtained.
<Fourth embodiment>
Fig. 6 is a cross-sectional view schematically illustrating a configuration of the stretchable electronic component 400 according to a fourth embodiment of the present disclosure. The stretchable electronic component 400 is different from the stretchable electronic component 100 of the first embodiment in that a plurality of stretchable support members 105 and inorganic members 103 are provided to be overlapped. As in the stretchable electronic component 100 of the first embodiment, the first organic member 106, the stretchable support member 105, and the inorganic member 103 are disposed in order from a lower layer side, and a stretchable support member 105A and an inorganic member 103A may be alternately laminated on the inorganic member 103. Preferably, an uppermost layer is the inorganic member 103A, and a functional element 102 is disposed thereon. Here, a case in which one layer of the stretchable support member 105A and one layer of the inorganic member 103A are provided is illustrated, but two or more layers may be provided for each of them. Other configurations are the same as those of the stretchable electronic component 100, and corresponding portions will be denoted by the same reference signs regardless of a difference in shape.
Both Young’s moduli and maximum elongation rates of the stretchable support member 105A and the inorganic member 103A of a second and higher layers counted  from the first organic member 106 side may be set in the same ranges as the stretchable support member 105 and the inorganic member 103 of the first embodiment. The Young’s modulus and the maximum elongation rate may not be the same between the stretchable support members 105 or between the inorganic members 103 of different layers but are preferable the same.
Since a plurality of members are sandwiched between the first organic member 106 and the functional element 102, a stress generated according to expansion and contraction of the first organic member 106 can be significantly reduced before it reaches the functional element 102. Therefore, in the stretchable electronic component 400 of the present embodiment, in addition to the effects obtained by the stretchable electronic component 100 of the first embodiment, effects of significantly reducing damage due to the stress generated from the first organic member 106 side can be obtained.
[Reference Signs List]
100, 200, 300, 400 Stretchable electronic component
101 Stretchable substrate
101a One surface of stretchable substrate
101b The other surface of stretchable substrate
102 Functional element
103 Inorganic member
104 Protective film
105 Stretchable support member
105a First surface of stretchable support member
105b Second surface of stretchable support member
106 First organic member
106a Stretched surface of first organic member
107 Metallic member
108 Stress relief film
109 Second organic member

Claims (21)

  1. A stretchable electronic component comprising:
    a stretchable substrate;
    a functional element disposed on one surface side of the stretchable substrate;
    at least one inorganic member disposed between the one surface of the stretchable substrate and the functional element; and
    a protective film covering the functional element and the one surface of the stretchable substrate,
    wherein each of the at least one inorganic member has a Young’s modulus larger than a Young’s modulus of the stretchable substrate.
  2. The stretchable electronic component according to claim 1, wherein the inorganic member is disposed symmetrically with respect to an axial line passing through a center ofthe functional element.
  3. The stretchable electronic component according to claim 1, wherein the inorganic member is disposed to contact the stretchable substrate and the functional element.
  4. The stretchable electronic component according to any one of claims 1to3, wherein the inorganic member has a maximum elongation rate smaller than a maximum elongation rate of the stretchable substrate.
  5. The stretchable electronic component according to any one of claims 1 to 4,  whereinthe Young’s modulus of the inorganic member is in a range of 50,000 MPa or more and 1,000,000 MPa or less.
  6. The stretchable electronic component according to any one of claims 1 to 5, whereinthe maximum elongation rate of the inorganic member is in a range of0%or more and 2%or less.
  7. The stretchable electronic component according to any one of claims 1 to 6, wherein the thickness of the inorganic member is in a range of 0.5 μm or more and 20 μm or less.
  8. The stretchable electronic component according to any one of claims 1 to 7, wherein the stretchable substratecomprises:
    at least one stretchable support member in a plate shape, the stretchable support member supporting the functional element; and
    a first organic member disposed below the stretchable support member and having a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more.
  9. The stretchable electronic component according to claim 8, wherein the stretchable support member is a polyimide member.
  10. The stretchable electronic component according to claim 8 or 9, wherein a plurality of stretchable support members and inorganic members are provided to be overlapped and the stretchable support members and the inorganic members are  alternately laminated.
  11. The stretchable electronic component according to any one of claims 8 to 10, wherein a stress relief film having a Young’s modulus smaller than a Young’s modulus of the first organic member and a maximum elongation rate of 100%or more is sandwiched between the stretchable support member and the first organic member.
  12. The stretchable electronic component according to any one of claims 1 to 11, wherein a second organic member having a Young’s modulus larger than a Young’s modulus of the protective film and a maximum elongation rate smaller than a maximum elongation rate of the protective film is disposed in at least a part between the functional element and the protective film.
  13. The stretchable electronic component according to any one of claims 1 to 12, wherein a plurality of functional elements are disposed on the one surface of the stretchable substrate, and at least a pair of the functional elements are electrically connected to each other via a metallic member having a Young’s modulus of 100,000 MPa or less and a maximum elongation rate of 10%or more.
  14. The stretchable electronic component according to any one of claims 1 to 13, wherein a residual stress of the stretchable substrate in a region at which the functional element is positioned is larger than a residual stress of the stretchable substrate in a region between the functional elements.
  15. A display device comprising the stretchable electronic component according to  any one of claims 1 to 14 as a component driving a light emitting element, wherein the functional element is a drive element of the light emitting element.
  16. A method of manufacturing a stretchable electronic component comprising:
    a step of providing a functional element on a first surface of a stretchable support member with an inorganic member interposed therebetween; and
    a step of providing a protective film on the first surface of the stretchable support member and on the functional element, wherein
    a Young’s modulus of the inorganic member is larger than a Young’s modulusof the stretchable support member, and a maximum elongation rate of the inorganic member is smaller than a maximum elongation rate of the stretchable support member.
  17. The method of manufacturing a stretchable electronic component according to claim 16 further comprising:
    a step of adhering a first organic member on a second surface of the stretchable support member opposite to the first surface after the step of providing the protective film in a state in which the first organic member is stretched in a predetermined direction, the first organic member has a Young’s modulus of 0.3 MPa or more and 100 MPa or less and a maximum elongation rate of 100%or more,
    wherein
    a Young’s modulus of the inorganic member is larger than a Young’s modulus of the first organic member, and a maximum elongation rate of the inorganic member is smaller than a maximum elongation rate of the first organic member.
  18. The method of manufacturing a stretchable electronic component according to  claim 17 further comprising:
    a step of releasing stretched state of the first organic member after the step of adhering the first organic member.
  19. The method of manufacturing a stretchable electronic component according to any one of claims16to 18, wherein a polyimide member is used as the stretchable support member.
  20. The method of manufacturing a stretchable electronic component according to claim 17 or 18, further comprising a step of providing a stress relief film having a Young’s modulus smaller than a Young’s modulus of the first organic member and a maximum elongation rate of 100%or more between the stretchable support member and the first organic member.
  21. The method of manufacturing a stretchable electronic component according to any one of claims 16 to 20, further comprising a step of providing a second organic member having a Young’s modulus larger than a Young’s modulus of the protective film and a maximum elongation rate smaller than a maximum elongation rate of the protective film in at least a part between the functional element and the protective film.
PCT/CN2021/128253 2021-11-02 2021-11-02 Stretchable electronic component, method of manufacturing the same, and display device WO2023077277A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128253 WO2023077277A1 (en) 2021-11-02 2021-11-02 Stretchable electronic component, method of manufacturing the same, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128253 WO2023077277A1 (en) 2021-11-02 2021-11-02 Stretchable electronic component, method of manufacturing the same, and display device

