WO2023065830A1 - 一种盾构机掘进前方的孤石预测方法和系统 - Google Patents

一种盾构机掘进前方的孤石预测方法和系统 Download PDF

Info

Publication number
WO2023065830A1
WO2023065830A1 PCT/CN2022/115764 CN2022115764W WO2023065830A1 WO 2023065830 A1 WO2023065830 A1 WO 2023065830A1 CN 2022115764 W CN2022115764 W CN 2022115764W WO 2023065830 A1 WO2023065830 A1 WO 2023065830A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield machine
boulder
cutter head
torque
tunneling
Prior art date
Application number
PCT/CN2022/115764
Other languages
English (en)
French (fr)
Inventor
王怀东
佟方硕
刘晓迪
裴柏铮
莫宏岩
谢天祥
刘洪宇
李志重
崔广宇
孙建平
谢国兴
刘强
周明亮
Original Assignee
中铁九局集团第四工程有限公司
中铁九局集团有限公司
中铁大连地铁五号线有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁九局集团第四工程有限公司, 中铁九局集团有限公司, 中铁大连地铁五号线有限公司 filed Critical 中铁九局集团第四工程有限公司
Priority to GB2304450.6A priority Critical patent/GB2619392B/en
Publication of WO2023065830A1 publication Critical patent/WO2023065830A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/005Testing the nature of borehole walls or the formation by using drilling mud or cutting data
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/26Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining the characteristic of torque in relation to revolutions per unit of time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present application relates to the technical field of shield tunneling, in particular to a method and system for predicting boulders ahead of shield tunneling.
  • boulders is a key link in the construction process of shield tunneling.
  • Timely and effective detection of boulders and the discovery of boulders are problems that need to be solved urgently in shield tunneling construction.
  • the purpose of the present application is to provide a method and system for predicting boulders ahead of shield machine excavation, so as to solve or alleviate the above-mentioned problems in the prior art.
  • This application provides a method for predicting boulders ahead of shield machine excavation, including:
  • Step S101 according to the cutter head torque collected during the excavation of the shield machine, determine the torque coefficient of the shield machine to calculate the theoretical torque during the excavation of the shield machine;
  • Step S102 in response to a change in the torque of the cutter head, which is greater than 10% of the theoretical torque, determine that the shield machine encounters a boulder;
  • Step S103 Based on the preset boulder prediction model, the position and size of the boulder are determined according to the cutterhead rotation speed and the tunneling speed of the shield machine during excavation,
  • the preset solitary rock prediction model is:
  • x 1 represents the size of the boulder at r 1 along the circumferential direction of the cutter head
  • x 2 represents the size of the boulder at r 2 along the circumferential direction of the cutter head
  • r 1 and r 2 represent the two hobs with no force change in the radial direction
  • the distance to the center of the cutterhead t represents the longest time for the force change of the hob
  • t represents the change time of the cutterhead torque
  • ⁇ (t) represents the rotational speed of the cutterhead at time t when the cutterhead cuts boulders;
  • z represents the size of the boulder along the direction of excavation; v(t) represents the excavation speed of the shield machine at time t.
  • boulder prediction method in front of the tunneling of the shield machine provided by the present application, firstly, according to the cutter head torque collected during the tunneling of the shield machine, the torque coefficient of the shield machine is determined to calculate the theoretical torque of the tunneling of the shield machine; When the torque of the cutter head changes and is greater than 10% of the theoretical torque, it is determined that the tunneling of the shield machine encounters a boulder; finally, based on the preset prediction model of the boulder, according to the rotation speed of the cutter head and the tunneling speed of the shield machine during tunneling , the specific location and size of the boulder can be determined. Therefore, during the excavation process of the shield machine, the boulders can be found in time and the size and position of the boulders can be predicted, so as to improve the safety of the excavation of the shield machine.
  • Fig. 1 is a schematic flow chart of the boulder prediction method in front of the tunneling of the shield machine
  • Figure 2 is a schematic diagram of the excavation of the shield machine in the stratum containing boulders
  • Figure 3 is a schematic diagram of the prediction of the radial size of the boulder
  • Figure 4 is a schematic diagram of the prediction of the circumferential size of the boulder
  • Fig. 5 is a schematic structural diagram of the boulder prediction system ahead of the tunneling of the shield machine.
  • boulders When the unfavorable geological state of boulders exists in the formation, during the exploration process, different methods such as surface survey, drilling, and geophysical prospecting are used to analyze the distribution characteristics of boulders; these methods can detect the size, shape, and distribution characteristics of boulders , but the cost of these methods is high, and due to the existence of drilling spacing, missed detection may often occur.
  • the prediction method of the boulder in front of the tunneling of the shield machine includes:
  • Step S101 Determine the torque coefficient of the shield machine according to the collected cutter head torque during the excavation of the shield machine, so as to calculate the theoretical torque during the excavation of the shield machine.
  • the tunneling parameters of the shield machine are collected in real time through the tunnel construction real-time management information system in the shield machine, that is, the PDV data acquisition system.
  • the PDV data acquisition system monitors and records the cutter head speed, tunneling speed, total thrust, acquisition torque (collected cutter head torque), soil bin pressure, screw conveyor speed, and hob force of the shield in real time through the PDV data acquisition system.
  • the shield PDV data acquisition system communicates with the programmable logic controller (Programmable Logic Controller, PLC) of the shield machine through CP5611 to obtain data; and communicates with the remote control terminal (for example, remote computer, etc.) through COM2. transmission.
  • the measurement data acquired by the shield PDV data acquisition system is collected by the measurement sensor in the continuous clock pulse, recorded at the set time, and the average value of multiple acquisitions is obtained through the average value calculation as an output.
  • the torque coefficient of the shield machine is corrected according to the cutter head torque collected during the excavation of the shield machine, and the theoretical torque when the shield machine excavates without encountering a boulder is determined based on the corrected torque coefficient.
  • the theoretical torque T theory is corrected according to the cutter head torque collected by the PDV data acquisition system, that is, when the shield machine excavation does not encounter boulders, the calculated torque T is based on the collected cutter head torque and the initially determined torque coefficient.
  • the difference between the theoretical torque and the torque coefficient are corrected until the difference between the collected cutter head torque and the calculated theoretical torque is less than or equal to the preset torque threshold, and the torque coefficient corresponding to the theoretical torque at this time is determined to be the actual value of the shield machine. torque coefficient.
  • the theoretical torque of the shield machine is calculated according to the actual torque coefficient of the shield machine determined after correction, and the theoretical torque is compared with the collected cutterhead torque, and the torque error between the two can be determined Whether the shield machine encounters a lone stone during excavation.
  • K a represents the torque coefficient during tunneling of the shield machine
  • D represents the diameter of the cutter head of the shield machine.
  • the value of the torque coefficient is different. Specifically, for mechanical shield tunneling, the value range of K a is 8-14; for slurry shield tunneling, the value range of K a is 9-15; for earth pressure shield tunneling, the value range of K a is 14 ⁇ 23.
  • Step S102 in response to a change in the torque of the cutter head, which is greater than 10% of the theoretical torque, determine that the shield machine encounters a boulder;
  • Step S103 based on the preset boulder prediction model, the position and size of the boulder are determined according to the rotation speed of the cutter head and the tunneling speed of the shield machine during excavation.
  • the force of the hob involved in cutting the boulder will change according to the force of the hob recorded by the hob force real-time monitoring system .
  • the radial hob of a cutter head cuts the boulder, the hob whose force changes is within the range of the boulder.
  • the boulder edge can be determined according to formula (2). The radial length y of the disk.
  • the hob stress real-time monitoring system mainly monitors the hob stress at different positions in real time through the wireless strain node sensor, and the wireless strain node sensor sends the collected hob stress data through the wireless gateway.
  • the force of the hob, the speed of the tunneling, and the torque of the cutterhead during the excavation of the shield machine can effectively determine whether the shield machine encounters a boulder, as well as the position and location of the boulder encountered in front of the shield machine. It is not only easy to operate and low in cost, but also convenient and fast to predict boulders to ensure the safety of the tunneling of the shield machine.
  • FIG. 5 is a schematic structural diagram of a boulder prediction system in front of shield machine excavation provided according to some embodiments of the present application; as shown in Fig. 5 , the boulder prediction system in front of shield machine excavation includes: a correction unit 501 , a judging unit 502 and a predicting unit 503 .
  • the correction unit 501 is configured to determine the torque coefficient of the shield machine according to the cutter head torque collected during the excavation of the shield machine, so as to calculate the theoretical torque during the excavation of the shield machine; the judging unit 502 is configured to respond to changes in the cutter head torque, and If the torque is greater than 10% of the theoretical torque, it is determined that the shield tunneling machine encounters a boulder; the prediction unit 503 is configured to determine the position of the boulder based on the preset boulder prediction model and according to the cutter head rotation speed and the tunneling speed during the tunneling of the shield machine and size.
  • the correction unit 501 is further configured to correct the torque coefficient of the shield machine according to the cutterhead torque collected during the excavation of the shield machine, and determine the theoretical torque when the shield machine excavates without encountering boulders based on the corrected torque coefficient.
  • the correction unit 501 is further configured as, according to the formula:
  • K a represents the torque coefficient during tunneling of the shield machine
  • D represents the diameter of the cutter head of the shield machine.
  • the isolated rock prediction model deployed in the prediction unit 503 is:
  • the boulder prediction system in front of the tunneling of the shield machine provided by the embodiment of the present application can realize the steps and process of any method for predicting the boulder in front of the tunneling of the shield machine mentioned above, and achieve the same technical effect, and will not repeat them here. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Mining & Mineral Resources (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Geology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Mathematical Physics (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Civil Engineering (AREA)
  • Business, Economics & Management (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Operations Research (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Fluid Mechanics (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本申请提供了一种盾构机掘进前方的孤石预测方法和系统。该方法包括:根据盾构机掘进时采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩;响应于刀盘扭矩发生变化,且大于理论扭矩的10%,确定盾构机掘进遇到孤石;基于预设的孤石预测模型,根据盾构机掘进时的刀盘转速和掘进速度,确定孤石的位置和大小。籍以,通过盾构机掘进时的滚刀受力、掘进速度、刀盘扭矩即可有效的判断盾构机掘进是否遇到孤石,以及盾构机前方遇到的孤石的位置和大小,不但操作简单、成本低,而且便捷、快速的预测孤石,确保盾构机的掘进安全。

Description

一种盾构机掘进前方的孤石预测方法和系统 技术领域
本申请涉及盾构施工技术领域,特别涉及一种盾构机掘进前方的孤石预测方法和系统。
背景技术
随着盾构法施工技术在地铁建设中得到广泛应用,在使用盾构法施工的过程中也会遇到一些特殊的地址条件,给盾构法施工造成较大的困难。在一些地方进行的隧道施工时均遇到孤石的情况,往往造成盾构机受损,盾构掘进困难,地层扰动增加,地表沉降加重的问题,严重的情况下甚至造成工程事故。
因此,探测孤石是盾构施工过程的关键环节,及时有效的探测孤石、发现孤石是盾构法施工中亟待解决的难题。
发明内容
本申请的目的在于提供一种盾构机掘进前方的孤石预测方法和系统,以解决或缓解上述现有技术中存在的问题。
为了实现上述目的,本申请提供如下技术方案:
本申请提供一种盾构机掘进前方的孤石预测方法,包括:
步骤S101、根据盾构机掘进时采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩;
步骤S102、响应于刀盘扭矩发生变化,且大于理论扭矩的10%,确定盾构机掘进遇到孤石;
步骤S103、基于预设的孤石预测模型,根据盾构机掘进时的刀盘转速和掘进速度,确定孤石的位置和大小,
其中,预设的孤石预测模型为:
Figure PCTCN2022115764-appb-000001
其中,r表示孤石距盾构机刀盘旋转中心的距离;y表示孤石沿刀盘径向的长度;y 0表示未发生受力变化且靠近刀盘旋转中心的滚刀到刀盘旋转中心的距离;y 1表示刀盘径向上发生受力变化的两滚刀之间的距离;y 2表示未发生受力变化的两滚刀之间的距离;
x 1表示r 1处孤石沿刀盘环向的大小;x 2表示r 2处孤石沿刀盘环向的大小;r 1、r 2表示径向未发生受力变化的两个滚刀到刀盘中心的距离;t表示滚刀受力变化最长时间;t表示刀盘扭矩的变化时间;ω(t)表示刀盘切削孤石时t时刻的刀盘转速;
z表示孤石沿掘进方向的大小;v(t)表示t时刻盾构机的掘进速度。
有益效果:
本申请提供的盾构机掘进前方的孤石预测方法中,首先,根据盾构机掘进时的采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩;当刀盘扭矩发生变化时,且大于理论扭矩的10%,判定盾构机掘进遇到孤石;最后,基于预设的孤石预测模型,根据盾构机掘进时的刀盘转速和掘进速度,即可确定孤石的具体位置和大小。籍以,在盾构机掘进过程中及时发现孤石并预测孤石的大小、位置,提高盾构机掘进的安全性。
附图说明
图1为盾构机掘进前方的孤石预测方法的流程示意图;
图2为盾构机在含有孤石地层中的掘进示意图;
图3为孤石径向大小的预测示意图;
图4为孤石环向大小的预测示意图;
图5为盾构机掘进前方的孤石预测系统的结构示意图。
具体实施方式
当地层中存在孤石这种不良地质状态,在勘探过程中,采取地表调查、钻探、物探等不同方法对孤石分布特征进行分析;这些方法可以对孤石的大小、形状、分布特征进行探测,但这些方法成本较高,并且由于钻孔间距的存在常常可能出现漏检的情况。
如图1-图4所示,该盾构机掘进前方的孤石预测方法包括:
步骤S101、根据盾构机掘进时的采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩。
本申请中,通过盾构机中的隧道施工实时管理信息系统,即PDV数据采集系统,对盾构机的掘进参数进行实时采集。具体的,通过PDV数据采集系统实时监测记录盾构的刀盘转速、掘进速度、总推力、采集扭矩(采集的刀盘扭矩)、土仓压力、螺旋输送机转速、以及滚刀受力等。
在此,盾构PDV数据采集系统通过CP5611与盾构机的可编程逻辑控制器(Programmable Logic Controller,简称PLC)进行通讯,获取;并通过COM2与远程控制端(例如,远程计算机等)进行数据传输。盾构PDV数据采集系统所获取的测量数据通过连续的时钟脉冲里的测量传感器采集,在设定时刻被记录,并通过平均值计算获取其多次采集的平均值作为输出。
本申请中,根据盾构机掘进时采集的刀盘扭矩,对盾构机的扭矩系数进行修正,基于修正后的扭矩系数确定盾构机掘进未遇到孤石时的理论扭矩。具体的,根据PDV数据采集系统采集到的刀盘扭矩对理论扭矩T 进行修正,即在盾构机掘进未遇到孤石时,根据采集的刀盘扭矩和基于初步确定的扭矩系数计算的理论扭矩的差值,对扭矩系数进行修正,直至采集的刀盘扭矩和计算的理论扭矩的差值小于等于预设扭矩阈值,确定此时的理论扭矩对应的扭矩系数即为盾构机的实际扭矩系数。
在盾构机掘进过程中,按照修正后确定的盾构机的实际扭矩系数计算盾构机的理论扭矩,并将理论扭矩与采集的刀盘扭矩进行对比,根据二者的扭矩误差即可确定盾构机掘进是否遇到孤石。
进一步按照公式(1)确定盾构机掘进时的理论扭矩T 。公式(1)如下:
T =K aD 3…………………………(1)
其中,K a表示盾构机掘进时的扭矩系数;D表示盾构机的刀盘直径。
在此,对不同类型的盾构,扭矩系数的取值不同。具体的,对机械式盾构,K a的取值范围为8~14;对泥水盾构,K a的取值范围为9~15;对土压盾构,K a的取值范围为14~23。
步骤S102、响应于刀盘扭矩发生变化,且大于理论扭矩的10%,确定盾构机掘进遇到孤石;
在本申请中,基于土木施工时的容许误差,在刀盘扭矩大于理论扭矩的10%时,判定盾构机掘进过程遇到孤石。在此,可以理解的是,盾构机在掘进过程中遇到孤石时,刀盘扭矩的增大会在一定时间段内一直大于理论扭矩,且根据刀盘扭矩与理论扭矩之间的差值的大小,可以判断遇到的孤石的大小。当刀盘扭矩远超过理论扭矩时,即刀盘扭矩与理论扭矩之间的差值较大时,盾构机掘进遇到的孤石较大;当刀盘扭矩稍微超过理论扭矩时,即刀盘扭矩与理论扭矩之间的差值较小时,盾构机掘进遇到的孤石较小。
步骤S103、基于预设的孤石预测模型,根据盾构机掘进时的刀盘转速和掘进速度,确定孤石的位置和大小。
具体的,孤石预测模型如公式(2)所示,公式(2)如下:
Figure PCTCN2022115764-appb-000002
其中,r表示孤石距盾构机刀盘旋转中心的距离;y表示孤石沿刀盘径向的长度;y 0表示未发生受力变化且靠近刀盘旋转中心的滚刀到刀盘旋转中心的距离;y 1表示刀盘径向上发生受力变化的两滚刀之间的距离;y 2表示未发生受力变化的两滚刀之间的距离;x 1表示r 1处孤石沿刀盘环向的大小;x 2表示r 2处孤石沿刀盘环向的大小;r 1、r 2表示径向未发生受力变化的两个滚刀到刀盘中心的距离;t r表示滚刀受力变化最长时间;t表示刀盘扭矩的变化时间;ω(t)表示刀盘切削孤石时t时刻的刀盘转速;z表示孤石沿掘进方向的大小;v(t)表示t时刻盾构机的掘进速度。
在本申请中,盾构机掘进过程中,当滚刀遇到孤石时,根据滚刀受力实时监测系统记录的滚刀的受力情况,参与切削孤石的滚刀受力会发生变化。当一刀盘径向的滚刀切削过孤石时,受力发生变化的滚刀即为在孤石所处的范围。进而,根据刀盘径向上发生受力变化的两滚刀之间的距离y 1和未发生受力变化的两滚刀之间的距离y 2,按照公式(2)即可确定孤石沿刀盘径向的长度y。
本申请中,滚刀受力实时监测系统主要通过无线应变节点传感器对不同位置的滚刀受力进行实时监测,无线应变节点传感器通过无线网关对采集到的滚刀受力数据进行发送。
本申请中,通过盾构机掘进时的滚刀受力、掘进速度、刀盘扭矩即可有效的判断盾构机掘进是否遇到孤石,以及盾构机前方遇到的孤石的位置和大小,不但操作简单、成本低,而且便捷、快速的预测孤石,确保盾构机的掘进安全。
图5为根据本申请的一些实施例提供的一种盾构机掘进前方的孤石预测系统的结构示意图;如图5所示,该盾构机掘进前方的孤石预测系统包括:修正单元501、判断单元502和预测单元503。修正单元501配置为根据盾构机掘进时采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩;判断单元502配置为响应于刀盘扭矩发生变化,且大于理论扭矩的10%,确定盾构机掘进遇到孤石;预测单元503配置为基于预设的孤石预测模型,根据盾构机掘 进时的刀盘转速和掘进速度,确定孤石的位置和大小。
修正单元501进一步配置为根据盾构机掘进时采集的刀盘扭矩,对盾构机的扭矩系数进行修正,基于修正后的扭矩系数确定盾构机掘进未遇到孤石时的理论扭矩。
修正单元501进一步配置为,按照公式:
T =K aD 3
确定盾构机掘进时的理论扭矩T
其中,K a表示盾构机掘进时的扭矩系数;D表示盾构机的刀盘直径。
预测单元503中部署的孤石预测模型为:
Figure PCTCN2022115764-appb-000003
其中,r表示孤石距盾构机刀盘旋转中心的距离;y表示孤石沿刀盘径向的长度;y 0表示未发生受力变化且靠近刀盘旋转中心的滚刀到刀盘旋转中心的距离;y 1表示刀盘径向上发生受力变化的两滚刀之间的距离;y 2表示未发生受力变化的两滚刀之间的距离;x 1表示r 1处孤石沿刀盘环向的大小;x 2表示r 2处孤石沿刀盘环向的大小;r 1、r 2表示径向未发生受力变化的两个滚刀到刀盘中心的距离;t r表示滚刀受力变化最长时间;t表示刀盘扭矩的变化时间;ω(t)表示刀盘切削孤石时t时刻的刀盘转速;z表示孤石沿掘进方向的大小;v(t)表示t时刻盾构机的掘进速度。
本申请实施例提供的盾构机掘进前方的孤石预测系统能够实现上述任一盾构机掘进前方的孤石预测方法的步骤、流程,并达到相同 的技术效果,在此不再一一赘述。

Claims (6)

  1. 一种盾构机掘进前方的孤石预测方法,其特征在于,包括:
    步骤S101、根据盾构机掘进时采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩;
    步骤S102、响应于刀盘扭矩发生变化,且大于理论扭矩的10%,确定盾构机掘进遇到孤石;
    步骤S103、基于预设的孤石预测模型,根据盾构机掘进时的刀盘转速和掘进速度,确定孤石的位置和大小,
    其中,预设的孤石预测模型为:
    Figure PCTCN2022115764-appb-100001
    其中,r表示孤石距盾构机刀盘旋转中心的距离;y表示孤石沿刀盘径向的长度;y 0表示未发生受力变化且靠近刀盘旋转中心的滚刀到刀盘旋转中心的距离;y 1表示刀盘径向上发生受力变化的两滚刀之间的距离;y 2表示未发生受力变化的两滚刀之间的距离;
    x 1表示r 1处孤石沿刀盘环向的大小;x 2表示r 2处孤石沿刀盘环向的大小;r 1、r 2表示径向未发生受力变化的两个滚刀到刀盘中心的距离;t r表示滚刀受力变化最长时间;t表示刀盘扭矩的变化时间;ω(t)表示刀盘切削孤石时t时刻的刀盘转速;
    z表示孤石沿掘进方向的大小;v(t)表示t时刻盾构机的掘进速度。
  2. 根据权利要求1所述的盾构机掘进前方的孤石预测方法,其特征在于,在步骤S101中,
    根据盾构机掘进时采集的刀盘扭矩,对盾构机的扭矩系数进行修 正,基于修正后的扭矩系数确定盾构机掘进未遇到孤石时的理论扭矩。
  3. 根据权利要求1所述的盾构机掘进前方的孤石预测方法,其特征在于,在步骤S101中,按照公式:
    T =K aD 3
    确定盾构机掘进时的理论扭矩T
    其中,K a表示盾构机掘进时的扭矩系数;D表示盾构机的刀盘直径。
  4. 一种盾构机掘进前方的孤石预测系统,其特征在于,包括:
    修正单元,配置为根据盾构机掘进时的采集的刀盘扭矩,确定盾构机的扭矩系数,以计算盾构机掘进时的理论扭矩;
    判断单元,配置为响应于刀盘扭矩发生变化,且大于理论扭矩的10%,确定盾构机掘进遇到孤石;
    预测单元,配置为基于预设的孤石预测模型,根据盾构机掘进时的刀盘转速和掘进速度,确定孤石的位置和大小;
    其中,预设的孤石预测模型为:
    Figure PCTCN2022115764-appb-100002
    其中,r表示孤石距盾构机刀盘旋转中心的距离;y表示孤石沿刀盘径向的长度;y 0表示未发生受力变化且靠近刀盘旋转中心的滚刀到刀盘旋转中心的距离;y 1表示刀盘径向上发生受力变化的两滚刀之间的距离;y 2表示未发生受力变化的两滚刀之间的距离;
    x 1表示r 1处孤石沿刀盘环向的大小;x 2表示r 2处孤石沿刀盘环向的大小;r 1、r 2表示径向未发生受力变化的两个滚刀到刀盘中心的距离;t r表示滚刀受力变化最长时间;t表示刀盘扭矩的变化时间;ω(t)表示刀盘切削孤石时t时刻的刀盘转速;
    z表示孤石沿掘进方向的大小;v(t)表示t时刻盾构机的掘进速度。
  5. 根据权利要求4所述的盾构机掘进前方的孤石预测系统,其特征在于,修正单元进一步配置为,根据盾构机掘进时采集的刀盘扭矩,对盾构机的扭矩系数进行修正,基于修正后的扭矩系数确定盾构机掘进未遇到孤石时的理论扭矩。
  6. 根据权利要求4所述的盾构机掘进前方的孤石预测系统,其特征在于,修正单元进一步配置为,按照公式:
    T =K aD 3
    确定盾构机掘进时的理论扭矩T
    其中,K a表示盾构机掘进时的扭矩系数;D表示盾构机的刀盘直径。
PCT/CN2022/115764 2022-06-02 2022-08-30 一种盾构机掘进前方的孤石预测方法和系统 WO2023065830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2304450.6A GB2619392B (en) 2022-06-02 2022-08-30 Method and system for predicting boulder lying ahead in tunneling progression of tunnel boring machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210618892.6 2022-06-02
CN202210618892.6A CN114707230B (zh) 2022-06-02 2022-06-02 一种盾构机掘进前方的孤石预测方法和系统

Publications (1)

Publication Number Publication Date
WO2023065830A1 true WO2023065830A1 (zh) 2023-04-27

Family

ID=82175801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115764 WO2023065830A1 (zh) 2022-06-02 2022-08-30 一种盾构机掘进前方的孤石预测方法和系统

Country Status (3)

Country Link
CN (1) CN114707230B (zh)
GB (1) GB2619392B (zh)
WO (1) WO2023065830A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214957A (zh) * 2023-05-31 2023-12-12 珠海市轨道交通有限公司 孤石探测装置及方法
CN117607187A (zh) * 2023-11-17 2024-02-27 中铁上海工程局集团有限公司 一种模拟温度对盾构刀盘结泥饼影响的实验装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114707230B (zh) * 2022-06-02 2022-09-09 中铁九局集团第四工程有限公司 一种盾构机掘进前方的孤石预测方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107676100A (zh) * 2017-09-05 2018-02-09 石家庄铁道大学 基于盾构掘进参数的不良地层预测方法
JP2019027121A (ja) * 2017-07-28 2019-02-21 株式会社奥村組 シールド掘進機における切羽地盤の判定方法
CN111709648A (zh) * 2020-06-18 2020-09-25 中铁十一局集团第四工程有限公司 一种滨海复杂地层盾构选型适应性评价方法
CN114707230A (zh) * 2022-06-02 2022-07-05 中铁九局集团第四工程有限公司 一种盾构机掘进前方的孤石预测方法和系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257307B (zh) * 2015-10-30 2017-09-29 上海交通大学 一种在上软下硬地层中减小盾构机刀具损坏的施工方法
CN106761788B (zh) * 2016-12-31 2018-08-17 中铁二十局集团第五工程有限公司 一种复合地层盾构掘进施工方法
CN107545124B (zh) * 2017-09-29 2019-11-12 天津大学 岩石隧道掘进机常截面盘形滚刀磨损状况的预测方法
CN108241780B (zh) * 2017-12-29 2021-06-08 天津大学 复合盾构在岩土混合地质中掘进刀盘扭矩的计算方法
CN109356602B (zh) * 2018-12-11 2020-04-07 河北建设勘察研究院有限公司 一种盾构机掘进状态的判断方法及系统
US11085295B2 (en) * 2019-01-24 2021-08-10 Huaneng Tibet Yarlungzangbo River Hydropower Development Investment Co., Ltd. Tunnel boring robot and remote mobile terminal command system
CN110362899B (zh) * 2019-07-01 2023-07-25 中铁隧道局集团有限公司 用于超大直径盾构过基岩突起段的刀盘扭矩计算方法
CN111622766A (zh) * 2020-05-19 2020-09-04 中铁十四局集团大盾构工程有限公司 一种盾构机刀盘结泥饼判断及结泥饼位置检测方法
CN111946398B (zh) * 2020-08-17 2021-06-29 南京工业大学 一种复合地层盾构掘进效率现场预测计算方法
CN113505911B (zh) * 2021-06-08 2022-09-02 北京建工土木工程有限公司 基于自动巡航的刀具寿命预测系统及其预测方法
CN114417697A (zh) * 2021-12-07 2022-04-29 山东大学 一种基于神经网络的tbm滚刀磨损实时预测方法及系统
CN114529058A (zh) * 2022-01-24 2022-05-24 中铁九局集团第四工程有限公司 一种填土地层中块石分布的预测方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027121A (ja) * 2017-07-28 2019-02-21 株式会社奥村組 シールド掘進機における切羽地盤の判定方法
CN107676100A (zh) * 2017-09-05 2018-02-09 石家庄铁道大学 基于盾构掘进参数的不良地层预测方法
CN111709648A (zh) * 2020-06-18 2020-09-25 中铁十一局集团第四工程有限公司 一种滨海复杂地层盾构选型适应性评价方法
CN114707230A (zh) * 2022-06-02 2022-07-05 中铁九局集团第四工程有限公司 一种盾构机掘进前方的孤石预测方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, LIJUN: "Shield Tunneling Technology in Boulder Stratum", RAILWAY CONSTRUCTION TECHNOLOGY, 20 July 2014 (2014-07-20), XP009545189 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214957A (zh) * 2023-05-31 2023-12-12 珠海市轨道交通有限公司 孤石探测装置及方法
CN117607187A (zh) * 2023-11-17 2024-02-27 中铁上海工程局集团有限公司 一种模拟温度对盾构刀盘结泥饼影响的实验装置及方法

Also Published As

Publication number Publication date
GB2619392A (en) 2023-12-06
GB202304450D0 (en) 2023-05-10
CN114707230B (zh) 2022-09-09
CN114707230A (zh) 2022-07-05
GB2619392B (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2023065830A1 (zh) 一种盾构机掘进前方的孤石预测方法和系统
CN107676100B (zh) 基于盾构掘进参数的不良地层预测方法
US10400573B2 (en) System and method for controlling drilling process
WO2019042483A2 (zh) 一种tbm在掘岩体状态实时感知系统和方法
CN109538214B (zh) 一种基于温度检测的盾构机刀盘结泥饼检测方法
CN107558986B (zh) 一种用于确定钻柱的卡瓦状态的方法和系统
CN103018788A (zh) 深长隧道不良地质和岩体力学性质超前探测装置及方法
US9494031B2 (en) Data transmission during drilling
RU2732288C1 (ru) Способы и системы для бурения стволов скважин в геологических пластах
CN112431604B (zh) 一种泥岩地层盾构泥饼防结系统及防结方法
CN103883326B (zh) 基于煤层震波探测和地学信息的采煤机滚筒调高方法
CN113505911B (zh) 基于自动巡航的刀具寿命预测系统及其预测方法
CN104727815A (zh) 一种实时钻井地层修正预测方法及装置
CN108489746B (zh) 螺旋出土器内布设土压力计监测模型盾构机的装置和方法
CN105257307B (zh) 一种在上软下硬地层中减小盾构机刀具损坏的施工方法
CN107503796B (zh) 一种锚索支护巷道顶板失稳冒落预警方法
US11976555B2 (en) Pitch data processing system for horizontal directional drilling
CN213743419U (zh) 一种黄土地区可自动变径的顶管机刀盘
CN115075799A (zh) 一种煤矿用定向钻机的发动机转速控制方法
CN114087018A (zh) 一种基于应力感知的大直径卸压钻孔精准卸压方法
CN108022027B (zh) 一种盾构穿过围岩接触带时出土量的预测方法
NO20231246A1 (en) Calculating pull for a stuck drill string
Stavropoulou et al. Characterization of rock masses based on geostatistical joint mapping and rock boring operations
CN112282769B (zh) 基于刀具转速比的盾构掘进掌子面地层分布监测方法
Abaltusov et al. Horizontal well casing design optimization & implementation case study: vibrations management through enhanced bottom hole assembly design

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202304450

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220830

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882448

Country of ref document: EP

Kind code of ref document: A1