WO2023070765A1 - 轴承冷却结构及具有其的凝结水泵 - Google Patents

轴承冷却结构及具有其的凝结水泵 Download PDF

Info

Publication number
WO2023070765A1
WO2023070765A1 PCT/CN2021/131227 CN2021131227W WO2023070765A1 WO 2023070765 A1 WO2023070765 A1 WO 2023070765A1 CN 2021131227 W CN2021131227 W CN 2021131227W WO 2023070765 A1 WO2023070765 A1 WO 2023070765A1
Authority
WO
WIPO (PCT)
Prior art keywords
water pipe
sliding bearing
cooling structure
liquid inlet
main shaft
Prior art date
Application number
PCT/CN2021/131227
Other languages
English (en)
French (fr)
Inventor
杨丹飞
余伟平
余敏
周维坚
张丹艺
Original Assignee
浙江水泵总厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水泵总厂有限公司 filed Critical 浙江水泵总厂有限公司
Publication of WO2023070765A1 publication Critical patent/WO2023070765A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings

Definitions

  • the present application relates to the field related to condensate pumps, in particular to a bearing cooling structure and a condensate pump having the same.
  • Condensed water has certain requirements on purity.
  • oil-lubricated bearings with better sealing performance or water-lubricated bearings sliding bearings
  • the pressurized water that flows naturally through the pump body acts as a lubricating fluid.
  • the unilateral gap between the sliding bearing and the bearing sleeve is only 0.1mm to 0.2mm, friction and heat will be generated during the rotation of the main shaft.
  • the condensed water flowing through has not been pressurized by the impeller, and the flow rate is slow, which is insufficient to transfer and release the heat generated by friction in time.
  • the thermal expansion and contraction of the workpiece will easily lead to the disappearance of the gap, resulting in the inability of the condensed water to continue to pass through the gap, and there is a possibility that the workpiece will be scrapped possible.
  • the present application first provides a bearing cooling structure, including a pump body;
  • the pump body includes a main shaft, a pressurized part, and a liquid inlet part, and the main shaft passes through the pressurized part to the liquid inlet part;
  • a sliding bearing sleeve is fixed, and a sliding bearing is arranged in the sliding bearing sleeve, and one end of the main shaft is connected to the sliding bearing;
  • the pump body also includes a water pipe, and one end of the water pipe is connected to the pressurized part. The other end communicates with the gap between the sliding bearing sleeve and the sliding bearing.
  • the above-mentioned bearing cooling structure communicates with the supercharging part through one end of the water pipe, and communicates with the gap at the other end, so that the part of the liquid to be transported after being pressurized by the supercharging part can rush into the gap through the water pipe, and then flow into the liquid inlet part from the gap;
  • the heat generated by the friction between the sliding bearing and the sliding bearing sleeve can be taken away together during the rotation of the main shaft, so as to avoid the thermal expansion and contraction of the parts caused by the heat accumulation in the gap, and the gap due to The expansion and disappearance of parts occurs, and the effect of cooling the sliding bearing in real time to ensure its normal operation is achieved.
  • the pressurizing part includes a plurality of impellers arranged along the main axis extending direction, a flow space is formed between the impellers and the inner side wall of the pump body, and the water pipe and the flow space connected.
  • the water pipe communicates with the flow space of the impeller at the side closest to the liquid inlet part.
  • the liquid inlet part is sequentially divided into a platform stage, a liquid inlet section, and a flaring section, and the flaring section is used for fixing with the pressurized part, and the sliding bearing sleeve is fixed on the In the liquid inlet section.
  • the water pipe includes a first water pipe and a second water pipe.
  • the first water pipe and the second water pipe are arranged perpendicular to each other.
  • a baffle is fixed at the end of the sliding bearing sleeve away from the pressurized part, and one end of the first water pipe is fixed to the baffle.
  • the liquid to be conveyed that enters the pump body through the liquid inlet is blocked by the baffle, so as to prevent the liquid pressure of the liquid to be conveyed from dropping, thereby affecting the cooling effect on the sliding bearing.
  • a through hole is opened through the outer edge surface of the platform stage, and a screw plug is detachably fixed to the opening of the through hole located on the outer edge surface of the platform stage.
  • Such an arrangement can prevent the high-pressure liquid from leaking through the opening of the through hole while ensuring the convenience of disassembling and assembling the water pipe.
  • one end of the first water pipe is fixed to the sliding bearing sleeve, and the other end is located in the through hole; one end of the second water pipe communicates with the through hole, and the other end passes through The flaring section.
  • the second aspect of the present application provides a condensate pump, including the above-mentioned bearing cooling structure.
  • FIG. 1 is a schematic cross-sectional structural view of the bearing cooling structure of the present application in the front view direction.
  • FIG. 2 is a schematic diagram of an enlarged structure at point A in FIG. 1 .
  • FIG. 3 is a schematic diagram of the structure viewed from the left in FIG. 1 .
  • FIG. 4 is a schematic diagram of the enlarged structure at B in FIG. 2 .
  • FIG. 5 is a schematic cross-sectional structural view of the condensate pump of the present application in the front view direction.
  • a component when a component is said to be “mounted on” another component, it can be directly on the other component or there can also be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • a bearing cooling structure please refer to Fig. 1 and Fig. 2, which includes a pump body 100;
  • the sliding bearing sleeve 31 is fixed in the liquid inlet part 10, and the sliding bearing sleeve 31 is provided with a sliding bearing 32, and one end of the main shaft 30 is connected with the sliding bearing 32;
  • the pump body 100 also includes a water pipe 50, and one end of the water pipe 50 It communicates with the pressurized part 20 , and the other end communicates with the gap 33 between the sliding bearing sleeve 31 and the sliding bearing 32 .
  • the pressurization part 20 is used to pressurize the liquid to be delivered entering the pressurization part 20 .
  • the liquid to be transported enters the pump body 100 through the liquid inlet portion 10 , and after entering the booster portion 20 , it is pressurized by the booster portion 20 and delivered to other structures of the pump body 100 .
  • One end of the water pipe 50 communicates with the supercharging part 20, and the other end communicates with the gap 33, so that the part of the liquid to be transported after being pressurized by the supercharging part 20 can rush into the gap 33 through the water pipe 50, and then flow into the liquid from the gap 33 again. part 10; and through the flowing high-pressure liquid, the heat generated by the friction between the sliding bearing 32 and the sliding bearing sleeve 31 can be taken away together during the rotation of the main shaft 30, so as to avoid the heat accumulation in the gap 33, which will cause the parts to break down. Thermal expansion and contraction, the gap 33 occurs due to the expansion and disappearance of the parts, which achieves the effect of cooling the sliding bearing 32 in real time to ensure its normal operation.
  • the supercharging part 20 includes a plurality of impellers 21 arranged along the extending direction of the main shaft 30, and a flow space is formed between the impellers 21 and the inner side wall of the pump body 100, and the water pipe 50 is connected to the flow passage.
  • Flow space connectivity In the embodiment shown in Fig. 1 and Fig. 2, the supercharging part 20 includes a plurality of impellers 21 arranged along the extending direction of the main shaft 30, and a flow space is formed between the impellers 21 and the inner side wall of the pump body 100, and the water pipe 50 is connected to the flow passage. Flow space connectivity.
  • the impeller 21 closest to the liquid inlet part 10 is defined as the first-stage impeller herein.
  • the impellers 21 are fixedly connected to the main shaft 30, the water inlet of the impeller 21 is opened towards the direction of the liquid inlet 10, and the water outlet is opened along the radial direction.
  • the main shaft 30 rotates, it will drive the impellers 21 to rotate, so that , pressurize the liquid to be transported into the impeller 21 and throw it out to the next stage impeller 21, repeat the above process until the liquid to be transported leaves the pressurization part 20, so as to realize the pressurized transport function of the pressurization part 20.
  • the supercharger 20 is composed of a plurality of hollow middle casings 22, each impeller 21 corresponds to a middle casing 22, and the impeller 21 is arranged in the middle casing 22, between the impeller 21 and the inner side wall of the middle casing 22 A through-flow space is formed, and the through-flow space is used to guide the liquid to be transported, so that the liquid flowing out from the water outlet of the impeller 21 of this stage can enter the water inlet of the next-stage impeller under the guidance of the through-flow space.
  • the corners of the through-flow space are all rounded to ensure that the liquid to be transported can turn naturally during the flow process, and avoid direct collision with the side wall of the through-flow space to cause liquid turbulence.
  • the arrangement of multiple middle casings 22 makes it possible to remove the corresponding middle casing 22 and replace the corresponding wearing parts when the wearing parts such as sealing rings and shaft seals in the middle casing 22 are damaged.
  • the middle casing 22 itself and the impeller 21 can still be used continuously, which greatly saves the time and cost required for repair.
  • the water pipe 50 communicates with the flow space, that is, the flow space between the middle casing 22 and the impeller 21 of any stage communicates with the water pipe 50;
  • the pressurization has been completed for the first time, and the subsequent impeller 21 can further pressurize the liquid to be transported to meet different demands. Therefore, it can be understood that the liquid to be transported into any flow space is liquid that has been pressurized at least once, and by connecting the water pipe 50 with the flow space, it can be ensured that the liquid entering the water pipe 50 must be a pressurized liquid. To meet subsequent cooling needs.
  • the flow space of the first-stage impeller 21 communicates with the water pipe 50, and the liquid pressurized by the first-stage impeller 21 is sufficient to meet the cooling requirements of the sliding bearing 32 in most cases; After passing through the gap 33, the part of the liquid needs to be pressurized again, that is, the original pressure energy of the part of the liquid will be consumed after passing through the gap 33. Therefore, the higher the initial pressure of the liquid used for cooling, the higher the energy consumed for cooling. higher consumption;
  • the water pipe 50 can also be connected to the flow space of other impellers 21 to obtain a higher liquid flow rate and increase the frictional heat generation rate.
  • the cooling effect of the sliding bearing 32 is not specifically limited in this application.
  • the first-stage impeller 21 is the impeller 21 closest to the liquid inlet 10
  • the required length of the water pipe 50 can also be reduced, on the one hand reducing production costs, and on the other hand On the one hand, it reduces the possibility of accidental damage to the water pipe 50 .
  • the liquid inlet part 10 is divided into a platform stage 11, a liquid inlet section 12 and a flaring section 13 in sequence.
  • the platform stage 11, the liquid inlet section 12 and the flaring section 13 are integrally formed by casting, and the liquid inlet part 10 is provided with a liquid inlet 14 passing through the stage stage 11, the liquid inlet section 12 and the flared section 13 along the axial direction.
  • the end face of the flaring section 13 corresponds to the end face of the middle casing 22 where the first stage impeller 21 is located, and the flaring section 13 and each middle casing 22 are connected by bolts;
  • the sliding bearing sleeve 31 is fixedly connected to the inner wall of the liquid inlet 14 through the connecting piece 35, and there is a gap between the connecting piece 35 and the inner wall of the liquid inlet 14 for the liquid to be transported normally.
  • the connecting piece 35 and the inner wall of the liquid inlet 14 can be fixed by common fixing methods such as welding, bolt connection, integral molding casting and the like.
  • the connecting piece 35 is fixed to the inner wall of the liquid inlet 14 by welding.
  • a plurality of connecting parts 35 are provided and are uniformly distributed in the circumferential direction around the main shaft 30, on the one hand, it ensures that the auxiliary sliding bearing sleeve 31 is firmly fixed, thereby further increasing the stability of the main shaft 30 during rotation;
  • the gap between the connecting piece 35 and the inner wall of the liquid inlet 14 is evenly distributed in the circumferential direction around the main shaft 30, so that the liquid to be transported can enter the pump body 100 evenly when entering through the liquid inlet 14 , so as to avoid the occurrence of high flow velocity and poor cavitation performance at some positions due to uneven liquid inlet, and achieve the effect of increasing the cavitation performance of the pump body 100 .
  • the water pipe 50 includes a first water pipe 51 and a second water pipe 52 to facilitate the installation of the water pipe 50 .
  • the first water pipe 51 and the second water pipe 52 can be installed at any angle, as long as the liquid can pass through smoothly after the installation is completed.
  • the first water pipe 51 and the second water pipe 52 are arranged perpendicular to each other.
  • the radial direction of the main shaft 30 is arranged, and the second water pipe 52 is arranged parallel to the main shaft 30 .
  • the end of the sliding bearing sleeve 31 away from the pressurized portion 20 is fixed with a baffle 34 , and one end of the first water pipe 51 is fixed on the baffle 34 .
  • the baffle 34 is used to block the liquid to be transported entering the pump body 100 through the liquid inlet 14, so as to prevent the liquid to be transported from directly entering the gap 33 and mixing with the high-pressure liquid flushed out through the water pipe 50, resulting in a drop in liquid pressure, thereby affecting the sliding bearing. 32 cooling effects;
  • a diversion space 36 is formed between the baffle plate 34, the end face of the main shaft 30 and the inner side wall of the sliding bearing sleeve 31.
  • the diversion space 36 communicates with the gap 33, and the included angles in the diversion space 36 are inverted. There are rounded corners. After the high-pressure liquid in the water pipe 50 enters the diversion space 36, it flows out through the gap 33 between the sliding bearing 32 and the sliding bearing sleeve 31. The heat is taken away together to achieve the effect of cooling the sliding bearing 32.
  • a through hole 111 is opened through the outer edge surface of the platform stage 11, and the through hole 111 is located at the opening of the outer edge surface of the platform stage 11.
  • a plug 112 is detachably fixed, and the first water pipe 51
  • One end of the second water pipe 52 is fixed to the sliding bearing sleeve 31 , and the other end is located in the through hole 111 ;
  • the first water pipe 51 By opening the through hole 111, the first water pipe 51 can be directly inserted through the opening of the through hole 111 on the outer edge of the platform stage 11 during installation until one end of the first water pipe 51 is connected with the baffle plate 34. At this time, the first water pipe 51 The other end of 51 is located in the through hole 111, thereby facilitating the installation of the first water pipe 51;
  • the first water pipe 51 is threadedly connected to the baffle plate 34 , and the first water pipe 51 is in clearance fit with the inner sidewall of the through hole 111 .
  • one end of the second water pipe 52 communicates with the through hole 111, and cooperates with the detachable plug 112 fixed at the opening of the through hole 111, so that when the plug 112 is fixed, the inside of the through hole 111 is a closed space.
  • the high-pressure water flows into the through-hole 111 through the second water pipe 52, and enters the diversion space 36 through the first water pipe 51. While ensuring the convenience of disassembly and assembly of the first water pipe 51, the high-pressure water is prevented from leaking through the opening of the through-hole 111 .
  • the present application also provides a condensate pump, please refer to FIG. 5 , which includes the bearing cooling structure according to any one of the above embodiments.
  • the pump body 100 further includes a suspension 40 located at the end of the pump body 100 away from the liquid inlet 10 , and one end of the main shaft 30 is rotatably connected to the suspension 40 .
  • the main shaft 30 is connected to the main shaft 30 by the suspension 40 and the sliding bearing 32, so that the main shaft 30 can be supported on both sides, thereby increasing the stability of the main shaft 30 in the working state; Both ends of the main shaft 30 are supported so that both ends of the main shaft 30 are supported, that is, there is no suspended part in the main shaft 30, thereby ensuring that the main shaft 30 will not undergo radial vibration or deviation during rotation, and increase the stability of the main shaft 30 under working conditions sex.
  • the liquid to be transported enters the pump body 100 along the axial direction, that is, the flow path of the liquid to be transported is the same, so that the liquid to be transported is evenly distributed.
  • Inflow makes the channel balance in the liquid inlet 14 higher, the cavitation performance of each position is the same or similar, and there is no position with relatively poor cavitation performance, thereby achieving the effect of improving the cavitation performance of the pump body 100 .
  • the sliding bearing 32 is arranged at the center of the liquid inlet 14, so that the axial projection of the main shaft 30 is located at the center of the liquid inlet 14, thereby ensuring that during the rotation of the main shaft 30, the liquid inlet 14 The liquid inflows into each position evenly, so as to avoid the situation of high flow rate and poor cavitation performance in some positions due to uneven liquid inflow, so as to achieve the effect of improving the cavitation performance of the pump body 100 .
  • the main shaft 30 is connected to the suspension 40 through at least two sets of bearings to ensure that the main shaft 30 can be supported by at least two points in the suspension 40, thereby further improving the stability of the main shaft 30 when rotating by increasing the number of support points for the main shaft 30;
  • the main shaft 30 is connected to the suspension 40 through two sets of bearings.
  • One group of bearings is arranged on the end of the suspension 40 close to the liquid inlet 10, and the other group of bearings is arranged on the end of the suspension 40 away from the liquid inlet 10. Since the distance between the sliding bearing 32 and the suspension 40 is usually greater than that of the suspension 40, by arranging the two sets of bearings at both ends of the suspension 40, the distance between the two sets of bearings can be increased as much as possible, and the distance can be as close as possible to the distance between the sliding bearing 32 and the bearing in the middle. distance, so that the arrangement of the support points of the sliding bearing 32 and the two sets of bearings is as uniform as possible, thereby achieving the effect of improving the support stability of the main shaft 30 .
  • the bearings here may be cylindrical bearings, sliding bearings, ball bearings or other commonly used rotating connection parts, which are not limited in this application.
  • the main shaft 30 is connected to the suspension 40 through ball bearings, and a set of bearings located at one end of the suspension 40 close to the liquid inlet part 10 is a deep groove ball bearing 41, and a set of bearings located at the other end are two angular contact bearings.
  • Ball bearing 42 is also connected to the suspension 40 through ball bearings, and a set of bearings located at one end of the suspension 40 close to the liquid inlet part 10 a deep groove ball bearing 41, and a set of bearings located at the other end are two angular contact bearings. Ball bearing 42.
  • the two angular contact ball bearings 42 are installed with wide end faces facing wide end faces, so as to bear large radial loads, limit the axial displacement of the main shaft 30 in two directions, and increase the axial stability of the main shaft 30 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种轴承冷却结构及具有其的凝结水泵。轴承冷却结构,包括泵体(100);泵体(100)包括主轴(30)、增压部(20)以及进液部(10),进液部(10)内固设有滑动轴承套(31),滑动轴承套(31)内设置有滑动轴承(32);泵体(100)还包括水管(50),水管(50)一端与增压部(20)连通,另一端与滑动轴承套(31)及滑动轴承(32)之间的间隙(33)连通。

Description

轴承冷却结构及具有其的凝结水泵
相关申请
本申请要求2021年10月31日申请的,申请号为202111279066.5,发明名称为“轴承冷却结构及具有其的凝结水泵”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及凝结水泵相关领域,特别是涉及一种轴承冷却结构及具有其的凝结水泵。
背景技术
凝结水对纯净度有一定要求,为避免轴承润滑油污染凝结水,凝结水泵中大多选用密封性能较好的油润滑轴承,或水润滑轴承(滑动轴承);其中,滑动轴承在使用时,大多通过泵体内自然流经的增压后的水作为润滑液。
但是,由于滑动轴承与轴承套之间的单边间隙只有0.1mm~0.2mm,而主轴转动过程中会摩擦生热,当水润滑轴承作为主轴的辅助支撑轴承设置于进液口时,此时流经的凝结水未经过叶轮增压,流速较慢,不足以及时将摩擦产生的热量转移释放,工件的热胀冷缩容易导致间隙消失,从而导致凝结水无法继续通过间隙,存在工件报废的可能。
发明内容
基于此,有必要针对设置于凝结水泵进液口的水润滑轴承冷却不及时的问题,提供一种轴承冷却结构及具有其的凝结水泵。
本申请首先提供一种轴承冷却结构,包括泵体;所述泵体包括主轴、增压部以及进液部,所述主轴贯穿所述增压部至所述进液部;所述进液部内固设有滑动轴承套,所述滑动轴承套内设置有滑动轴承,所述主轴的一端与所述滑动轴承连接;所述泵体还包括水管,所述水管一端与所述增压部连通,另一端与所述滑动轴承套及所述滑动轴承之间的间隙连通。
上述轴承冷却结构,通过水管一端与增压部连通,另一端与间隙连通,使得经增压部增压后的部分待输送液体,能够通过水管冲入间隙,并从间隙重新流入进液部;而通过流动的高压液体,能够将主轴转动过程中,滑动轴承与滑动轴承套之间因摩擦产生的热量一 同带走,从而避免因间隙内的热量积攒,导致零件发生热胀冷缩,间隙因零件膨胀消失的情况发生,达到了实时冷却滑动轴承以保证其正常工作的效果。
在其中一个实施例中,所述增压部包括多个沿主轴延伸方向设置的叶轮,所述叶轮与所述泵体的内侧壁之间形成通流空间,所述水管与所述通流空间连通。
如此设置,通过叶轮的增压作用,配合将水管与通流空间连通,能够保证进入水管的液体为增压后的液体,以满足后续的冷却需求。
在其中一个实施例中,所述水管与最靠近所述进液部一侧的所述叶轮的通流空间连通。
如此设置,能够在满足滑动轴承的冷却需求的同时,尽可能降低因冷却所额外增加的能耗,达到提高工作效率的效果。
在其中一个实施例中,所述进液部依次分为台阶段、进液段以及扩口段,所述扩口段用于与所述增压部固定,所述滑动轴承套固设于所述进液段内。
如此设置,保证辅助轴1固定牢靠,并增加主轴转动过程中的稳定性。
在其中一个实施例中,所述水管包括第一水管和第二水管。
如此设置,以便于水管的安装,同时减少后续维修的难度。
在其中一个实施例中,所述第一水管与所述第二水管互相垂直设置。
在其中一个实施例中,所述滑动轴承套远离所述增压部的一端固设有挡板,所述第一水管的一端固设于所述挡板。
如此设置,通过挡板阻挡经由进液口进入泵体的待输送液体,避免待输送液体的液体压力下降,从而影响对滑动轴承的冷却效果。
在其中一个实施例中,所述台阶段的外缘面贯穿开设有通孔,所述通孔位于所述台阶段外缘面的开口可拆卸的固设有丝堵。
如此设置,能够在保证水管的拆装便利性的同时,避免高压液体通过通孔的开口泄漏。
在其中一个实施例中,所述第一水管的一端固设于所述滑动轴承套,且另一端位于所述通孔内;所述第二水管的一端与所述通孔连通,另一端贯穿所述扩口段。
本申请第二方面提供一种凝结水泵,包括上述的轴承冷却结构。
附图说明
图1为本申请的轴承冷却结构的正视方向的剖视结构示意图。
图2为图1中A处的放大结构示意图。
图3为图1中左视方向的结构示意图。
图4为图2中B处的放大结构示意图。
图5为本申请的凝结水泵的正视方向的剖视结构示意图。
主要元件符号说明:
100、泵体;10、进液部;11、台阶段;111、通孔;112、丝堵;12、进液段;13、扩口段;14、进液口;20、增压部;21、叶轮;22、中段壳体;30、主轴;31、滑动轴承套;32、滑动轴承;33、间隙;34、挡板;35、连接件;36、导流空间;40、悬架;41、深沟球轴承;42、角接触球轴承;50、水管;51、第一水管;52、第二水管。
以上主要元件符号说明结合附图及具体实施方式对本申请作进一步详细的说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请首先提供一种轴承冷却结构,请结合图1和图2所示,包括泵体100;泵体100包括主轴30、增压部20以及进液部10,主轴30贯穿增压部20至进液部10;进液部10内固设有滑动轴承套31,滑动轴承套31内设置有滑动轴承32,主轴30的一端与滑动轴承32连接;泵体100还包括水管50,水管50一端与增压部20连通,另一端与滑动轴承套31及滑动轴承32之间的间隙33连通。
这里,增压部20用于为进入增压部20的待输送液体增压。待输送液体通过进液部10进入泵体100,在进入增压部20后内在增压部20的作用下增压并输送至泵体100的其他结构。
通过水管50一端与增压部20连通,另一端与间隙33连通,使得经增压部20增压后的部分待输送液体,能够通过水管50冲入间隙33,并从间隙33重新流入进液部10;而 通过流动的高压液体,能够将主轴30转动过程中,滑动轴承32与滑动轴承套31之间因摩擦产生的热量一同带走,从而避免因间隙33内的热量积攒,导致零件发生热胀冷缩,间隙33因零件膨胀消失的情况发生,达到了实时冷却滑动轴承32以保证其正常工作的效果。
在图1和图2所示的实施例中,增压部20包括多个沿主轴30延伸方向设置的叶轮21,叶轮21与泵体100的内侧壁之间形成通流空间,水管50与通流空间连通。
为便于描述,本文中将最靠近进液部10的叶轮21定义为首级叶轮。
具体的,叶轮21均与主轴30固定连接,叶轮21的进水口朝向进液部10的方向开设,出水口沿径向开设,主轴30转动时会带动各叶轮21转动,从而通过叶轮21的转动,将进入叶轮21的待输送液体增压并甩出至下一级叶轮21,重复上述过程至待输送液体离开增压部20,从而实现增压部20的增压输送作用。
增压部20由多个中空的中段壳体22组成,每一叶轮21均对应一中段壳体22,且叶轮21设置于中段壳体22内,叶轮21与中段壳体22的内侧壁之间形成通流空间,通流空间用于导向待输送液体,使得从该级叶轮21的出水口流出的液体,能够在通流空间的导向作用下,进入下一级叶轮的入水口。
可选的,通流空间的转角位置均倒有圆角,以保证待输送液体在流动过程中能够自然转向,避免其与通流空间的侧壁直接碰撞导致液体紊流。
此外,多个中段壳体22的设置,使得中段壳体22内的密封环、轴封等易损件在损坏时,能够将对应的中段壳体22拆出并进行对应易损件的更换,中段壳体22本身与叶轮21仍可继续使用,大大节约了修理所需的时间与费用。
水管50与通流空间连通,即任意一级的中段壳体22与叶轮21之间的通流空间与水管50连通;
待输送的液体在通过首级叶轮21进入对应的通流空间时,即已完成第一次增压,而后续的叶轮21能够将待输送的液体进一步增压,以满足不同的需求。因此可以理解,进入任意通流空间的待输送液体,均为至少完成一次增压的液体,而通过将水管50与通流空间连通,能够保证进入水管50的液体势必为增压后的液体,以满足后续的冷却需求。
可选的,首级叶轮21的通流空间与水管50连通,经首级叶轮21增压后的液体,已足够满足绝大部分情况下滑动轴承32的冷却需求;由于增压后的液体在通过间隙33后,需要重新对该部分液体进行增压,即该部分液体原先的压力能会在通过间隙33后被消耗,因此,用于冷却的液体的初始压力越高,冷却所消耗的能耗越高;
可以理解,在冷却效果相同的情况下,若选择将水管50与其他叶轮21的通流空间连 通,会增加用于冷却滑动轴承32的能耗,从而降低泵体100整体的工作效率。
当然,若存在主轴30的转速较高或其他会导致摩擦生热速度较快的特殊情况,也可选择将水管50与其他叶轮21的通流空间连接,以获得更高的液体流速,增加对滑动轴承32的冷却效果,本申请在此不做具体限定。
此外,由于首级叶轮21为最靠近进液部10的叶轮21,通过将水管50与首级叶轮21的通流空间连通,还可以减少水管50所需的长度,一方面减少生产成本,另一方面,降低水管50因意外损坏的可能。
在图1所示的实施例中,进液部10依次分为台阶段11、进液段12以及扩口段13,扩口段13用于与增压部20固定,滑动轴承套31固设于进液段12内;
具体的,台阶段11、进液段12以及扩口段13通过铸造一体成型,进液部10内沿轴向开设有贯穿台阶段11、进液段12以及扩口段13的进液口14,其中,扩口段13的端面与首级叶轮21所在中段壳体22的端面对应,扩口段13以及各中段壳体22之间通过螺栓连接;
在图2所示的实施例中,滑动轴承套31通过连接件35与进液口14的内侧壁固定连接,连接件35与进液口14的内壁之间存在空隙,以供被输送液体正常通过,连接件35与进液口14的内壁之间可以通过焊接、螺栓连接、一体成型铸造等常见的固定方式固定。可选的,连接件35与进液口14的内壁通过焊接固定。
在一些实施例中,连接件35设置有多个且以主轴30为中心周向均布设置,一方面保证辅滑动轴承套31固定牢靠,从而进一步增加主轴30转动过程中的稳定性;
另一方面,使得连接件35与进液口14的内壁之间的空隙以主轴30为中心周向均布,从而使得被输送液体在通过进液口14进液时,能够均匀的进入泵体100内,从而避免因进液不均匀导致部分位置流速较高,汽蚀性能较差的情况发生,达到增加泵体100的汽蚀性能的效果。
在图3所示的实施例中,连接件35设置有三个,且以主轴30为中心周向均布设置。
在图2所示的实施例中,水管50包括第一水管51和第二水管52,以便于水管50的安装。第一水管51和第二水管52可呈任意角度安装,只要安装完成后液体能够顺畅通过即可,可选的,第一水管51与第二水管52互相垂直设置,其中,第一水管51沿主轴30的径向设置,第二水管52平行于主轴30设置。
在图2和图4所示的实施例中,滑动轴承套31远离增压部20的一端固设有挡板34,第一水管51的一端固设于挡板34。挡板34用于阻挡通过进液口14进入泵体100的待输送液体,避免待输送液体直接进入间隙33,与经水管50冲出的高压液体混合,导致液体 压力下降,从而影响对滑动轴承32的冷却效果;
此外,挡板34、主轴30的端面以及滑动轴承套31的内侧壁之间还形成一导流空间36,该导流空间36与间隙33连通,且导流空间36内的夹角处均倒有圆角,水管50内的高压液体进入导流空间36后,通过滑动轴承32与滑动轴承套31之间的间隙33流出,同时在通过间隙33流出的过程中,将主轴30转动摩擦产生的热量一同带走,达到冷却滑动轴承32的效果。
在图2所示的实施例中,台阶段11的外缘面贯穿开设有通孔111,通孔111位于台阶段11外缘面的开口可拆卸的固设有丝堵112,第一水管51的一端固设于滑动轴承套31,且另一端位于通孔111内;第二水管52的一端与通孔111连通,另一端贯穿扩口段13。
通过开设通孔111,使得第一水管51在安装时,能够直接通过通孔111位于台阶段11外缘面的开口插入,直至第一水管51的一端与挡板34连接,此时第一水管51的另一端位于通孔111内,从而便于第一水管51安装;
可选的,第一水管51与挡板34之间螺纹连接,第一水管51与通孔111的内侧壁间隙配合。
此外,通过第二水管52的一端与通孔111连通,配合可拆卸的固设于通孔111的开口处的丝堵112,使得丝堵112固设时,通孔111内为一密闭空间,高压水通过第二水管52流动至通孔111内,并通过第一水管51进入导流空间36,在保证第一水管51的拆装便利性的同时,避免高压水通过通孔111的开口泄漏。
本申请还提供一种凝结水泵,请参考图5所示,包括如上述任一实施例的轴承冷却结构。
在图5所示的实施例中,泵体100还包括悬架40,悬架40位于泵体100远离进液部10的一端,主轴30的一端转动连接于悬架40。
通过悬架40与滑动轴承32分别与主轴30连接,使得主轴30能够得到两侧支撑,从而增加主轴30工作状态下的稳定性;在此基础上,通过悬架40与滑动轴承32分别连接于主轴30的两端,使得主轴30的两端均获得支撑,即主轴30不存在悬空部分,从而保证主轴30在转动过程中不会发生径向振动或偏移,增加主轴30工作状态下的稳定性。
此外,通过将进液口14沿主轴30的延伸方向开设,使得主轴30开始转动后,被输送液体均沿轴向进入泵体100,即被输送液体的流动路径相同,从而实现被输送液体均匀流入,使得进液口14内的通道平衡度较高,各位置的汽蚀性能均相同或相近,无汽蚀性能相对较差的位置,进而达到提高泵体100的汽蚀性能的效果。
在图5所示的实施例中,滑动轴承32设置于进液口14中心位置,从而使得主轴30 的轴向投影位于进液口14的中心,进而保证在主轴30转动过程中,进液口14各位置进液均匀,从而避免因进液不均匀导致部分位置流速较高,汽蚀性能较差的情况发生,达到提高泵体100的汽蚀性能的效果。
主轴30通过至少两组轴承与悬架40连接,以保证主轴30在悬架40内能够得到至少两点支撑,从而通过增加对主轴30的支撑点数量,进一步提高主轴30转动时的稳定性;
综合考虑增设轴承数量后对稳定性的提升幅度以及成本的提升幅度,可选的,主轴30通过两组轴承与悬架40连接。
其中一组轴承设置于悬架40靠近进液部10的一端,另一组轴承设置于悬架40远离进液部10的一端,由于滑动轴承32与悬架40之间的距离通常大于悬架40的长度,通过将两组轴承分别设置于悬架40的两端,能够尽可能增加两组轴承之间的距离,并使得该距离尽可能的接近滑动轴承32与位于中间的轴承之间的距离,从而使得滑动轴承32与两组轴承的支撑点的布置尽可能的均匀,从而达到提高对主轴30的支撑稳定性的效果。
这里的轴承,可以为圆柱轴承、滑动轴承、滚珠轴承或其他常用的转动连接零件,本申请在此不作限定。可选的,主轴30通过球轴承与悬架40连接,且位于悬架40靠近进液部10一端的一组轴承为一个深沟球轴承41,位于另一端的一组轴承为两个角接触球轴承42。
其中,两个角接触球轴承42以宽端面对宽端面的方式安装,以承受较大的径向负载,并限制主轴30的两个方向的轴向位移,增加主轴30的轴向稳定性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种轴承冷却结构,其特征在于,包括泵体;
    所述泵体包括主轴、增压部以及进液部,所述主轴贯穿所述增压部至所述进液部;
    所述进液部内固设有滑动轴承套,所述滑动轴承套内设置有滑动轴承,所述主轴的一端与所述滑动轴承连接;
    所述泵体还包括水管,所述水管一端与所述增压部连通,另一端与所述滑动轴承套及所述滑动轴承之间的间隙连通。
  2. 根据权利要求1所述的轴承冷却结构,其特征在于,所述增压部包括多个沿主轴延伸方向设置的叶轮,所述叶轮与所述泵体的内侧壁之间形成通流空间,所述水管与所述通流空间连通。
  3. 根据权利要求2所述的轴承冷却结构,其特征在于,所述水管与最靠近所述进液部一侧的所述叶轮的通流空间连通。
  4. 根据权利要求1所述的轴承冷却结构,其特征在于,所述进液部依次分为台阶段、进液段以及扩口段,所述扩口段用于与所述增压部固定,所述滑动轴承套固设于所述进液段内。
  5. 根据权利要求4所述的轴承冷却结构,其特征在于,所述水管包括第一水管和第二水管。
  6. 根据权利要求5所述的轴承冷却结构,其特征在于,所述第一水管与所述第二水管互相垂直设置。
  7. 根据权利要求5所述的轴承冷却结构,其特征在于,所述滑动轴承套远离所述增压部的一端固设有挡板,所述第一水管的一端固设于所述挡板。
  8. 根据权利要求5所述的轴承冷却结构,其特征在于,所述台阶段的外缘面贯穿开设有通孔,所述通孔位于所述台阶段外缘面的开口可拆卸的固设有丝堵。
  9. 根据权利要求8所述的轴承冷却结构,其特征在于,所述第一水管的一端固设于所述滑动轴承套,且另一端位于所述通孔内;所述第二水管的一端与所述通孔连通,另一端贯穿所述扩口段。
  10. 一种凝结水泵,其特征在于,包括如权利要求1~9中任意一项所述的轴承冷却结构。
PCT/CN2021/131227 2021-10-31 2021-11-17 轴承冷却结构及具有其的凝结水泵 WO2023070765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111279066.5A CN113864246A (zh) 2021-10-31 2021-10-31 轴承冷却结构及具有其的凝结水泵
CN202111279066.5 2021-10-31

Publications (1)

Publication Number Publication Date
WO2023070765A1 true WO2023070765A1 (zh) 2023-05-04

Family

ID=78986400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131227 WO2023070765A1 (zh) 2021-10-31 2021-11-17 轴承冷却结构及具有其的凝结水泵

Country Status (2)

Country Link
CN (1) CN113864246A (zh)
WO (1) WO2023070765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117072755A (zh) * 2023-08-29 2023-11-17 三峡新能源山东昌邑发电有限公司 放水阀、散热系统及电气设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001033A (zh) * 2021-10-31 2022-02-01 浙江水泵总厂有限公司 轴向进液结构及具有其的多级离心泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB751617A (en) * 1953-02-04 1956-07-04 Bendix Aviat Corp Pump assembly and means for cooling bearings thereof
CN101793254A (zh) * 2009-11-17 2010-08-04 杨洪举 单级卧式自动平衡离心密封泵
CN201771871U (zh) * 2010-07-08 2011-03-23 上海连成(集团)有限公司 一种应用于凝结水泵的诱导轮的新支撑结构
CN201858161U (zh) * 2010-11-05 2011-06-08 浙江科尔泵业股份有限公司 水平轴向吸入节段式多级高压离心泵
CN204677443U (zh) * 2015-03-16 2015-09-30 亿志机械设备(无锡)有限公司 双相钢立式多级泵
CN109372792A (zh) * 2018-12-24 2019-02-22 淄博匠心防腐耐磨材料有限公司 自媒介润滑卧式泵
CN114001033A (zh) * 2021-10-31 2022-02-01 浙江水泵总厂有限公司 轴向进液结构及具有其的多级离心泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022384B (zh) * 2010-12-09 2013-06-12 江苏大学 矿潜泵的一种硬质合金滑动轴承引水冷却润滑系统
KR101272684B1 (ko) * 2011-11-15 2013-06-10 한국항공우주연구원 강제 순환로를 포함하는 베어링 냉각장치 및 상기 베어링 냉각장치를 구비하는 액체연료펌프
CN102536876A (zh) * 2012-01-18 2012-07-04 合肥三益江海泵业有限公司 用于多级离心泵的水泵转轴支撑装置
CN104329261A (zh) * 2014-10-22 2015-02-04 江苏振华泵业制造有限公司 高温蒸馏水循环泵
CN109185217B (zh) * 2018-11-28 2024-08-02 无锡艾比德泵业有限公司 一种吸入口为鱼嘴式的多级离心泵的进水段结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB751617A (en) * 1953-02-04 1956-07-04 Bendix Aviat Corp Pump assembly and means for cooling bearings thereof
CN101793254A (zh) * 2009-11-17 2010-08-04 杨洪举 单级卧式自动平衡离心密封泵
CN201771871U (zh) * 2010-07-08 2011-03-23 上海连成(集团)有限公司 一种应用于凝结水泵的诱导轮的新支撑结构
CN201858161U (zh) * 2010-11-05 2011-06-08 浙江科尔泵业股份有限公司 水平轴向吸入节段式多级高压离心泵
CN204677443U (zh) * 2015-03-16 2015-09-30 亿志机械设备(无锡)有限公司 双相钢立式多级泵
CN109372792A (zh) * 2018-12-24 2019-02-22 淄博匠心防腐耐磨材料有限公司 自媒介润滑卧式泵
CN114001033A (zh) * 2021-10-31 2022-02-01 浙江水泵总厂有限公司 轴向进液结构及具有其的多级离心泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117072755A (zh) * 2023-08-29 2023-11-17 三峡新能源山东昌邑发电有限公司 放水阀、散热系统及电气设备

Also Published As

Publication number Publication date
CN113864246A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023070765A1 (zh) 轴承冷却结构及具有其的凝结水泵
US4893986A (en) High-pressure high-temperature coal slurry centrifugal pump and let-down turbine
CN103225624A (zh) 双壳体对称式径向剖分多级离心泵
CN101975168A (zh) 水平轴向吸入节段式多级高压离心泵
CN105570186A (zh) 一种能实现轴向力自平衡的单级离心泵
CN201265547Y (zh) 平衡型单吸卧式多级离心泵
US8858157B2 (en) Centrifugal pump having an apparatus for the removal of particles
RU2596411C2 (ru) Насосно-турбинная установка
WO2017088713A1 (zh) 多级泵
CN111207080B (zh) 一种带轴开中分便拆结构的化工泵
CN203214340U (zh) 双壳体对称式径向剖分多级离心泵
WO2023070766A1 (zh) 轴向进液结构及具有其的多级离心泵
CN205478525U (zh) 一种能实现轴向力自平衡的单级离心泵
GB2062102A (en) Centrifugal Pump and Turbine
CN201090516Y (zh) 中开单吸多级导叶式离心泵
JP2013053524A (ja) 複圧式遠心ターボ機械
US11781556B2 (en) High energy density turbomachines
CN220487873U (zh) 一种多级泵的转子冷却结构
RU2732655C1 (ru) Центробежный секционный насос с двумя параллельными потоками перекачиваемой среды
CN108757477B (zh) 一种精简结构离心泵
CN116892518A (zh) 一种多级圆盘泵
CN205401146U (zh) 节段式多级离心泵
CN116066373A (zh) 零泄露易维护高效浆液泵
CN212615420U (zh) 一种石油化工流程泵
CN115853784A (zh) 可应用于多种工况场合的组合型泵组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21962109

Country of ref document: EP

Kind code of ref document: A1