Publications (1)

Publication Number Publication Date
WO2023077277A1 true WO2023077277A1 (en) 2023-05-11

Family

ID=86240476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128253 WO2023077277A1 (en) 2021-11-02 2021-11-02 Stretchable electronic component, method of manufacturing the same, and display device

Country Status (1)

Country Link
WO (1) WO2023077277A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766951A (en) * 2018-05-30 2018-11-06 京东方科技集团股份有限公司 Flexible base board and preparation method, flexible electronic device
CN110189640A (en) * 2019-07-02 2019-08-30 京东方科技集团股份有限公司 Stretchable display base plate and preparation method thereof, display device
CN110235240A (en) * 2018-04-28 2019-09-13 京东方科技集团股份有限公司 Stretchable electronic device and its manufacturing method, stretchable display equipment
US20190305233A1 (en) * 2018-04-03 2019-10-03 Korea Advanced Institute Of Science And Technology Method of fabricating rigid island pattern on stretchable layer with low young's modulus and stretchable electronic device platform using the same
CN111554638A (en) * 2020-04-16 2020-08-18 上海交通大学 Substrate for stretchable electronic device and method of making the same
CN111653205A (en) * 2020-07-15 2020-09-11 上海天马微电子有限公司 Stretchable display panel and display device
CN113321177A (en) * 2021-05-28 2021-08-31 北京京东方技术开发有限公司 Flexible MEMS device and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190305233A1 (en) * 2018-04-03 2019-10-03 Korea Advanced Institute Of Science And Technology Method of fabricating rigid island pattern on stretchable layer with low young's modulus and stretchable electronic device platform using the same
CN110235240A (en) * 2018-04-28 2019-09-13 京东方科技集团股份有限公司 Stretchable electronic device and its manufacturing method, stretchable display equipment
CN108766951A (en) * 2018-05-30 2018-11-06 京东方科技集团股份有限公司 Flexible base board and preparation method, flexible electronic device
CN110189640A (en) * 2019-07-02 2019-08-30 京东方科技集团股份有限公司 Stretchable display base plate and preparation method thereof, display device
CN111554638A (en) * 2020-04-16 2020-08-18 上海交通大学 Substrate for stretchable electronic device and method of making the same
CN111653205A (en) * 2020-07-15 2020-09-11 上海天马微电子有限公司 Stretchable display panel and display device
CN113321177A (en) * 2021-05-28 2021-08-31 北京京东方技术开发有限公司 Flexible MEMS device and electronic equipment

Similar Documents

Publication Publication Date Title
US10374194B2 (en) Flexible display device
CN110660322B (en) Display device
KR102402874B1 (en) Flexible display device
US11056472B2 (en) Stretchable display device
US11502069B2 (en) Stretchable display device
JP7278125B2 (en) DISPLAY DEVICE AND BASE FILM MANUFACTURING METHOD
US20220139888A1 (en) Display device
US20210126172A1 (en) Stretchable display device
CN114520247A (en) Stretchable display device
KR20210083930A (en) Foldable display apparatus
JP2024059752A (en) Display device
WO2023077277A1 (en) Stretchable electronic component, method of manufacturing the same, and display device
TWI759012B (en) Stretchable display device
US11763701B2 (en) Display device including back cover disposed roller
CN110111690B (en) Display device
US20230207537A1 (en) Display device
EP4355055A1 (en) Display device
KR20210036037A (en) Stretchable display device comprising the same
US20240032362A1 (en) Display device
US20230197700A1 (en) Display panel and display device including the same
US20230217707A1 (en) Display device
US20230214077A1 (en) Touch panel and display device including the same
US20230215873A1 (en) Display device
US20220158057A1 (en) Display device
US11874705B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE