WO2023072092A1 - 数据分流方法、装置、电子设备及存储介质 - Google Patents

数据分流方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023072092A1
WO2023072092A1 PCT/CN2022/127429 CN2022127429W WO2023072092A1 WO 2023072092 A1 WO2023072092 A1 WO 2023072092A1 CN 2022127429 W CN2022127429 W CN 2022127429W WO 2023072092 A1 WO2023072092 A1 WO 2023072092A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
carrier
strategy
mac
transmission
Prior art date
Application number
PCT/CN2022/127429
Other languages
English (en)
French (fr)
Inventor
张万春
吴枫
王令斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22885969.0A priority Critical patent/EP4426005A1/en
Publication of WO2023072092A1 publication Critical patent/WO2023072092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a data distribution method, device, electronic equipment, and storage medium.
  • CA Carrier Aggregation
  • Carrier aggregation is a key technology of the Media Access Control layer ("MAC").
  • MAC Media Access Control layer
  • PCC Primary Carrier Component
  • SCC Secondary Carrier Component
  • an embodiment of the present application provides a data offloading method, including: detecting a performance index that characterizes the real-time coupling between the main carrier and the auxiliary carrier; selecting a data offloading strategy according to the detection result; The strategy is to distribute the transmission data carried in the main carrier to the auxiliary carrier; and send the main carrier and the auxiliary carrier to the terminal.
  • the embodiment of the present application also provides a data offloading device, including: a detection module, used to detect the performance index representing the real-time coupling between the main carrier and the auxiliary carrier; , select a data offloading strategy; the distribution module is used to distribute the transmission data carried in the main carrier to the auxiliary carrier according to the selected data distribution strategy; the sending module is used to send the main carrier and the auxiliary carrier to the terminal.
  • a detection module used to detect the performance index representing the real-time coupling between the main carrier and the auxiliary carrier
  • select a data offloading strategy the distribution module is used to distribute the transmission data carried in the main carrier to the auxiliary carrier according to the selected data distribution strategy
  • the sending module is used to send the main carrier and the auxiliary carrier to the terminal.
  • the embodiment of the present application further provides a computer-readable storage medium storing a computer program, and implementing the above data offloading method when the computer program is executed by a processor.
  • FIG. 1 is a first schematic flow diagram of a data distribution method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the L2 protocol stack of NR provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a data packet flow diagram of an L2 protocol stack provided by an embodiment of the present application.
  • FIG. 5 is a second schematic flow diagram of a data distribution method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of execution steps of a scene detection device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a transmission delay measurement method provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of execution steps of a device for selecting a data offload strategy provided by an embodiment of the present application.
  • FIG. 9a is a schematic diagram of execution steps of an RLC offloading policy implementation device provided by an embodiment of the present application.
  • FIG. 9b is a schematic diagram of execution steps of a device for implementing a MAC offload strategy provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the embodiment of the present application relates to a data distribution method, as shown in FIG. 1 , including the following steps.
  • Step 103 Distribute the transmission data carried in the main carrier to the auxiliary carrier according to the selected data distribution strategy.
  • Step 104 sending the primary carrier and the secondary carrier to the terminal.
  • the carrier aggregation technology belongs to the MAC sublayer technology of the L2 layer in the NR protocol stack.
  • the L2 protocol stack of the NR is shown in Figure 2.
  • NR L2 is divided into Service Data Adaptation Protocol (Service Data Adaptation Protocol, referred to as "SDAP"), Packet Data Convergence Protocol (Packet Data Convergence Protocol, referred to as "PDCP”), Radio Link Control Protocol (Radio Link Control, referred to as "RLC”), MAC, 4 sublayers.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • the MAC sublayer includes scheduling/sequencing (air interface resource allocation), aggregation (the RLC layer data of multiple logical channels of the same UE are aggregated into one MAC packet), and Hybrid Automatic Repeat reQuest (HARQ for short) Functions such as entity management are sublayers with the highest real-time requirements for the L2 layer, and they need to be packaged at the air interface slot granularity.
  • the carrier aggregation technology needs to be implemented at the MAC sublayer.
  • the MAC belongs to the real-time processing sublayer, during carrier aggregation, it is required that the transmission delay of the two carriers is low and the transmission bandwidth is large.
  • the base station device detects a performance index that characterizes the real-time coupling between the primary carrier and the secondary carrier, such as a transmission delay value and/or a transmission bandwidth value.
  • a performance index that characterizes the real-time coupling between the primary carrier and the secondary carrier, such as a transmission delay value and/or a transmission bandwidth value.
  • the transmission delay value between the main carrier and the auxiliary carrier refers to the delay value of data transmission from the main carrier to the auxiliary carrier
  • the transmission bandwidth value refers to the transmission bandwidth value of data from the main carrier to the auxiliary carrier.
  • the device can only detect the transmission delay value between the main carrier and the auxiliary carrier, or only detect the transmission bandwidth value between the main carrier and the auxiliary carrier, or detect the transmission delay value between the main carrier and the auxiliary carrier and transmission bandwidth values.
  • the base station device selects a data offload strategy according to the detection result.
  • the base station device may detect a transmission delay value and/or a transmission bandwidth value when data is transmitted from the primary carrier to the secondary carrier last time, and select a data offloading strategy according to the detection result.
  • the base station device may select a data offloading strategy according to the average value of the transmission delay value and/or the average value of the transmission bandwidth value detected during the previous several data transmissions from the primary carrier to the secondary carrier.
  • the MAC offload strategy since data offloading by the MAC layer requires low transmission delay and large transmission bandwidth between the primary and secondary carriers, when the transmission delay value is less than the delay threshold and the transmission bandwidth value is greater than the bandwidth threshold, it is considered The real-time coupling of the carrier is high, and the MAC offload strategy can be selected. Since the RLC offload strategy forms the transmission data into RLC data packets at the RLC layer, and allocates RLC data packets to the main carrier and the auxiliary carrier, and the processing flow of the RLC layer has low requirements for real-time performance, therefore, when the transmission delay value is greater than the delay threshold , or, when the transmission bandwidth value is less than the bandwidth threshold, it is considered that the real-time coupling of the carrier is low.
  • the method before selecting the data offload strategy according to the detection result, the method further includes: detecting the spectrum efficiency value of the secondary carrier; before selecting the MAC offload strategy, the method includes: confirming that the spectrum efficiency value is smaller than the spectrum efficiency threshold. In the case that the transmission delay value is less than or equal to the delay threshold and the transmission bandwidth value is greater than or equal to the bandwidth threshold, the method further includes: selecting a MAC offload strategy when the secondary carrier simultaneously satisfies that the spectrum efficiency value is less than the spectrum efficiency threshold ; When the secondary carrier simultaneously satisfies the spectral efficiency value greater than or equal to the spectral efficiency threshold, select the RLC offloading strategy.
  • the base station device before selecting the data offload strategy according to the detection result, the base station device also detects the spectrum efficiency value of the auxiliary carrier, and according to the detection result, selects the data offload strategy, which also includes: when the spectrum efficiency value is less than the spectrum efficiency threshold , select the MAC offload strategy; if the spectrum efficiency value is greater than or equal to the spectrum efficiency threshold, select the RLC offload strategy.
  • the base station device may obtain the spectrum efficiency value in the following manner: obtain channel state information CSI information reported by the terminal, and obtain the spectrum efficiency value according to the CSI information.
  • the base station device distributes the transmission data carried in the primary carrier to the secondary carrier according to the selected data distribution strategy.
  • the base station device can detect the transmission delay value and/or the transmission bandwidth value when data is transmitted from the primary carrier to the secondary carrier, so as to be used in the next carrier aggregation.
  • the base station equipment before allocating MAC data packets to the main carrier and the auxiliary carrier, the base station equipment also obtains the amount of data that can be transmitted by the air interface of the current main carrier and the auxiliary carrier, and allocates MAC data packets to the main carrier and the auxiliary carrier, including: according to the air interface
  • the amount of data that can be transmitted corresponds to the allocation of MAC data packets to the main carrier and the auxiliary carrier, that is, according to the amount of data that can be transmitted by the air interface of the main
  • the carrier assigns MAC packets. Among them, the maximum amount of data that can be carried can be allocated to the main carrier and the auxiliary carrier.
  • the data offloading method of the present application can be realized by setting a scene detection device, a data offload strategy selection device, and a data offload strategy implementation device in the base station equipment, wherein the scene detection device is used for Scene variables between auxiliary carriers are detected as the input of the data offload strategy selection device; the data offload strategy selection device is used to judge the attribution of the scene according to the scene variable; and select an appropriate data offload strategy; the data offload strategy implementation device is used to preset A set of data offloading strategies; according to the policy selection, execute the corresponding offloading strategy.
  • Step 2 Transmission delay measurement collection: Periodically measure the transmission time between the PCC and the i-th SCC, denoted as t i .
  • Step 3 Collection of transmission bandwidth: According to configuration input, the transmission bandwidth between the PCC and the i-th SCC is denoted as bi .
  • Step 1 RLC sub-layer offload policy implementation device.
  • Step 2 PCC allocates a certain number of RLC PDUs to SCC according to the algorithm strategy.
  • Step 3 The RLC PDU data allocated by the PCC is delivered to the SCC.
  • Step 4 After receiving the feedback from the RLC sublayer, each CC performs independent ARQ maintenance.
  • Step 1 Collect the amount of data that can be transmitted by the current air interface of the PCC and SCC, record the primary carrier as D p , and record the i-th secondary carrier as D i .
  • Step 2 According to the transmittable data volume of the primary and secondary carriers, the PCC performs MAC sublayer PDU grouping.
  • Step 3 The PCC delivers the MAC sublayer PDU data to the corresponding SCC.
  • Step 4 After receiving the feedback from the MAC sublayer: each CC performs HARQ maintenance independently, or the PCC performs HARQ maintenance uniformly.
  • the UE accesses a certain cell, which is called the main carrier, and is denoted as PCC.
  • the UE adds another inter-frequency cell as the SCC through RRC signaling.
  • PCC performs RLC PDU grouping.
  • PCC allocates RLC PDUs, example method 1 (even numbered PDUs are assigned to SCC, odd numbers are assigned to PCC); example method 2 (distributed according to the flow rate of each CC, PCC 60%, SCC 40%).
  • the PCC collects the amount of air interface data of each carrier.
  • PCC performs MAC PDU grouping and delivers the data to the corresponding SCC.
  • the SCC receives the data and transmits the data to the UE through the air interface.
  • the data offloading method in this embodiment will have greater benefits especially in a scenario where multiple carriers have different attributes, such as transmission delays, transmission bandwidths, and channel quality differences among multiple carriers.
  • the self-adaptive selection of carrier aggregation offload strategy can be realized, thereby promoting the ease of use and universality of carrier aggregation, and gaining gains.
  • the embodiment of the present application also relates to a data distribution device, as shown in FIG. 10 , including the following modules.
  • the detection module 1001 is configured to detect a performance index representing the real-time coupling between the main carrier and the auxiliary carrier.
  • the selection module 1002 is configured to select a data distribution strategy according to the detection result.
  • the distribution module 1003 is configured to distribute the transmission data carried in the primary carrier to the secondary carrier according to the selected data distribution strategy.
  • the sending module 1004 is configured to send the main carrier and the auxiliary carrier to the terminal.
  • the data offload strategy includes: radio link control RLC offload strategy and medium access control MAC offload strategy; wherein, the RLC offload strategy includes: forming RLC data packets at the RLC layer for the primary carrier and the secondary carrier Allocate RLC data packets; the MAC distribution strategy includes: at the MAC layer, the transmission data is composed of MAC data packets, and the MAC data packets are allocated to the main carrier and the auxiliary carrier; according to the detection results, the data distribution strategy is selected, including: when the transmission delay value is greater than Delay threshold, or, when the transmission bandwidth value is less than the bandwidth threshold, select the RLC offload strategy; when the transmission delay value is less than the delay threshold, and the transmission bandwidth value is greater than the bandwidth threshold, select the MAC offload strategy.
  • the RLC offload strategy includes: forming RLC data packets at the RLC layer for the primary carrier and the secondary carrier Allocate RLC data packets
  • the MAC distribution strategy includes: at the MAC layer, the transmission data is composed of MAC data packets
  • the method before selecting the data offloading strategy according to the detection result, further includes: detecting the spectrum efficiency value of the auxiliary carrier; according to the detection result, selecting the data offloading strategy, further including: when the spectrum efficiency value is less than the spectrum efficiency threshold In this case, select the MAC offload strategy; if the spectrum efficiency value is greater than or equal to the spectrum efficiency threshold, select the RLC offload strategy.
  • the method before selecting the data offload strategy according to the detection result, the method further includes: detecting the spectrum efficiency value of the auxiliary carrier; before selecting the MAC offload strategy, the method includes: confirming that the spectrum efficiency value is smaller than the spectrum efficiency threshold.
  • the spectral efficiency value is obtained in the following manner: obtaining channel state information (CSI) information reported by the terminal; obtaining the spectral efficiency value according to the CSI information.
  • CSI channel state information
  • the method before assigning the MAC data packets to the main carrier and the auxiliary carrier, the method further includes: obtaining the amount of data transmittable by the air interface of the current main carrier and the auxiliary carrier; and distributing the MAC data packets to the main carrier and the auxiliary carrier, including: according to The amount of data that can be transmitted by the air interface corresponds to the allocation of MAC data packets to the main carrier and the auxiliary carrier.
  • the embodiment of the present application also relates to an electronic device, as shown in FIG. 11 , including: at least one processor 1101; The executed instructions are executed by at least one processor 1101 in the data offloading method of any one of the above-mentioned embodiments.
  • the memory 1102 and the processor 1101 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 1101 and various circuits of the memory 1102 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the information processed by the processor 1101 is transmitted on the wireless medium through the antenna, further, the antenna also receives the information and transmits the information to the processor 1101 .
  • the processor 1101 is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management and other control functions. Instead, memory 1102 may be used to store information used by the processor when performing operations.
  • Embodiments of the present application relate to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信领域,公开了一种数据分流方法、装置、电子设备及存储介质。申请数据分流方法,包括:检测表征主载波和辅载波之间的实时耦合性的性能指标;根据检测结果,选择数据分流策略;根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波;向终端发送主载波和辅载波。

Description

数据分流方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求在2021年10月29日提交的中国专利申请第202111275394.8号的优先权,该中国专利申请的全部内容通过引用包含于此。
技术领域
本申请实施例涉及通信领域,特别涉及一种数据分流方法、装置、电子设备及存储介质。
背景技术
随着互联网技术的发展,网络用户越来越多,为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。因此LTE-Advanced系统引入一项增加传输带宽的技术,也就是载波聚合(Carrier Aggregation,简称“CA”)。CA技术可以将多个个LTE成分载波(Component Carrier,简称“CC”)聚合在一起,实现最大100MHz的传输带宽,有效提高了上下行传输速率。
载波聚合作为介质访问控制层(Media Access Control,简称“MAC”)的关键技术,按照NR标准规定,需要将MAC子层的数据从主载波(Primary Carrier Component,简称“PCC”)传递到辅载波(Sencondary Carrier Component,简称“SCC”)。由于MAC属于实时处理子层,因此载波聚合时,要求进行数据分流的载波实时耦合性较高,然而在实际的部署网络中,难以保证上述要求,从而导致载波聚合难以实现。
发明内容
本申请实施例的主要目的在于提出一种数据分流方法、装置、电子设备及存储介质,可以降低载波聚合的实现难度。
为实现上述目的,本申请实施例提供了一种数据分流方法,包括:检测表征主载波和辅载波之间的实时耦合性的性能指标;根据检测结果,选择数据分流策略;根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波;向终端发送主载波和辅载波。
为实现上述目的,本申请实施例还提供了一种数据分流装置,包括:检测模块,用于检测表征主载波和辅载波之间的实时耦合性的性能指标;选择模块,用于根据检测结果,选择数据分流策略;分发模块,用于根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波;发送模块,用于向终端发送主载波和辅载波。
为实现上述目的,本申请实施例还提供了一种为实现上述目的,本申请的实施例还提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述数据分流方法。
为实现上述目的,本申请的实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述数据分流方法。
附图说明
图1是本申请一个实施例提供的数据分流方法流程示意图一;
图2是本申请一个实施例提供的NR的L2协议栈示意图;
图3是本申请一个实施例提供的MAC子层与成分载波示意图;
图4是本申请一个实施例提供的L2协议栈的数据组包流程示意图;
图5是本申请一个实施例提供的数据分流方法流程示意图二;
图6是本申请一个实施例提供的场景检测装置的执行步骤示意图;
图7是本申请一个实施例提供的传输时延测量方法示意图;
图8是本申请一个实施例提供的数据分流策略选择装置的执行步骤示意 图;
图9a是本申请一个实施例提供的RLC分流策略实施装置的执行步骤示意图;
图9b是本申请一个实施例提供的MAC分流策略实施装置的执行步骤示意图;
图10是本申请一个实施例提供的数据分流装置结构示意图;
图11是本申请一个实施例提供的电子设备结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的实施例涉及一种数据分流方法,如图1所示,包括以下步骤。
步骤101,检测表征主载波和辅载波之间的实时耦合性的性能指标。
步骤102,根据检测结果,选择数据分流策略。
步骤103,根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波。
步骤104,向终端发送主载波和辅载波。
本实施例中的数据分流方法,应用于基站设备中,基站设备为了单用户峰值速率和系统容量提升的要求,使用载波聚合技术进行数据传输。载波聚合是指基站侧将2个或更多数量的成分载波,聚集起来一起为用户设备(User Equipment,简称“UE”)提供服务,可以显著提升单用户的吞吐量。初始规 定5G空口NR最多16个CC;每个CC带宽不同(频率范围FR1最大100M,频率范围FR2最大400M);各CC的频谱上可以紧挨着,也可间隔开。载波聚合中,与用户维持RRC连接的载波称之为主载波或者为主小区(Pcell);除主载波之外的载波称之为辅载波或者为辅小区(Scell)。CA作为4/5G两代通信系统的关键技术,有着非常广泛的应用场景。尤其是在5G通信系统中,由于信道条件和频谱分布的复杂化,导致CA的商用场景更加丰富。总结有如下典型的应用场景:一是在频带资源离散时,CA技术可以有效的将多个小的频带聚合成一个大的频带,有效的提升用户的峰值速率;二是根据策略选择某一些信道质量较好的CC,或多个CC同时传输相同的数据,进而有效的提升用户数据传输的可靠性。载波聚合技术属于NR协议栈中L2层的MAC子层技术,NR的L2协议栈如附图2所示。NR L2共分为服务数据适配协议(Service Data Adaptation Protocol,简称“SDAP”)、分组数据汇聚协议(Packet Data Convergence Protocol,简称“PDCP”)、无线链路层控制协议(Radio Link Control,简称“RLC”)、MAC,4个子层。MAC子层包含调度/排序(空口资源分配)、汇聚(同一UE的多个逻辑信道的RLC层数据汇聚为1个MAC包)、混合自动重传请求(Hybrid Automatic Repeat reQuest,简称“HARQ”)实体管理等功能,是为L2层实时性要求最高的子层,需要以空口slot粒度进行组包处理。如附图3所示,载波聚合技术需要在MAC子层实现。然而,由于MAC属于实时处理子层,因此载波聚合时,要求两个载波的传输时延较低、传输带宽较大。然而在实际的部署网络中,难以保证上述要求,从而导致载波聚合难以实现。
本申请的数据分流方法,通过检测表征主载波和辅载波之间的实时耦合性的性能指标,根据检测结果,选择数据分流策略,通过对传输时延值及传输带宽值的检测,判断设备此时的载波实时耦合性,从而基站设备可以在不同传输时延值及传输带宽值时,选择不同的数据分流策略,即使在载波实时耦合性较低时,也可以选择对应的数据分流策略。并且,在载波实时耦合性 有波动变化,即,在传输时延值及传输带宽值发生波动变更时,变更选择更合适的数据分流策略,在当前传输场景不满足传输时延及传输带宽要求时,可以切换数据分流策略,根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波,向终端发送主载波和辅载波,从而实现载波聚合的数据分流,降低载波聚合的实现难度。
下面对本实施例的数据分流方法实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,基站设备检测表征主载波和辅载波之间的实时耦合性的性能指标,例如传输时延值和/或传输带宽值。其中,主载波和辅载波之间的传输时延值指的是数据从主载波传输至辅载波的时延值,传输带宽值指的是数据从主载波传输至辅载波的传输带宽值,基站设备可以只检测检测主载波和辅载波之间的传输时延值、或者,只检测检测主载波和辅载波之间的传输带宽值,或者,检测主载波和辅载波之间的传输时延值和传输带宽值。
在一个例子中,基站设备可以通过以下方式获取传输时延值:发送设备向接收设备发起时延测量请求,并在请求报文中携带发送时延测量请求的第一时间T1;接收设备接收到请求报文后,记录接收到请求报文的第二时间T2;接收设备向发送设备发送请求确认,并在确认报文中携带第一时间和第二时间,以及发送确认报文的第三时间T3;发送设备接收接收设备返回的确认报文,并记录接收到确认报文的第四时间T4;传输时延值=((T4-T1)–(T3-T2))/2。其中,各时间可以是设备MAC层处理时刻的时间,发送设备和接收设备可以都是基站设备,也可以包括用户终端。
本实施例中,通过上述计算可以获取传输时延值,从而进行数据分流策略的选择,降低载波聚合的实现难度。
在步骤102中,基站设备根据检测结果,选择数据分流策略。基站设备可以在上一次数据从主载波传输至辅载波时,检测传输时延值和/或传输带宽值,根据此检测结果,选择数据分流策略。基站设备可以根据在前几次数据 从主载波传输至辅载波时检测到传输时延值的平均值,和/或,传输带宽值的平均值,选择数据分流策略。
在一个例子中,数据分流策略,包括:无线链路控制RLC分流策略和介质访问控制MAC分流策略;其中,RLC分流策略包括:在RLC层将传输数据组成RLC数据包,为主载波和辅载波分配RLC数据包;MAC分流策略包括:在MAC层将传输数据组成MAC数据包,为主载波和辅载波分配MAC数据包;根据检测结果,选择数据分流策略,包括:在满足传输时延值大于时延阈值,或者,传输带宽值小于带宽阈值的情况下,选择RLC分流策略;在满足传输时延值小于时延阈值,且传输带宽值大于带宽阈值的情况下,选择MAC分流策略。其中,时延阈值和带宽阈值可以由人工设置得到。
RLC子层负责自动重传请求ARQ功能,将每个RLC的SDU打上包头,形成RLC的PDU;然后投递给MAC层。L2子层的数据组包流程如附图4所示。按照NR协议的要求:RLC实体可以不需要等待MAC层调度通知,直接进行RLC PDU组包。因此,NR协议中MAC子层和RLC子层是松耦合的。相对于LTE,NR协议中大大简化了RLC与MAC层的耦合;因为不需要耦合MAC层,也很大程度简化了RLC层的处理。
本实施例中,由于MAC层进行数据分流需要主辅载波之间的传输时延较低、传输带宽较大,因此在传输时延值小于时延阈值,且传输带宽值大于带宽阈值时,认为载波实时耦合性较高,可以选择MAC分流策略。由于RLC分流策略在RLC层将传输数据组成RLC数据包,为主载波和辅载波分配RLC数据包,而RLC层的处理流程对实时性要求较低,因此,在传输时延值大于时延阈值,或者,传输带宽值小于带宽阈值时,认为载波实时耦合性较低,此时,不适宜选择选择MAC分流策略,选择RLC分流策略。因此,基站设备可以在不同传输时延值及传输带宽值时,选择不同的数据分流策略,即使在载波实时耦合性较低时,也可以选择对应的数据分流策略,从而实现载波聚合的数据分流,降低载波聚合的实现难度。
在一个例子中,在根据检测结果,选择数据分流策略前,方法还包括:检测辅载波的频谱效率值;在选择MAC分流策略前,方法包括:确认频谱效率值小于频谱效率阈值。在满足传输时延值小于或等于时延阈值,且传输带宽值大于或等于带宽阈值的情况下,方法还包括:在辅载波同时满足频谱效率值小于频谱效率阈值的情况下,选择MAC分流策略;在辅载波同时满足频谱效率值大于等于频谱效率阈值的情况下,选择RLC分流策略。
在一个例子中,根据检测结果,选择数据分流策略前,基站设备还检测辅载波的频谱效率值,根据检测结果,选择数据分流策略,还包括:在满足频谱效率值小于频谱效率阈值的情况下,选择MAC分流策略;在频谱效率值大于等于频谱效率阈值的情况下,选择RLC分流策略。
本实施例中,由于在RLC层实现数据分流需要载波实时保障RLC序列号(Serial Number,简称“SN”)连续性,而在信道质量较差时,无法保证载波的SN连续性,因此在在满足频谱效率值小于频谱效率阈值的情况下,选择MAC分流策略,在频谱效率值大于等于频谱效率阈值的情况下,选择RLC分流策略,可以在当前场景不适用于RLC分流策略时,选择MAC分流策略进行载波聚合的数据分流。
其中在一个例子中,基站设备可以通过以下方式得到频谱效率值:获取终端上报的信道状态信息CSI信息,根据CSI信息获取频谱效率值。
在步骤103中,基站设备根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波。同时,基站设备可以在数据从主载波传输至辅载波时,检测传输时延值和/或传输带宽值,以供下一次载波聚合使用。
在一个例子中,在为主载波和辅载波分配MAC数据包前,基站设备还获取当前主载波和辅载波的空口可传输数据量,为主载波和辅载波分配MAC数据包,包括:根据空口可传输数据量,对应向主载波和辅载波分配MAC数据包,即,根据主载波的空口可传输数据量,向主载波分配MAC数据包,并根据辅载波的空口可传输数据量,向辅载波分配MAC数据包。其中,可以 向主载波和辅载波分配其能承载的最大数据量。
本实施例中,通过在为主载波和辅载波分配MAC数据包前,获取当前主载波和辅载波的空口可传输数据量,根据空口可传输数据量,对应向主载波和辅载波分配MAC数据包,可以实时为辅载波配置当前空口可传输的最大数据量,从而传输更多数据量,提高数据传输效率。
在步骤104中,基站设备向终端发送主载波和辅载波。
在一个例子中,如图5所示,本申请的数据分流方法可以通过在基站设备中设置场景检测装置、数据分流策略选择装置、数据分流策略实施装置实现,其中,场景检测装置用于对主辅载波之间场景变量进行检测,作为数据分流策略选择装置的输入;数据分流策略选择装置用于根据场景变量,判断场景归属;并选择合适的数据分流策略;数据分流策略实施装置用于预设数据分流策略集合;根据策略选择,执行对应分流策略。
实现场景检测装置,如附图6所示,需要执行以下步骤。
第一步:确定场景检测变量(基于某一具体UE视角):主辅载波之间的传输时延,主辅载波之间的传输带宽,各个载波的平均频谱效率。
第二步:传输时延测量收集:周期测量PCC与第i个SCC之间的传输时间,记为t i
第三步:传输带宽收集:根据配置输入,PCC与第i个SCC之间的传输带宽,记为b i
第四步:频谱效率收集:收集UE上报的CSI信息,并经过算法转化为频谱效率;第i个SCC的频谱效率,记为s i
第五步:结束。
其中,传输时延t i测量示意图如图7所示,包括以下步骤。
1)设备1的软件发起时延测量请求;设备1的硬件将T1时间戳加入到报文中。
2)经过网络拓扑转发以后,该请求报文达到设备2;设备2硬件将T2时间戳加入到报文中,并传递给其软件。
3)设备2软件发送网络时延测量ACK报文给设备2的硬件,硬件将时间戳T3填入并发给设备1。
4)经过网络拓扑转发以后,该ACK报文到达设备1的硬件;硬件添加T4时间戳。
设备1的软件接收到ACK报文后,通过T1,T2,T3,T4计算出网络时延;具体计算公式:t i=T网络时延=((T4-T1)–(T3-T2))/2。
数据分流策略选择装置,如附图8所示,需要执行以下步骤。
第一步:获取场景信息:第i个SCC的传输时延t i、传输带宽b i、频谱效率si。
第二步:分流场景判定
若(t i>t threshold)||(b i<b threshold)时,则判定为分流策略一,否则:若s i>s threshold,则判定为分流策略一,否则,判定为分流策略二;(t threshold b threshold s threshold为对应的算法门限)。
第三步:结束。
实现RLC层数据分流实施策略实施装置,如图9a所示,需要执行以下步骤。
第一步:RLC子层分流策略一实施装置。
第二步:MAC子层分流策略二实施装置。
第三步:结束。
其中,实现RLC子层分流策略一实施装置,需要包括以下步骤。
第一步:PCC进行RLC子层包头维护,进行RLC子层PDU组包。
第二步:PCC按照算法策略,将一定数量的RLC PDU分配给SCC。
第三步:PCC分配的RLC PDU数据投递给SCC。
第四步:收到RLC子层反馈后,各CC进行独立的ARQ维护。
第五步:结束。
实现MAC层数据分流实施策略实施装置,如图9b所示,需要执行以下步骤。
第一步:收集PCC和SCC当前空口可以传输的数据量,记录为主载波为D p,记录第i个辅载波为D i
第二步:根据主辅载波的可传输数据量,由PCC进行MAC子层PDU组包。
第三步:PCC将MAC子层PDU数据,投递给相应的SCC。
第四步:收到MAC子层反馈后:各CC进行独立HARQ维护,或统一由PCC进行HARQ维护。
第五步:结束。
在一个实施应用例子中,提供一种具体实现方式,详细描述本方法的实现原理和运行机制。
第一:UE接入到某一个小区,称之为主载波,记为PCC。
第二:UE通过RRC信令,添加另一异频小区为SCC。
第三:设定场景算法阈值:传输时延t threshold,传输带宽b threshold,频谱效率s threshold
第四:收集PCC与SCC的传输时延t、PCC与SCC配置的传输带宽b、SCC的频谱效率s。
第五:判定场景:满足场景一,则转到第六步;否则转到第八步。
第六:PCC进行RLC PDU组包。
第七:PCC进行RLC PDU分配,举例方式1(编号为偶数的PDU给SCC,奇数给PCC);举例方式2(按照各CC流速比例分配,PCC 60%,SCC40%)。
第八:PCC收集各载波空口数据量。
第九:PCC进行MAC PDU组包,并将数据投递给相应的SCC。
最后:SCC接收数据,并通过空口将数据传递给UE。
本实施例的数据分流方法尤其在多载波属性不同的场景,如多载波间的传输时延、传输带宽、信道质量差异较大时,会有较大收益。可以实现载波聚合分流策略的自适应选择,藉此推动载波聚合的易用性和普适性,获取增益。
本申请的实施例还涉及一种数据分流装置,如图10所示,包括以下模块。
检测模块1001,用于检测表征主载波和辅载波之间的实时耦合性的性能指标。
选择模块1002,用于根据检测结果,选择数据分流策略。
分发模块1003,用于根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波。
发送模块1004,用于向终端发送主载波和辅载波。
在一个例子中,数据分流策略,包括:无线链路控制RLC分流策略和介质访问控制MAC分流策略;其中,RLC分流策略包括:在RLC层将传输数据组成RLC数据包,为主载波和辅载波分配RLC数据包;MAC分流策略包括:在MAC层将传输数据组成MAC数据包,为主载波和辅载波分配MAC数据包;根据检测结果,选择数据分流策略,包括:在满足传输时延值大于时延阈值,或者,传输带宽值小于带宽阈值的情况下,选择RLC分流策略;在满足传输时延值小于时延阈值,且传输带宽值大于带宽阈值的情况下,选择MAC分流策略。
在一个例子中,在根据检测结果,选择数据分流策略前,方法还包括:检测辅载波的频谱效率值;根据检测结果,选择数据分流策略,还包括:在满足频谱效率值小于频谱效率阈值的情况下,选择MAC分流策略;在频谱效率值大于等于频谱效率阈值的情况下,选择RLC分流策略。
在一个例子中,在根据检测结果,选择数据分流策略前,方法还包括: 检测辅载波的频谱效率值;在选择MAC分流策略前,方法包括:确认频谱效率值小于频谱效率阈值。
在一个例子中,频谱效率值,通过以下方式得到:获取终端上报的信道状态信息CSI信息;根据CSI信息获取频谱效率值。
在一个例子中,在为主载波和辅载波分配MAC数据包前,方法还包括:获取当前主载波和辅载波的空口可传输数据量;为主载波和辅载波分配MAC数据包,包括:根据空口可传输数据量,对应向主载波和辅载波分配MAC数据包。
本申请的实施例还涉及一种电子设备,如图11所示,包括:至少一个处理器1101;与至少一个处理器通信连接的存储器1102;其中,存储器1102存储有可被至少一个处理器1101执行的指令,指令被至少一个处理器1101执行上述的任一实施例的数据分流方法。
其中,存储器1102和处理器1101采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器1101和存储器1102的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1101处理的信息通过天线在无线介质上进行传输,进一步,天线还接收信息并将信息传送给处理器1101。
处理器1101负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1102可以被用于存储处理器在执行操作时所使用的信息。
本申请的实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (9)

  1. 一种数据分流方法,包括:
    检测表征主载波和辅载波之间实时耦合性的性能指标;
    根据检测结果,选择数据分流策略;
    根据选择的数据分流策略,将所述主载波中承载的传输数据分发给所述辅载波;
    向终端发送所述主载波和所述辅载波。
  2. 根据权利要求1所述的数据分流方法,其中,所述性能指标,包括:传输时延值和/或传输带宽值。
  3. 根据权利要求2所述的数据分流方法,其中,所述数据分流策略,包括:无线链路控制RLC分流策略和介质访问控制MAC分流策略;
    其中,所述RLC分流策略包括:在RLC层将所述传输数据组成RLC数据包,为所述主载波和所述辅载波分配所述RLC数据包;
    所述MAC分流策略包括:在MAC层将所述传输数据组成MAC数据包,为所述主载波和所述辅载波分配所述MAC数据包;
    所述根据检测结果,选择数据分流策略,包括:
    在满足所述传输时延值大于时延阈值,或者,所述传输带宽值小于带宽阈值的情况下,选择所述RLC分流策略;
    在满足所述传输时延值小于或等于所述时延阈值,且所述传输带宽值大于或等于所述带宽阈值的情况下,选择所述MAC分流策略。
  4. 根据权利要求3所述的数据分流方法,其中,在所述根据检测结果,选择数据分流策略前,所述方法还包括:检测所述辅载波的频谱效率值;
    在所述满足所述传输时延值小于或等于所述时延阈值,且所述传输带宽值大于或等于所述带宽阈值的情况下,所述方法还包括:
    在所述辅载波同时满足所述频谱效率值小于频谱效率阈值的情况下,选择所述MAC分流策略;
    在所述辅载波同时满足所述频谱效率值大于等于所述频谱效率阈值的情况下,选择所述RLC分流策略。
  5. 根据权利要求4所述的数据分流方法,其中,所述频谱效率值,通过以下方式得到:
    获取所述终端上报的信道状态信息CSI信息;
    根据所述CSI信息获取所述频谱效率值。
  6. 根据权利要求3所述的数据分流方法,其中,在所述为所述主载波和所述辅载波分配所述MAC数据包前,所述方法还包括:获取当前所述主载波的空口可传输数据量和所述辅载波的空口可传输数据量;
    所述为所述主载波和所述辅载波分配所述MAC数据包,包括:
    根据所述主载波的空口可传输数据量,向所述主载波分配所述MAC数据包,并根据所述辅载波的空口可传输数据量,向所述辅载波分配所述MAC数据包。
  7. 一种数据分流装置,包括:
    检测模块,用于检测表征主载波和辅载波之间的实时耦合性的性能指标;
    选择模块,用于根据检测结果,选择数据分流策略;
    分发模块,用于根据选择的数据分流策略,将主载波中承载的传输数据分发给辅载波;
    发送模块,用于向终端发送所述主载波和所述辅载波。
  8. 一种电子设备,包括:
    至少一个处理器;
    与所述至少一个处理器通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至6中任一项所述的数据分流方法。
  9. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程 序被处理器执行时实现如权利要求1至6中任一项所述的数据分流方法。
PCT/CN2022/127429 2021-10-29 2022-10-25 数据分流方法、装置、电子设备及存储介质 WO2023072092A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22885969.0A EP4426005A1 (en) 2021-10-29 2022-10-25 Data offloading method and apparatus, electronic device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111275394.8 2021-10-29
CN202111275394.8A CN116094665A (zh) 2021-10-29 2021-10-29 数据分流方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023072092A1 true WO2023072092A1 (zh) 2023-05-04

Family

ID=86159053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127429 WO2023072092A1 (zh) 2021-10-29 2022-10-25 数据分流方法、装置、电子设备及存储介质

Country Status (3)

Country Link
EP (1) EP4426005A1 (zh)
CN (1) CN116094665A (zh)
WO (1) WO2023072092A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106171004A (zh) * 2015-02-09 2016-11-30 华为技术有限公司 一种rlc数据包分流方法及基站
US9585072B1 (en) * 2015-07-22 2017-02-28 Sprint Spectrum L.P. SCell triggered handover notwithstanding good PCell condition
CN108075870A (zh) * 2016-11-16 2018-05-25 电信科学技术研究院 站间载波聚合调度的方法和装置
CN112399481A (zh) * 2019-08-13 2021-02-23 中兴通讯股份有限公司 一种流量分配管理方法、装置、基站及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106171004A (zh) * 2015-02-09 2016-11-30 华为技术有限公司 一种rlc数据包分流方法及基站
US9585072B1 (en) * 2015-07-22 2017-02-28 Sprint Spectrum L.P. SCell triggered handover notwithstanding good PCell condition
CN108075870A (zh) * 2016-11-16 2018-05-25 电信科学技术研究院 站间载波聚合调度的方法和装置
CN112399481A (zh) * 2019-08-13 2021-02-23 中兴通讯股份有限公司 一种流量分配管理方法、装置、基站及存储介质

Also Published As

Publication number Publication date
EP4426005A1 (en) 2024-09-04
CN116094665A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US12004036B2 (en) SCG-side service processing method and apparatus in dual connectivity scenario
US20200137754A1 (en) Method and apparatus for processing scheduling information in mobile communication system
US20180270679A1 (en) Reliability-based multi-link communications
US11277767B2 (en) Method and device for processing buffer state report in wireless communication system using inter-ENB carrier aggregation technology
US11025531B2 (en) Packet transmission method and hybrid access gateway
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
US10735164B2 (en) Data transmission method, apparatus, user equipment, and base station
CN106171004B (zh) 一种rlc数据包分流方法及基站
US10142253B2 (en) Method for efficient reliable transmission
US9763263B2 (en) Scheduling method and base station
CN106330262A (zh) 基于载波聚合的电力无线通信系统
CN108235379A (zh) 一种数据传输的方法及设备
WO2022052129A1 (zh) 一种可靠性测量方法、装置及系统
CN111787571A (zh) 一种网络用户关联和资源分配的联合优化方法
WO2023072092A1 (zh) 数据分流方法、装置、电子设备及存储介质
US9479351B2 (en) Method and apparatus for providing voice service in communication system
US10834784B2 (en) Data transmission process of heterogeneous LWA network and associated base station for mobile communication
WO2023151466A1 (zh) 一种数据传输方法、装置和系统
US20240031822A1 (en) Communication control method
US20240306039A1 (en) Data transmission method, configuration method, apparatus, terminal, and network-side device
WO2019191870A1 (zh) 业务质量监测方法、配置方法、装置和通信系统
KR101006115B1 (ko) Ieee 802.11 무선랜 환경에서의 직접 링크 설정 방법
CN118118949A (zh) 一种通信方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885969

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885969

Country of ref document: EP

Effective date: 20240529