WO2023065705A1 - 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统 - Google Patents

基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统 Download PDF

Info

Publication number
WO2023065705A1
WO2023065705A1 PCT/CN2022/101008 CN2022101008W WO2023065705A1 WO 2023065705 A1 WO2023065705 A1 WO 2023065705A1 CN 2022101008 W CN2022101008 W CN 2022101008W WO 2023065705 A1 WO2023065705 A1 WO 2023065705A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
network
wave plane
optical path
link
Prior art date
Application number
PCT/CN2022/101008
Other languages
English (en)
French (fr)
Inventor
李泳成
周佳琪
沈纲祥
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023065705A1 publication Critical patent/WO2023065705A1/zh
Priority to US18/195,548 priority Critical patent/US12015541B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/122Shortest path evaluation by minimising distances, e.g. by selecting a route with minimum of number of hops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/125Shortest path evaluation based on throughput or bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/122Avoiding congestion; Recovering from congestion by diverting traffic away from congested entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/22Traffic shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to the technical field of data communication, in particular to a method and system for load balancing traffic grooming based on an IP over Quasi-CWDM network.
  • the quasi-coarse wavelength division multiplexing (Quasi-CWDM) network architecture is a cost-effective and spectrum-efficient network architecture, and its frequency spacing is between the traditional coarse wavelength division multiplexing (CWDM) and dense wavelength division multiplexing (DWDM). between, for example 200GHz or 400GHz.
  • CWDM coarse wavelength division multiplexing
  • DWDM dense wavelength division multiplexing
  • the Quasi-CWDM architecture still maintains flexibility in adapting to the transmission rate and transmission distance of the Super Optical Channel.
  • Literature [1] studied the traffic grooming problem of IP over Quasi-CWDM network, and proposed a mixed integer linear programming (MILP) model and an effective heuristic algorithm to decide whether to implement signal regeneration at the IP layer or at the optical layer.
  • MILP mixed integer linear programming
  • the above research on the traffic grooming problem of IP over Quasi-CWDM network is mostly based on the premise that the optical paths in the optical layer are established along the shortest route. Although all optical paths always select the corresponding highest-level modulation format to maximize spectral efficiency, a large number of service requests will converge on a small number of network links, resulting in network link congestion.
  • the technical problem to be solved by the present invention is to overcome the problems existing in the prior art, provide a kind of load balancing traffic dredging method based on IP over Quasi-CWDM network, when adopting the way of traffic dredging can't satisfy business request, adopt based on The wave plane strategy establishes optical paths to meet service requests. While maximizing the spectral efficiency in Quasi-CWDM networks, it reduces the maximum number of wavelengths used in Quasi-CWDM networks and can balance the traffic of links in Quasi-CWDM networks. load, reducing the variance of the number of wavelengths used in the link.
  • the present invention provides a load balancing flow dredging method based on an IP over Quasi-CWDM network, comprising the following steps:
  • the policy based on the wave plane is used to establish an optical path to meet the service request.
  • searching for the virtual link route with the smallest number of hops at the IP layer includes:
  • the Dijkstra algorithm is used to find the virtual link route with the smallest number of hops at the IP layer.
  • an extended wave plane algorithm is executed to search for a route and allocate a corresponding wavelength when establishing an optical path between each node pair.
  • adopting a wave plane-based strategy to establish an optical path includes the following steps:
  • Step 1 Construct a wave plane set according to the wavelength occupied by the current network link
  • Step 2 Search the actual shortest route R' between the service node pairs, and select the modulation format b' from the modulation format set according to the physical distance of the actual shortest route R';
  • Step 3 Select a wave plane in the set of wave planes, and search for the route R with the shortest distance between node pairs on the wave plane, and judge whether the shortest route R found by the search is equal to an empty route, if judged If the result is no, skip to step 4. If the judgment result is yes, continue to search for routes in the next wave plane. If no route R is found that is not equal to an empty route after searching all wave planes, block the service request ;
  • Step 5 Judging whether the working route is equal to an empty route, if the judgment result is no, then establish an optical path whose modulation format is b along the working route, update the set of wave planes and add the optical path to the corresponding virtual path in the IP layer In the link, if the judgment result is yes, the service request is blocked.
  • constructing a wave plane set according to the wavelength occupied by the current network link includes:
  • a virtual link in any wave plane k corresponds to the kth wavelength on the actual fiber link, and each node in the wave plane corresponds to its physical node.
  • constructing a wave plane set according to the wavelength occupied by the current network link includes:
  • the wave plane When constructing the wave plane, it is first determined whether the corresponding wavelengths on all links in the network are occupied, and if so, the link will be removed on the wave plane.
  • constructing a wave plane set according to the wavelength occupied by the current network link includes:
  • the constructed wave plane includes a set of links on the network that do not occupy corresponding wavelengths and a set of nodes corresponding to these links.
  • searching for the actual shortest route R' between the service node pair does not need to consider whether the link on the network has enough resources to meet the service demand, only need to find the link between the node pair on the network Just the shortest route.
  • adopting traffic grooming strategies to satisfy service requests includes:
  • the present invention also provides a load balancing traffic grooming system based on IP over Quasi-CWDM network, including:
  • a traffic request establishment module is used to input the network topology, the service flow set and the empty route between the node pairs, select one of the node pairs in the service flow set and establish the flow between the node pairs When requesting, delete the virtual link that does not have enough remaining capacity for the corresponding optical path in the IP layer of the network topology;
  • a virtual link judging module is used to find the virtual link route with the smallest number of hops at the IP layer, and judge whether each virtual link on the found route can satisfy the service request through traffic grooming;
  • a traffic grooming module the traffic grooming module is used to satisfy the business request by adopting a traffic grooming strategy if the judgment result is yes;
  • An optical path establishment module the optical path establishment module is used to establish an optical path using a wave plane-based strategy to meet the service request if the judgment result is negative.
  • the optical path is established by using a wave plane-based strategy to meet the service request, and while maximizing the spectrum efficiency in the Quasi-CWDM network, it reduces the frequency spectrum used in the Quasi-CWDM network.
  • Fig. 1 is a schematic structural diagram of the IP over Quasi-CWDM network architecture of the present invention.
  • FIG. 2 is a schematic diagram of traffic grooming scenario A that affects network spectrum efficiency.
  • FIG. 3 is a schematic diagram of traffic grooming scenario B that affects network spectrum efficiency.
  • FIG. 4 is a schematic diagram of traffic grooming scenario C that affects network spectrum efficiency.
  • Figure 5 is the simulation test data.
  • Figure 6 shows the maximum number of wavelengths used by different strategies in the n6s9 network.
  • Figure 7 shows the maximum number of wavelengths used by different strategies in the NSFNET network.
  • Figure 8 shows the variance of the number of wavelengths used by links under different strategies in the n6s9 network.
  • Figure 9 shows the variance of the number of wavelengths used by links under different strategies in the NSFNET network.
  • the architecture includes the IP layer and the Quasi-CWDM optical layer.
  • the IP layer contains router nodes and virtual links.
  • the optical layer includes ROADM nodes and optical fiber links.
  • Each node on the network consists of a pair of core routers and ROADM nodes.
  • the core router is connected to the ROADM node through a short-distance optical interface supporting Quasi-CWDM to establish a super optical channel.
  • the ROADM node here has exactly the same architecture as the node in today's DWDM network, except that the included AWG and WSS support Quasi-CWDM spectrum spacing.
  • FIGS 2 to 4 below use an example to illustrate how different traffic grooming scenarios affect spectrum utilization in a Quasi-CWDM network with a fixed spectrum interval of 200 GHz.
  • S1(A-B), S2(A-B), S3(B-E), S4(B-E) and S5(A-E) which require 500-Gb/s, 250 -Gb/s, 500-Gb/s, 200-Gb/s, and 100-Gb/s bandwidth.
  • scheme A two optical paths along the shortest route A-B are established for S1 and S2.
  • S3 and S4 satisfy the request along the same shortest route B-E through two separate optical paths.
  • the modulation format of all four optical paths is 8-QAM, and its corresponding capacity is 600Gb/s.
  • S5 will be channeled to the optical paths of the virtual links A-B and B-E in the IP layer.
  • the maximum number of wavelengths used in the network is two, and the total remaining capacity of all established optical paths is 750Gb/s.
  • S1 fulfills the request through optical path A-B
  • S2 fulfills the request through optical path A-C-B
  • S3 and S4 are satisfied by optical paths B-E and B-D-F-E respectively. Due to the long routing distance of the optical paths A-C-B and B-D-F-E, the low-level modulation formats of QPSK and BPSK are adopted respectively. Therefore, the capacities of these two optical paths are only 400Gb/s and 200Gb/s.
  • S5 is channeled to the optical path via routes A-B and B-E. The maximum number of wavelengths used in the network is 1, but the total remaining capacity is only 150Gb/s.
  • Scenario C establishes four optical paths through routes A-B, A-C-B, B-E, and B-D-E in the optical layer.
  • the optical path B-D-E has a shorter routing distance than the optical path B-D-F-E, and can use a higher-level modulation format, that is, QPSK, and the corresponding capacity is 400Gb/s.
  • route S5 to the optical path through routes A-C-B and B-D-E.
  • the maximum number of wavelengths used in the network remains one, and the total remaining capacity increases to 350Gb/s. If there is a new traffic request between nodes A and E, the bandwidth requirement is 100Gb/s, and scenario B needs to adopt a new wavelength.
  • Scenario C can satisfy the request through the remaining capacity of the virtual link without using any new wavelengths. This example illustrates the importance of load balancing in IP over Quasi-CWDM networks.
  • a load balancing traffic grooming method based on an IP over Quasi-CWDM network disclosed in Embodiment 1 of the present invention will be described in detail below.
  • the embodiment of the present invention provides a load balancing traffic dredging method based on an IP over Quasi-CWDM network, comprising the following steps:
  • S100 Input the network topology, the service flow set between the node pairs and the empty route, and when selecting one of the node pairs in the service flow set and establishing the flow request between the node pairs, delete the IP layer of the network topology The corresponding optical path in the virtual link does not have enough remaining capacity.
  • S200 Find the virtual link route with the smallest number of hops at the IP layer, and determine whether each virtual link on the found route can satisfy the service request through traffic grooming. If the judgment result is yes, use the traffic grooming strategy to satisfy the service request. For service request, if the judgment result is no, the policy based on the wave plane is used to establish an optical path to meet the service request.
  • the Dijkstra algorithm may be used to find the virtual link route with the smallest number of hops at the IP layer.
  • step S200 when adopting the strategy based on the wave plane to establish the optical path, the extended wave plane algorithm is executed to search for the route and allocate a corresponding wavelength when establishing the optical path between each node pair.
  • the establishment of an optical path using a wave plane-based strategy includes the following steps:
  • Step 1 Construct a wave plane set according to the wavelength occupied by the current network link.
  • a virtual link in any wave plane k corresponds to the kth wavelength on the actual fiber link, and each node in the wave plane corresponds to its physical node.
  • the constructed wave plane includes a set of links on the network that do not occupy corresponding wavelengths and a set of nodes corresponding to these links.
  • Step 2 Search the actual shortest route R' between the service node pairs, and select the modulation format b' from the modulation format set according to the physical distance of the actual shortest route R'. Searching for the actual shortest route R' between service node pairs does not need to consider whether the links on the network have sufficient resources to meet the service requirements, but only needs to find the shortest route between the node pairs on the network.
  • Step 3 Select a wave plane in the set of wave planes, and search for the route R with the shortest distance between node pairs on the wave plane, and judge whether the shortest route R found by the search is equal to an empty route, if judged If the result is no, skip to step 4. If the judgment result is yes, continue to search for routes in the next wave plane. If no route R is found that is not equal to an empty route after searching all wave planes, block the service request .
  • Step 5 Judging whether the working route is equal to an empty route, if the judgment result is no, then establish an optical path whose modulation format is b along the working route, update the set of wave planes and add the optical path to the corresponding virtual path in the IP layer In the link, if the judgment result is yes, the service request is blocked.
  • the Dijkstra algorithm can be used to search for the actual shortest route R' between service node pairs.
  • the first optical path with sufficient remaining capacity is always selected to guide the IP traffic of the service.
  • a simulation test is carried out on two networks, namely a 6-node, 9-link (n6s9) network and a 14-node, 21-link (NSFNET) network.
  • n6s9 9-link
  • NSFNET 21-link
  • the number of traffic demands between each node pair is assumed to be 7 and 2 for n6s9 and NSFNET, respectively.
  • traffic demand is randomly generated in the range [50,X]Gb/s, where X is the maximum traffic demand between node pairs.
  • Figure 6 and Figure 7 show the maximum number of wavelengths used by different strategies in n6s9 and NSFNET networks, respectively.
  • the strategy corresponding to the legend "SR” is to always use the shortest route (the actual distance in the optical layer) between each node pair to establish an optical path.
  • the legend "WP_Proposed” corresponds to the proposed wave plane based strategy of the present invention.
  • the proposed wave plane-based strategy performs much better than the SR-based one, up to 31.3%. This is because the wave plane-based strategy we propose not only selects the route that can obtain the highest spectral efficiency, but also includes great flexibility in the establishment of the optical path.
  • NSFNET shows that the performance of the strategy based on the wave plane proposed by the present invention is also better than the strategy based on SR, and the number of wavelengths used is reduced by 16.7%.
  • the present invention adopts the way of flow grooming and cannot satisfy the service request, it adopts the strategy based on the wave plane to establish the optical path to satisfy the service request, while maximizing the spectrum efficiency in the Quasi-CWDM network, it reduces the usage of the Quasi-CWDM network.
  • a load balancing traffic grooming system based on IP over Quasi-CWDM network disclosed in Embodiment 2 of the present invention is introduced below, and a kind of load balancing traffic grooming system based on IP over Quasi-CWDM network described below is the same as the one described above
  • a load balancing traffic grooming method based on IP over Quasi-CWDM network can be referred to each other.
  • Embodiment 2 of the present invention provides a load balancing traffic grooming system based on an IP over Quasi-CWDM network, including:
  • a traffic request establishment module is used to input the network topology, the service flow set and the empty route between the node pairs, select one of the node pairs in the service flow set and establish the flow between the node pairs When requesting, delete the virtual link that does not have enough remaining capacity for the corresponding optical path in the IP layer of the network topology;
  • a virtual link judging module is used to find the virtual link route with the smallest number of hops at the IP layer, and judge whether each virtual link on the found route can satisfy the service request through traffic grooming;
  • a traffic grooming module the traffic grooming module is used to satisfy the business request by adopting a traffic grooming strategy if the judgment result is yes;
  • Optical path establishment module described optical path establishment module is used for if judging result is no, then adopts the policy based on wave plane to establish optical path to satisfy business request.
  • the load balancing traffic grooming system based on the IP over Quasi-CWDM network of this embodiment is used to realize the aforementioned load balancing traffic grooming method based on the IP over Quasi-CWDM network, so the specific implementation of the system can be seen in the IP over Quasi-CWDM network based on the foregoing.
  • the embodiment part of the load balancing traffic grooming method of the Quasi-CWDM network so for its specific implementation, reference may be made to the descriptions of the corresponding embodiments of each part, and no further introduction will be made here.
  • IP over Quasi-CWDM network-based load balancing traffic grooming system of the present embodiment is used to realize the aforementioned IP over Quasi-CWDM network-based load balancing traffic grooming method, so its effect corresponds to the effect of the above method, I won't go into details here.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,包括输入网络拓扑、节点对之间的业务流量集合和空路由,在业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除网络IP层中对应光路没有足够剩余容量的虚拟链路;在IP层寻找跳数最小的虚拟链路路由,判断路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求,若判断结果为是,则采用流量疏导的策略满足业务请求,若判断结果为否,则采用基于波平面的策略建立光路来满足业务请求。本发明能够在最大化网络中的频谱效率的同时,减少网络中使用的最大波长数,而且能够平衡网络中链路的流量负载,减小链路中使用的波长数的方差。

Description

基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统 技术领域
本发明涉及数据通信技术领域,尤其是指一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统。
背景技术
为了满足不断增长的流量需求,大量研究集中在开发新的光传输技术以提高频谱效率。准粗波分复用(Quasi-CWDM)网络架构是一种成本合算且频谱高效的网络架构,其频率间隔介于传统的粗波分复用(CWDM)和密集波分复用(DWDM)之间,例如200GHz或400GHz。通过自适应地采用不同的调制格式,Quasi-CWDM架构在适应超级光通道的传输速率和传输距离方面仍然保持灵活性。
文献[1]研究了IP over Quasi-CWDM网络的流量疏导问题,并提出了混合整数线性规划(MILP)模型和有效的启发式算法来决定是在IP层还是在光层实现信号再生。上述研究IP over Quasi-CWDM网络的流量疏导问题多是基于光层中的光路都是沿着最短路由建立的前提下实现的。虽然所有的光路总是选择相应的最高级别的调制格式来最大化频谱效率,但是大量的业务请求会汇聚在少数网络链路上,导致网络链路拥塞。为了平衡网络链路之间的流量负载,可以基于动态路由算法建立光路,但这可能会选择长距离路由来建立光路,因此,光路可能会采用较低级别的调制,导致Quasi-CWDM网络的频谱效率降低。[1]Shen G,Li Y,Zhao H(2015,May).Quasi-CWDM optical network:cost effective and spectrum efficient architecture for future optical networks.In 2015 International Conference on  Optical Network Design and Modeling(ONDM)(pp.1-6).IEEE.
发明内容
为此,本发明所要解决的技术问题在于克服现有技术存在的问题,提供一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,在采用流量疏导的方式无法满足业务请求时,采用基于波平面的策略建立光路来满足业务请求,在最大化Quasi-CWDM网络中的频谱效率的同时,减少了Quasi-CWDM网络中使用的最大波长数,而且能够平衡Quasi-CWDM网络中链路的流量负载,减小链路中使用的波长数的方差。
为解决上述技术问题,本发明提供一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,包括以下步骤:
输入网络拓扑、节点对之间的业务流量集合和空路由,在所述业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除所述网络拓扑的IP层中对应光路没有足够剩余容量的虚拟链路;
在IP层寻找跳数最小的虚拟链路路由,判断找到的路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求;
若判断结果为是,则采用流量疏导的策略满足业务请求;
若判断结果为否,则采用基于波平面的策略建立光路来满足业务请求。
在本发明的一个实施例中,在IP层寻找跳数最小的虚拟链路路由包括:
采用Dijkstra算法在IP层寻找跳数最小的虚拟链路路由。
在本发明的一个实施例中,在采用基于波平面的策略建立光路中,执行扩展的波平面算法来搜索路由并在每个节点对之间建立光路时分配一个相应的波长。
在本发明的一个实施例中,采用基于波平面的策略建立光路包括以下步骤:
第1步:根据当前网络链路占用波长的情况构建波平面集合;
第2步:在业务节点对之间搜索实际的最短路由R’,并根据实际的最短路由R’的物理距离从调制格式集合中选择调制格式b’;
第3步:在所述波平面集合中选择波平面,并在所述波平面上搜索节点对之间距离最短的路由R,判断所述搜索到的最短的路由R是否等于空路由,若判断结果为否,则跳到第4步,若判断结果为是,则继续在下一波平面中搜索路由,若所有波平面搜索完毕均未搜索到不等于空路由的路由R,则阻塞该业务请求;
第4步:根据在波平面中找到的路由R的物理距离,从调制格式集合中选择调制格式b,若b=b’,则令工作路由等于路由R,跳到第5步;否则跳到第3步继续搜索下一波平面;
第5步:判断所述工作路由是否等于空路由,若判断结果为否,则沿着所述工作路由建立调制格式为b的光路,更新波平面集合并将光路添加到IP层中相应的虚拟链路中,若判断结果为是,则阻塞该业务请求。
在本发明的一个实施例中,根据当前网络链路占用波长的情况构建波平面集合包括:
任意一个波平面k中的虚拟链路对应于实际光纤链路上的第k个波长,并且波平面中每个节点对应于其物理节点。
在本发明的一个实施例中,根据当前网络链路占用波长的情况构建波平面集合包括:
在构建波平面时,首先判断网络中所有的链路上对应的波长是否被占用,如被占用,则在波平面上该链路将被移除。
在本发明的一个实施例中,根据当前网络链路占用波长的情况构建波平面集合包括:
构建出来的波平面包含网络上没有占用对应波长的链路集合和这些链路对应的节点集合。
在本发明的一个实施例中,在业务节点对之间搜索实际的最短路由R’不用考虑网络上的链路是否有足够资源可以满足该业务需求,仅需要找到网络上该节点对之间的最短路由即可。
在本发明的一个实施例中,采用流量疏导的策略满足业务请求包括:
总是选择第一个有足够剩余容量的光路去疏导业务的IP流量。
此外,本发明还提供一种基于IP over Quasi-CWDM网络的负载均衡流量疏导系统,包括:
流量请求建立模块,所述流量请求建立模块用于输入网络拓扑、节点对之间的业务流量集合和空路由,在所述业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除所述网络拓扑的IP层中对应光路没有足够剩余容量的虚拟链路;
虚拟链路判断模块,所述虚拟链路判断模块用于在IP层寻找跳数最小的虚拟链路路由,判断找到的路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求;
流量疏导模块,所述流量疏导模块用于若判断结果为是,则采用流量疏导的策略满足业务请求;
光路建立模块,所述光路建立模块用于若判断结果为否,则采用基于波平面的策略建立光路来满足业务请求。
本发明的上述技术方案相比现有技术具有以下优点:
本发明在采用流量疏导的方式无法满足业务请求时,采用基于波平面的策略建立光路来满足业务请求,在最大化Quasi-CWDM网络中的频谱效率的同时,减少了Quasi-CWDM网络中使用的最大波长数,而且能够平衡Quasi-CWDM网络中链路的流量负载,减小链路中使用的波长数的方差。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明IP over Quasi-CWDM网络架构的结构示意图。
图2是影响网络频谱效率的流量疏导情景A示意图。
图3是影响网络频谱效率的流量疏导情景B示意图。
图4是影响网络频谱效率的流量疏导情景C示意图。
图5是仿真测试数据。
图6是n6s9网络中不同策略使用的最大波长数。
图7是NSFNET网络中不同策略使用的最大波长数。
图8是n6s9网络中不同策略下链路使用的波长数的方差。
图9是NSFNET网络中不同策略下链路使用的波长数的方差。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
首先介绍一下IP over Quasi-CWDM网络架构,如图1所示,该架构包括IP层和Quasi-CWDM光层。IP层包含路由器节点和虚拟链路。光层包含ROADM节点和光纤链路。网络上每个节点由一对核心路由器和ROADM节点组成。核心路由器通过支持Quasi-CWDM的短距离光接口连接到ROADM节点来建立超级光通道。这里的ROADM节点与当今DWDM网络中的节点具有完全相同的架构,只是所包含的AWG和WSS支持Quasi-CWDM频谱间隔。
下面图2至图4以一个示例说明在一个固定频谱间隔为200GHz的Quasi-CWDM网络中,不同的流量疏导情景如何影响频谱的利用。我们假设在一个6节点的网络中,有五个业务连接请求S1(A-B)、S2(A-B)、S3(B-E)、S4(B-E)和S5(A-E),分别需要500-Gb/s、250-Gb/s、500-Gb/s、200-Gb/s和100-Gb/s的带宽。我们在这里考虑三种不同的情景。在方案A中,为S1和S2建立两条沿最短路由A-B的光路。S3和S4通过两个单独的光路沿同一最短路由B-E满足请求。所有四个光路的调制格式都是8-QAM,其相应的容量为600Gb/s。最后,S5将被疏导到IP层中的虚拟链路A-B和B-E的光路上。网络中使用的最大波长数为两个,所有已建立的光路的总剩余容量为750Gb/s。
在情景B中,S1通过光路A-B满足请求,S2通过光路A-C-B满足请求。同样地,S3和S4分别由光路B-E和B-D-F-E满足请求。由于光路A-C-B和B-D-F-E的路由距离较长,因此分别采用了QPSK和BPSK的低级调制格式。因此,这两条光路的容量只有400Gb/s和200Gb/s。最后,S5通过路由A-B 和B-E被疏导到光路。网络中使用的最大波长数是1,但总的剩余容量只有150Gb/s。情景C通过光层中的路由A-B、A-C-B、B-E和B-D-E建立了四个光路。光路B-D-E比光路B-D-F-E的路由距离短,可以使用更高级别的调制格式,即QPSK,对应的容量为400Gb/s。这种情景下,通过路由A-C-B和B-D-E将S5疏导到光路。网络中使用的最大波长数仍然是一个,总的剩余容量增加到350Gb/s。如果在节点A和E之间有一个新的流量请求,带宽要求为100Gb/s,情景B需要采用一个新波长。相比之下,情景C可以通过虚拟链路剩余容量满足请求,而不使用任何新的波长。这个例子说明了IP over Quasi-CWDM网络中负载平衡的重要性。
实施例一
下面先对本发明实施例一公开的一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法进行详细的阐述。
本发明实施例提供一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,包括以下步骤:
S100:输入网络拓扑、节点对之间的业务流量集合和空路由,在所述业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除所述网络拓扑的IP层中对应光路没有足够剩余容量的虚拟链路。
S200:在IP层寻找跳数最小的虚拟链路路由,判断找到的路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求,若判断结果为是,则采用流量疏导的策略满足业务请求,若判断结果为否,则采用基于波平面的策略建立光路来满足业务请求。
示例地,可以采用Dijkstra算法在IP层寻找跳数最小的虚拟链路路由。
其中,在步骤S200中,在采用基于波平面的策略建立光路中,执行扩展 的波平面算法来搜索路由并在每个节点对之间建立光路时分配一个相应的波长。
具体的,采用基于波平面的策略建立光路包括以下步骤:
第1步:根据当前网络链路占用波长的情况构建波平面集合。任意一个波平面k中的虚拟链路对应于实际光纤链路上的第k个波长,并且波平面中每个节点对应于其物理节点。在构建波平面时,首先判断网络中所有的链路上对应的波长是否被占用,如被占用,则在波平面上该链路将被移除。构建出来的波平面包含网络上没有占用对应波长的链路集合和这些链路对应的节点集合。
第2步:在业务节点对之间搜索实际的最短路由R’,并根据实际的最短路由R’的物理距离从调制格式集合中选择调制格式b’。在业务节点对之间搜索实际的最短路由R’不用考虑网络上的链路是否有足够资源可以满足该业务需求,仅需要找到网络上该节点对之间的最短路由即可。
第3步:在所述波平面集合中选择波平面,并在所述波平面上搜索节点对之间距离最短的路由R,判断所述搜索到的最短的路由R是否等于空路由,若判断结果为否,则跳到第4步,若判断结果为是,则继续在下一波平面中搜索路由,若所有波平面搜索完毕均未搜索到不等于空路由的路由R,则阻塞该业务请求。
第4步:根据在波平面中找到的路由R的物理距离,从调制格式集合中选择调制格式b,若b=b’,则令工作路由等于路由R,跳到第5步;否则跳到第3步继续搜索下一波平面。
第5步:判断所述工作路由是否等于空路由,若判断结果为否,则沿着所述工作路由建立调制格式为b的光路,更新波平面集合并将光路添加到IP层中相应的虚拟链路中,若判断结果为是,则阻塞该业务请求。
上述可以采用Dijkstra算法在业务节点对之间搜索实际的最短路由R’。
上述采用流量疏导的策略满足业务请求时,总是选择第一个有足够剩余容量的光路去疏导业务的IP流量。
为了评估本发明提出的流量疏导方法的性能,在两个网络上进行了仿真测试,分别为6节点9链路(n6s9)网络和14节点21链路(NSFNET)网络。假设每条光纤链路的总频谱为4000GHz,频谱网格被设定为200GHz,对应的每个光纤链路中拥有20个波长。对于n6s9和NSFNET来说,每个节点对之间的流量需求数量分别假定为7和2。对于n6s9和NSFNET,流量需求是在[50,X]Gb/s范围内随机产生的,其中X是节点对之间的最大流量需求。我们考虑不同的X值,以研究其对波长需求和链路中使用的波长数的方差的影响。光路建立有三种调制格式可以候选,即BPSK、QPSK和8-QAM,它们的传输距离遵循图5中的数据。
图6和图7分别显示了n6s9和NSFNET网络中不同策略使用的最大波长数。图例“SR”对应的策略是在每个节点对之间总是采用最短路由(光层中的实际距离)来建立光路。图例“WP_Proposed”对应于本发明提出的基于波平面的策略。对于图6所示的n6s9网络,可以观察到本发明提出的基于波平面的策略的性能比基于SR的好得多,高达31.3%。这是由于我们提出的基于波平面的策略不仅选择了能获得最高频谱效率的路由,在光路的建立上也包含很大的灵活性。还有对NSFNET进行了类似的研究,如图7所示,可以看到,本发明提出的基于波平面的策略的性能也优于基于SR的策略,其波长使用数降低了16.7%。
进一步还比较了两种策略在n6s9和NSFNET网络中链路使用的波长数的方差,如图8和图9所示,可以看出,无论是在n6s9网络还是NSFNET网络,本发明基于波平面的策略在网络中链路使用的波长数的方差都比基于SR策略 更低,这一观察结果验证了本发明所提出的基于波平面的策略能够有效的平衡Quasi-CWDM网络各链路之间的流量负载。
上述本发明在采用流量疏导的方式无法满足业务请求时,采用基于波平面的策略建立光路来满足业务请求,在最大化Quasi-CWDM网络中的频谱效率的同时,减少了Quasi-CWDM网络中使用的最大波长数,而且能够平衡Quasi-CWDM网络中链路的流量负载,减小链路中使用的波长数的方差。
实施例二
下面对本发明实施例二公开的一种基于IP over Quasi-CWDM网络的负载均衡流量疏导系统进行介绍,下文描述的一种基于IP over Quasi-CWDM网络的负载均衡流量疏导系统与上文描述的一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法可相互对应参照。
本发明实施例二提供一种基于IP over Quasi-CWDM网络的负载均衡流量疏导系统,包括:
流量请求建立模块,所述流量请求建立模块用于输入网络拓扑、节点对之间的业务流量集合和空路由,在所述业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除所述网络拓扑的IP层中对应光路没有足够剩余容量的虚拟链路;
虚拟链路判断模块,所述虚拟链路判断模块用于在IP层寻找跳数最小的虚拟链路路由,判断找到的路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求;
流量疏导模块,所述流量疏导模块用于若判断结果为是,则采用流量疏导的策略满足业务请求;
光路建立模块,所述光路建立模块用于若判断结果为否,则采用基于波 平面的策略建立光路来满足业务请求。
本实施例的基于IP over Quasi-CWDM网络的负载均衡流量疏导系统用于实现前述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,因此该系统的具体实施方式可见前文中的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法的实施例部分,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再展开介绍。
另外,由于本实施例的基于IP over Quasi-CWDM网络的负载均衡流量疏导系统用于实现前述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,因此其作用与上述方法的作用相对应,这里不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程 或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于,包括以下步骤:
    输入网络拓扑、节点对之间的业务流量集合和空路由,在所述业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除所述网络拓扑的IP层中对应光路没有足够剩余容量的虚拟链路;
    在IP层寻找跳数最小的虚拟链路路由,判断找到的路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求;
    若判断结果为是,则采用流量疏导的策略满足业务请求;
    若判断结果为否,则采用基于波平面的策略建立光路来满足业务请求。
  2. 根据权利要求1所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:在IP层寻找跳数最小的虚拟链路路由包括:
    采用Dijkstra算法在IP层寻找跳数最小的虚拟链路路由。
  3. 根据权利要求1所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:在采用基于波平面的策略建立光路中,执行扩展的波平面算法来搜索路由并在每个节点对之间建立光路时分配一个相应的波长。
  4. 根据权利要求3所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:采用基于波平面的策略建立光路包括以下步骤:
    第1步:根据当前网络链路占用波长的情况构建波平面集合;
    第2步:在业务节点对之间搜索实际的最短路由R’,并根据实际的最短路由R’的物理距离从调制格式集合中选择调制格式b’;
    第3步:在所述波平面集合中选择波平面,并在所述波平面上搜索节点对之间距离最短的路由R,判断所述搜索到的最短的路由R是否等于空路由,若判断结果为否,则跳到第4步,若判断结果为是,则继续在下一波平面中搜索路由,若所有波平面搜索完毕均未搜索到不等于空路由的路由R,则阻塞该业务请求;
    第4步:根据在波平面中找到的路由R的物理距离,从调制格式集合中选择调制格式b,若b=b’,则令工作路由等于路由R,跳到第5步;否则跳到第3步继续搜索下一波平面;
    第5步:判断所述工作路由是否等于空路由,若判断结果为否,则沿着所述工作路由建立调制格式为b的光路,更新波平面集合并将光路添加到IP层中相应的虚拟链路中,若判断结果为是,则阻塞该业务请求。
  5. 根据权利要求4所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:根据当前网络链路占用波长的情况构建波平面集合包括:
    任意一个波平面k中的虚拟链路对应于实际光纤链路上的第k个波长,并且波平面中每个节点对应于其物理节点。
  6. 根据权利要求4所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:根据当前网络链路占用波长的情况构建波平面集合包括:
    在构建波平面时,首先判断网络中所有的链路上对应的波长是否被占用,如被占用,则在波平面上该链路将被移除。
  7. 根据权利要求6所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:根据当前网络链路占用波长的情况构建波平面集合 包括:
    构建出来的波平面包含网络上没有占用对应波长的链路集合和这些链路对应的节点集合。
  8. 根据权利要求3所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:在业务节点对之间搜索实际的最短路由R’不用考虑网络上的链路是否有足够资源可以满足该业务需求,仅需要找到网络上该节点对之间的最短路由即可。
  9. 根据权利要求1所述的基于IP over Quasi-CWDM网络的负载均衡流量疏导方法,其特征在于:采用流量疏导的策略满足业务请求包括:
    总是选择第一个有足够剩余容量的光路去疏导业务的IP流量。
  10. 一种基于IP over Quasi-CWDM网络的负载均衡流量疏导系统,其特征在于,包括:
    流量请求建立模块,所述流量请求建立模块用于输入网络拓扑、节点对之间的业务流量集合和空路由,在所述业务流量集合中选取其中一个节点对并建立该节点对之间的流量请求时,删除所述网络拓扑的IP层中对应光路没有足够剩余容量的虚拟链路;
    虚拟链路判断模块,所述虚拟链路判断模块用于在IP层寻找跳数最小的虚拟链路路由,判断找到的路由上的每个虚拟链路是否能够通过流量疏导的方式满足业务请求;
    流量疏导模块,所述流量疏导模块用于若判断结果为是,则采用流量疏导的策略满足业务请求;
    光路建立模块,所述光路建立模块用于若判断结果为否,则采用基于波 平面的策略建立光路来满足业务请求。
PCT/CN2022/101008 2021-10-19 2022-06-24 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统 WO2023065705A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/195,548 US12015541B2 (en) 2021-10-19 2023-05-10 Method and system for load-balanced traffic grooming in IP over Quasi-CWDM network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111216113.1A CN114039920B (zh) 2021-10-19 2021-10-19 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统
CN202111216113.1 2021-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/195,548 Continuation US12015541B2 (en) 2021-10-19 2023-05-10 Method and system for load-balanced traffic grooming in IP over Quasi-CWDM network

Publications (1)

Publication Number Publication Date
WO2023065705A1 true WO2023065705A1 (zh) 2023-04-27

Family

ID=80135122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101008 WO2023065705A1 (zh) 2021-10-19 2022-06-24 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统

Country Status (3)

Country Link
US (1) US12015541B2 (zh)
CN (1) CN114039920B (zh)
WO (1) WO2023065705A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039920B (zh) 2021-10-19 2022-07-12 苏州大学 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统
CN114697268B (zh) * 2022-03-24 2024-02-09 中天宽带技术有限公司 流量控制方法、装置和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595634A (zh) * 2013-10-27 2014-02-19 西安电子科技大学 Ip/wdm网络中动态业务疏导方法
CN108199959A (zh) * 2018-01-30 2018-06-22 重庆邮电大学 一种弹性光网络中基于频谱预留的负载感知能效路由方法
CN114039920A (zh) * 2021-10-19 2022-02-11 苏州大学 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155137A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种确定路由路径的方法和路由路径确定单元
EP2571184B1 (en) * 2011-09-16 2017-02-22 Alcatel Lucent Allocation of spectral capacity in a wavelength-division multiplexing optical network
US9350481B2 (en) * 2012-10-08 2016-05-24 Futurewei Technologies, Inc. Transport functions virtualization for wavelength division multiplexing (WDM)-based optical networks
CN104518961B (zh) * 2013-09-27 2019-03-01 中兴通讯股份有限公司 分组光传送网络的疏导方法和装置
CN103731366B (zh) * 2013-12-30 2016-06-29 西安电子科技大学 光网络中动态业务流的自适应权值疏导方法
CN104901764A (zh) * 2015-06-30 2015-09-09 苏州大学张家港工业技术研究院 一种准粗波分复用光网络的设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595634A (zh) * 2013-10-27 2014-02-19 西安电子科技大学 Ip/wdm网络中动态业务疏导方法
CN108199959A (zh) * 2018-01-30 2018-06-22 重庆邮电大学 一种弹性光网络中基于频谱预留的负载感知能效路由方法
CN114039920A (zh) * 2021-10-19 2022-02-11 苏州大学 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU JIAQI; CAI ANLIANG; YOU XIAODI; LI YONGCHENG: "Load Balanced Traffic Grooming in IP over Quasi-CWDM Network", 2021 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), OSA, 24 October 2021 (2021-10-24), pages 1 - 3, XP034106004, DOI: 10.1364/ACPC.2021.T4A.147 *

Also Published As

Publication number Publication date
US12015541B2 (en) 2024-06-18
CN114039920A (zh) 2022-02-11
US20230291678A1 (en) 2023-09-14
CN114039920B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023065705A1 (zh) 基于IP over Quasi-CWDM网络的负载均衡流量疏导方法及系统
Yang et al. Impairment-aware routing in translucent spectrum-sliced elastic optical path networks
CN104704759B (zh) 基于波分复用(wdm)的光网络的传送功能虚拟化
US8681654B2 (en) Methods and apparatus to design a survivable internet protocol link topology
JP5523578B2 (ja) 周波数割当方法および装置
CN108322392B (zh) 一种弹性光网络中区分服务的链路损伤感知能效路由方法
JP6572789B2 (ja) 仮想光ネットワークのプロビジョニング
JP6604219B2 (ja) 仮想光ネットワークのプロビジョニング
US20150043911A1 (en) Network Depth Limited Network Followed by Compute Load Balancing Procedure for Embedding Cloud Services in Software-Defined Flexible-Grid Optical Transport Networks
CN101459589B (zh) 分配网络资源的方法和装置
Zheng et al. Dependence-aware service function chain embedding in optical networks
Barpanda et al. Genetic Algorithm techniques to solve Routing and Wavelength Assignment problem in Wavelength Division Multiplexing all-optical networks
CN113132827B (zh) 一种弹性光网络下调制自适应的路由计算方法与装置
Ruan et al. A dynamic routing algorithm with load balancing heuristics for restorable connections in WDM networks
Lechowicz et al. Migration planning from elastic optical networks to spectrally-spatially flexible optical networks
Yamada et al. Survivable hierarchical optical path network design with dedicated wavelength path protection
US9967053B2 (en) Shortest minimum regeneration path search in networks
US10148552B2 (en) Shortest path search with constraints in networks
Halder et al. A resource allocation model for mixed-grid optical networks
CN102325070A (zh) 一种业务疏导方法及装置
Zhou et al. Load Balanced Traffic Grooming in IP over Quasi-CWDM Network
Lucerna et al. On the efficiency of a game theoretic approach to sparse regenerator placement in WDM networks
CN114697268B (zh) 流量控制方法、装置和电子设备
Mrad et al. Adaptive-cost Shortest Path Based Heuristic for Space Division Multiplexing Networks
Khoo et al. Disjoint path re-routing in optical networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE