WO2023065856A1 - 数能同传方法及装置 - Google Patents

数能同传方法及装置 Download PDF

Info

Publication number
WO2023065856A1
WO2023065856A1 PCT/CN2022/116858 CN2022116858W WO2023065856A1 WO 2023065856 A1 WO2023065856 A1 WO 2023065856A1 CN 2022116858 W CN2022116858 W CN 2022116858W WO 2023065856 A1 WO2023065856 A1 WO 2023065856A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
nth
sent
subcarrier
group
Prior art date
Application number
PCT/CN2022/116858
Other languages
English (en)
French (fr)
Inventor
唐瑜键
陈俊
吴毅凌
鲁振伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023065856A1 publication Critical patent/WO2023065856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular to a method and device for simultaneous transmission of data and energy.
  • a passive radio frequency device uses a first electromagnetic wave signal from an active radio frequency device to power itself, and sends a second electromagnetic wave signal to the active radio frequency device.
  • the second electromagnetic wave signal is a response signal of the first electromagnetic wave signal, thereby realizing communication between the passive radio frequency device and the active radio frequency device.
  • the first electromagnetic wave signal has two functions of communication and power supply, so it is called digital energy simultaneous transmission waveform.
  • the first electromagnetic wave signal needs to have a higher peak to average power ratio (PAPR) to improve charging efficiency.
  • PAPR peak to average power ratio
  • multiple subcarriers and amplitude modulation can be used to generate digital energy simultaneous transmission waveforms, but this method is only suitable for scenarios with large bandwidth and large subcarrier spacing, such as the bandwidth is 20 megahertz (megahertz, MHz), the subcarrier The carrier spacing is 1MHz, which cannot be applied to the above-mentioned scenarios of small bandwidth and small subcarrier spacing.
  • Embodiments of the present application provide a method and device for simultaneous transmission of digital energy, which can solve the problem of low downlink charging efficiency in existing systems with small bandwidth and small subcarrier spacing.
  • a method for simultaneous interpretation of numbers and functions includes: mapping the nth group of information to be sent in the N groups of information to be sent to K subcarriers to generate the nth subcarrier vector.
  • n, N, K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2. Converting the nth subcarrier vector from the frequency domain to the time domain is performed to generate a superimposed waveform corresponding to the nth group of information to be transmitted.
  • the superposition waveform corresponding to the nth group of information to be sent is formed by superimposing K time domain waveforms, and the K time domain waveforms correspond to the K subcarrier components in the nth subcarrier vector, and the nth group of information to be sent corresponds to The peak-to-average ratio of the superimposed waveform is greater than the peak-to-average ratio threshold.
  • the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within one time unit corresponds to the value of the nth group of information to be sent.
  • the active radio frequency device maps the same group of information to be sent to multiple subcarriers, and generates a time domain superposition waveform of multiple time domain waveforms corresponding to the multiple subcarriers, the time domain The superimposed waveform has a higher PAPR than the corresponding time-domain waveform of a single subcarrier, which can improve charging efficiency and power supply capacity, thereby increasing the communication distance.
  • the active radio frequency device can also generate time-domain superimposed waveforms with different time domain positions of the main lobe according to the difference of each group of information to be sent, and the passive radio frequency device can distinguish different groups of information to be sent according to the time domain position of the main lobe , thus improving the decoding rate and communication reliability.
  • the phases of the K subcarrier components in the nth subcarrier vector are determined according to the nth group of information to be sent. In this way, according to the difference of each group of information to be transmitted, the phases corresponding to each subcarrier component are different, which can ensure that the time domain positions of the main lobe corresponding to the time domain superposition waveforms corresponding to different information to be transmitted are different, which can be used to distinguish different groups of information to be transmitted information, thereby improving the decoding success rate.
  • the phases of the K subcarrier components in the nth subcarrier vector are distributed linearly.
  • the phase linear distribution of multiple subcarrier components corresponding to the same group of information to be transmitted can further improve the PAPR of the time-domain superimposed waveform, facilitate processing, and improve data processing efficiency.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n,k] is the kth subcarrier component in the nth subcarrier vector, x[n] is the nth group of information to be sent, k is the subcarrier number, 0 ⁇ k ⁇ K-1, K is The number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants. In this way, each subcarrier component is phase-shifted and generated according to the formula. According to the difference of each group of information to be transmitted, the corresponding phases of the generated subcarrier components are different and linearly distributed.
  • the different phases can ensure different information to be transmitted.
  • the time-domain positions of the main lobe corresponding to the corresponding time-domain superposition waveforms are different, so that different groups of information to be sent can be distinguished, and the linear distribution can further improve PAPR, thereby improving charging efficiency and decoding success rate.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n, k] is the kth subcarrier component in the nth subcarrier vector, A[k] is the window function corresponding to the kth subcarrier component, x[n] is the nth group of information to be sent, k is the subcarrier serial number, 0 ⁇ k ⁇ K-1, K is the number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • amplitude modulation is also added, so that the generated time-domain superimposed waveform has lower side lobe amplitude, higher main lobe amplitude, and wider main lobe width.
  • the time deviation between the main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to the first time deviation threshold and less than the second time deviation threshold.
  • the first time deviation threshold can be: in order to effectively distinguish different time domain superposition waveforms, the minimum time deviation between adjacent time domain superposition waveforms that can be allowed, and the second time deviation can be: in order to ensure charging efficiency, the corresponding The maximum allowable time deviation between adjacent time-domain superimposed waveforms.
  • a method for simultaneously interpreting numbers and functions includes: receiving superimposed waveforms corresponding to each of N groups of information to be sent.
  • the superimposed waveform corresponding to the nth group of information to be sent is formed by superimposing K time-domain waveforms, and the K time-domain waveforms correspond to the K subcarrier components in the nth subcarrier vector.
  • the peak-to-average ratio of superimposed waveforms corresponding to n groups of information to be sent is greater than the peak-to-average ratio threshold, n, N, and K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2, and the nth group of information to be sent corresponds to
  • n, N, and K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2, and the nth group of information to be sent corresponds to
  • the relative position of the main lobe of the superimposed waveform within a time unit corresponds to the value of the nth group of information to be sent. Analyze the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent in a time unit, and obtain the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are determined according to the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are distributed linearly.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n,k] is the kth subcarrier component in the nth subcarrier vector, x[n] is the nth group of information to be sent, k is the carrier number, 0 ⁇ k ⁇ K-1, K is the sub The number of carriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n, k] is the kth subcarrier component in the nth subcarrier vector, A[k] is the window function corresponding to the kth subcarrier component, x[n] is the nth group of information to be sent, k is the subcarrier serial number, 0 ⁇ k ⁇ K-1, K is the number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • the time deviation between the main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to the first time deviation threshold and less than the second time deviation threshold.
  • obtaining the nth group of information to be sent also includes: converting the superimposed waveform corresponding to the nth group of information to be sent from the time domain to the frequency domain to obtain the nth subcarrier vector; The K subcarrier components in the carrier vector are demapped.
  • the technical effect of the digital energy simultaneous interpretation method described in the second aspect can refer to the technical effect of the digital energy simultaneous interpretation method described in the first aspect, and will not be repeated here.
  • a device for simultaneously interpreting numbers and energy includes: a processing module and a sending module.
  • the processing module is configured to map the nth group of information to be sent out of the N groups of information to be sent to K subcarriers to generate the nth subcarrier vector.
  • n, N, K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2.
  • the processing module is further configured to convert the nth subcarrier vector from the frequency domain to the time domain to generate a superimposed waveform corresponding to the nth group of information to be sent.
  • the superposition waveform corresponding to the nth group of information to be sent is formed by superimposing K time domain waveforms, and the K time domain waveforms correspond to the K subcarrier components in the nth subcarrier vector, and the nth group of information to be sent corresponds to The peak-to-average ratio of the superimposed waveform is greater than the peak-to-average ratio threshold; the sending module is used to send the superimposed waveforms corresponding to each of the N groups of information to be sent; the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within a time unit , corresponding to the value of the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are determined according to the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are distributed linearly.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n,k] is the kth subcarrier component in the nth subcarrier vector, x[n] is the nth group of information to be sent, k is the subcarrier number, 0 ⁇ k ⁇ K-1, K is The number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n, k] is the kth subcarrier component in the nth subcarrier vector, A[k] is the window function corresponding to the kth subcarrier component, x[n] is the nth group of information to be sent, k is the subcarrier serial number, 0 ⁇ k ⁇ K-1, K is the number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • the time deviation between the main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to the first time deviation threshold and less than the second time deviation threshold.
  • the digital energy simultaneous transmission device described in the third aspect may further include a receiving module.
  • the receiving module is used to realize the receiving function of the digital energy simultaneous transmission device described in the third aspect.
  • the receiving module and the sending module can also be integrated into a transceiver module.
  • the transceiver module is applied to realize the transceiver function of the digital energy simultaneous transmission device described in the third aspect.
  • the digital energy simultaneous transmission device described in the third aspect may further include a storage module storing programs or instructions.
  • the processing module executes the program or instruction
  • the device for simultaneous digital energy transmission can execute the method for simultaneous digital energy transmission described in the first aspect.
  • the digital energy simultaneous transmission device described in the third aspect can be an active radio frequency device, or a chip (system) or other components or components that can be installed in the active radio frequency device, or can also include
  • the device or system of the source radio frequency device is not limited in this application.
  • the active radio frequency device may be a terminal device or a network device, which is not limited here.
  • a device for simultaneously interpreting numbers and energy includes: a processing module and a receiving module.
  • the receiving module is configured to receive superimposed waveforms corresponding to each of the N sets of information to be sent.
  • the superimposed waveform corresponding to the nth group of information to be sent is formed by superimposing K time-domain waveforms, and the K time-domain waveforms correspond to the K subcarrier components in the nth subcarrier vector.
  • the peak-to-average ratio of superimposed waveforms corresponding to n groups of information to be sent is greater than the peak-to-average ratio threshold, where n, N, and K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2, and the nth group of information to be sent.
  • the relative position of the main lobe of the corresponding superimposed waveform within a time unit corresponds to the value of the nth group of information to be sent.
  • the processing module is configured to analyze the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within one time unit, and obtain the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are determined according to the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are distributed linearly.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n,k] is the kth subcarrier component in the nth subcarrier vector, x[n] is the nth group of information to be sent, k is the subcarrier number, 0 ⁇ k ⁇ K-1, K is The number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship: Among them, Y[n, k] is the kth subcarrier component in the nth subcarrier vector, A[k] is the window function corresponding to the kth subcarrier component, x[n] is the nth group of information to be sent, k is the subcarrier serial number, 0 ⁇ k ⁇ K-1, K is the number of subcarriers, n is the group number of the nth group of information to be sent, a, b, are constants.
  • the time deviation between the main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to the first time deviation threshold and less than the second time deviation threshold.
  • the processing module is used to convert the superposition waveform corresponding to the nth group of information to be sent from the time domain to the frequency domain to obtain the nth subcarrier vector; the processing module is also used to convert the nth subcarrier vector The K subcarrier components in the carrier vector are demapped to obtain the nth group of information to be sent.
  • the digital energy simultaneous transmission device described in the fourth aspect may further include a sending module.
  • the receiving module is used to realize the sending function of the digital energy simultaneous transmission device described in the fourth aspect.
  • the receiving module and the sending module can also be integrated into a transceiver module.
  • the transceiver module is applied to realize the transceiver function of the digital energy simultaneous transmission device described in the fourth aspect.
  • the digital energy simultaneous transmission device described in the fourth aspect may further include a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the device for simultaneous digital energy transmission can execute the method for simultaneous digital energy transmission described in the second aspect.
  • the digital energy simultaneous transmission device described in the fourth aspect can be a passive radio frequency device, or a chip (system) or other components or components that can be installed in a passive radio frequency device, or it can also include wireless
  • the device or system of the source radio frequency device is not limited in this application.
  • a device for simultaneously interpreting numbers and energy includes: a processor coupled with a memory.
  • the processor is configured to execute the computer program stored in the memory, so that the device executes the digital energy simultaneous transmission method described in any one of the implementation manners of the first aspect to the second aspect.
  • a device for simultaneously interpreting numbers and energy includes: a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor; the processor is used to run the code instructions to execute the method for digital energy simultaneous transmission described in any one of the implementation manners from the first aspect to the second aspect.
  • a device for simultaneously interpreting numbers and energy includes a processor and a transceiver, the transceiver is used for information exchange between the device and other devices, and the processor executes program instructions to execute the number energy described in any one of the first aspect to the second aspect. pass method.
  • a computer-readable storage medium stores computer programs or instructions, and when the computer programs or instructions are run on the computer, the computer is made to execute the data transmission method described in any one of the implementation manners in the first aspect to the second aspect.
  • a computer program product includes: a computer program or an instruction, when the computer program or instruction is run on the computer, it causes the computer to execute the method for digital energy simultaneous transmission described in any one of the implementation manners in the first aspect to the second aspect.
  • FIG. 1 is a schematic diagram of a single-carrier amplitude modulation waveform provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a multi-carrier amplitude modulation waveform provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a backscatter communication system provided by an embodiment of the present application.
  • Fig. 4 is a schematic flow chart of the digital energy simultaneous interpretation method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frequency domain-time domain conversion structure provided by an embodiment of the present application.
  • FIG. 6 is a first schematic diagram of a frequency domain-time domain conversion waveform provided by an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of frequency domain-time domain conversion waveform provided by the embodiment of the present application.
  • FIG. 8 is a time-domain superimposed waveform diagram corresponding to 7 groups of information to be sent provided by the embodiment of the present application.
  • Figure 9 is a structural schematic diagram of a digital energy simultaneous interpretation device provided by the embodiment of the present application.
  • Figure 10 is the second structural diagram of the digital energy simultaneous interpretation device provided by the embodiment of the present application.
  • Fig. 11 is the third structural diagram of the digital energy simultaneous interpretation device provided by the embodiment of the present application.
  • Orthogonal frequency division multiplexing is a multi-carrier modulation (MCM) technology. Its core is to divide the channel into several orthogonal sub-channels, and perform narrowband modulation and transmission on each sub-channel, which reduces the mutual interference between sub-channels.
  • the signal bandwidth on each sub-channel is smaller than the channel's correlation bandwidth, so the frequency-selective fading on each sub-channel is flat, greatly eliminating inter-symbol interference.
  • the carriers of each sub-channel in the OFDM system are orthogonal to each other, their spectrums overlap with each other, which not only reduces the mutual interference between sub-carriers, but also improves the spectrum utilization.
  • Such orthogonal modulation and demodulation in each sub-channel can be realized by using inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) methods.
  • IFFT inverse fast Fourier transform
  • FFT fast Fourier transform
  • the peak-to-average power ratio is the ratio of the peak value of the output signal to the average value. Since OFDM symbols are superimposed by multiple independently modulated subcarrier signals, when the phases of each subcarrier are the same or close, the superimposed signal will be modulated by the same initial phase signal, resulting in a large instantaneous power peak.
  • Inverse discrete Fourier transform (inverse discrete fourier transform, IDFT), which is the inverse transform of discrete Fourier transform (DFT), is used to convert frequency domain signals into time domain signals.
  • the cyclic prefix is formed by copying the signal at the end of the OFDM symbol to the head.
  • the cyclic prefix is filled in the guard interval of the OFDM symbol to ensure that the number of waveform periods included in the delayed copy of the OFDM symbol in the FFT period is also an integer. In this way, the signal with a delay smaller than the guard interval will not generate inter-symbol interference (ISI) in the demodulation process.
  • ISI inter-symbol interference
  • Radio frequency identification technology is a kind of automatic identification technology. It performs non-contact two-way data communication through radio frequency, and uses radio frequency to read and write recording media (electronic tags or radio frequency cards) to achieve identification goals and data exchange. the goal of.
  • Pulse position modulation if the modulation signal only changes the generation time of each pulse in the carrier pulse series without changing its shape and amplitude, and the change in the generation time of each pulse is proportional to The amplitude of the modulating signal voltage has nothing to do with the frequency of the modulating signal.
  • the electromagnetic wave signal received by the passive radio frequency equipment is obtained by amplitude modulation with a single carrier.
  • FIG. 1 shows a waveform diagram of single-carrier modulation, and the envelope is a single-carrier signal.
  • a waveform of a "high-low” envelope is generated; when sending data 1, Generates a waveform with a "high-high-low” envelope. It can be seen that the duration of the high-level signal sending data 1 is double that of the low-level signal sending data 0, and the PAPR of the entire waveform is too small, resulting in low charging efficiency and insufficient power supply capacity, which affects the communication distance. .
  • CPS waveforms are used as electromagnetic wave signals received by passive radio frequency equipment.
  • the CPS waveforms are superimposed by multiple carriers to obtain time-domain waveforms, and each It is obtained by performing different amplitude modulations in different time periods.
  • the CPS waveform is the time-domain superposition waveform of 21 subcarrier single-tone signals
  • the subcarrier spacing is 1MHz, and occupies a total of 20MHz bandwidth, by superimposing 21 subcarriers , according to the following formula, different amplitude modulations are carried out in different time periods to carry information:
  • y(t) is the CPS waveform at time t
  • a(t) is the amplitude modulation corresponding to time t
  • k is the subcarrier number
  • kf is the frequency of the kth subcarrier.
  • the envelope is a multi-carrier signal.
  • the waveform of the "high-low” envelope is generated; when sending data 1, a "high-high-low” envelope is generated waveform.
  • this waveform generation method is only suitable for scenarios with large bandwidth and large subcarrier spacing, such as The scenario where the bandwidth is 20MHz and the subcarrier spacing is 1MHz is not applicable to the scenario of small bandwidth and small subcarrier spacing used by the backscatter communication system in the embodiment of this application, such as the scenario where the bandwidth is 180KHz and the subcarrier spacing is 15KHz.
  • the licensed bandwidth for backscatter communication is generally 180KHz
  • the subcarrier spacing is usually on the order of KHz, which belongs to the scenario of small bandwidth and small subcarrier spacing.
  • radio frequency identification systems such as backscatter systems, wireless fidelity (wireless fidelity, WiFi) systems, and vehicle to everything (V2X) communication systems , device-to-devie (D2D) communication system, vehicle networking communication system, 4th generation (4G) mobile communication system, such as long term evolution (long term evolution, LTE) system, global interconnected microwave access (worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) mobile communication system, such as new air interface (new radio, NR) system, and future communication systems, such as sixth generation (6th generation, 6G) mobile communication systems, etc.
  • 4G mobile communication system such as long term evolution (long term evolution, LTE) system
  • WiMAX worldwide interoperability for microwave access
  • 5th generation, 5G fifth generation
  • new air interface new radio, NR
  • future communication systems such as sixth generation (6th generation, 6G) mobile communication systems, etc.
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 3 is a schematic structural diagram of a backscatter communication system to which the digital energy simultaneous interpretation method provided in the embodiment of the present application is applicable.
  • the backscatter communication system includes an active radio frequency device 301 and a passive radio frequency device 302 .
  • the active radio frequency device 301 sends a first electromagnetic wave signal to the passive radio frequency device 302.
  • the first electromagnetic wave signal has two functions of communication and power supply.
  • the passive radio frequency device 302 uses the first electromagnetic wave signal to power itself and analyzes the first electromagnetic wave signal.
  • the carried information according to the analyzed information, sends the second electromagnetic wave signal carrying the information of the passive radio frequency device 302 to the active radio frequency device 301, and the active radio frequency device 301 analyzes the information of the passive radio frequency device 302 according to the second electromagnetic wave signal .
  • the second electromagnetic wave signal is a response signal of the first electromagnetic wave signal.
  • multiple passive radio frequency devices 302 may be set, and multiple passive radio frequency devices 302 may be set as a group.
  • multiple active radio frequency devices 301 may also be set.
  • the embodiment of the present application does not make specific limitations here.
  • the active radio frequency device 301 may be a terminal device.
  • the terminal device can be a device with wireless transceiver function or a chip or chip system that can be set on the device, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.) ); can also be deployed in the air (for example, on aircraft, balloons and satellites, etc.).
  • the terminal equipment may also be referred to as user equipment, user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • Terminal devices include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication functions.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in smart homes, vehicle-mounted terminals, RSUs with terminal functions, etc.
  • the terminal device of the present application can also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built into the vehicle as one or more components or units.
  • the on-board component, on-board chip or on-board unit can implement the digital energy simultaneous interpretation method provided by this application.
  • the active radio frequency device 301 may also be a network device, and the network device may be a device with a wireless transceiver function or a chip or a chip system that may be configured in the device.
  • the network equipment includes but not limited to: access point (access point, AP) in wireless fidelity (wireless fidelity, WiFi) system, such as home gateway, router, server, switch, bridge, etc., evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home Base station (for example, home evolved Node B, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP ), etc., can also be 5G, such as gNB in the new air interface (new radio
  • the active radio frequency device 301 may also be a device in which the sending function and the receiving function are deployed separately.
  • the active radio frequency device 301 includes an exciter and a receiver, and the exciter and the receiver are deployed separately, or the above-mentioned terminal equipment or Network devices are deployed separately as receiving or sending devices.
  • the exciter may also be called an excitation source, a radio frequency source, an interrogator (interrogator), or a reader (reader), etc.
  • the receiver may also be called a receiver or a receiving device.
  • the passive radio frequency device 302 may be called a terminal device in the Internet of Things. Passive radio frequency device 302 may be an ultra-low power, inexpensive device.
  • the terminal device is a terminal that accesses the above-mentioned backscatter communication system and has a wireless transceiver function, or a chip or a chip system that can be installed in the terminal.
  • the passive radio frequency device 302 may also be called a reflector, a back scatter terminal, a reflective terminal, a semi-passive device, an ambient signal device, a tag, or Labeling equipment, etc.
  • the device for realizing the function of the passive radio frequency device may be a passive radio frequency device, or may be a device capable of supporting the passive radio frequency device to realize the function, such as a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the technical solution provided by the embodiment of the present application is described by taking the passive radio frequency device as an example for realizing the function of the passive radio frequency device. It should be noted that the data-energy simultaneous transmission method provided by the embodiment of the present application can be applied to the backscatter communication system shown in FIG. 3 , and the specific implementation can refer to the following method embodiments, which will not be repeated here.
  • FIG. 3 is only a simplified schematic diagram for easy understanding, and the communication system may also include other network devices and/or other passive radio frequency devices, which are not shown in FIG. 3 .
  • FIG. 4 is a schematic flow chart of a method for simultaneous digital interpretation provided by an embodiment of the present application.
  • the method for simultaneous data transmission can be applied to the communication between the active radio frequency device and the passive radio frequency device shown in FIG. 3 .
  • the method for simultaneous interpretation of numbers includes the following steps:
  • the active radio frequency device maps an nth group of information to be sent out of N groups of information to be sent to K subcarriers to generate an nth subcarrier vector.
  • n, N, K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2.
  • the information to be sent may be single bit (bit) information or multi-bit information, such as 2-bit information, 00, 01, 11, 10, which can increase the data transmission capacity and data transmission rate.
  • the embodiment of the present application adopts a multi-carrier modulation manner, and information transmission can be performed based on the OFDM technology.
  • the mapping of the information to be sent to multiple subcarriers can be obtained through encoding, interleaving, modulation, scrambling, and other processing.
  • the modulation method may be amplitude shift keying (amplitude shift keying, ASK) modulation, phase shift keying (phase shift keying, PSK) modulation, binary phase shift keying (binary phase shift keying, BPSK) modulation, ⁇ /2 binary phase shift keying ( ⁇ /2 binary phase shift keying, ⁇ /2-BPSK) modulation or quadrature phase shift keying (quadrature phase shift keying, QPSK) modulation, etc.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • BPSK binary phase shift keying
  • ⁇ /2 binary phase shift keying ⁇ /2 binary phase shift keying
  • QPSK quadrature phase shift keying
  • the actual meaning corresponding to BW is the available bandwidth resources in the wireless channel, and the final bandwidth should be determined by considering the amount of resources.
  • the subcarrier spacing is inversely proportional to the OFDM symbol period.
  • the subcarrier spacing may correspond to an OFDM symbol period.
  • the available bandwidth of the system is 180KHz
  • the subcarrier spacing is 15KHz
  • the corresponding OFDM symbol period is 66.67 microseconds (microsecond, us) (excluding CP)
  • the subcarrier The number is 12.
  • the N groups of information to be sent are multiple groups of 1-bit information, wherein, the N groups of information to be sent may include the same information to be sent, or may include different information to be sent, and each group of information to be sent is output in order , if the 7 groups of information to be sent are [0, 0, 0, 1, 0, 1, 1], the 3rd group of information 0 to be sent in the 7 groups of information to be sent is mapped to 12 subcarriers to generate the third subcarrier
  • the carrier vector maps the fourth group of information to be sent 1 onto 12 subcarriers to generate the fourth subcarrier vector.
  • the remaining 5 groups of information to be sent can be mapped to generate corresponding subcarrier vectors, which will not be repeated here.
  • the active radio frequency device converts the nth subcarrier vector from the frequency domain to the time domain, and generates a superposition waveform corresponding to the nth group of information to be sent.
  • the superposition waveform corresponding to the nth group of information to be sent is formed by superimposing K time domain waveforms, and the K time domain waveforms correspond to the K subcarrier components in the nth subcarrier vector, and the nth group of information to be sent corresponds to
  • the peak-to-average ratio of the superimposed waveform is greater than the peak-to-average ratio threshold.
  • the nth group of information to be sent is mapped to generate the nth subcarrier vector
  • the nth subcarrier vector includes K subcarrier components, and each subcarrier component satisfies the following relationship:
  • Y[n,k] is the kth subcarrier component in the nth subcarrier vector
  • x[n] is the nth group of information to be sent
  • k is the subcarrier number
  • 0 ⁇ k ⁇ K-1 K is The number of subcarriers
  • n is the group number of the nth group of information to be sent
  • a, b are constants.
  • the constants a, b It can be determined according to actual application scenario requirements.
  • the subcarrier spacing, subcarrier offset, modulation method and pulse position modulation method of the cellular system can be determined according to actual application scenario requirements.
  • the subcarrier spacing, subcarrier offset, modulation method and pulse position modulation method of the cellular system can be determined according to actual application scenario requirements.
  • the 12 subcarrier components corresponding to the nth group of information to be transmitted are generated according to the following rules:
  • the corresponding 12 subcarrier components are:
  • the phases corresponding to the 12 subcarrier components generated by the information 0 or 1 to be transmitted are all adjusted and transformed to - ⁇ .
  • the active radio frequency device converts the 12 subcarrier components generated by the third group of information to be sent 0 from the frequency domain to the time domain, and the conversion process is shown in FIG. 5 .
  • the serial data stream composed of 12 sub-carrier components Y[3,0] ⁇ Y[3,11] corresponding to the third group of information to be sent is sequentially output through the serial-to-parallel conversion module to output 12 parallel data streams, and the 12 parallel data streams
  • the stream is converted from the frequency domain to the time domain by the IDFT module, and the corresponding 12 time domain signals s[3,0] ⁇ s[3,11] are output. After the 12 time domain signals pass through the parallel-to-serial conversion module, they are combined and output for superimposition After the time-domain waveform s[3].
  • the frequency domain-time domain conversion process of the 12 subcarrier components generated by the fourth group of information 1 to be transmitted is consistent with that of the third group, and will not be repeated here.
  • FIG. 6 is the waveform before and after the frequency domain-time domain conversion corresponding to the 12 subcarrier components in the subcarrier vector when the information to be transmitted is the binary number 0.
  • FIG. 7 shows the waveforms before and after the frequency domain-time domain conversion of the 12 subcarrier components in the corresponding subcarrier vector when the information to be transmitted is the binary number 1.
  • different subcarrier vectors correspond to different subcarrier phases according to different information to be transmitted.
  • the difference in the phase of each subcarrier vector makes the time domain position of the main lobe of the corresponding time domain superimposed waveform different, that is, the time domain position of the main lobe of the time domain superimposed waveform corresponding to different information to be sent, within a time unit Domain offsets are different.
  • the main lobe position of the time-domain superimposed waveform is between 20-40us
  • the main lobe position of the time-domain superimposed waveform in Figure 7 is between 10-30us, and the peak time of the corresponding two time-domain superimposed waveforms The domain location is different.
  • the amplitude of each subcarrier component is the same and the maximum value, which means that all the transmission energy is used, and in the time domain corresponding to each subcarrier component
  • the main lobe is superimposed in the same direction, and the side lobes are superimposed in the opposite direction, so that the generated time-domain superimposed waveform has the characteristics of high peak value and large main lobe width.
  • the PAPR of the entire waveform is greater than the PAPR threshold, which can improve the charging efficiency and power supply capacity.
  • the waveform generated after frequency domain-time domain conversion of multiple subcarrier components may be a sinc(t) function.
  • the PAPR threshold is determined according to the charging requirement of the passive radio frequency device, and the PAPR threshold may be a minimum value that can satisfy the backscatter communication of the passive radio frequency device.
  • the charging structure of passive radio frequency equipment generally uses a diode + capacitor structure for charging, and the PAPR threshold can meet the charging power of the capacitor.
  • the time-domain superposition waveform obtained in the embodiment of the present application can meet the charging requirements of passive radio frequency devices.
  • different groups of information to be sent have different phases of subcarriers corresponding to different information to be sent, and the subcarrier components corresponding to each group of information to be sent are combined with different phases, and obtained after frequency domain-time domain conversion
  • the waveforms of different waveforms have different delays, so that the time-domain positions of the main lobes of the corresponding generated time-domain superimposed waveforms are different, and the time-domain positions of the peaks are also different, so that different groups of information to be sent can be distinguished according to the peak positions, which can improve translation. Code success rate and communication reliability.
  • the phases of the subcarrier components in the same subcarrier vector are distributed linearly, which can further improve the PAPR of the superimposed waveform in the time domain, and can also improve the data processing efficiency.
  • CPs may be inserted between OFDM symbols.
  • the nth group of information to be sent is mapped to generate the nth subcarrier vector
  • the nth subcarrier vector includes K subcarrier components
  • each subcarrier component can satisfy the following relationship:
  • Y[n, k] is the kth subcarrier component in the nth subcarrier vector
  • A[k] is the window function corresponding to the kth subcarrier component
  • x[n] is the nth group of information to be sent
  • k is the subcarrier serial number, 0 ⁇ k ⁇ K-1
  • K is the number of subcarriers
  • n is the group number of the nth group of information to be sent
  • a, b are constants.
  • the constants a, b It can be determined according to actual application scenario requirements.
  • the subcarrier spacing, subcarrier offset, modulation method and pulse position modulation method of the cellular system can be determined according to actual application scenario requirements.
  • the subcarrier spacing, subcarrier offset, modulation method and pulse position modulation method of the cellular system can be determined according to actual application scenario requirements.
  • A[k] may be a rectangular window, a triangular window, a Hanning window, a Hamming window, a Blackman window, a Kaiser window, or the like.
  • the 12 subcarrier components corresponding to the nth group of information to be transmitted are generated according to the following rules:
  • the active radio frequency device performs frequency domain-time domain components corresponding to the 12 subcarrier components corresponding to the third group of information to be transmitted and the 12 subcarrier components corresponding to the fourth group of information to be transmitted, as shown in FIG. 5 . Transform to obtain their corresponding time-domain superimposed waveforms.
  • the window function is also used for amplitude modulation, so that the generated time-domain superposition waveform has a lower side lobe amplitude and a higher main lobe amplitude, and The wider main lobe can further improve PAPR and charging efficiency, thereby further improving the decoding success rate and effective communication distance.
  • a time deviation between main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to a first time deviation threshold and less than a second time deviation threshold.
  • the first time deviation threshold may be: in order to effectively distinguish different time domain superposition waveforms, the minimum time deviation allowed between adjacent time domain superposition waveforms, such as 0.25 OFDM symbol period.
  • the second time deviation may be: in order to ensure charging efficiency, the maximum allowable time deviation between adjacent superimposed waveforms in the time domain, such as 2 OFDM symbol periods. In this way, it can not only ensure that the passive radio frequency equipment has a sufficient number of time-domain superposition waveforms for charging, thereby ensuring charging efficiency and communication distance, but also ensures that the passive radio frequency equipment can effectively distinguish different time-domain superposition waveforms, thereby improving decoding success rate and communication reliability.
  • the active radio frequency device sends the superimposed waveforms in the time domain corresponding to each of the N groups of information to be sent, and the passive radio frequency device receives the superimposed waveforms corresponding to each of the N groups of information to be sent.
  • the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within one time unit corresponds to the value of the nth group of information to be sent.
  • the relative position is the time domain position of the main lobe, and a time unit can be one OFDM symbol period, as shown in Figure 6 and Figure 7, the values of the information to be sent are different, and the corresponding time domain positions of the main lobe are different within one OFDM symbol period .
  • FIG. 8 shows the corresponding time-domain superimposed waveform diagrams of 7 groups of information to be sent sequentially, and the active radio frequency equipment respectively
  • the corresponding time-domain superposition waveform is sent to the passive radio frequency device in the form of the first electromagnetic wave signal. Due to the difference in the information to be sent, the time domain position of the main lobe of each group of time domain superimposed waveforms is different. Therefore, the passive radio frequency equipment can distinguish the information to be sent in each group, and the corresponding time domain superposition of each group of information to be sent The waveforms all have high PAPR, thus ensuring the power supply capability of passive radio frequency equipment.
  • step S404 is performed.
  • one resource block (resource block, RB) consists of 12 subcarriers and one slot in the frequency domain, where one slot is equal to seven OFDM symbols.
  • the 7 groups of information to be sent in the above example in the embodiment of the present application correspond to 7 output waveforms in the time domain, which actually correspond to 7 OFDM symbols, that is, 1 time slot. That is to say, in the communication system shown in FIG. 3 , downlink resource scheduling is 1 RB.
  • the passive radio frequency device analyzes the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within one time unit, and obtains the nth group of information to be sent.
  • the passive radio frequency device receives the time-domain superimposed waveforms corresponding to 7 groups of information to be transmitted as shown in Figure 8. Since each time-domain superimposed waveform is different according to each group of information to be transmitted, the corresponding main lobe position is within a time unit different inside.
  • the passive radio frequency device can analyze each group of information to be sent according to the main lobe position of each time-domain superimposed waveform.
  • the passive radio frequency device can convert the superimposed waveform corresponding to the nth group of information to be transmitted from the time domain to the frequency domain to obtain the nth subcarrier vector, and then convert the nth subcarrier vector The K subcarrier components are demapped to obtain the nth group of information to be sent.
  • the passive radio frequency device receives 7 sets of time-domain superimposed waveforms corresponding to the information to be sent, and performs time-domain to frequency-domain conversion on the time-domain superimposed waveforms corresponding to the 3rd set of information to be sent to obtain the 3rd set of information to be sent Corresponding to the third subcarrier vector.
  • the process is the reverse process of the process shown in FIG. 5 , and will not be repeated here. Since the third subcarrier vector obtained from the above conversion includes 12 subcarrier components, the passive radio frequency device demaps the 12 subcarrier components to obtain the third group of information 0 to be sent.
  • the demapping process may include channel correction, demodulation, deinterleaving, decoding, etc., which is not limited here.
  • step S404 for the processing of the time-domain superimposed waves corresponding to the remaining 6 sets of received information to be sent, refer to step S404 , which will not be repeated here.
  • the passive radio frequency device carries its own information on the time domain waveform according to the obtained information to be sent, backscatters the communication in the form of a second electromagnetic wave signal, and sends it to the active radio frequency device.
  • the first electromagnetic wave signal in step S403 is different from the second electromagnetic wave signal in step S404.
  • the first electromagnetic wave signal has charging and communication capabilities, while the second electromagnetic wave signal only needs to have communication capabilities.
  • the second electromagnetic wave signal can be visually is the response signal of the first electromagnetic wave signal.
  • N sets of information to be sent are multiple sets of 2-bit information, for example, 4 sets of information to be sent are [00, 01, 10, 11], and the corresponding x[n] is [0, 1 , 2, 3], the process of the simultaneous interpretation method refers to the above steps S401-S404, and will not be repeated here.
  • processing units in the embodiment of the present application may also be referred to as "xx module”, and the following processing modules may be referred to as processing units, which is not limited here.
  • Fig. 9 is a first structural diagram of a digital energy simultaneous interpretation device provided by an embodiment of the present application.
  • the digital energy simultaneous transmission device 900 is applicable to the backscatter communication system shown in FIG. 3 , and performs the function of an active radio frequency device in the digital energy simultaneous transmission method shown in FIG. 4 .
  • FIG. 9 only shows the main components of the digital simultaneous interpretation device 900 .
  • the digital energy simultaneous interpretation device 900 includes: a processing module 901 and a sending module 902 .
  • the processing module 901 is configured to map the nth group of information to be sent out of the N groups of information to be sent to K subcarriers to generate an nth subcarrier vector.
  • n, N, K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2.
  • the processing module 901 is further configured to convert the nth subcarrier vector from the frequency domain to the time domain to generate a superimposed waveform corresponding to the nth group of information to be transmitted.
  • the superposition waveform corresponding to the nth group of information to be sent is formed by superimposing K time domain waveforms, and the K time domain waveforms correspond to the K subcarrier components in the nth subcarrier vector, and the nth group of information to be sent corresponds to The peak-to-average ratio of the superimposed waveform is greater than the peak-to-average ratio threshold.
  • the sending module 902 is configured to send superimposed waveforms corresponding to each of the N groups of information to be sent; the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within a time unit, and the value of the nth group of information to be sent correspond.
  • the phases of the K subcarrier components in the nth subcarrier vector are determined according to the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are distributed linearly.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship:
  • Y[n,k] is the kth subcarrier component in the nth subcarrier vector
  • x[n] is the nth group of information to be sent
  • k is the subcarrier number
  • 0 ⁇ k ⁇ K-1 K is The number of subcarriers
  • n is the group number of the nth group of information to be sent
  • a, b is a constant.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship:
  • Y[n, k] is the kth subcarrier component in the nth subcarrier vector
  • A[k] is the window function corresponding to the kth subcarrier component
  • x[n] is the nth group of information to be sent
  • k is the subcarrier serial number, 0 ⁇ k ⁇ K-1
  • K is the number of subcarriers
  • n is the group number of the nth group of information to be sent
  • a, b are constants.
  • the time deviation between the main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to the first time deviation threshold and less than the second time deviation threshold.
  • the digital energy simultaneous interpretation device 900 may further include a receiving module 903 for performing the receiving function of the numerical energy simultaneous interpretation device 900 .
  • the receiving module 903 and the sending module 902 can also be integrated into a transceiver module, and the transceiver module is used to perform the transceiver function of the digital energy simultaneous transmission device 900 .
  • the digital energy simultaneous interpretation device 900 may also include a storage module (not shown in FIG. 9 ), which stores programs or instructions.
  • the processing module 901 executes the program or instruction, the digital energy simultaneous transmission device 900 can perform the function of the active radio frequency device in the digital energy simultaneous transmission method shown in FIG. 4 .
  • the above-mentioned digital energy simultaneous interpretation device 900 may be a terminal device or a network device, or may be a chip or a system or other components or components installed in the above-mentioned terminal device or network device, or may include a terminal device or a
  • the device of the network device is not limited in this embodiment of the present application.
  • the technical effect of the simultaneous digital energy interpretation device 900 can refer to the technical effect of the digital energy simultaneous interpretation method shown in FIG. 4 , which will not be repeated here.
  • FIG. 10 is a schematic diagram of the structure of the digital energy simultaneous interpretation device 2 provided by the embodiment of the present application.
  • the digital energy simultaneous interpretation device 1000 is suitable for the backscatter communication system shown in Figure 3 and implements the digital energy simultaneous interpretation method shown in Figure 4 functionality of passive RF devices.
  • FIG. 10 only shows the main components of the digital simultaneous interpretation device 1000 .
  • the digital energy simultaneous interpretation device 1000 includes: a processing module 1001 and a receiving module 1002 .
  • the receiving module 1002 is configured to receive superimposed waveforms corresponding to each of the N groups of information to be sent.
  • the superimposed waveform corresponding to the nth group of information to be sent is formed by superimposing K time-domain waveforms, and the K time-domain waveforms correspond to the K subcarrier components in the nth subcarrier vector.
  • the peak-to-average ratio of superimposed waveforms corresponding to n groups of information to be sent is greater than the peak-to-average ratio threshold, where n, N, and K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2, and the nth group of information to be sent.
  • n, N, and K are positive integers, 1 ⁇ n ⁇ N, N ⁇ 2, K ⁇ 2, and the nth group of information to be sent.
  • the relative position of the main lobe of the corresponding superimposed waveform within a time unit corresponds to the value of the nth group of information to be sent.
  • the processing module 1001 is configured to analyze the relative position of the main lobe of the superimposed waveform corresponding to the nth group of information to be sent within one time unit, and obtain the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are determined according to the nth group of information to be sent.
  • the phases of the K subcarrier components in the nth subcarrier vector are distributed linearly.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship:
  • Y[n,k] is the kth subcarrier component in the nth subcarrier vector
  • x[n] is the nth group of information to be sent
  • k is the subcarrier number
  • 0 ⁇ k ⁇ K-1 K is The number of subcarriers
  • n is the group number of the nth group of information to be sent
  • a, b are constants.
  • the kth subcarrier component in the nth subcarrier vector satisfies the following relationship:
  • Y[n, k] is the kth subcarrier component in the nth subcarrier vector
  • A[k] is the window function corresponding to the kth subcarrier component
  • x[n] is the nth group of information to be sent
  • k is the subcarrier serial number, 0 ⁇ k ⁇ K-1
  • K is the number of subcarriers
  • n is the group number of the nth group of information to be sent
  • a, b are constants.
  • the time deviation between the main lobes of superimposed waveforms corresponding to any two groups of adjacent information to be sent is greater than or equal to the first time deviation threshold and less than the second time deviation threshold.
  • processing module 1001 is also used to:
  • the K subcarrier components in the nth subcarrier vector are demapped to obtain the nth group of information to be sent.
  • the digital energy simultaneous interpretation device 1000 may further include a sending module 1003, which is used for executing the sending function of the digital energy simultaneous interpretation device 1000.
  • the receiving module 1002 and the sending module 1003 can also be integrated into a transceiver module, and the transceiver module is used to perform the transceiver function of the digital energy simultaneous transmission device 1000 .
  • the digital energy simultaneous interpretation device 1000 may also include a storage module (not shown in FIG. 10 ), which stores programs or instructions.
  • the processing module 1001 executes the program or instruction, the digital energy simultaneous transmission device 1000 can perform the function of the passive radio frequency device in the digital energy simultaneous transmission method shown in FIG. 4 .
  • the above-mentioned digital energy simultaneous transmission device 1000 may be a terminal device or a network device, or may be a chip or a system or other components or components installed in the above-mentioned terminal device or network device, or may include a terminal device or a
  • the device of the network device is not limited in this embodiment of the present application.
  • FIG 11 is a schematic diagram of the third structure of the digital energy simultaneous transmission device provided by the embodiment of the present application.
  • the digital energy simultaneous transmission device can be a terminal device or a network device, or a chip (system) or chip (system) that can be installed in the terminal device or network device other parts or components.
  • the numerical energy simultaneous interpretation device 1100 may include a processor 1101 .
  • the digital energy simultaneous transmission device 1100 may further include a memory 1102 and/or a transceiver 1103 .
  • the processor 1101 is coupled with the memory 1102 and the transceiver 1103, such as may be connected through a communication bus.
  • the processor 1101 is the control center of the digital energy simultaneous interpretation device 1100, which may be a single processor, or a general term for multiple processing elements.
  • the processor 1101 is one or more central processing units (central processing unit, CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more An integrated circuit, for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • An integrated circuit for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the processor 1101 can execute various functions of the digital energy simultaneous interpretation device 1100 by running or executing software programs stored in the memory 1102 and calling data stored in the memory 1102 .
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 11 .
  • the digital energy simultaneous interpretation device 1100 may also include multiple processors, such as the processor 1101 and the processor 1104 shown in FIG. 11 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1102 is used to store a software program for executing the solution of the present application, and the execution is controlled by the processor 1101 .
  • the specific implementation may refer to the above-mentioned method embodiments, which will not be repeated here.
  • the memory 1102 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information and
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited to.
  • the memory 1102 can be integrated with the processor 1101, or can exist independently, and is coupled with the processor 1101 through the interface circuit (not shown in FIG. 11 ) of the digital energy simultaneous interpretation device 1100, which is not specifically limited in this
  • the digital energy simultaneous interpretation apparatus 1100 is a terminal device, and the transceiver 1103 can be used to communicate with a network device, or communicate with another terminal device.
  • the digital energy simultaneous interpretation apparatus 1100 is a network device, and the transceiver 1103 can be used to communicate with a terminal device or communicate with another network device.
  • the transceiver 1103 may include a receiver and a transmitter (not separately shown in FIG. 11 ). Wherein, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 1103 may be integrated with the processor 1101, or may exist independently, and be coupled to the processor 1101 through an interface circuit (not shown in FIG. 11 ) of the communication device 1100, which is not made in this embodiment of the present application. Specific limits.
  • simultaneous digital interpretation device 1100 does not constitute a limitation to the simultaneous digital interpretation device, and the actual simultaneous digital interpretation device may include more or fewer components, or combinations of certain components, or different arrangements of components.
  • An embodiment of the present application provides a digital energy simultaneous interpretation system.
  • the digital energy simultaneous interpretation system includes the above-mentioned active radio frequency equipment and passive radio frequency equipment.
  • An embodiment of the present application provides a computer-readable storage medium, including: computer instructions are stored in the computer-readable storage medium; when the computer instructions are run on a computer, the computer is made to execute the data synchronization shown in FIG. 4 . pass method.
  • An embodiment of the present application provides a computer program product containing instructions, including computer programs or instructions, when the computer program or instructions are run on a computer, the computer is made to execute the method for digital energy simultaneous transmission as shown in FIG. 4 .
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory Access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instruction or computer program is loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instruction or computer program is loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数能同传方法及装置,涉及通信领域,能够解决在小带宽、小子载波间隔系统中下行链路充电效率低的问题。该方法包括:将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量。其中,n、N、K为正整数,1≤n<N,N≥2,K≥2。对第n个子载波向量进行频域到时域的转换,生成第n组待发送信息对应的叠加波形。其中,第n组待发送信息对应的叠加波形由K个时域波形叠加而成,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值。发送N组待发送信息各自对应的叠加波形。其中,第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。

Description

数能同传方法及装置
本申请要求于2021年10月19日提交国家知识产权局、申请号为202111217770.8、申请名称为“数能同传方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数能同传方法及装置。
背景技术
反向散射通信系统,如射频识别(radio frequency identification,RFID)系统中,无源射频设备利用来自有源射频设备的第一电磁波信号为自身供电,并向有源射频设备发送第二电磁波信号。第二电磁波信号为第一电磁波信号的响应信号,从而实现无源射频设备与有源射频设备之间的通信。其中,第一电磁波信号具备通信和供电两个功能,因此被称为数能同传波形。为满足无源射频设备的供电需求,需要第一电磁波信号具有较高的峰均比(peak to average power ratio,PAPR),提高充电效率。
目前,对于小带宽(bandwidth,BW)、小子载波间隔(subcarrier spacing,SCS)场景,如带宽为180千赫兹(kilohertz,KHz),可以采用单载波和幅度调制的方式生成数能同传波形,但是基于该方法生成的数能同传波形的PAPR过小,充电效率低下,导致供电能力不足和通信距离过短。为解决此问题,可以采用多子载波和幅度调制的方式生成数能同传波形,但是该方法仅适用于大带宽、大子载波间隔场景,如带宽为20兆赫兹(megahertz,MHz),子载波间隔为1MHz,无法适用于上述小带宽、小子载波间隔的场景中。
发明内容
本申请实施例提供一种数能同传方法及装置,能够解决现有小带宽、小子载波间隔系统中下行链路充电效率低的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种数能同传方法。该方法包括:将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量。其中,n、N、K为正整数,1≤n<N,N≥2,K≥2。对第n个子载波向量进行频域到时域的转换,生成第n组待发送信息对应的叠加波形。其中,第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值。发送N组待发送信息各自对应的叠加波形。其中,第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。
基于第一方面提供的数能同传方法,有源射频设备将同一组待发送信息映射到多个子载波上,生成该多个子载波对应的多个时域波形的时域叠加波形,该时域叠加波 形具有比单个子载波对应的时域波形更高的PAPR,可以提高充电效率和供电能力,进而提高通信距离。并且,有源射频设备还可以根据各组待发送信息的不同,对应生成主瓣时域位置不同的时域叠加波形,无源射频设备可以根据主瓣时域位置来区分不同组的待发送信息,从而提高译码率和通信可靠性。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位根据第n组待发送信息确定。如此,根据各组待发送信息的不同,各子载波分量对应的相位不同,可以确保不同待发送信息对应的时域叠加波形对应的主瓣时域位置各不相同,可用于区分不同组待发送信息,从而提高译码成功率。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位线性分布。如此,同一组待发送信息对应的多个子载波分量的相位线性分布,可进一步提高时域叠加波形的PAPR,且便于处理,可以提高数据处理效率。
可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000001
Figure PCTCN2022116858-appb-000002
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000003
均为常数。如此,各子载波分量通过该公式进行移相生成,根据各组待发送信息的不同,生成的各子载波分量对应的相位各不相同且为线性分布,相位各不相同可以确保不同待发送信息对应的时域叠加波形对应的主瓣时域位置各不相同,从而可以区分不同组待发送信息,且线性分布可以进一步提高PAPR,进而提高充电效率和译码成功率。
或者,可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000004
Figure PCTCN2022116858-appb-000005
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000006
均为常数。由此可见,在对各子载波分量进行相位调制的基础上,还增加了幅度调制,这样使得生成的时域叠加波形旁瓣幅度更低,主瓣幅度更高,且主瓣宽度更宽,以进一步提高PAPR和充电效率,从而进一步提高译码成功率和有效通信距离。
一种可能的设计方案中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。其中,第一时偏阈值可以为:为有效区分不同的时域叠加波形,所能允许的相邻时域叠加波形之间的最小时间偏差,第二时间偏差可以为:为确保充电效率,相邻时域叠加波形之间可允许的最大时间偏差。如此,既可以确保无源射频设备有足够数量的时域叠加波形用于充电,从而确保充电效率和通信距离,又可以确保无源射频设备有效区分不同的时域叠加波形,从而提高译码成功率和通信可靠性。
第二方面,提供一种数能同传方法。该方法包括:接收N组待发送信息各自对应的叠加波形。其中,N组待发送信息中的第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值,n、N、K为正整数,1≤n<N,N≥2,K≥2,第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。对第n组待发送信息对应的叠加波形的主瓣在一个时 间单元内的相对位置解析,得到第n组待发送信息。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位根据第n组待发送信息确定。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位线性分布。
可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000007
Figure PCTCN2022116858-appb-000008
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为了载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000009
均为常数。
或者,可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000010
Figure PCTCN2022116858-appb-000011
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000012
均为常数。
一种可能的设计方案中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
一种可能的设计方案中,得到第n组待发送信息,还包括:对第n组待发送信息对应的叠加波形进行时域到频域的转换,得到第n个子载波向量;对第n个子载波向量中的K个子载波分量解映射。
此外,第二方面所述的数能同传方法的技术效果可以参考第一方面所述的数能同传方法的技术效果,此处不再赘述。
第三方面,提供一种数能同传装置。该装置包括:处理模块和发送模块。其中,处理模块,用于将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量。其中,n、N、K为正整数,1≤n<N,N≥2,K≥2。处理模块,还用于对第n个子载波向量进行频域到时域的转换,生成第n组待发送信息对应的叠加波形。其中,第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值;发送模块,用于发送N组待发送信息各自对应的叠加波形;第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位根据第n组待发送信息确定。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位线性分布。
可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000013
Figure PCTCN2022116858-appb-000014
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000015
均为常数。
或者,可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000016
Figure PCTCN2022116858-appb-000017
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000018
均为常数。
一种可能的设计方案中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
可选地,第三方面所述的数能同传装置还可以包括接收模块。其中,接收模块用于实现第三方面所述的数能同传装置的接收功能。
进一步地,接收模块和发送模块也可以集成为一个收发模块。其中,收发模块应用实现第三方面所述的数能同传装置的收发功能。
可选地,第三方面所述的数能同传装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该数能同传装置可以执行第一方面所述的数能同传方法。
需要说明的是,第三方面所述的数能同传装置可以是有源射频设备,也可以是可设置于有源射频设备中的芯片(系统)或其他部件或组件,还可以是包含有源射频设备的装置或系统,本申请对此不做限定。
可选地,有源射频设备可以是终端设备,也可以是网络设备,此处不予限制。
第四方面,提供一种数能同传装置。该装置包括:处理模块和接收模块。其中,接收模块,用于接收N组待发送信息各自对应的叠加波形。其中,N组待发送信息中的第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值,其中,n、N、K为正整数,1≤n<N,N≥2,K≥2,第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。处理模块,用于对第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置解析,得到第n组待发送信息。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位根据第n组待发送信息确定。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位线性分布。
可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000019
Figure PCTCN2022116858-appb-000020
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000021
均为常数。
或者,可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000022
Figure PCTCN2022116858-appb-000023
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000024
均为常数。
一种可能的设计方案中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
一种可能的设计方案中,处理模块,用于对第n组待发送信息对应的叠加波形进行时域到频域的转换,得到第n个子载波向量;处理模块,还用于对第n个子载波向量中的K个子载波分量解映射,得到第n组待发送信息。
可选地,第四方面所述的数能同传装置还可以包括发送模块。其中,接收模块用于实现第四方面所述的数能同传装置的发送功能。
进一步地,接收模块和发送模块也可以集成为一个收发模块。其中,收发模块应用实现第四方面所述的数能同传装置的收发功能。
可选地,第四方面所述的数能同传装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得该数能同传装置可以执行第二方面所述的数能同传方法。
需要说明的是,第四方面所述的数能同传装置可以是无源射频设备,也可以是可设置于无源射频设备中的芯片(系统)或其他部件或组件,还可以是包含无源射频设备的装置或系统,本申请对此不做限定。
第五方面,提供一种数能同传装置。该装置包括:处理器,处理器与存储器耦合。其中,处理器,用于执行存储器中存储的计算机程序,以使得装置执行第一方面至第二方面中任意一种实现方式所述的数能同传方法。
第六方面,提供一种数能同传装置。该装置包括:处理器和接口电路。其中,接口电路,用于接收代码指令并传输至处理器;处理器用于运行代码指令以执行第一方面至第二方面中任意一种实现方式所述的数能同传方法。
第七方面,提供一种数能同传装置。该装置包括处理器和收发器,收发器用于装置和其他装置之间进行信息交互,处理器执行程序指令,用以执行第一方面至第二方面中任意一种实现方式所述的数能同传方法。
此外,上述第三方面至第七方面所述的数能同传装置的技术效果,可以参考第一方面所述的数能同传方法的技术效果,此处不再赘述。
第八方面,提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行第一方面至第二方面中任意一种实现方式所述的数能同传方法。
第九方面,提供一种计算机程序产品。该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行第一方面至第二方面中任意一种实现方式所述的数能同传方法。
附图说明
图1为本申请实施例提供的单载波幅度调制波形示意图;
图2为本申请实施例提供的多载波幅度调制波形示意图;
图3为本申请实施例提供的反向散射通信系统示意图;
图4为本申请实施例提供的数能同传方法流程示意图;
图5为本申请实施例提供的频域-时域转换结构示意图;
图6为本申请实施例提供的频域-时域转换波形示意图一;
图7为本申请实施例提供的频域-时域转换波形示意图二;
图8为本申请实施例提供的7组待发送信息对应的时域叠加波形图;
图9为本申请实施例提供的数能同传装置结构示意图一;
图10为本申请实施例提供的数能同传装置结构示意图二;
图11为本申请实施例提供的数能同传装置结构示意图三。
具体实施方式
下面介绍本申请实施例所涉及的技术术语。
1、正交频分复用(orthogonal frequency division multiplexing,OFDM),是一种多载波调制(multi-carrier modulation,MCM)技术。其核心是将信道分成若干个正交子信道,在每个子信道上进行窄带调制和传输,这样减少了子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的频率选择性衰落是平坦的,大大消除了符号间干扰。另外,由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。在各个子信道中的这种正交调制和解调可以采用快速傅里叶逆变换(inverse fast fourier transform,IFFT)和快速傅里叶变换(fast fourier transform,FFT)方法来实现。
2、峰均功率比,简称峰均比,是输出信号的峰值与平均值的比值。由于OFDM符号是由多个独立经过调制的子载波信号叠加而成的,当各个子载波相位相同或者相近时,叠加信号便会受到相同初始相位信号的调制,从而产生较大的瞬时功率峰值。
3、逆离散傅里叶变换(inverse discrete fourier transform,IDFT),是离散傅里叶变换(discrete fourier transform,DFT)的逆变换,用于将频域信号转换为时域信号。
4、循环前缀(cyclic prefix,CP),是将OFDM符号尾部的信号复制到头部构成的。在OFDM符号保护间隔内填入循环前缀,以保证在FFT周期内OFDM符号的时延副本内包含的波形周期个数也是整数。这样,时延小于保护间隔的信号就不会在解调过程中产生符号间干扰(inter symbol interference,ISI)。
5、射频识别技术,是自动识别技术的一种,通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的目的。
6、脉冲位置调制(pulse position modulation,PPM),如果调制信号只使载波脉冲系列中每一个脉冲产生的时间发生改变,而不改变其形状和幅度,且每一个脉冲产生时间的变化量比例于调制信号电压的幅度,与调制信号的频率无关。
下面结合附图对现有技术进行说明。
在RFID系统中,无源射频设备接收的电磁波信号,是采用单载波进行幅度调制得到。示例性地,图1示出的是单载波调制的波形图,包络线中为单载波信号,当发送数据0时,生成“高-低”包络线的波形;当发送数据1时,生成“高-高-低”包络线的波形。由此可见,发送数据1的高电平信号的持续时间比发送数据0的低电平信号的持续时间增加一倍,整个波形的PAPR过小,导致充电效率低下,供电能力不足,影响通信距离。
另外,现有技术中有采用建设性的功率突破(constructive cower surges,CPS)波形作为无源射频设备接收的电磁波信号,该CPS波形是利用多载波进行叠加得到时域波形,并对各多载波在不同时间段进行不同的幅度调制得到。
示例地,如图2所示为多载波调制的CPS波形,该CPS波形为21个子载波单音信号的时域叠加波形,子载波间隔为1MHz,共占用20MHz带宽,通过对21个子载波进行叠加,按照如下公式,在不同时间段进行不同的幅度调制承载信息:
Figure PCTCN2022116858-appb-000025
其中,y(t)为t时间的CPS波形,a(t)为t时间对应的幅度调制,k为子载波序号,kf 为第k个子载波频率。
如图2所示,包络线中为多载波信号,当发送数据0时,生成“高-低”包络线的波形;当发送数据1时,生成“高-高-低”包络线的波形。由此可见,相比于上述单载波生成的波形,多载波生成的波形信号PAPR足够高,具有较高的充电效率,但是该波形生成方法只适用于大带宽、大子载波间隔的场景,如带宽为20MHz、子载波间隔为1MHz的场景,不适用于本申请实施例中的反向散射通信系统使用的小带宽、小子载波间隔的场景,如带宽为180KHz、子载波间隔为15KHz的场景。例如,在蜂窝系统中,用于反向散射通信的授权(licensed)带宽一般为180KHz,子载波间隔通常为KHz数量级,属于小带宽、小子载波间隔的场景。
针对上述现有技术中存在的问题,下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如射频识别系统,如反向散射系统,无线保真(wireless fidelity,WiFi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图3中示出的反向散射通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图3为本申请实施例提供的数能同传方法所适用的一种反向散射通信系统的架构示意图。
如图3所示,该反向散射通信系统包括有源射频设备301和无源射频设备302。有源射频设备301向无源射频设备302发送第一电磁波信号,第一电磁波信号具备通 信和供电两个功能,无源射频设备302利用第一电磁波信号为自身供电,并解析第一电磁波信号所携带的信息,根据解析出的信息向有源射频设备301发送携带有无源射频设备302的信息的第二电磁波信号,有源射频设备301根据第二电磁波信号解析得到无源射频设备302的信息。换言之,第二电磁波信号为第一电磁波信号的响应信号。
可选地,无源射频设备302可以设置为多个,多个无源射频设备302可以设置为一个组。类似地,有源射频设备301也可以设置为多个。本申请实施例在此不做具体限定。
其中,有源射频设备301可以是终端设备。终端设备可以是一种具有无线收发功能的设备或可设置于该设备的芯片或芯片系统,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备也可以称为用户设备、用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的数能同传方法。
可选地,有源射频设备301也可以是网络设备,该网络设备可以是具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
可选地,有源射频设备301也可以是发送功能和接收功能分开部署的设备,例如,有源射频设备301包括激励器和接收器,激励器、接收器分开部署,或者,上述终端设备或网络设备单独作为接收或发送的设备分开部署。本申请实施例不做具体限制。 其中,激励器也可以称为激励源、射频源、询问器(interrogator)、或读写器(reader)等,接收器也可以称为接收机或接收设备等。
无源射频设备302,可以称为物联网中的终端设备。无源射频设备302可以是超低功耗、廉价的设备。终端设备为接入上述反向散射通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。无源射频设备302也可以称为反射器、反向散射终端(back scatter terminal)、反射终端、半有源设备(semi-passive device)、散射信号设备(ambient signal device)、标签(tag)或标签设备等。应用在本申请实施例中,用于实现无源射频设备的功能的装置可以是无源射频设备,也可以是能够支持无源射频设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例中,以用于实现无源射频设备的功能的装置是无源射频设备为例,描述本申请实施例提供的技术方案。需要说明的是,本申请实施例提供的数能同传方法,可以适用于图3所示的反向散射通信系统中,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图3仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他无源射频设备,图3中未予以画出。
示例性地,图4为本申请实施例提供的数能同传方法流程示意图。该数能同传方法可以适用于图3所示的有源射频设备与无源射频设备之间的通信。
如图4所示,该数能同传方法包括如下步骤:
S401、有源射频设备将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量。
其中,n、N、K为正整数,1≤n<N,N≥2,K≥2。
具体地,待发送信息可以是单个比特(bit)信息,也可以是多比特信息,如2比特信息,00、01、11、10,可以增加数据传输容量以及数据传输速率。
本申请实施例采用多载波调制的方式,可以基于OFDM技术进行信息传输。具体地,将待发送信息映射到多个子载波可以经过编码、交织、调制、加扰等处理得到。其中,调制的方式可以是幅度移位键控(amplitude shift keying,ASK)调制、相移键控(phase shift keying,PSK)调制、二进制相移键控(binary phase shift keying,BPSK)调制、π/2的二进制相移键控(π/2binary phase shift keying,π/2-BPSK)调制或正交相移键控(quadrature phase shift keying,QPSK)调制等。具体采用何种调制方式在本申请实施例中不作限定。
进一步地,子载波的个数根据通信系统的BW以及子载波间隔SCS确定,即K=BW/SCS。其中,BW对应的实际含义是无线信道中可以利用的带宽资源,要考虑资源的多少来决定最后的带宽。在OFDM中,在K个子载波上同时传输的数据符号叠加成一个OFDM符号。其中,子载波间隔和OFDM符号周期成反比。因此,子载波间隔可以对应OFDM符号周期。例如,图3所示的反向散射通信系统中,系统可利用的带宽为180KHz,子载波间隔为15KHz,对应的OFDM符号周期为66.67微秒(microsecond,us)(不包括CP),子载波个数为12。
示例性地,N组待发送信息为多组1比特信息,其中,N组待发送信息中可以包括相同的待发送信息,也可以包括不同的待发送信息,各组待发送信息的按顺序输出,如7组待发送信息为[0,0,0,1,0,1,1],将7组待发送信息中的第3组待发送信息0映射到12个子载波上,生成第3个子载波向量,将第4组待发送信息1映射到12个子载波上,生成第4个子载波向量。类似地,可将剩余5组待发送信息映射生成对应的子载波向量,此处不再一一赘述。
S402、有源射频设备对第n个子载波向量进行频域到时域的转换,生成第n组待发送信息对应的叠加波形。
其中,第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值。
具体地,将第n组待发送信息映射生成第n个子载波向量,第n个子载波向量包括K个子载波分量,每个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000026
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000027
均为常数。
值得说明的是,常数a、b、
Figure PCTCN2022116858-appb-000028
可以根据实际应用场景需求确定。例如,蜂窝系统的子载波间隔、子载波偏移、调制方式以及脉冲位置调制方式等。
示例性地,在图3所示的反向散射通信系统中,第n组待发送信息对应的12个子载波分量,按照如下规则生成:
Figure PCTCN2022116858-appb-000029
其中,0≤k≤11,a=π,
Figure PCTCN2022116858-appb-000030
例如,第3组待发送信息x[3]=0时,对应的12个子载波分量为:
Figure PCTCN2022116858-appb-000031
第4组待发送信息x[4]=1时,对应的12个子载波分量为:
Figure PCTCN2022116858-appb-000032
具体地,上述待发送信息0或1生成的12个子载波分量对应的相位均调整变换为-π≤θ≤π。
进一步地,有源射频设备将上述第3组待发送信息0生成的12个子载波分量,进行频域到时域的转换,其转换过程如图5所示。将第3组待发送信息对应的12个子载波分量Y[3,0]~Y[3,11]构成的串行数据流,依次通过串并转换模块输出12路并行数据流,12路并行数据流经过IDFT模块进行频域到时域的变换,输出对应的12个时域信号s[3,0]~s[3,11],12个时域信号经过并串转换模块后,合并输出叠加后的时域波形s[3]。类似地,上述第4组待发送信息1生成的12个子载波分量的频域-时域转换过程与第3组一致,此处不再赘述。
图6为待发送信息为二进制数0时,对应子载波向量中的12个子载波分量进行频域-时域转换前、后的波形。类似地,图7为待发送信息为二进制数1时,对应子载波向量中的12个子载波分量进行频域-时域转换前、后的波形。
根据图6和图7可知,同一子载波向量中12个子载波分量对应的幅值相同,但相位各不相同且为线性分布,其对应生成的时域叠加波形峰值更高,且主瓣宽度更大。
进一步可知的是,不同子载波向量根据待发送信息的不同对应的各子载波相位也不相同。各子载波向量相位的不同使得各自对应的时域叠加波形的主瓣时域位置不同,也就是说,不同待发送信息对应时域叠加波形的主瓣时域位置,在一个时间单位内的时域偏移量不同。如图6中的时域叠加波形的主瓣位置在20-40us之间,图7中的时域叠加波形的主瓣位置在10-30us之间,对应的两个时域叠加波形的峰值时域位置不同。
由此可知,由于同一组待发送信息中各子载波向量相位线性分布,各子载波分量幅值相同且为最大值,表示利用了所有的发射能量,并且,在各子载波分量对应的时域波形叠加时,主瓣同向叠加,旁瓣反向叠加,从而生成的时域叠加波形具有高峰值,主瓣宽度大的特点,整个波形的PAPR大于PAPR阈值,可以提高充电效率和供电能力。其中,多个子载波分量频域-时域转换后生成的波形可以为sinc(t)函数。
其中,PAPR阈值根据无源射频设备的充电需求确定,PAPR阈值可以为能够满足无源射频设备能够反向散射通信的最小值。无源射频设备的充电结构一般采用二极管+电容结构进行充电,PAPR阈值能够满足电容的充电功率。本申请实施例中得到的时域叠加波形能够满足无源射频设备的充电需求。
进一步地,不同组待发送信息因待发送信息的不同,各自对应的各子载波相位也不同,各组待发送信息对应的子载波分量通过不同的相位组合,对频域-时域转换后得到的波形产生了不同的延迟,使得各自对应生成的时域叠加波形的主瓣时域位置不同,进而峰值的时域位置也不同,从而可根据峰值位置区分不同组的待发送信息,可以提高译码成功率和通信可靠性。
本实施例中同一子载波向量中的子载波分量的相位是线性分布的,能够进一步提高时域叠加波形的PAPR,也可以提高数据处理效率。
可选地,为避免符号间干扰(inter-symbol interference,ISI)影响信号的传输质量,可以在OFDM符号之间插入CP。
另一种可能的实施方式中,将第n组待发送信息映射生成第n个子载波向量,第n个子载波向量包括K个子载波分量,每个子载波分量可以满足如下关系:
Figure PCTCN2022116858-appb-000033
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000034
均为常数。
值得说明的是,常数a、b、
Figure PCTCN2022116858-appb-000035
可以根据实际应用场景需求确定。例如,蜂窝系统的子载波间隔、子载波偏移、调制方式以及脉冲位置调制方式等。
可选地,A[k]可以是矩形窗、三角形窗、汉宁(hanning)窗、汉明(hamming)窗、布莱克曼(blackman)窗、凯泽(kaiser)窗等。
示例性地,在图3所示的反向散射通信系统中,第n组待发送信息对应的12个子载波分量,按照如下规则生成:
Figure PCTCN2022116858-appb-000036
其中,0≤k≤11,a=π,
Figure PCTCN2022116858-appb-000037
A[k]为汉明(hamming)窗。
类似地,第3组待发送信息x[1]=0时,对应的12个子载波分量为:
Figure PCTCN2022116858-appb-000038
第4组待发送信息x[4]=1时,对应的12个子载波分量为:
Figure PCTCN2022116858-appb-000039
与前述实施例类似,有源射频设备分别将第3组待发送信息对应的12个子载波分量、第4组待发送信息对应的12个子载波分量,进行如图5所示的频域-时域转换,得到各自对应的时域叠加波形。
在本申请实施例中,在对各子载波分量进行相位调制的基础上,还利用窗函数进行幅度调制,这样使得生成的时域叠加波形的旁瓣幅度更低、主瓣幅度更高,且主瓣宽度更大,可以进一步提高PAPR和充电效率,从而进一步提高译码成功率和有效通信距离。
在一种可能的实施方式中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
其中,第一时偏阈值可以为:为有效区分不同的时域叠加波形,所能允许的相邻时域叠加波形之间的最小时间偏差,如0.25个OFDM符号周期。第二时间偏差可以为:为确保充电效率,相邻时域叠加波形之间可允许的最大时间偏差,如2个OFDM符号周期。这样,既可以确保无源射频设备有足够数量的时域叠加波形用于充电,从而确保充电效率和通信距离,又可以确保无源射频设备有效区分不同的时域叠加波形,从而提高译码成功率和通信可靠性。
需要说明的是,前述示例,7组待发送信息中的其余5组待发送信息对应生成时域叠加波形的过程,参照第3组和第4组,此处不再一一赘述。
S403、有源射频设备发送N组待发送信息各自对应的时域叠加波形,无源射频设备接收N组待发送信息各自对应的叠加波形。
其中,第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。相对位置为主瓣时域位置,一个时间单元可以是一个OFDM符号周期,如图6和图7所示,待发送信息的取值不同,对应的主瓣时域位置在一个OFDM符号周期内不同。
示例性地,图8所示为7组待发送信息依次发送对应的时域叠加波形图,有源射频设备将7组待发送信息[0,0,0,1,0,1,1]各自对应的时域叠加波形,以第一电磁波信号的形式向无源射频设备发送。由于待发送信息的不同使得各组时域叠加波形的主瓣时域位置不同,因此,无源射频设备可以将各组中的待发送信息区分出来,且各组待发送信息对应的时域叠加波形均具有较高的PAPR,从而保障了无源射频设备的供电能力。
由于无源射频设备接收的7组时域叠加波形均具有高PAPR,充电效率高,使得无源射频设备有足够的充电功率,从而使得无源射频设备具备数据解析和反向散射通信的能力,如执行步骤S404。
以LTE系统为例,1个资源块(resource block,RB)由频域上的12个子载波和1个时隙(slot)构成,其中,1个时隙等于7个OFDM符号。本申请实施例在上述示例中的7组待发送信息对应输出的7个时域波形,其实际对应为7个OFDM符号,即为1个时隙。也就是说,图3示出的通信系统中,下行链路的资源调度为1个RB。
S404、无源射频设备对第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置解析,得到第n组待发送信息。
示例性地,无源射频设备接收如图8所示的7组待发送信息对应的时域叠加波形,由于各时域叠加波形根据各组待发送信息的不同,对应主瓣位置在一个时间单元内不同。如图8所示的7组待发送信息中,第1、2、3和5组的待发送信息均为0,4组各自对应的时域叠加波形的主瓣位置在一个时间单元内相同,第4、6和7组的待发送信息均为1,3组各自对应的时域叠加波形的主瓣位置在一个时间单元内相同。因此,无源射频设备可以根据各时域叠加波形的主瓣位置解析出各组待发送信息。
另一种可能实施的方式中,无源射频设备可以对第n组待发送信息对应的叠加波形进行时域到频域的转换,得到第n个子载波向量,再对第n个子载波向量中的K个子载波分量解映射,得到第n组待发送信息。
示例性地,无源射频设备接收7组待发送信息对应的时域叠加波形,对第3组待发送信息对应的时域叠加波形进行时域到频域的转换,得到第3组待发送信息对应的第3个子载波向量。其过程为图5所示过程的逆过程,此处不再赘述。由于上述转换得到的第3个子载波向量包括12个子载波分量,无源射频设备对12个子载波分量进行解映射,得到第3组待发送信息0。其中,解映射过程可以包括信道矫正、解调、解交织和解码等,此处不予限制。
类似地,接收的其余6组待发送信息对应的时域叠加波的处理,参考步骤S404,此处不再赘述。
进一步地,无源射频设备根据得到的待发送信息,将自身信息承载到时域波形上,以第二电磁波信号的形式反向散射通信,向有源射频设备发送。
值得说明的是,步骤S403中的第一电磁波信号和步骤S404中的第二电磁波信号不同,第一电磁波信号具备充电和通信能力,第二电磁波信号只需要具备通信能力,第二电磁波信号可以视为第一电磁波信号的响应信号。
另一种可能实施的方式中,N组待发送信息为多组2比特信息时,如4组待发送信息为[00,01,10,11],对应的x[n]为[0,1,2,3],其数能同传方法的过程参照上述步骤S401-S404,此处不再赘述。
以上结合图4-图8详细说明了本申请实施例提供的数能同传方法。以下结合图9-图11详细说明用于执行本申请实施例提供的数能同传方法的装置。
值得说明的是,本申请实施例中的“xx单元”也可以称为“xx模块”,如下述的处理模块可以称为处理单元,在此不做限定。
图9为本申请实施例提供的数能同传装置的结构示意图一。该数能同传装置900可适用于图3示出的反向散射通信系统中,执行图4中示出的数能同传方法中的有源射频设备的功能。为了便于说明,图9仅示出了该数能同传装置900的主要部件。
如图9所示,数能同传装置900包括:处理模块901和发送模块902。
其中,处理模块901,用于将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量。其中,n、N、K为正整数,1≤n<N,N≥2,K≥2。
处理模块901,还用于对第n个子载波向量进行频域到时域的转换,生成第n组待发送信息对应的叠加波形。其中,第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值。
发送模块902,用于发送N组待发送信息各自对应的叠加波形;第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位根据第n组待发送信息确定。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位线性分布。
可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000040
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000041
为常数。
或者,可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000042
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000043
均为常数。
一种可能的设计方案中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
可选地,数能同传装置900还可以包括接收模块903,该接收模块903用于执行数能同传装置900的接收功能。
可选地,接收模块903和发送模块902也可以集成为一个收发模块,该收发模块用于执行数能同传装置900的收发功能。
可选地,数能同传装置900还可以包括存储模块(图9中未示出),该存储模块存储有程序或指令。当处理模块901执行该程序或指令时,使得数能同传装置900可以执行图4所示的数能同传方法中有源射频设备的功能。
值得说明的是,上述的数能同传装置900可以是终端设备或网络设备,也可以是设置于上述终端设备或网络设备中的芯片或系统或其他部件或组件,还可以是包含终端设备或网络设备的装置,本申请实施例对此不做限制。
此外,数能同传装置900的技术效果可以参考图4所示出的数能同传方法的技术效果,此处不再赘述。
图10是本申请实施例提供的数能同传装置结构示意图二,该数能同传装置1000适用于图3所示的反向散射通信系统中,执行图4所示的数能同传方法的无源射频设备的功能。为了便于说明,图10仅示出了该数能同传装置1000的主要部件。
如图10所示,数能同传装置1000包括:处理模块1001和接收模块1002。
其中,接收模块1002,用于接收N组待发送信息各自对应的叠加波形。其中,N组待发送信息中的第n组待发送信息对应的叠加波形由K个时域波形叠加而成,K个时域波形与第n个子载波向量中的K个子载波分量各自对应,第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值,其中,n、N、K为正整数,1≤n<N,N≥2,K≥2,第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与第n组待发送信息的取值对应。
处理模块1001,用于对第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置解析,得到第n组待发送信息。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位根据第n组待发送信息确定。
一种可能的设计方案中,第n个子载波向量中的K个子载波分量的相位线性分布。
可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000044
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000045
均为常数。
或者,可选地,第n个子载波向量中的第k个子载波分量满足如下关系:
Figure PCTCN2022116858-appb-000046
其中,Y[n,k]为第n个子载波向量中的第k个子载波分量,A[k]为第k个子载波分量对应的窗函数,x[n]为第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为第n组待发送信息的组号,a、b、
Figure PCTCN2022116858-appb-000047
均为常数。
一种可能的设计方案中,任意两组相邻的待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
一种可能的设计方案中,处理模块1001,还用于,
对第n组待发送信息对应的叠加波形进行时域到频域的转换,得到第n个子载波向量;
对第n个子载波向量中的K个子载波分量解映射,得到第n组待发送信息。
可选地,数能同传装置1000还可以包括发送模块1003,该发送模块1003用于执行数能同传装置1000的发送功能。
可选地,接收模块1002和发送模块1003也可以集成为一个收发模块,该收发模块用于执行数能同传装置1000的收发功能。
可选地,数能同传装置1000还可以包括存储模块(图10中未示出),该存储模块存储有程序或指令。当处理模块1001执行该程序或指令时,使得数能同传装置1000可以执行图4所示的数能同传方法中无源射频设备的功能。
需要说明的是,上述的数能同传装置1000可以是终端设备或网络设备,也可以是设置于上述终端设备或网络设备中的芯片或系统或其他部件或组件,还可以是包含终端设备或网络设备的装置,本申请实施例对此不做限制。
此外,数能同传装置1000的技术效果可以参考图4所示出的数能同传方法的技术效果,此处不再赘述。
图11为本申请实施例提供的数能同传装置的结构示意图三,该数能同传装置可以是终端设备或网络设备,也可以是可设置于终端设备或网络设备的芯片(系统)或其他部件或组件。
如图11所示,数能同传装置1100可以包括处理器1101。可选地,数能同传装置1100还可以包括存储器1102和/或收发器1103。其中,处理器1101与存储器1102和收发器1103耦合,如可以通过通信总线连接。
下面结合图11对数能同传装置1100的各个构成部件进行具体的介绍:
其中,处理器1101是数能同传装置1100的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1101是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1101可以通过运行或执行存储在存储器1102内的软件程序,以及调用存储在存储器1102内的数据,执行数能同传装置1100的各种功能。
在具体的实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,例如图11中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,数能同传装置1100也可以包括多个处理器,例如图11中所示的处理器1101和处理器1104。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1102用于存储执行本申请方案的软件程序,并由处理器1101来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器1102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1102可以和处理器1101集成在一起,也可以独立存在,并通过数能同传装置1100的接口电路(图11中未示出)与处理器1101耦合,本申请实施例对此不作具体限定。
收发器1103,用于与其他数能同传装置之间的通信。例如,数能同传装置1100为终端设备,收发器1103可以用于与网络设备通信,或者与另一个终端设备通信。又例如,数能同传装置1100为网络设备,收发器1103可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器1103可以包括接收器和发送器(图11中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1103可以和处理器1101集成在一起,也可以独立存在,并通过通信装置1100的接口电路(图11中未示出)与处理器1101耦合,本申请实施例对此不作具体限定。
需要说明的是,图11中示出的数能同传装置1100的结构并不构成对该数能同传装置的限定,实际的数能同传装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,数能同传装置1100的技术效果可以参考上述方法实施例所述的数能同传方法的技术效果,此处不再赘述。
本申请实施例提供一种数能同传系统。该数能同传系统包括上述有源射频设备和无源射频设备。
本申请实施例提供一种计算机可读存储介质,包括:该计算机可读存储介质中存储有计算机指令;当该计算机指令在计算机上运行时,使得该计算机执行如图4所示的数能同传方法。
本申请实施例提供了一种包含指令的计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行如图4所示的数能同传方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其 他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可 以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种数能同传方法,其特征在于,所述方法包括:
    将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量:n、N、K为正整数,1≤n<N,N≥2,K≥2;
    对所述第n个子载波向量进行频域到时域的转换,生成所述第n组待发送信息对应的叠加波形;所述第n组待发送信息对应的叠加波形由K个时域波形叠加而成,所述K个时域波形与所述第n个子载波向量中的K个子载波分量各自对应,所述第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值;
    发送所述N组待发送信息各自对应的叠加波形;所述第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与所述第n组待发送信息的取值对应。
  2. 根据权利要求1所述的方法,其特征在于,所述第n个子载波向量中的K个子载波分量的相位根据所述第n组待发送信息确定。
  3. 根据权利要求2所述的方法,其特征在于,所述第n个子载波向量中的K个子载波分量的相位线性分布。
  4. 根据权利要求3所述的方法,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100001
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100002
    均为常数。
  5. 根据权利要求3所述的方法,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100003
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,A[k]为所述第k个子载波分量对应的窗函数,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100004
    均为常数。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,任意两组相邻的所述待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
  7. 一种数能同传方法,其特征在于,所述方法包括:
    接收N组待发送信息各自对应的叠加波形;所述N组待发送信息中的第n组待发送信息对应的叠加波形由K个时域波形叠加而成,所述K个时域波形与第n个子载波向量中的K个子载波分量各自对应,所述第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值;n、N、K为正整数,1≤n<N,N≥2,K≥2;所述第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与所述第n组待发送信息的取值对应;
    对所述第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置解析,得到所述第n组待发送信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第n个子载波向量中的K个子载波分量的相位根据所述第n组待发送信息确定。
  9. 根据权利要求8所述的方法,其特征在于,所述第n个子载波向量中的K个子载波分量的相位线性分布。
  10. 根据权利要求9所述的方法,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100005
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100006
    均为常数。
  11. 根据权利要求9所述的方法,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100007
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,A[k]为所述第k个子载波分量对应的窗函数,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100008
    均为常数。
  12. 根据权利要求7所述的方法,其特征在于,任意两组相邻的所述待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
  13. 根据权利要求7-12任一项所述的方法,其特征在于,得到所述第n组待发送信息,还包括:
    对所述第n组待发送信息对应的叠加波形进行时域到频域的转换,得到所述第n个子载波向量;
    对所述第n个子载波向量中的K个子载波分量解映射。
  14. 一种数能同传装置,其特征在于,所述装置包括:处理模块和发送模块;其中,
    所述处理模块,用于将N组待发送信息中的第n组待发送信息映射到K个子载波上,生成第n个子载波向量:n、N、K为正整数,1≤n<N,N≥2,K≥2;
    所述处理模块,还用于对所述第n个子载波向量进行频域到时域的转换,生成所述第n组待发送信息对应的叠加波形;所述第n组待发送信息对应的叠加波形由K个时域波形叠加而成,所述K个时域波形与所述第n个子载波向量中的K个子载波分量各自对应,所述第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值;
    所述发送模块,用于发送所述N组待发送信息各自对应的叠加波形;所述第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与所述第n组待发送信息的取值对应。
  15. 根据权利要求14所述的装置,其特征在于,所述第n个子载波向量中的K个子载波分量的相位根据所述第n组待发送信息确定。
  16. 根据权利要求15所述的装置,其特征在于,所述第n个子载波向量中的K个子载波分量的相位线性分布。
  17. 根据权利要求16所述的装置,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100009
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,x[n]为所述第n组待 发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100010
    均为常数。
  18. 根据权利要求16所述的装置,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100011
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,A[k]为所述第k个子载波分量对应的窗函数,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100012
    均为常数。
  19. 根据权利要求14-18任一项所述的装置,其特征在于,任意两组相邻的所述待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
  20. 一种数能同传装置,其特征在于,所述装置包括:处理模块和接收模块;其中,
    所述接收模块,用于接收N组待发送信息各自对应的叠加波形;所述N组待发送信息中的第n组待发送信息对应的叠加波形由K个时域波形叠加而成,所述K个时域波形与第n个子载波向量中的K个子载波分量各自对应,所述第n组待发送信息对应的叠加波形的峰均比大于峰均比阈值;n、N、K为正整数,1≤n<N,N≥2,K≥2;所述第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置,与所述第n组待发送信息的取值对应;
    所述处理模块,用于对所述第n组待发送信息对应的叠加波形的主瓣在一个时间单元内的相对位置解析,得到所述第n组待发送信息。
  21. 根据权利要求20所述的装置,其特征在于,所述第n个子载波向量中的K个子载波分量的相位根据所述第n组待发送信息确定。
  22. 根据权利要求21所述的装置,其特征在于,所述第n个子载波向量中的K个子载波分量的相位线性分布。
  23. 根据权利要求22所述的装置,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100013
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100014
    均为常数。
  24. 根据权利要求22所述的装置,其特征在于,所述第n个子载波向量中的第k个子载波分量满足如下关系:
    Figure PCTCN2022116858-appb-100015
    其中,Y[n,k]为所述第n个子载波向量中的第k个子载波分量,A[k]为所述第k个子载波分量对应的窗函数,x[n]为所述第n组待发送信息,k为子载波序号,0≤k≤K-1,K为子载波个数,n为所述第n组待发送信息的组号,a、b、
    Figure PCTCN2022116858-appb-100016
    均为常数。
  25. 根据权利要求20所述的装置,其特征在于,任意两组相邻的所述待发送信息对应的叠加波形的主瓣之间的时间偏差大于或等于第一时偏阈值,且小于第二时偏阈值。
  26. 根据权利要求20-25任一项所述的装置,其特征在于,所述处理模块,还用于,
    对所述第n组待发送信息对应的叠加波形进行时域到频域的转换,得到所述第n个子载波向量;
    对所述第n个子载波向量中的K个子载波分量解映射,得到所述第n组待发送信息。
  27. 一种数能同传装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-13中任一项所述的方法。
  28. 一种数能同传装置,其特征在于,包括:处理器和接口电路;其中,
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1-13中任一项所述的方法。
  29. 一种数能同传装置,其特征在于,所述装置包括处理器和收发器,所述收发器用于所述装置和其他装置之间进行信息交互,所述处理器执行程序指令,用以执行如权利要求1-13中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
PCT/CN2022/116858 2021-10-19 2022-09-02 数能同传方法及装置 WO2023065856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111217770.8A CN115996166A (zh) 2021-10-19 2021-10-19 数能同传方法及装置
CN202111217770.8 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023065856A1 true WO2023065856A1 (zh) 2023-04-27

Family

ID=85994049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116858 WO2023065856A1 (zh) 2021-10-19 2022-09-02 数能同传方法及装置

Country Status (2)

Country Link
CN (1) CN115996166A (zh)
WO (1) WO2023065856A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836765A (zh) * 2015-03-25 2015-08-12 南方科技大学 一种多载波宽带信息能量同传发送系统及接收系统
US20200106308A1 (en) * 2018-10-01 2020-04-02 Research & Business Foundation Sungkyunkwan University Adaptive mode switching method for simultaneous wireless power/information transmission operating in dual mode and apparatus for performing the same
CN111132342A (zh) * 2019-12-26 2020-05-08 重庆邮电大学 一种基于无线供电反向散射通信网络的多载波资源分配方法
CN111886806A (zh) * 2018-03-23 2020-11-03 华为技术有限公司 一种背向散射通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836765A (zh) * 2015-03-25 2015-08-12 南方科技大学 一种多载波宽带信息能量同传发送系统及接收系统
CN111886806A (zh) * 2018-03-23 2020-11-03 华为技术有限公司 一种背向散射通信方法及装置
US20200106308A1 (en) * 2018-10-01 2020-04-02 Research & Business Foundation Sungkyunkwan University Adaptive mode switching method for simultaneous wireless power/information transmission operating in dual mode and apparatus for performing the same
CN111132342A (zh) * 2019-12-26 2020-05-08 重庆邮电大学 一种基于无线供电反向散射通信网络的多载波资源分配方法

Also Published As

Publication number Publication date
CN115996166A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
US11575557B2 (en) Orthogonal time frequency space modulation techniques
US10965348B2 (en) Uplink user resource allocation for orthogonal time frequency space modulation
WO2021169586A1 (zh) 一种通信方法及装置
CN115001923B (zh) 基于序列的信号处理方法及装置
WO2020143649A1 (zh) 基于序列的信号处理方法与装置
CN108632189A (zh) 上行数据的发送方法、装置及用户设备
CN109565825A (zh) 非授权上行传输方法和装置
WO2019029592A1 (en) AGGREGATION OF CREAMS
US11632281B1 (en) System and method for joint radar-sensing and communication waveform utilizing unique word OFDM (UW-OFDM)
US10827515B2 (en) Sequence-based signal processing method and apparatus
WO2017076155A1 (zh) 一种数据发送方法及装置
US20230353435A1 (en) Ofdm-based method and device for spreading and transmitting compressed data
WO2023109920A1 (zh) 一种通信方法及装置
WO2023065856A1 (zh) 数能同传方法及装置
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
US11770285B2 (en) Method and device for transmitting data in wireless communication system
WO2009079650A2 (en) Efficient radio resource allocation method and system
US20220386296A1 (en) High-speed data transmission method and apparatus for ofdm-based single carrier system
US12058079B2 (en) Apparatus and method for positioning in wireless communication system
WO2023216878A1 (zh) 通信方法及装置、存储介质
WO2023116613A1 (zh) 通信方法及装置
WO2024020813A1 (zh) 参考信号传输方法及通信装置
EP3457650A1 (en) Resource mapping method and device, and communication system
WO2023011258A1 (zh) 信号传输方法及装置
WO2023216877A1 (zh) 通信方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE