WO2023066384A1 - 眼球追踪光学装置、光学系统、显示装置和显示系统 - Google Patents

眼球追踪光学装置、光学系统、显示装置和显示系统 Download PDF

Info

Publication number
WO2023066384A1
WO2023066384A1 PCT/CN2022/126772 CN2022126772W WO2023066384A1 WO 2023066384 A1 WO2023066384 A1 WO 2023066384A1 CN 2022126772 W CN2022126772 W CN 2022126772W WO 2023066384 A1 WO2023066384 A1 WO 2023066384A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
eye
detection light
light guide
Prior art date
Application number
PCT/CN2022/126772
Other languages
English (en)
French (fr)
Inventor
翁志彬
来颖
Original Assignee
小派科技(上海)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小派科技(上海)有限责任公司 filed Critical 小派科技(上海)有限责任公司
Publication of WO2023066384A1 publication Critical patent/WO2023066384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features

Definitions

  • the invention relates to the field of optical technology, in particular to an eye tracking optical device, an optical system, a display device and a display system.
  • Eye tracking technology is a scientific application technology, which is usually tracked according to changes in the characteristics of the eyeball, eyeball reflection, and surrounding features of the eyeball, or changes in the iris and pupil. Use one or more cameras to capture the user's eye image, and then estimate where the user's eyeball is looking based on the eyeball features and reflective features in the eye image.
  • the existing eye tracking technology uses infrared light-emitting diodes (LEDs) to emit light, and the light hits the human eye cornea, and the human eye image is captured by a camera, and the reflected light of the infrared light in the human eye cornea is extracted to determine the gaze of the human eye. direction.
  • LEDs infrared light-emitting diodes
  • the infrared LEDs used as the light source for eye tracking and detection are installed on both sides of the eyepiece. If the infrared LED lights are used to directly illuminate the eyeballs, only In the case of small-sized eyepieces with a small field of view.
  • the virtual reality/augmented reality is a device with a large field of view, the eyepiece of the device is large in size, and the infrared light emitted by the infrared LED lights on both sides will be blocked by the forehead or other facial structures, and the infrared light cannot be irradiated Human cornea.
  • the present invention provides an eye-tracking optical device, an optical system, a display device and a display system, which solve the problem that the current eye-tracking device cannot be applied to a large-field-of-view head-mounted display device with a large eyepiece.
  • the present invention provides an eye tracking optical device, which is applied to a head-mounted display device, and the head-mounted display device includes an eyepiece group, and the eyepiece group includes a first optical surface facing the eyes; wherein,
  • the eye tracking optical device includes: a detection light source, used to emit detection light; a light guide mechanism, arranged on the first optical surface, the light guide mechanism has a light inlet and a light outlet, and the detection light source The light exiting direction points to the light entrance, and the light guiding mechanism is configured to: obtain the detection light from the light entrance, guide the detection light from the light entrance to the light exit, and The detection light is coupled out from the light outlet; the light output direction of the light outlet points to the eye; and the detection light collection module is configured to acquire the reflected light of the eye to the detection light; wherein, the The length of the light guide mechanism between the light inlet and the light outlet accounts for any value between 10% and 49% of the diameter of the first optical surface; the distance between the light outlet and the eye The acute
  • the light guide mechanism includes: a hollow cylindrical light guide strip, the inner surface of the light guide strip is coated with a light guide film layer for reflecting the probe light, and the reflection band of the light guide film layer includes the The wavelength band of the probe light, the light inlet and the light outlet are respectively located at two ends of the light guide strip.
  • the light guide strip is made of a transparent material
  • the light guide film layer is a partially transmissive and partially reflective film
  • the transmission waveband of the light guide film layer includes a visible light waveband
  • the light guide strip is embedded on the first optical surface.
  • a light-transmitting plate is provided at the position of the light outlet.
  • the number of the light guiding mechanism and the detection light source is multiple, and the light guiding mechanism and the detection light source correspond one to one.
  • the wavelength band of the probe light source is an infrared wavelength band.
  • the eye tracking optical device further includes: a reflector disposed in a reflection direction of the detection light by the eyes; wherein the detection light collection module is disposed in the reflection direction of the reflection mirror.
  • the reflector is a partially reflective and partially transmissive mirror, and the reflection band of the reflector includes an infrared band.
  • the probe light source includes: an optical machine, configured to generate the probe light; and an optical path adjustment component, configured to shape the probe light and turn it into the light inlet.
  • the optical path adjustment component includes: a focusing lens group and an optical path deflecting mirror, the focusing lens group and the optical path deflecting mirror are both arranged on the optical path between the optical machine and the light inlet;
  • the focusing lens group is configured to focus the probe light generated by the optical machine, and the optical path deflection mirror is configured to change the irradiation direction of the probe light to illuminate towards the light inlet.
  • the eye tracking optical device further includes: a detection light housing, the detection light source is installed in the detection light housing, and the detection light housing is connected to the eyepiece group.
  • the present application provides an optical system, comprising: two aforementioned eye tracking optical devices; and a left eye viewing component, on which one eye tracking optical device is installed; and a right One eye tracking optical device is installed on the right-eye viewing assembly; wherein, the left-eye viewing assembly and the right-eye viewing assembly are symmetrically distributed.
  • the present application provides a display device, which is applied to a virtual reality device or an augmented reality device, and the display device includes: the aforementioned optical system.
  • the display device further includes: a head wearing component, and the head wearing component is used to be worn on a person's head.
  • the display device further includes: a casing, and the optical system is accommodated in the casing.
  • the present application provides a display system, the display system is a virtual reality and/or augmented reality display system, the display system includes a signal input module and the aforementioned head-mounted display device, the head-mounted display device The display device receives the signal from the signal input module and processes the signal.
  • the signal input module includes an operation controller electrically connected to the head-mounted display device.
  • the display system is a virtual and/or augmented reality display all-in-one machine, the display system further includes a processing module, and the processing module is used to control the working status of the operation controller and the detection light source.
  • the beneficial effect of the present invention is embodied in that the present invention is applied to a head-mounted display device with a large field of view when in use, and the area of the eyepiece group of such a head-mounted display device with a large field of view is relatively large. If the probe light source is installed on the side of the eyepiece group, the probe light cannot be irradiated on the eyes. Under the action of the light guide mechanism, the detection light can be guided to a certain position of 10% to 49% of the aperture of the first optical surface and emitted to the eyes, so that in the large-field-of-view head-mounted display device, the In order to shine the probe light on the eye.
  • the detection light After the detection light is irradiated into the light inlet of the light guide mechanism, it can undergo total reflection and propagation in the light guide mechanism, and finally exit from the light outlet.
  • the reflected light after the detection light is irradiated on the eyes is then irradiated into the detection light collection module.
  • the detection light collection module acquires the reflected light, subsequent eye tracking analysis can be performed. Specifically, the pupil image information in the reflected light can be extracted to identify the gaze direction of the eyeball.
  • the detection light of the present invention is firstly irradiated into the light guide mechanism, and the light guide mechanism guides the detection light to one end of the optical path and emits it into the eyes.
  • the light guide mechanism plays the role of collecting the detection light and guiding the detection light, and can guide the detection light After a certain light path is introduced, it is emitted, so that the detection light source can be installed at a position far from the eyes.
  • the detection light source does not need to be precisely aimed at the eyes, but only needs the light output direction of the light outlet to face the eyes, which reduces the requirements for the installation position of the detection light source, and also reduces the installation accuracy requirements for the detection light source.
  • reducing the installation requirements for the detection light source actually increases the utilization rate of the detection light equivalently, that is, the detection light collection module is easier to obtain the reflected light of the detection light irradiated on the eyes, and improves the eye tracking efficiency of the eyes.
  • FIG. 1 is a schematic structural diagram of an eye tracking optical device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a light guiding mechanism provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of the present invention including multiple detection light sources and light guide mechanisms.
  • FIG. 4 is a schematic structural diagram of another eye tracking optical device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of the probe light source of the present invention.
  • FIG. 6 is a schematic structural diagram of the display system of the present invention.
  • FIG. 1 is a schematic structural diagram of an eye tracking optical device provided by an embodiment of the present invention.
  • the present application provides an eye tracking optical device, which is applied to a head-mounted display device.
  • the head-mounted display device includes an eyepiece group 1, and the eyepiece group 1 includes a first optical surface 101 and a second optical surface 101 arranged opposite to each other. Two optical surfaces 102, the first optical surface 101 faces the eyes 4, and the second optical surface 102 faces the outside world.
  • an image can be projected to the first optical surface 101, or on the second optical surface 102.
  • a display screen is arranged in the facing direction to display images, and the user wearing the head-mounted display device can watch the images.
  • the head-mounted display device used in this application is a head-mounted display device of a large field of view type, and the area of the eyepiece group 1 of this type of large field of view device is relatively large.
  • the eye tracking optical device includes a detection light source 2, a light guide mechanism 8, and a detection light collection module 3, wherein the detection light source 2 is used to emit detection light, and the detection light source 2 is installed on the side of the eyepiece group 1 facing the ear , and the light output direction of the detection light source 2 points to the light guide mechanism 8 .
  • the light guide mechanism 8 is arranged on the first optical surface 101.
  • the light guide mechanism 8 has a light inlet 801 and a light outlet 802.
  • the light guide mechanism 8 is structured as follows: Obtain the detection light from the light entrance 801 , guide the detection light from the light entrance 801 to the light exit 802 , and couple the detection light out from the light exit 802 ; the light exit direction of the light exit 802 points to the eye 4 .
  • the detection light collection module 3 is configured to obtain the reflected light of the eye 4 to the detection light.
  • the length of the light guide mechanism 8 between the light inlet 801 and the light outlet 802 accounts for any value between 10% and 49% of the aperture of the first optical surface 101; the length between the light outlet 801 and the eye 4
  • the acute angle included between the chief ray of the optical path and the optical axis of the eyepiece group 1 is any value between 5° and 65°, including the original value of 5° and 65°.
  • the limitation of the length of the light guide mechanism 8 and the limitation of the direction of the light path between the light outlet 801 and the eye 4 correspond to head-mounted display devices with a large field of view, and the specific field of view is generally greater than 100°. This type of large field of view
  • the eyepiece group 1 of the head-mounted display device has a larger area.
  • the detection light source 2 is installed on the side of the eyepiece group 1 , the detection light cannot be irradiated on the eyes 4 .
  • the detection light can be guided to a certain position of 10% to 49% of the aperture of the first optical surface 101 and emitted to the eye 4, so that the large field of view head-mounted display device In this way, the detection light is irradiated on the eye 4 .
  • the probe light after the probe light is irradiated into the light inlet 801 of the light guide mechanism 8, it can undergo total reflection and propagation in the light guide mechanism 8, and finally propagate to the light outlet 802.
  • the light outlet 802 can be opened in the light guide mechanism 8.
  • the specific position setting of the window can determine the exit position and exit direction of the probe light.
  • the detection light source 2 can emit divergent detection light, and the divergent detection light enters the light guide mechanism 8 and then exits in a divergent state and irradiates the eye 4 to ensure detection. Light can cover the entire eye.
  • the reflected light after the detection light is irradiated on the eye 4 is then irradiated into the detection light collection module 3.
  • the detection light collection module 3 When the detection light collection module 3 is located in the direction facing the first optical surface 101 of the eyepiece group 1, the reflection of the detection light by the eye 4 The light will directly enter the detection light collection module 3; when the detection light collection module 3 is located in the direction facing the second optical surface 102 of the eyepiece group 1, the reflected light of the detection light by the eyes 4 may pass through the eyepiece group 1 and then Incident detection light collection module 3 .
  • subsequent eye tracking analysis can be performed. Specifically, the pupil image information in the reflected light can be extracted to identify the gaze direction of the eyeball.
  • the detection light of this embodiment is first irradiated into the light guide mechanism 8, and the light guide mechanism 8 guides the detection light to one end of the optical path and then emits it into the eye 4.
  • the light guide mechanism 8 plays the role of collecting the detection light and guiding the detection light, The detection light can be guided for a certain optical distance and then emitted, so that the detection light source 2 can be installed at a position far from the eye 4 .
  • the detection light source 2 does not need to be precisely aimed at the eye 4, but only needs the light output direction of the light outlet 802 to face the eye 4, which reduces the requirements for the installation position of the detection light source 2 and also reduces the installation of the detection light source 2. Accuracy requirements.
  • the detection light collection module 3 can more easily obtain the reflected light of the detection light irradiated on the eye 4, which improves the protection of the eye 4. Eye tracking efficiency.
  • FIG. 2 is a schematic structural diagram of a light guiding mechanism provided by an embodiment of the present invention.
  • the light guide mechanism 8 includes a hollow columnar light guide strip 803, the inner surface of the light guide strip 803 is coated with a light guide film layer 804 for reflecting the detection light, and the reflection band of the light guide film layer 804 includes To detect the wavelength band of light, the light inlet 801 and the light outlet 802 are respectively located at two ends of the light guide strip 803 .
  • the light guide film layer 803 After the detection light enters the light guide strip 803 from the light inlet 801, the light guide film layer 803 reflects the detection light in the light guide strip 803, so that the detection light propagates through total reflection in the light guide strip 803, and finally exits from the light outlet 802 .
  • the wavelength band of the detection light may be, for example, an infrared wavelength band, and the light guide film layer 804 may reflect the detection light.
  • the light guide strip 803 is made of a transparent material
  • the light guide film layer 804 is a partially transmissive and partly reflective film
  • the transmission wavelength band of the light guide film layer 804 includes the visible light band, so that the light guide film layer 804 can only reflect the detection light
  • the image light corresponding to the image to be displayed by the head-mounted display device and external ambient light can be transmitted through the light guide strip 803, and the light guide bar 803 will not affect the normal display operation of the head-mounted display device.
  • the light guide strip 803 is embedded on the first optical surface 101, so that the light guide strip 803 will not protrude from the surface of the first optical surface 101, that is, the light guide strip 803 will not Take up too much space.
  • a light-transmitting plate 805 is provided at the position of the light outlet 802 , and the light-transmitting plate 805 can close the light outlet 803 to prevent debris from entering the light guide strip 803 .
  • the light-transmitting plate 805 can be coated with an anti-reflection film 806, which can reduce the reflectivity of the detection light on the light-transmitting plate 805, and the detection light can better pass through the light-transmitting plate 805, improving the energy utilization rate of the detection light.
  • FIG. 3 is a schematic structural diagram of the present invention including multiple detection light sources and light guide mechanisms.
  • the number of the light guide mechanism 8 and the detection light source 2 is multiple, and the light guide mechanism 8 and the detection light source 2 correspond to each other, so that more detection light can be irradiated on the light source after passing through the light guide mechanism 8.
  • the detection light collection module 3 On the eye 4, so that the eye 4 can receive more detection light, correspondingly, there will be more reflected light of the eye 4 to the detection light being acquired by the detection light collection module 3, that is, the signal-to-noise ratio of the reflected light is improved,
  • the detection light collection module 3 is more likely to detect the eyeball movement information of the eye 4 .
  • the wavelength band of the detection light source 2 is the infrared band, and the invisible detection light in the infrared band will not affect the normal display content of the eyepiece group 1 .
  • the distance between the detection light source 2 and the optical axis of the eyepiece group 1 is any value between 30 mm and 60 mm, specifically, the distance may be the vertical distance between the geometric center of the detection light source 2 and the optical axis of the eyepiece group 1 .
  • FIG. 4 is a schematic structural diagram of another eye tracking optical device provided by an embodiment of the present invention.
  • the eye tracking optical device further includes a reflector 5 , which is arranged in the direction of reflection of the detection light by the eye 4 .
  • the detection light collection module 3 is arranged in the reflection direction of the mirror 5 .
  • the optical path direction of the reflected light after the detection light passes through the eye 4 can be changed by the reflector 5 , which can improve the degree of freedom of placement of various components in the eye tracking optical device.
  • the reflection mirror 5 is arranged in the direction in which the second optical surface 102 faces. Since the structure of the detection light collection module 3 is generally complex and occupies a large space, the placement of the detection light collection module 3 can be made more free by the reflector 5 . In some manners, the detection light collection module 3 may be disposed in the area between the second optical surface 102 and the reflective mirror 5 . Specifically, for example, the installation position of the detection light collection module 3 can be determined first according to the specific structure of the entire eye tracking optical device, and then the angle of the reflector 5 can be adjusted so that the reflected light of the detection light by the eyes 4 shines on the detection light collection module 3. photosensitive window.
  • the packaging structure of the eyepiece group 1 generally has more installation space
  • the detection light collection module 3 can be installed on the packaging structure of the eyepiece group 1, and the detection direction of the detection light collection module 3 is directed towards the second optical surface
  • the reflector 5 is installed on a certain structure in the direction facing the second optical surface 102.
  • the reflector 5 since the reflector 5 has a simple structure and takes up little space, the reflector 5 does not have high requirements on the installation space and installation position, and then the angle of the reflector 5 is adjusted so that the reflected light of the eye 4 to the probe light can enter the probe light Acquisition module 3 is enough.
  • the reflector 5 When the reflector 5 is not a partially reflective and partially transmissive mirror and the head-mounted display device is an augmented reality display device, it is necessary to design the installation position of the reflector 5 so that the reflector 5 will not block the eyes 4 passing through the eyepiece group 1.
  • Field of view for example, the reflector 5 can be installed above or below the horizontal direction of the eyepiece group 1, and adjust the direction of the detection light source 2 accordingly, so that the detection light can be irradiated on the first optical surface 101 and the reflection of the eye 4 on mirror 5.
  • reflective mirror 5 can adopt partial reflective part transmissive mirror, and the reflective band of reflective mirror 5 includes infrared band, can make reflective mirror 5 can not influence eyes 4 to see external environment through eyepiece group 1 like this, reflective mirror 5 just can It is arranged in the field of view of the eyes 4 passing through the eyepiece set 1, which can reduce the requirements on the installation positions of each component and improve the freedom of placement of each component.
  • the surface of the first optical surface 101 can also be covered or plated with a partially transmissive and partially reflective film, and the reflection band of the partially transmissive and partially reflective film includes the infrared band, so that the normal display image of the eyepiece group 1 can not be affected. Improving the reflectivity of the detection light can make more detection light irradiate on the eye 4 and improve the utilization rate of the detection light.
  • FIG. 5 is a schematic structural diagram of the probe light source of the present invention.
  • the detection light source 2 includes an optical machine 201 and an optical path adjustment component 202 , the optical machine 201 is used to generate the detection light, and the optical path adjustment component 202 is configured to shape the detection light and turn it into the light entrance 801 .
  • the probe light generated by the optical machine 201 can be shaped into the required beam shape, for example, the probe light can be focused or collimated, and the focused or collimated probe light enters the light guide from the light inlet 801
  • the strip 803 is transmitted through total reflection in the light guide strip 803, and the detection light is transmitted through the total reflection and then exits from the light outlet 802 and is irradiated on the eyes.
  • the detection light can be coupled into the light guide strip 803, so as to avoid waste of detection light.
  • the optical path adjustment assembly 202 includes a focusing lens group 210 and an optical path deflecting mirror 211 .
  • the focusing lens group 210 is configured to focus or collimate the probe light generated by the optical machine 201
  • the optical path deflection mirror 211 is configured to change the irradiation direction of the probe light to illuminate toward the light inlet 801 .
  • Optical machine 201 can select infrared semiconductor light-emitting diode for use, as shown in Figure 5, the light entrance side of focusing lens group 210 is arranged on the light-emitting direction of optical machine 201, and focusing lens group 210 can select the lens group that the refractive power is positive for use.
  • the detection light is focused, and the optical path deflection mirror 211 can be a reflector or a reflection prism, and the optical path deflection mirror 211 is arranged on the light output side of the focusing lens group 210, and the optical path deflection mirror 211 reflects the detection light into the light inlet 801.
  • the straight lines with arrows in FIG. 1 to FIG. 5 indicate the approximate direction of the optical path.
  • the ball-tracking optical device further includes a detection light housing 10 , the detection light source 2 is installed in the detection light housing 10 , and the detection light housing 10 is connected with the eyepiece group 1 .
  • the detection light source 2 is packaged and fixed by the detection light housing 10 , which can avoid displacement of various components in the detection light source 2 .
  • the detection light housing 10 can be connected to the side of the eyepiece group 1, or indirectly connected to the eyepiece group 1 through some intermediaries, so as to ensure that the relative position of the detection light source 2 and the eyepiece group 1 remains unchanged, so that the detection light can be stably into the light guide mechanism 8.
  • the head-mounted display device in this embodiment may further include a spectacle frame, the spectacle frame includes temples, and the optical system is fixed between the temples.
  • the mirror legs can be hung on the user's ears, and the eyepiece group can be installed on the lens installation position of the spectacle frame, so that the head-mounted display device can be conveniently worn on the user's head, providing a virtual reality display for the user.
  • an augmented reality display When the head-mounted display device is a transmissive virtual reality/augmented reality product, the eyepiece set installed at the lens installation position is a transflective lens, so that human eyes can watch the real scene outside the eyepiece set.
  • the head-mounted display device includes an optical system and a buckle disposed therein, and the buckle is used to fix the optical system in front of human eyes.
  • the clasp holds the optical system in front of the human eye for viewing by the human eye.
  • the present invention provides an optical system, which includes: the aforementioned eye tracking optical device, a left eye viewing component and a right eye viewing component, an eye tracking optical device is installed on the left eye viewing component, and an eye tracking optical device is installed on the On the right-eye viewing component, the left-eye viewing component and the right-eye viewing component are symmetrically distributed.
  • the user's left and right eyes view images from the two eyepiece sets, respectively.
  • the present invention also provides a display device, which is applied to a virtual reality device or an augmented reality device.
  • the display device includes the aforementioned optical system and a fixed structure, and the optical system is connected to the fixed structure.
  • the image When in use, the image can be projected to the first optical surface of the eyepiece group, or the image source can be placed outside the eyepiece group away from the eyes, and the image on the first optical surface of the eyepiece group can be viewed, or the image source outside the eyepiece group can be viewed image.
  • the display device may be a transmissive/non-transmissive display type virtual reality/augmented reality product, or a head-mounted virtual reality/augmented reality product.
  • the fixed structure provides support for the optical system, avoiding the displacement of various parts of the optical system during use, so as to ensure the durability of the optical system.
  • the eyepiece set is a transflective lens, so that human eyes can watch the real scene outside the eyepiece set.
  • the display device also includes a head wearing component connected to the fixed structure, and the head wearing component is used to be worn on a person's head.
  • the display device When in use, the display device can be worn on the user's head through the head wearing component, and the user's head provides support for the display device, and can conveniently watch virtual reality or augmented reality images.
  • the display device further includes a housing and a camera
  • the optical system is accommodated in the housing, and the housing can effectively protect the optical system and avoid damage to the optical system.
  • the lens of the camera faces the human eye, and the camera can be used to perform eye-tracking functions.
  • FIG. 6 is a schematic structural diagram of a display system 60 of the present invention.
  • the present invention also provides a display system 60.
  • the display system 60 is a virtual reality and/or augmented reality display system.
  • the head-mounted display device 63 receives the signal from the signal input module 63 and transmits it to the head-mounted display device 63 for processing.
  • the signal input module 62 includes an operation controller electrically connected to the head-mounted display device 63, and the operation controller may specifically be a handle controller.
  • the display system 60 is a virtual and/or augmented reality display all-in-one machine, the display system 60 also includes a processing module 61, and the processing module 61 is used to control the operation controller and detect the working state of the light source, for example, it can control the detection Whether the light source is turned on.
  • the display system 60 further includes a memory 64 , the processing module 61 is electrically connected to the signal input module 62 respectively, and the memory 64 is used for storing executable instructions of the processing module 61 .
  • the processing module 61 may be a central processing unit (CPU) or other form of processing unit having data processing capabilities and/or instruction execution capabilities, and may control other components in the display system 60 to perform desired functions.
  • CPU central processing unit
  • the processing module 61 may be a central processing unit (CPU) or other form of processing unit having data processing capabilities and/or instruction execution capabilities, and may control other components in the display system 60 to perform desired functions.
  • Memory 64 may include one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), etc., for example.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • One or more computer program instructions may be stored on the computer readable storage medium, and the processing module 61 may execute the program instructions to control the operation of the controller.
  • the signal input module 62 can be interconnected with the processing module 61 through a bus system and/or other forms of connection mechanisms (not shown), and the signal input module 62 can include, for example, a keyboard, a mouse, a joystick, and a touch screen.
  • the display system 60 may also include any other appropriate components according to specific application conditions.
  • each component can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种眼球追踪光学装置、光学系统、显示装置和显示系统(60),该眼球追踪光学装置应用于大视场的头戴式显示设备(63),探测光照射入导光机构(8),导光机构(8)将探测光导引一段光程后出射至眼睛(4)中,导光机构(8)起到收集探测光以及导引探测光的作用,探测光光源(2)无需精准地对准眼睛(4),降低了对探测光光源(2)的安装位置要求和安装精度要求。

Description

眼球追踪光学装置、光学系统、显示装置和显示系统 技术领域
本发明涉及光学技术领域,具体涉及一种眼球追踪光学装置、光学系统、显示装置和显示系统。
发明背景
眼球追踪技术是一项科学应用技术,通常是根据眼球、眼球反光特征和眼球周边的特征变化,或者是虹膜、瞳孔的变化进行追踪。采用一个或多个相机来捕获用户的眼部图像,再根据眼部图像中的眼球特征、反光特征来估算用户正眼球看向何处。现有的眼球追踪技术是通过红外发光二极管(LED)发出光线,将光线打到人眼角膜,通过摄像机拍摄人眼图像,提取人眼角膜中的对红外光的反射光来判断人眼的注视方向。
目前的常规的轻便型虚拟现实/增强现实(VR/AR)中,用作眼球追踪探测光光源的红外LED设置在目镜的两边侧面处,若采用红外LED灯直接向眼球打光,只能适用于视场较小的小尺寸目镜的情况。当虚拟现实/增强现实为大视场设备时,该设备的目镜尺寸较大,设置在两侧的红外LED灯出射的红外光会被人的额头或者其他面部结构挡光,红外光无法照射到人眼角膜。
发明内容
有鉴于此,本发明提供了一种眼球追踪光学装置、光学系统、显示装置和显示系统,解决了目前的眼球追踪装置无法适用目镜尺寸较大的大视场头戴式显示设备。
为解决上述技术问题,本发明提供一种眼球追踪光学装置,应用于头戴式显示设备,所述头戴式显示设备包括目镜组,所述目镜组包括面向眼睛的第一光学面;其中,所述眼球追踪光学装置包括:探测光光源,用于出射探测光;导光机构,设置在所述第一光学面上,所述导光机构具有进光口和出光口,所述探测光光源的出光方向指向所述进光口,所述导光机构构造为:从所述进光口获取所述探测光,将所述探测光从所述进光口导引至所述出光口,并将所述探测光从所述出光口耦出;所述出光口的出光方向指向所述眼睛;以及探测光 采集模块,配置为获取所述眼睛对所述探测光的反射光;其中,所述进光口和所述出光口之间的所述导光机构的长度,占所述第一光学面的口径的10%至49%之间的任一值;所述出光口与所述眼睛之间的光路的主光线,和所述目镜组的光轴之间的锐角夹角为5°至65°之间的任一值。
可选地,所述导光机构包括:空心柱状的导光条,所述导光条内表面镀有用于反射所述探测光的导光膜层,所述导光膜层的反射波段包括所述探测光的波段,所述进光口和所述出光口分别位于所述导光条的两端。
可选地,所述导光条由透明材料制成,所述导光膜层为部分透射部分反射膜,所述导光膜层的透射波段包括可见光波段。
可选地,所述导光条嵌入式设置在所述第一光学面上。
可选地,所述出光口的位置处设有透光板。
可选地,所述导光机构和所述探测光光源的数量均为多个,所述导光机构和所述探测光光源一一对应。
可选地,所述探测光光源的波段为红外波段。
可选地,所述眼球追踪光学装置还包括:反射镜,设置在所述眼睛对所述探测光的反射方向上;其中,所述探测光采集模块设置在所述反射镜的反射方向上。
可选地,所述反射镜为部分反射部分透射镜,所述反射镜的反射波段包括红外波段。
可选地,所述探测光光源包括:光机,用于生成所述探测光;以及光路调节组件,构造为将所述探测光整形并转向照射入所述进光口。
可选地,所述光路调节组件包括:聚焦透镜组以及光路偏转镜,所述聚焦透镜组和所述光路偏转镜均设置在所述光机和所述进光口之间的光路上;所述聚焦透镜组构造为聚焦所述光机生成的所述探测光,所述光路偏转镜构造为将所述探测光的照射方向改变为朝向所述进光口照射。
可选地,所述眼球追踪光学装置还包括:探测光机壳,所述探测光光源安装在所述探测光机壳中,所述探测光机壳与所述目镜组连接。
另一实施例中,本申请提供一种光学系统,包括:两个前述的眼球追踪光学装置;以及左眼观看组件,一个所述眼球追踪光学装置安装在所述左眼观看组件上;以及右眼观看组件,一个所述眼球追踪光学装置安装在所述右眼观看组件上;其中,所述左眼观看组件和所述右眼观看组件左右对称分布。
另一实施例中,本申请提供一种显示装置,应用于虚拟现实设备或增强现实设备,所述显示装置包括:前述的光学系统。
可选地,所述显示装置还包括:头部穿戴组件,所述头部穿戴组件用于穿戴在人的头部上。
可选地,所述显示装置还包括:外壳,所述光学系统容纳于所述外壳内。
另一实施例中,本申请提供一种显示系统,所述显示系统为虚拟现实和/或增强现实显示系统,所述显示系统包括信号输入模块及前述的头戴式显示设备,所述头戴式显示设备接收所述信号输入模块的信号并对信号进行处理。
可选地,所述信号输入模块包括与所述头戴式显示设备电性连接的操作控制器。
可选地,所述显示系统为虚拟和/或增强现实显示一体机,所述显示系统还包括处理模块,所述处理模块用于控制所述操作控制器及所述探测光光源的工作状态。
本发明有益效果体现在:本发明在使用时,应用于大视场的头戴式显示设备,这类大视场的头戴式显示设备的目镜组的面积较大。若将探测光光源安装在目镜组的侧边时,探测光无法照射在眼睛上。在导光机构的作用下,能够将探测光导引至第一光学面的口径的10%至49%的某一位置处并出射向眼睛,从而在大视场头戴式显示设备中,实现了将探测光照射在眼睛上。探测光照射入导光机构的进光口中后,可以在导光机构内进行全反射传播,最后从出光口处出射。探测光照射在眼睛后的反射光再照射入探测光采集模块中。探测光采集模块获取到该反射光后便可以进行后续的眼球追踪分析,具体的,可以提取反射光中的瞳孔图像信息以识别出眼球的注视方向。本发明的探测光首先照射入导光机构,导光机构将探测光导引一端光程后出射至眼睛中,导光机构起到收集探测光以及导引探测光的作用,能够将探测光导引一段光程后再出射,使得探测光光源可以安装在距离眼睛较远的位置处。同时探测光光源也无需精准 地对准眼睛,只需要出光口的出光方向朝向眼睛即可,降低了对探测光光源的安装位置要求,也降低了对探测光光源的安装精度要求。此外,降低对探测光光源的安装要求,实际上等效地提高了探测光的利用率,即探测光采集模块更易获取探测光照射在眼睛上的反射光,提升了对眼睛的眼球追踪效率。
附图简要说明
图1所示为本发明一实施例提供的一种眼球追踪光学装置的结构示意图。
图2所示为本发明一实施例提供的导光机构的结构示意图。
图3所示为本发明包括多个探测光光源和导光机构时的结构示意图。
图4所示为本发明一实施例提供的另一种眼球追踪光学装置的结构示意图。
图5所示为本发明的探测光光源的结构示意图。
图6所示为本发明的显示系统的结构示意图。
实施本发明的方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
图1所示为本发明一实施例提供的一种眼球追踪光学装置的结构示意图。如图1所示,本申请提供一种眼球追踪光学装置,应用于头戴式显示设备,头戴式显示设备包括目镜组1,目镜组1包括相互背向设置的第一光学面101和第二光学面102,第一光学面101面向眼睛4,第二光学面102面向外界,在使用该头戴式显示设备时,可以向第一光学面101投射图像,或者在第二光学面102所面向的方向上设置一个显示屏以显示图像,佩戴该头戴式显示设备的用户便可以观看到图像。
具体的,本申请所应用的头戴式显示设备为大视场类型的头戴式显示设备,该类大视场设备的目镜组1的面积较大。基于此,眼球追踪光学装置包括探测 光光源2、导光机构8以及探测光采集模块3,其中探测光光源2用于出射探测光,该探测光光源2安装在目镜组1朝向耳朵的边侧处,且探测光光源2的出光方向指向导光机构8。导光机构8设置在第一光学面101上,导光机构8具有进光口801和出光口802,具体的,探测光光源2的出光方向指向进光口801,导光机构8构造为:从进光口801获取探测光,将探测光从进光口801导引至出光口802,并将探测光从出光口802耦出;出光口802的出光方向指向眼睛4。探测光采集模块3配置为获取眼睛4对探测光的反射光。
并且,进光口801和出光口802之间的导光机构8的长度,占第一光学面101的口径的10%至49%之间的任一值;出光口801与眼睛4之间的光路的主光线,和目镜组1的光轴之间的锐角夹角为5°至65°之间的任一值,包括5°和65°本值。对于导光机构8长度的限定,以及对出光口801与眼睛4之间的光路方向的限定,对应于大视场的头戴式显示设备,具体视场一般大于100°,这类大视场的头戴式显示设备的目镜组1的面积较大。若将探测光光源2安装在目镜组1的侧边时,探测光无法照射在眼睛4上。在导光机构8的作用下,能够将探测光导引至第一光学面101的口径的10%至49%的某一位置处并出射向眼睛4,从而在大视场头戴式显示设备中,实现了将探测光照射在眼睛4上。
具体的,探测光照射入导光机构8的进光口801中后,可以在导光机构8内进行全反射传播,最后传播至出光口802处,出光口802可以是开设在导光机构8侧壁的一个窗口,探测光经过在导光机构8内的全反射传播后从该窗口出射。窗口的具体位置设定可以决定探测光的出射位置和出射方向。为了保障可以有足够的探测光照射在眼睛4上,探测光光源2可以出射发散的探测光,发散的探测光进入导光机构8后再以发散的状态出射并照射在眼睛4上,保障探测光能够覆盖整个眼睛。探测光照射在眼睛4后的反射光再照射入探测光采集模块3中,当探测光采集模块3位于目镜组1的第一光学面101所面向的方向上时,眼睛4对探测光的反射光会直接入射探测光采集模块3;当探测光采集模块3位于目镜组1的第二光学面102所面向的方向上时,眼睛4对探测光的反射光可能会透过目镜组1后再入射探测光采集模块3。探测光采集模块3获取到该反射光后便可以进行后续的眼球追踪分析,具体的,可以提取反射光中的瞳孔图像信息以识别出眼球的注视方向。
本实施例的探测光首先照射入导光机构8,导光机构8将探测光导引一端光程后出射至眼睛4中,导光机构8起到收集探测光以及导引探测光的作用,能够将探测光导引一段光程后再出射,使得探测光光源2可以安装在距离眼睛4较远的位置处。同时探测光光源2也无需精准地对准眼睛4,只需要出光口802的出光方向朝向眼睛4即可,降低了对探测光光源2的安装位置要求,也降低了对探测光光源2的安装精度要求。此外,降低对探测光光源2的安装要求,实际上等效地提高了探测光的利用率,即探测光采集模块3更易获取探测光照射在眼睛4上的反射光,提升了对眼睛4的眼球追踪效率。
图2所示为本发明一实施例提供的导光机构的结构示意图。具体的,如图2所示,导光机构8包括空心柱状的导光条803,导光条803内表面镀有用于反射探测光的导光膜层804,导光膜层804的反射波段包括探测光的波段,进光口801和出光口802分别位于导光条803的两端。探测光从进光口801入射导光条803后,导光膜层803反射导光条803内的探测光,从而使得探测光在导光条803内进行全反射传播,最后从出光口802出射。探测光的波段例如可以是红外波段,则导光膜层804可以对探测光进行反射。
其中,导光条803由透明材料制成,导光膜层804为部分透射部分反射膜,导光膜层804的透射波段包括可见光波段,能够使得导光膜层804仅对探测光进行反射,而头戴式显示设备需要显示的图像对应的图像光以及外界的环境光可以从导光条803透射,导光条803不会影响头戴式显示设备的正常显示工作。
为了节省导光机构8的占用空间,导光条803嵌入式设置在第一光学面101上,能够使得导光条803不会突出于第一光学面101的表面,即导光条803不会占用过多的空间。
可选地,出光口802的位置处设有透光板805,透光板805可以封闭住出光口803,避免有杂物进入导光条803内。透光板805上可以镀有增透膜806,能够减少探测光在透光板805上的反射率,探测光能够更好地透过透光板805,提高了探测光的能量利用率。
图3所示为本发明包括多个探测光光源和导光机构时的结构示意图。如图3所示,导光机构8和探测光光源2的数量均为多个,导光机构8和探测光光源2一一对应,能够有更多的探测光经过导光机构8后照射在眼睛4上,使得眼睛4能够接受较多的探测光,相应的,会有更多的眼睛4对探测光的反射光 被探测光采集模块3获取,即提升了该反射光的信噪比,探测光采集模块3更易检测到眼睛4的眼球运动信息。具体的,探测光光源2的波段为红外波段,红外波段的不可见的探测光不会对目镜组1的正常显示内容造成影响。此外,探测光光源2与目镜组1光轴的距离为30mm至60mm之间的任一值,具体的,该距离可以是探测光光源2几何中心与目镜组1光轴的垂直距离。
图4所示为本发明一实施例提供的另一种眼球追踪光学装置的结构示意图。优选的,如图4所示,眼球追踪光学装置还包括反射镜5,反射镜5设置在眼睛4对探测光的反射方向上。探测光采集模块3设置在反射镜5的反射方向上。通过反射镜5可以改变探测光经过眼睛4后的反射光的光路方向,能够提高该眼球追踪光学装置中各个部件的摆放自由度。
如图4所示,反射镜5设置在第二光学面102面向的方向上。由于探测光采集模块3的结构一般较为复杂且占用空间大,通过反射镜5可以让探测光采集模块3的放置位置更加自由。在一些方式中,探测光采集模块3可以设置在第二光学面102和反射镜5之间的区域中。具体的,例如可以首先根据整个眼球追踪光学装置的具体结构来决定探测光采集模块3的安装位置,然后调节反射镜5的角度使得眼睛4对探测光的反射光照射在探测光采集模块3的感光窗口上。
具体的,一般目镜组1的封装结构上具有较多的安装空间,可以将探测光采集模块3安装在目镜组1的封装结构上,并将探测光采集模块3的探测方向朝向第二光学面102所面向的方向上,再将反射镜5安装在第二光学面102所面向的方向上的某个结构上。其中,由于反射镜5的结构简单且占用空间小,因此反射镜5对安装空间和安装位置的要求不高,然后调节好反射镜5的角度使得眼睛4对探测光的反射光能够入射探测光采集模块3即可。
当反射镜5不是部分反射部分透射镜且该头戴式显示设备为增强现实显示设备时,需要设计好反射镜5的安装位置,使得反射镜5不会遮挡眼睛4透过目镜组1后的视野范围,例如反射镜5可以安装在目镜组1的水平方向的上方或下方,并相应地调节探测光光源2的朝向,使得探测光经过第一光学面101以及眼睛4的反射后能够照射在反射镜5上。基于此,反射镜5可以采用部分反射部分透射镜,并且反射镜5的反射波段包括红外波段,这样可以使得反射镜5不会影响眼睛4透过目镜组1观看外界环境,反射镜5便可以设置在眼睛 4透过目镜组1后的视野范围中,这样可以降低对各部件的安装位置的要求,提高了各部件的摆放自由度。
此外,还可以在第一光学面101的表面覆上或镀上部分透射部分反射膜,并且部分透射部分反射膜的反射波段包括红外波段,这样可以在不影响目镜组1正常显示图像的前提下提高对探测光的反射率,能够使得更多的探测光照射在眼睛4上,提高了对探测光的利用率。
图5所示为本发明的探测光光源的结构示意图。如图5所示,探测光光源2包括光机201以及光路调节组件202,光机201用于生成探测光,光路调节组件202构造为将探测光整形并转向照射入进光口801。通过光路调节组件202,可以将光机201生成的探测光整形为所需要的光束形状,例如可以将探测光进行聚焦或准直,经过聚焦或准直的探测光从进光口801入射导光条803并在导光条803内全反射传播,探测光经过全反射传播后从出光口802出射并照射在眼睛上。通过光路调节组件202,可以将探测光耦入导光条803,避免探测光浪费。
具体的,光路调节组件202包括聚焦透镜组210以及光路偏转镜211,聚焦透镜组210和光路偏转镜211均设置在光机201和进光口801之间的光路上。聚焦透镜组210构造为聚焦或准直光机201生成的探测光,光路偏转镜211构造为将探测光的照射方向改变为朝向进光口801照射。
光机201可选用红外半导体发光二极管,如图5所示,聚焦透镜组210的进光侧设置在光机201的出光方向上,聚焦透镜组210可选用光焦度为正的透镜组来对探测光进行聚焦,光路偏转镜211可选用反射镜或反射棱镜,且光路偏转镜211设置在聚焦透镜组210的出光侧,光路偏转镜211将探测光反射入进光口801。
图1至图5中带箭头的直线表示大致的光路走向。
可选地,球追踪光学装置还包括探测光机壳10,探测光光源2安装在探测光机壳10中,探测光机壳10与目镜组1连接。通过探测光机壳10来封装固定探测光光源2,可以避免探测光光源2中的各个部件发生移位。探测光机壳10可以连接在目镜组1的侧边,或者通过一些中介件与目镜组1间接连接,以保证探测光光源2和目镜组1的相对位置不变,从而可以稳定地将探测光照射入导光机构8上。
本实施例中的头戴式显示设备还可以包括眼镜框,眼镜框包括镜腿,光学系统固定于镜腿之间。本实施例可以将镜腿挂在用户的耳朵上,目镜组可以安装在眼镜框的镜片安装位置上,从而可以将头戴式显示设备方便地戴在用户的头上,为用户提供虚拟现实显示或增强现实显示。该头戴式显示设备为透射式虚拟现实/增强现实产品时,安装在镜片安装位置处的目镜组为半透半反的镜片,从而使得人眼可以观看到目镜组外的现实场景。
可选地,头戴式显示设备包括设置于其内的光学系统及扣箍件,扣箍件用于将光学系统固定于人眼前方。在使用时,扣箍件可以将光学系统保持在人眼前方,以供人眼观看。
实施例二
本发明提供一种光学系统,该光学系统包括:前述的眼球追踪光学装置、左眼观看组件和右眼观看组件,一个眼球追踪光学装置安装在左眼观看组件上,一个眼球追踪光学装置安装在右眼观看组件上,左眼观看组件和右眼观看组件左右对称分布。在使用时,用户的左眼和右眼分别从两个目镜组中观看图像。
实施例三
本发明还提供一种显示装置,应用于虚拟现实设备或增强现实设备,在一些实施例中,显示装置包括前述的光学系统以及固定结构,光学系统与固定结构连接。
在使用时,可以向目镜组的第一光学面投射图像,或者在目镜组远离眼睛的外侧放置图像源,可以观看到目镜组的第一光学面上的图像,或者观看目镜组外图像源的图像。具体的,显示装置可以是透射式/非透射式显示器类的虚拟现实/增强现实产品,也可以是头戴式的虚拟现实/增强现实产品。固定结构为光学系统提供支撑,避免在使用过程中光学系统的各部件发生位移,以保证光学系统的耐用性。显示装置为透射式虚拟现实/增强现实产品时,目镜组为半透半反的镜片,从而使得人眼可以观看到目镜组外的现实场景。
该显示装置还包括头部穿戴组件,头部穿戴组件与固定结构连接,头部穿戴组件用于穿戴在人的头部上。
在使用时,可以通过头部穿戴组件将该显示装置戴在用户的头部上,用户的头部为该显示装置提供支撑,可以方便地观看虚拟现实或增强现实图像。
可选地,显示装置还包括外壳和摄像头,光学系统容纳于外壳内,外壳可以有效地保护光学系统,避免光学系统受损。摄像头的镜头面对人眼,该摄像头可以用于执行眼动跟踪功能。
实施例四
图6所示为本发明的显示系统60的结构示意图。本发明还提供一种显示系统60,显示系统60为虚拟现实和/或增强现实显示系统,如图6所示,显示系统60包括信号输入模块62及前述的头戴式显示设备63,头戴式显示设备63接收信号输入模块63的信号并传输至头戴式显示设备63进行处理。信号输入模块62包括与头戴式显示设备63电性连接的操作控制器,操作控制器具体可以是手柄控制器。可选地,显示系统60为虚拟和/或增强现实显示一体机,所述显示系统60还包括处理模块61,处理模块61用于控制操作控制器及探测光光源的工作状态,例如可以控制探测光光源是否开启。
在一些实施例中,如图6所示,显示系统60还包括存储器64,处理模块61与信号输入模块62分别电连接,存储器64用于存储处理模块61的可执行指令。
在使用时,处理模块61可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制显示系统60中的其他组件以执行期望的功能。
存储器64可以包括一个或多个计算机程序产品,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在计算机可读存储介质上可以存储一个或多个计算机程序指令,处理模块61可以运行程序指令,以控制操作控制器。
信号输入模块62可以通过总线系统和/或其他形式的连接机构(未示出)和处理模块61互连,信号输入模块62可以包括例如键盘、鼠标、摇杆和触控屏幕等等。
当然,为了简化,图6中仅示出了该显示系统60中与本发明有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,显示系统60还可以包括任何其他适当的组件。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,在本发明中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本发明的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本发明为必须采用上述具体的细节来实现。
本发明中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本发明的装置和设备中,各部件是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本发明。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本发明的范围。因此,本发明不意图被限制到在此示出的方面,而是按照与在此发明的原理和新颖的特征一致的最宽范围。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种眼球追踪光学装置,其特征在于,应用于头戴式显示设备,所述头戴式显示设备包括目镜组,所述目镜组包括面向眼睛的第一光学面;
    其中,所述眼球追踪光学装置包括:
    探测光光源,用于出射探测光;
    导光机构,设置在所述第一光学面上,所述导光机构具有进光口和出光口,所述探测光光源的出光方向指向所述进光口,所述导光机构构造为:从所述进光口获取所述探测光,将所述探测光从所述进光口导引至所述出光口,并将所述探测光从所述出光口耦出;所述出光口的出光方向指向所述眼睛;以及
    探测光采集模块,配置为获取所述眼睛对所述探测光的反射光;
    其中,所述进光口和所述出光口之间的所述导光机构的长度,占所述第一光学面的口径的10%至49%之间的任一值;所述出光口与所述眼睛之间的光路的主光线,和所述目镜组的光轴之间的锐角夹角为5°至65°之间的任一值。
  2. 根据权利要求1所述的眼球追踪光学装置,其特征在于,所述导光机构包括:
    空心柱状的导光条,所述导光条内表面镀有用于反射所述探测光的导光膜层,所述导光膜层的反射波段包括所述探测光的波段,所述进光口和所述出光口分别位于所述导光条的两端。
  3. 根据权利要求2所述的眼球追踪光学装置,其特征在于,
    所述导光条由透明材料制成,所述导光膜层为部分透射部分反射膜,所述导光膜层的透射波段包括可见光波段。
  4. 根据权利要求2所述的眼球追踪光学装置,其特征在于,
    所述导光条嵌入式设置在所述第一光学面上。
  5. 根据权利要求1所述的眼球追踪光学装置,其特征在于,
    所述出光口的位置处设有透光板。
  6. 根据权利要求1所述的眼球追踪光学装置,其特征在于,
    所述导光机构和所述探测光光源的数量均为多个,所述导光机构和所述探测光光源一一对应。
  7. 根据权利要求1所述的眼球追踪光学装置,其特征在于,
    所述探测光光源的波段为红外波段。
  8. 根据权利要求7所述的眼球追踪光学装置,其特征在于,所述眼球追踪光学装置还包括:
    反射镜,设置在所述眼睛对所述探测光的反射方向上;
    其中,所述探测光采集模块设置在所述反射镜的反射方向上。
  9. 根据权利要求8所述的眼球追踪光学装置,其特征在于,
    所述反射镜为部分反射部分透射镜,所述反射镜的反射波段包括红外波段。
  10. 根据权利要求1所述的眼球追踪光学装置,其特征在于,所述探测光光源包括:
    光机,用于生成所述探测光;以及
    光路调节组件,构造为将所述探测光整形并转向照射入所述进光口。
  11. 根据权利要求10所述的眼球追踪光学装置,其特征在于,所述光路调节组件包括:聚焦透镜组以及光路偏转镜,所述聚焦透镜组和所述光路偏转镜均设置在所述光机和所述进光口之间的光路上;所述聚焦透镜组构造为聚焦所述光机生成的所述探测光,所述光路偏转镜构造为将所述探测光的照射方向改变为朝向所述进光口照射。
  12. 根据权利要求1所述的眼球追踪光学装置,其特征在于,所述眼球追踪光学装置还包括:
    探测光机壳,所述探测光光源安装在所述探测光机壳中,所述探测光机壳与所述目镜组连接。
  13. 一种光学系统,其特征在于,包括:
    两个如权利要求1至12中任一项所述的眼球追踪光学装置;以及
    左眼观看组件,一个所述眼球追踪光学装置安装在所述左眼观看组件上;以及
    右眼观看组件,一个所述眼球追踪光学装置安装在所述右眼观看组件上;
    其中,所述左眼观看组件和所述右眼观看组件左右对称分布。
  14. 一种显示装置,应用于虚拟现实设备或增强现实设备,其特征在于,所述显示装置包括:
    如权利要求13所述的光学系统。
  15. 根据权利要求14所述的显示装置,其特征在于,所述显示装置还包括:
    头部穿戴组件,所述头部穿戴组件用于穿戴在人的头部上。
  16. 根据权利要求15所述的显示装置,其特征在于,所述显示装置还包括:
    外壳,所述光学系统容纳于所述外壳内。
  17. 一种显示系统,所述显示系统为虚拟现实和/或增强现实显示系统,其特征在于,所述显示系统包括信号输入模块及如权利要求1至12中任一项所述的头戴式显示设备,所述头戴式显示设备接收所述信号输入模块的信号并对信号进行处理。
  18. 根据权利要求17所述的显示系统,其特征在于,
    所述信号输入模块包括与所述头戴式显示设备电性连接的操作控制器。
  19. 根据权利要求18所述的显示系统,其特征在于,所述显示系统为虚拟和/或增强现实显示一体机,所述显示系统还包括处理模块,所述处理 模块用于控制所述操作控制器及所述探测光光源的工作状态。
PCT/CN2022/126772 2021-10-22 2022-10-21 眼球追踪光学装置、光学系统、显示装置和显示系统 WO2023066384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111236334.5A CN113934002A (zh) 2021-10-22 2021-10-22 眼球追踪光学装置、光学系统、显示装置和显示系统
CN202111236334.5 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023066384A1 true WO2023066384A1 (zh) 2023-04-27

Family

ID=79283766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126772 WO2023066384A1 (zh) 2021-10-22 2022-10-21 眼球追踪光学装置、光学系统、显示装置和显示系统

Country Status (2)

Country Link
CN (1) CN113934002A (zh)
WO (1) WO2023066384A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934002A (zh) * 2021-10-22 2022-01-14 小派科技(上海)有限责任公司 眼球追踪光学装置、光学系统、显示装置和显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052096A (ja) * 2006-08-25 2008-03-06 Nikon Corp アイグラスディスプレイ
CN107533228A (zh) * 2015-07-06 2018-01-02 谷歌有限责任公司 向用于透视式头戴式显示器的目镜添加处方性修正
CN111812847A (zh) * 2020-08-20 2020-10-23 杭州光粒科技有限公司 一种波导器件和ar显示设备
CN113093378A (zh) * 2020-01-08 2021-07-09 宏碁股份有限公司 眼球追踪装置和头戴式显示设备
CN113189769A (zh) * 2021-04-23 2021-07-30 歌尔股份有限公司 眼球追踪模组和眼镜
CN113934002A (zh) * 2021-10-22 2022-01-14 小派科技(上海)有限责任公司 眼球追踪光学装置、光学系统、显示装置和显示系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108354584B (zh) * 2018-03-06 2020-12-29 京东方科技集团股份有限公司 眼球追踪模组及其追踪方法、虚拟现实设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052096A (ja) * 2006-08-25 2008-03-06 Nikon Corp アイグラスディスプレイ
CN107533228A (zh) * 2015-07-06 2018-01-02 谷歌有限责任公司 向用于透视式头戴式显示器的目镜添加处方性修正
CN113093378A (zh) * 2020-01-08 2021-07-09 宏碁股份有限公司 眼球追踪装置和头戴式显示设备
CN111812847A (zh) * 2020-08-20 2020-10-23 杭州光粒科技有限公司 一种波导器件和ar显示设备
CN113189769A (zh) * 2021-04-23 2021-07-30 歌尔股份有限公司 眼球追踪模组和眼镜
CN113934002A (zh) * 2021-10-22 2022-01-14 小派科技(上海)有限责任公司 眼球追踪光学装置、光学系统、显示装置和显示系统

Also Published As

Publication number Publication date
CN113934002A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
JP2022176291A5 (zh)
US20230341695A1 (en) Diffractive optical elements with optical power
US9999348B2 (en) Compact eye imaging and eye tracking apparatus
JP2023518421A (ja) 網膜結像および追跡のためのシステムおよび方法
JP5567924B2 (ja) プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
US11846778B2 (en) System for providing illumination of the eye
CN114019678A (zh) 眼球追踪光学装置、光学系统、显示装置和显示系统
JP2023171481A5 (zh)
CN114072717B (zh) 基于经由光导光学元件对眼睛成像来进行眼睛追踪的设备和方法
WO2023066390A1 (zh) 光学装置、光学系统、显示装置、显示设备和显示系统
US11428930B2 (en) Stray light suppression in eye-tracking imaging
US12055721B2 (en) System for collecting light
WO2023066384A1 (zh) 眼球追踪光学装置、光学系统、显示装置和显示系统
CN109188692A (zh) 光学系统及头戴显示设备
CN113934001A (zh) 光学装置、光学系统、显示装置、显示设备和显示系统
CN113933999B (zh) 眼球追踪光学装置、光学系统、显示装置和显示系统
US20240004189A1 (en) Optical systems and methods for eye tracking based on eye imaging via collimating element and light-guide optical element
WO2023246815A1 (zh) 一种眼球追踪光学系统及头戴式设备
WO2023246814A1 (zh) 一种眼球追踪光学系统及头戴式设备
WO2023246816A1 (zh) 一种眼球追踪光学系统及头戴式设备
KR102452963B1 (ko) 전반사를 이용한 컴팩트형 증강 현실용 광학 장치
CN118151382A (zh) 增强现实显示设备
KR20210128990A (ko) 고스트 이미지 차단 기능을 갖는 증강 현실용 광학 장치
CN114879359A (zh) 近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE