WO2023060929A1 - 一种多齿亚磷酸酯配体在催化合成己二腈中的应用 - Google Patents

一种多齿亚磷酸酯配体在催化合成己二腈中的应用 Download PDF

Info

Publication number
WO2023060929A1
WO2023060929A1 PCT/CN2022/100184 CN2022100184W WO2023060929A1 WO 2023060929 A1 WO2023060929 A1 WO 2023060929A1 CN 2022100184 W CN2022100184 W CN 2022100184W WO 2023060929 A1 WO2023060929 A1 WO 2023060929A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
reaction
catalyst
ligand
substituted
Prior art date
Application number
PCT/CN2022/100184
Other languages
English (en)
French (fr)
Inventor
陈志荣
吴文彬
尹红
查增仕
王科炎
马莉
黄国东
周贵阳
徐勇
Original Assignee
浙江大学
浙江新和成股份有限公司
浙江新和成特种材料有限公司
浙江新和成尼龙材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 浙江新和成股份有限公司, 浙江新和成特种材料有限公司, 浙江新和成尼龙材料有限公司 filed Critical 浙江大学
Priority to EP22750655.7A priority Critical patent/EP4190769A4/en
Publication of WO2023060929A1 publication Critical patent/WO2023060929A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/08Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
    • C07C253/10Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2461Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as ring members in the condensed ring system or in a further ring
    • B01J31/2471Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as ring members in the condensed ring system or in a further ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/04Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton containing two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/322Hydrocyanation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0258Flexible ligands, e.g. mainly sp3-carbon framework as exemplified by the "tedicyp" ligand, i.e. cis-cis-cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of chemical synthesis, in particular to the application of a multidentate phosphite ligand in the catalytic synthesis of adiponitrile.
  • Adiponitrile with the molecular formula NC(CH 2 ) 4 CN, is a colorless, transparent oily liquid with a slightly bitter taste, insoluble in water, soluble in methanol, ethanol, and chloroform, flammable, and will explain the highly toxic gas.
  • Adiponitrile is an important organic chemical intermediate. In industry, adiponitrile is mainly used for hydrogenation to produce hexamethylenediamine as an intermediate of nylon 66. It can also be used to prepare chemical products such as caprolactam. It is widely used in Automobiles, engineering plastics, electronic appliances, precision instruments, textile industry and other fields.
  • the preparation methods of adiponitrile used in industry mainly include electrolytic dimerization of acrylonitrile, catalytic amination of adipic acid and hydrocyanation of butadiene.
  • Toray Corporation of Japan has developed the hydrolysis of caprolactam to prepare adiponitrile in order to recycle caprolactam waste, but due to the lack of raw materials, the production capacity is extremely limited.
  • the butadiene hydrocyanation method was developed by DuPont in the early 1970s to replace the original butadiene hydrochlorination method. Compared with other preparation methods of adiponitrile, this method has the advantages of easy availability of raw materials, short process route, low cost, low energy consumption, less corrosion to equipment, and high product yield. It is currently the most advanced and most recognized method in the world. Reasonable adiponitrile production process.
  • Patent applications CN101676261A and CN103180290A each disclose a method for preparing adiponitrile by hydrocyanation of butadiene, which comprises the following steps: the first step, under the action of a catalyst, butadiene (BD) is reacted with HCN to obtain The target product linear 3-pentenenitrile (3PN) and the by-product branched 2-methyl-3-butenenitrile (2M3BN); the second step, under the action of a catalyst, 2M3BN isomerized to obtain 3PN; In the third step, under the action of catalyst and Lewis acid, 3PN and HCN are subjected to addition reaction to obtain the product adiponitrile (ADN).
  • BD butadiene
  • 2M3BN 2-methyl-3-butenenitrile
  • ADN product adiponitrile
  • Patents CN1387534A, CN1159799A, WO99052632A1 etc. have recorded that the complex catalyst formed by monodentate phosphite, bidentate phosphite and bidentate phosphoramidite ligand and zero-valent nickel is suitable for the production of adiponitrile by butadiene hydrocyanation reaction, but the existing monodentate or bidentate phosphite and nickel complex catalysts, whether in catalyzing butadiene hydrocyanation reaction to generate 3-pentenenitrile, or catalyzing 3-pentenenitrile hydrogen cyanide The selectivity of the main product (3-pentenenitrile, adiponitrile) still has room for further improvement.
  • the present invention provides the application of a kind of polydentate phosphite ligand in catalytic synthesis of adiponitrile, the application of this ligand overcomes the problem existing in the above-mentioned prior art, and the ligand-nickel catalyst that is made of it can be with Higher selectivity catalyzes the synthesis of adiponitrile, and can reduce the amount of catalyst used in the reaction process and the loss of the catalyst in the recycling process, which reduces the cost of the catalyst and is beneficial to industrialization.
  • the multidentate phosphite ligand is a compound represented by the following general formula (I)
  • the method for catalytically synthesizing adiponitrile include the following steps in order:
  • butadiene and hydrocyanic acid are subjected to a hydrocyanation reaction; in the presence of a second catalyst, the branched mononitrile separated from the product obtained in the primary hydrocyanation reaction is The mixture is subjected to an isomerization reaction of branched mononitriles; in the presence of a third catalyst and a reaction accelerator, the linear mononitrile mixture separated from the product obtained in the primary hydrocyanation reaction and the isomerization reaction is Carry out secondary hydrocyanation reaction with hydrocyanic acid to obtain a product containing adiponitrile;
  • the first catalyst, the second catalyst and the third catalyst are the same or different, and each include a phosphite ligand-nickel complex composed of a nickel precursor and a multidentate phosphite ligand:
  • R 0 is -OA 4 , H, C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, or substituted or unsubstituted C 6-20 aryl ;
  • R 0 is -OA 4 ;
  • R 11 to R 16 are the same or different from each other, and are each independently hydrogen, C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, or substituted or unsubstituted C 6-20 Aryl; preferably hydrogen, or C 1-6 alkyl;
  • a 1 , A 2 , A 3 and A 4 are the same or different from each other, and each independently is
  • each R 21 and each R 22 are the same or different from each other, and each R 21 and each R 22 are each independently H, substituted or unsubstituted C 1-6 alkyl, substituted or unsubstituted C 3-10 Cycloalkyl, C 1-6 acyl or substituted or unsubstituted C 6-20 aryl; preferably H, substituted or unsubstituted C 6-20 aryl; more preferably H, naphthyl, Methoxy-substituted naphthyl, 1,2,3,4-tetrahydronaphthalene or Wherein R x and R y are the same or different from each other, and are each independently hydrogen, halogen, nitrile, substituted or unsubstituted C 1-10 alkyl, substituted or unsubstituted C 1-10 alkoxy; Preferably hydrogen, halogen, or C 1-6 alkyl; and
  • a ring can be formed between R 21 and R 22 through a single bond, C 1-6 alkylene, phenylene or C 1-6 alkyl substituted phenylene bond;
  • Q is a single bond, a C 1-3 alkylene group, an oxygen atom, a nitrogen atom, or a C 1-3 alkylene group containing an oxygen atom or a nitrogen atom; preferably a single bond, a methylene group or an oxygen atom.
  • the structures A 1 , A 2 , A 3 and A 4 in the general formula (I) are the same or different from each other, and each independently is one of the following structures:
  • the structures A 1 , A 2 , A 3 and A 4 in the general formula (I) are each independently one of the following structures:
  • At least two of the structures A 1 , A 2 , A 3 and A 4 in the general formula (I) are different.
  • structure A1 is different from A4
  • structure A2 is different from A3
  • structure A1 is the same as A2 or A3
  • structure A4 Same as A 3 or A 2 .
  • the preparation method of the multidentate phosphite ligand comprises:
  • R 0 ' represents -OH, H, C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, or substituted or unsubstituted C 6-20 aryl; preferably R 0 'is -OH;
  • R 11 to R 16 , R 21 and R 22 and Q are the same as in the above general formula (I), and X is halogen, preferably Cl or Br; and, when at least one of the general formula (III) When there are multiple kinds of halogenated phosphorous compounds, each of multiple R 21 and multiple R 22 is the same or different from each other.
  • the first catalyst, the second catalyst and the third catalyst are identical to each other.
  • the molar ratio of the nickel precursor to the multidentate phosphite ligand is 1:2-20.
  • the nickel precursor is elemental nickel, bis(1,5-cyclooctadiene) nickel, nickelocene, nickel carbonyl, allyl (cyclopentadienyl) ) nickel, tetrakis(triphenylphosphine) nickel, bistriphenylphosphinedicarbonyl nickel, bis(ethylcyclopentadiene) nickel, bis(methylcyclopentadienyl) nickel, bis(tetramethylcyclopentadiene) nickel Pentadienyl) nickel, Ni(acac) 2 , Ni[P(OoC 6 H 4 CH 3 ) 3 ] 3 and Ni[P(OoC 6 H 4 CH 3 ) 3 ] 2 (C 2 H 4 ) One or more than two mixtures, wherein, acac is acetylacetone, P(OoC 6 H 4 CH 3 ) 3 is tris(o-tolyl)
  • the molar ratio of butadiene to hydrocyanic acid is 1.0 to 1.5, and the molar ratio of the hydrocyanic acid to the catalyst is
  • the molar ratio based on zero-valent nickel is 1-1000:1, preferably 10-70:1, the reaction temperature is 60-140°C, and the reaction pressure is 0.1-5.0MPa;
  • the ratio of the moles of the branched mononitrile mixture to the moles of the catalyst in terms of zero-valent nickel is 1 to 500:1, preferably 50 to 200: 1.
  • the reaction temperature is 80-170°C, and the reaction pressure is 0.1-5.0MPa;
  • the molar ratio of the linear mononitrile mixture to hydrocyanic acid is 1.0 to 1.5, and the ratio of the moles of hydrocyanic acid to the moles of the catalyst in terms of zero-valent nickel is 20-3000:1, preferably 20-500:1, the reaction temperature is 30-120°C, and the reaction pressure is 0.1-5.0MPa.
  • the ratio of the number of moles of the reaction accelerator to the number of moles of the catalyst in terms of zero-valent nickel is 0.05-2.5:1; the reaction accelerator is a Lewis acid.
  • the catalyst used is formed by coordinating a multidentate phosphite ligand with a specific structure and a nickel precursor Multidentate phosphite ligand-nickel catalyst exhibiting higher reaction selectivity when used to catalyze hydrocyanation to adiponitrile, selectivity of 3-pentenenitrile hydrocyanation to adiponitrile Up to 94.2%, reducing the consumption of raw and auxiliary materials.
  • the catalyst used is formed by coordinating a multidentate phosphite ligand with a specific structure and a nickel precursor
  • the multidentate phosphite ligand-nickel catalyst has higher catalytic activity, can reduce the amount of catalyst used in the reaction process, reduces the cost of the catalyst, and is beneficial to industrialization.
  • the catalyst used is formed by coordinating a multidentate phosphite ligand with a specific structure and a nickel precursor
  • the multidentate phosphite ligand-nickel catalyst has better hydrolysis resistance, can reduce the loss of the catalyst in the recycling process, reduces the cost of the catalyst, and is beneficial to industrialization.
  • the invention provides the application of multidentate phosphite ligand in the catalytic synthesis of adiponitrile
  • the multidentate phosphite ligand is a compound represented by the following general formula (I)
  • the method for catalytically synthesizing adiponitrile comprises carrying out successively the following steps:
  • butadiene and hydrocyanic acid are subjected to a hydrocyanation reaction; in the presence of a second catalyst, the branched mononitrile separated from the product obtained in the primary hydrocyanation reaction is The mixture is subjected to an isomerization reaction of branched mononitriles; in the presence of a third catalyst and a reaction accelerator, the linear mononitrile mixture separated from the product obtained in the primary hydrocyanation reaction and the isomerization reaction is Carry out secondary hydrocyanation reaction with hydrocyanic acid to obtain a product containing adiponitrile;
  • the first catalyst, the second catalyst and the third catalyst are the same or different, and each include a phosphite ligand-nickel complex composed of a nickel precursor and a multidentate phosphite ligand:
  • R 0 is -OA 4 , hydrogen, C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, or substituted or unsubstituted C 6-20 aryl ;
  • R 0 is -OA 4 ;
  • R 11 to R 16 are the same or different from each other, and are each independently hydrogen, C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, or substituted or unsubstituted C 6-20 Aryl; preferably hydrogen, or C 1-6 alkyl;
  • a 1 , A 2 , A 3 and A 4 are the same or different from each other, and each independently is
  • each R 21 and each R 22 are the same or different from each other, and each R 21 and each R 22 are each independently H, substituted or unsubstituted C 1-6 alkyl, substituted or unsubstituted C 3-10 Cycloalkyl, C 1-6 acyl or substituted or unsubstituted C 6-20 aryl; preferably H, substituted or unsubstituted C 6-20 aryl; more preferably H, naphthyl, Methoxy-substituted naphthyl, 1,2,3,4-tetrahydronaphthalene or Wherein R x and R y are the same or different from each other, and are each independently hydrogen, halogen, nitrile, substituted or unsubstituted C 1-10 alkyl, substituted or unsubstituted C 1-10 alkoxy; Preferably hydrogen, halogen, or C 1-6 alkyl; and
  • a ring can be formed between R 21 and R 22 through a single bond, C 1-6 alkylene, phenylene or C 1-6 alkyl substituted phenylene bond;
  • Q is a single bond, a C 1-3 alkylene group, an oxygen atom, a nitrogen atom, or a C 1-3 alkylene group containing an oxygen atom or a nitrogen atom; preferably a single bond, a methylene group or an oxygen atom.
  • the multidentate phosphite ligand molecule used in the present invention has a higher electron cloud density, and the content of phosphorus that can participate in coordination in the multidentate ligand molecule per unit mass is higher, thereby improving the content of the ligand.
  • the catalytic activity of the multidentate phosphite-nickel complex catalyst reduces the consumption of the catalyst in the reaction process.
  • the three-dimensional configuration of the phosphite ligand-nickel complex can be adjusted, combined with the electronic effect and steric hindrance effect of the substituent on the molecular structure of the ligand.
  • Flexible control can change the chemical environment and steric effect around the metal center, and improve the selectivity of the linear product adiponitrile.
  • the catalyst adopted in the method for the catalytic synthesis of adiponitrile of the present invention is a multidentate phosphite ligand-nickel catalyst formed by the coordination of a multidentate phosphite ligand with a specific structure and a nickel precursor.
  • a multidentate phosphite ligand-nickel catalyst formed by the coordination of a multidentate phosphite ligand with a specific structure and a nickel precursor.
  • the water resistance of ligand-nickel complex catalysts has been improved compared with monodentate or bidentate ligand-nickel complex catalysts, which reduces the loss of catalysts or ligands in the process of recycling and recycling, and reduces the The consumption of the catalyst reduces the cost of the catalyst in the actual industrial production process.
  • the structures A 1 , A 2 , A 3 and A 4 in the general formula (I) are the same or different from each other, and each independently is one of the following structures:
  • the structures A 1 , A 2 , A 3 and A 4 in the general formula (I) are each independently one of the following structures:
  • At least two of the structures A 1 , A 2 , A 3 and A 4 are different. More preferably, Structure A1 is different from A4 , Structure A2 is different from A3 , Structure A1 is the same as A2 or A3 , and Structure A4 is the same as A3 or A2 .
  • the specific structure of the multidentate phosphite ligand in the catalyst used is listed in the following table 1, but the multidentate phosphite ligand in the present invention is not limited to Specific multidentate phosphite ligands below.
  • the polydentate phosphite ligand contained in the catalyst used in the method for catalytically synthesizing adiponitrile of the present invention is preferably in the general formula (I), structure A1 is different from A4 , and structure A2 is different from A3 , Structure A1 is the same as A2 or A3 , and structure A4 is a tetradentate phosphite ligand identical to A3 or A2 , and the catalyst thus obtained can make the linear selectivity of the obtained adiponitrile product higher , and the mass consumption of the catalyst in terms of nickel is less.
  • the preparation method of the polydentate phosphite ligand contained in the catalyst used in the method for catalytically synthesizing adiponitrile of the present invention comprises:
  • R 0 ' represents -OH, H, C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, or substituted or unsubstituted C 6-20 aryl; preferably R 0 'is -OH;
  • R 11 to R 16 , R 21 and R 22 and Q are the same as in the above general formula (I), and X is halogen, preferably Cl or Br; and, when at least one of the general formula (III) When there are multiple kinds of halogenated phosphorous compounds, each of multiple R 21 and multiple R 22 is the same or different from each other.
  • the specific preparation method of the above-mentioned multidentate phosphite ligand is: obtain the compound represented by the above formula (II) and at least one halogenated compound represented by the formula (III) at a molar ratio of 1:3 to 6:3 to 6.
  • Phosphite and triethylamine the compound of formula (II) is dissolved in an organic solvent (such as toluene, tetrahydrofuran, etc.), and at least one halogen represented by formula (III) is added dropwise at a temperature of -10 to 10°C
  • a solution of phosphite and triethylamine in an organic solvent (such as toluene, tetrahydrofuran, etc.) at a temperature of -10-10°C
  • the reaction solution continues to stir at 10-50°C for 2- 10 hours.
  • triethylamine hydrochloride is removed by filtration, the solvent is removed, and the polydentate phosphite ligand is obtained by column chromatography separation.
  • the first catalyst, the second catalyst and the third catalyst are identical to each other.
  • the preparation of the catalyst may include, by contacting the multidentate phosphite ligand with elemental nickel as a nickel precursor or a zero-valent nickel complex with an easily substituted ligand And formed. Its specific preparation methods include the following:
  • the nickel precursor and the multidentate phosphite ligand were respectively obtained at a molar ratio of 1:0.5 to 10, dissolved in an organic solvent (such as toluene, propionitrile, 3-pentenenitrile, etc.), and heated at 50°C The reaction is carried out with heat preservation and stirring for 5-15 hours. After the reaction is completed, the corresponding catalyst is obtained by directly removing the solvent or cooling and recrystallizing.
  • an organic solvent such as toluene, propionitrile, 3-pentenenitrile, etc.
  • the above-mentioned nickel precursor is simple nickel or a zero-valent nickel complex.
  • these zero-valent nickel complexes include bis(1,5-cyclooctadiene)nickel, nickelocene, nickel carbonyl, allyl(cyclopentadienyl)nickel, tetrakis(triphenylphosphine)nickel, Bis(triphenylphosphinedicarbonyl) nickel, bis(ethylcyclopentadiene) nickel, bis(methylcyclopentadienyl) nickel, bis(tetramethylcyclopentadienyl) nickel, Ni(acac) 2 , Ni[P(OoC 6 H 4 CH 3 ) 3 ] 3 and Ni[P(OoC 6 H 4 CH 3 ) 3 ] 2 (C 2 H 4 ), etc.
  • a divalent nickel compound in combination with a reducing agent can be used instead of the above nickel precursor or in combination with shared to serve as a source of zero-valent nickel in the reaction in the presence of a multidentate phosphite ligand of formula (I).
  • Suitable divalent nickel compounds include divalent nickel halides, carboxylates or acetylacetonates; suitable reducing agents include metal borohydrides, metal aluminum hydrides, metal alkyls, Li, Na, K, Zn or H2 .
  • the molar ratio of butadiene and hydrocyanic acid is 1.0 ⁇ 1.5, and the molar number of described hydrocyanic acid and described catalyst are zero-valent
  • the molar ratio of nickel is 1-1000:1, preferably 10-70:1, the reaction temperature is 60-140°C, the reaction pressure is 0.1-5.0MPa, and the reaction time is 0.01-5.0h;
  • the ratio of the number of moles of branched mononitrile mixture to the number of moles of catalyst based on zero-valent nickel is 1 ⁇ 500:1, preferably 50 ⁇ 200:1, and the reaction temperature is 80 ⁇ 170°C, reaction pressure 0.1 ⁇ 5.0MPa, reaction time 0.1 ⁇ 10.0h;
  • the molar ratio of the linear mononitrile mixture to hydrocyanic acid is 1.0 to 1.5, and the ratio of the moles of hydrocyanic acid to the moles of the catalyst in terms of zero-valent nickel is 20 to 3000 :1, preferably 20 ⁇ 500:1, the reaction temperature is 30 ⁇ 120°C, the reaction pressure is 0.1 ⁇ 5.0MPa, and the reaction time is 1.0 ⁇ 20.0h.
  • the ratio of the number of moles of the reaction accelerator to the number of moles of the catalyst in terms of zero-valent nickel is 0.05-2.5:1; the reaction accelerator is a Lewis acid.
  • Lewis acid as a reaction accelerator selected from the salts of the elements of Groups Ib, IIb, IIIa, IIIb, IVa, IVb, Va, Vb, VIb, VIIb and VIII of the Periodic Table of the Elements, the salts being selected from halides, sulfates , sulfonates, haloalkyl sulfonates, perhaloalkyl sulfonates, haloalkyl acetates, perhaloalkyl acetates, carboxylates and phosphates;
  • the Lewis acid is selected from zinc chloride, zinc bromide, zinc iodide, manganese chloride, manganese bromide, cadmium chloride, cadmium bromide, stannous chloride, stannous bromide, protosulfate Tin, stannous tartrate, indium trifluoromethanesulfonate, indium trifluoroacetate, zinc trifluoroacetate, rare earth elements such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, hafnium, erbium, thallium Chlorides or bromides of ytterbium and lutetium, cobalt chloride, ferric chloride, yttrium chloride and mixtures thereof;
  • the Lewis acid is at least one of zinc chloride, zinc bromide, ferric chloride, stannous chloride, and stannous bromide.
  • reaction product separation from step (i) obtains 2M3BN
  • the 2M3BN of 1.5mol is added in the reactor that 3.0mmol (in terms of nickel) tetradentate phosphite ligand-nickel catalyst A is housed, and reaction temperature is 120 ⁇ 150 Under the conditions of °C and reaction pressure of 1.2MPa, the reaction was carried out for 8-10 hours. After the reaction, samples were taken to analyze the distribution of products 3PN and 2M3BN by GC (with valeronitrile as internal standard).
  • Example 2 Prepare and analyze in the same manner as Example 1, wherein in a hydrogen cyanation reaction, the catalyst Da consumption (in nickel moles) is 0.4% of the raw material BD moles, in the isomerization reaction, the catalyst Da consumption (in nickel moles) In terms of moles) is 0.4% of the moles of 2M3BN, and in the secondary hydrocyanation reaction, the amount of catalyst Da (in terms of moles of nickel) is 0.6% of the moles of 3PN.
  • Example 2 Prepare and analyze in the same manner as Example 1, wherein in a hydrocyanation reaction, the catalyst Db consumption (in nickel moles) is 0.4% of the raw material BD moles, and in the isomerization reaction, the catalyst Db consumption (in nickel moles) Mole number) is 0.4% of the 2M3BN mole number, and the catalyst Db consumption (in nickel mole number) is 0.6% of the 3PN mole number in the secondary hydrocyanation reaction.
  • the tetradentate phosphite ligand is formed from two chlorophosphites, that is, the tetradentate phosphite ligand is the structure A 1 and A in the general formula (I). 4 is different, structure A 2 is different from A 3 , structure A 1 is the same as A 2 or A 3 , and structure A 4 is the same compound as A 3 or A 2 , the linear selectivity of the product thus obtained is higher, and the catalyst The amount (calculated as nickel) is less.
  • the catalyst of Comparative Example 1-3 adopts bidentate phosphite ligand, compared with Examples 1-12 of the present invention, the linear selectivity of the product is low, and the mass consumption of the catalyst in terms of nickel is large.
  • Example 15 Investigate the influence of phosphite ligand-nickel catalyst dosage on the preparation of adiponitrile
  • the catalyst consumption of the first hydrocyanation, isomerization, and the second hydrocyanation three-step reaction ranges from 0.2%/ From 0.2%/0.3% to 0.12%/0.12%/0.18%, the reaction effect is still stable.
  • the catalyst consumption of the first hydrocyanation, isomerization, and second hydrocyanation three-step reaction drops to 0.10%/0.10%/0.15%, and the conversion rate and selectivity of the three-step reaction are still maintained at the same level.
  • Embodiment 16 Make the ligand L7 in the embodiment 6 and the ligand D3 in the comparative example 3 carry out the water resistance stability determination
  • the other related impurities included in the ligand L7 sample are L7-1, L7-2, L7-3, L7-4 respectively
  • the other related impurities included in the ligand D3 sample are D3-1, D3 -2 and D3-3, among which, L7-3 and D3-2 are mainly produced during the synthesis of ligands, and the rest are obtained from ligands and the like through hydrolysis.
  • the tetradentate phosphite ligand L7 is more stable to water than the bidentate phosphite ligand D3.
  • the tetradentate phosphite ligand L7 showed fairly good water resistance with only a 1.1% drop in content during the first 48 hours. After 48 hours, due to the continuous accumulation of hydrolyzed products, the acidity of the ligand solution environment did not increase, resulting in self-catalyzed hydrolysis. From 48 to 96 hours, the ligand content dropped from 90.7% to 88.7%. By comparison, it can be found that the content of the bidentate phosphite ligand D3 dropped from 95.2% to 90.5% in the first 48 hours, and the ligand content continued to drop to 82.2% after another 48 hours.
  • the inventors dissolved the tetradentate phosphite ligand L7 and the bidentate phosphite ligand D3 in a 3-pentenenitrile solution with a water content of 500ppm In , observe the change of the content of the two ligands with time.
  • the experimental situation is as follows:
  • the multidentate phosphite ligands of the present invention are better in water resistance than the bidentate phosphite ligands in the prior art.
  • the hydrolysis loss of the multidentate phosphite ligand in the process of recovery and mechanical application can be reduced, the consumption of the ligand and the catalyst can be reduced, and the production cost of adiponitrile can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种多齿亚磷酸酯配体在催化合成己二腈中的应用。配体由以下通式(I)表示。催化合成己二腈的方法包括一次氢氰化、异构化以及二次氢氰化反应,其中采用的催化剂各自包括由镍前体和多齿亚磷酸酯配体组成的亚磷酸酯配体-镍络合物。配体分子具有更高的电子云密度,且单位质量配体分子中可以参与配位的磷含量更高,从而提升了催化剂的催化活性,降低了催化剂的用量。同时,通过对配体骨架结构的设计和优化,可以调节亚磷酸酯配体-镍络合物的立体空间构型,再结合对配体分子结构上取代基的电子效应与空间位阻效应的灵活调控,可以改变金属中心周围的化学环境和立体空间效应,提高线性产物己二腈的选择性。

Description

一种多齿亚磷酸酯配体在催化合成己二腈中的应用 技术领域
本发明涉及化工合成领域,具体而言,涉及一种多齿亚磷酸酯配体在催化合成己二腈中的应用。
背景技术
己二腈(ADN),分子式为NC(CH 2) 4CN,其为无色透明的油状液体,有轻微苦味,难溶于水,可溶于甲醇、乙醇、氯仿,易燃,遇高热分解释出剧毒的气体。己二腈是一种重要的有机化工中间体,在工业上己二腈主要用于加氢生产作为尼龙66的中间体的己二胺,还可以用于制备己内酰胺等化工产品,被广泛应用于汽车、工程塑料、电子电器、精密仪器、纺织工业等领域。
目前,工业上采用的己二腈的制备方法主要有丙烯腈电解二聚法、己二酸催化胺化法和丁二烯氢氰化法。此外,日本东丽公司为再生利用己内酰胺废料,研发了己内酰胺水解制备己二腈,但由于原料匮乏,产能极为有限。
丁二烯氢氰化法由美国杜邦公司在20世纪70年代初开发,替代了原有的丁二烯氯化氢化法。相较于己二腈的其它制备方法,该方法具有原料易得、工艺路线短、成本低、能耗低、对设备腐蚀小、产品收率高等优势,是目前全世界公认的最先进、最合理的己二腈生产工艺。
专利申请CN101676261A和CN103180290A各自公开了一种丁二烯氢氰化法制备己二腈的方法,其包括以下步骤:第一步,在催化剂作用下,使丁二烯(BD)与HCN反应,得到目标产物直链的3-戊烯腈(3PN)和副产物支链的2-甲基-3-丁烯腈(2M3BN);第二步,在催化剂作用下,使2M3BN异构化得到3PN;第三步,在催化剂和Lewis酸作用下,使3PN和HCN进行加成反应,得到产品己二腈(ADN)。
专利CN1387534A、CN1159799A、WO99052632A1等记载了单齿亚磷酸酯、双齿亚磷酸酯及双齿亚磷酰胺配体与零价镍形成的配合物催化剂适用于丁二烯氢氰化法生产己二腈的反应,但现有的单齿或双齿亚磷酸酯与镍形成的配合物催化剂,不论是在催化丁二烯氢氰化反应生成3-戊烯腈,还是催化3-戊烯腈氢氰化反应生成己二腈,主产物(3-戊烯腈、己二腈)的选择性还有进一步提升的空间。此外,单/双齿亚磷酸酯配体及其配合物催化剂的用量较大,而且空气和水分敏感,容易发生氧化和水解等副反应,对实际工业生产中空气和水分的控制和装备要求非常高,会大幅度增加己二腈实际生产成本。
发明内容
发明要解决的问题
本发明提供了一种多齿亚磷酸酯配体在催化合成己二腈中的应用,该配体的应用克服了上述现有技术中存在的问题,由其构成的配体-镍催化剂能够以更高的选择性催化合成己二腈,并且能够降 低反应过程中催化剂的用量以及减少催化剂在循环套用过程中的损失,降低了催化剂成本,有利于产业化。
用于解决问题的方案
本发明提供的一种多齿亚磷酸酯配体在催化合成己二腈中的应用,该多齿亚磷酸酯配体为由以下通式(I)表示的化合物,催化合成己二腈的方法包括依次进行的以下步骤:
在第一催化剂存在下,使丁二烯与氢氰酸进行一次氢氰化反应;在第二催化剂存在下,使从所述一次氢氰化反应中获得的产物中分离出的支化单腈混合物进行支化单腈的异构化反应;在第三催化剂和反应促进剂的存在下,使从所述一次氢氰化反应和异构化反应中得到的产物中分离出的线性单腈混合物与氢氰酸进行二次氢氰化反应,得到含有己二腈的产物;
其中,所述第一催化剂、第二催化剂和第三催化剂相同或不同,并且各自包括由镍前体和多齿亚磷酸酯配体组成的亚磷酸酯配体-镍络合物:
Figure PCTCN2022100184-appb-000001
式(I)中,R 0为-O-A 4、H、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或者取代或未取代的C 6~20的芳基;优选R 0为-O-A 4
R 11~R 16彼此相同或不同,且各自独立地为氢、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或取代或未取代的C 6~20的芳基;优选为氢、或C 1~6的烷基;
A 1、A 2、A 3和A 4彼此相同或不同,且各自独立地为
Figure PCTCN2022100184-appb-000002
各R 21和各R 22各自和彼此相同或不同,且各R 21和各R 22各自独立地为H、取代或未取代的C 1~6的烷基、取代或未取代的C 3~10的环烷基、C 1~6的酰基或取代或未取代的C 6~20的芳基;优选为H、取代或未取代的C 6~20的芳基;更优选为H、萘基、甲氧基取代的萘基、1,2,3,4-四氢萘或
Figure PCTCN2022100184-appb-000003
其中R x和R y彼此相同或不同,且各自独立地为氢、卤素、腈基、取代或未取代的C 1~10的烷基、取代或未取代的C 1~10的烷氧基;优选为氢、卤素、或C 1~6的烷基;并且
R 21和R 22之间可以通过单键、C 1~6的亚烷基、亚苯基或者C 1~6的烷基取代的亚苯基键合成环;
Q为单键、C 1~3的亚烷基、氧原子、氮原子、或者含有氧原子或氮原子的C 1~3的亚烷基;优选为单键、亚甲基或氧原子。
根据本发明提供的应用,其中,优选地,通式(I)中的结构A 1、A 2、A 3和A 4彼此相同或不同,并且各自独立地为以下结构中的一种:
Figure PCTCN2022100184-appb-000004
根据本发明提供的应用,其中,优选地,通式(I)中的结构A 1、A 2、A 3和A 4各自独立地为以下结构中的一种:
Figure PCTCN2022100184-appb-000005
根据本发明提供的应用,其中,优选地,通式(I)中的结构A 1、A 2、A 3和A 4中的至少两个不同。
根据本发明提供的应用,其中,优选地,通式(I)中,结构A 1与A 4不同,结构A 2与A 3不同,结构A 1与A 2或A 3相同,并且结构A 4与A 3或A 2相同。
根据本发明提供的应用,其中,所述多齿亚磷酸酯配体的制备方法包括:
在有机溶剂的存在下,使以下通式(II)所示的化合物、以下通式(III)所示的至少一种卤代亚磷化物和三乙胺反应,
Figure PCTCN2022100184-appb-000006
其中,R 0′表示-OH、H、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或者取代或未取代的C 6~20的芳基;优选R 0′为-OH;
R 11~R 16、R 21和R 22以及Q的定义与上述通式(I)中的相同,且X为卤素,优选为Cl或Br;并且,当通式(III)所示的至少一种卤代亚磷化物为多种时,多个R 21和多个R 22的各自和彼此相同或不同。
根据本发明提供的应用,其中,优选地,通式(II)所示的化合物的摩尔数、通式(III)所示的至少一种卤代亚磷化物的总摩尔数和三乙胺的摩尔数之比为1:3~6:3~6。
根据本发明提供的应用,其中,优选地,所述第一催化剂、第二催化剂和第三催化剂彼此相同。
根据本发明提供的应用,其中,优选地,所述镍前体与所述多齿亚磷酸酯配体的摩尔比为1:2~20。
根据本发明提供的应用,其中,优选地,所述镍前体为单质镍、双(1,5-环辛二烯)镍、二茂镍、羰基镍、烯丙基(环戊二烯基)镍、四(三苯基膦)镍、双三苯基膦二羰基镍、双(乙基环戊二烯)镍、二(甲基环戊二烯基)镍、双(四甲基环戊二烯基)镍、Ni(acac) 2、Ni[P(O-o-C 6H 4CH 3) 3] 3和Ni[P(O-o-C 6H 4CH 3) 3] 2(C 2H 4)中的一种或者两种以上的混合物,其中,acac为乙酰丙酮,P(O-o-C 6H 4CH 3) 3为亚磷酸三(邻-甲苯基)酯;或者为二价镍化合物与还原剂的组合,其中所述二价镍化合物是二价镍的卤化物、羧酸盐或乙酰丙酮化物,还原剂包括金属硼氢化物、金属铝氢化物、烷基金属、Li、Na、K、Zn或H 2
根据本发明提供的应用,其中,优选地,所述一次氢氰化反应中,所述丁二烯与氢氰酸的摩尔比为1.0~1.5,所述氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为1~1000:1,优选为10~70:1,反应温度为60~140℃,反应压力为0.1~5.0MPa;
所述支化单腈的异构化反应中,所述支化单腈混合物的摩尔数与所述催化剂以零价镍计的摩尔数 的比例为1~500:1,优选为50~200:1,反应温度为80~170℃,反应压力为0.1~5.0MPa;
在所述二次氢氰化反应中,所述线性单腈混合物与氢氰酸的摩尔比为1.0~1.5,氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为20~3000:1,优选20~500:1,反应温度为30~120℃,反应压力为0.1~5.0MPa。
根据本发明提供的应用,其中,优选地,所述反应促进剂的摩尔数与所述催化剂以零价镍计的摩尔数的比例为0.05~2.5:1;所述反应促进剂为路易斯酸。
发明的效果
(1)根据本发明提供的多齿亚磷酸酯配体在催化合成己二腈中的应用,其中所采用的催化剂为具有特定结构的多齿亚磷酸酯配体与镍前体配位而形成多齿亚磷酸酯配体-镍催化剂,其在用于催化氢氰化反应制备己二腈时表现出更高的反应选择性,3-戊烯腈氢氰化反应制备己二腈的选择性最高可达94.2%,降低了原辅料的消耗。
(2)根据本发明提供的多齿亚磷酸酯配体在催化合成己二腈中的应用,其中所采用的催化剂为具有特定结构的多齿亚磷酸酯配体与镍前体配位而形成多齿亚磷酸酯配体-镍催化剂,具有更高的催化活性,能够降低反应过程中催化剂的用量,降低了催化剂成本,有利于产业化。
(3)根据本发明提供的多齿亚磷酸酯配体在催化合成己二腈中的应用,其中所采用的催化剂为具有特定结构的多齿亚磷酸酯配体与镍前体配位而形成多齿亚磷酸酯配体-镍催化剂,具有更好的抗水解性能,可以减少催化剂在循环套用过程中的损失,降低了催化剂成本,有利于产业化。
具体实施方式
以下将具体地描述本发明的具体实施方式,使得本发明的技术方案变得显然。
本发明提供了多齿亚磷酸酯配体在催化合成己二腈中的应用,多齿亚磷酸酯配体为由以下通式(I)表示的化合物,催化合成己二腈的方法包括依次进行的以下步骤:
在第一催化剂存在下,使丁二烯与氢氰酸进行一次氢氰化反应;在第二催化剂存在下,使从所述一次氢氰化反应中获得的产物中分离出的支化单腈混合物进行支化单腈的异构化反应;在第三催化剂和反应促进剂的存在下,使从所述一次氢氰化反应和异构化反应中得到的产物中分离出的线性单腈混合物与氢氰酸进行二次氢氰化反应,得到含有己二腈的产物;
其中,所述第一催化剂、第二催化剂和第三催化剂相同或不同,并且各自包括由镍前体和多齿亚磷酸酯配体组成的亚磷酸酯配体-镍络合物:
Figure PCTCN2022100184-appb-000007
式(I)中,R 0为-O-A 4、氢、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或者取代或未取代的C 6~20的芳基;优选R 0为-O-A 4
R 11~R 16彼此相同或不同,且各自独立地为氢、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或取代或未取代的C 6~20的芳基;优选为氢、或C 1~6的烷基;
A 1、A 2、A 3和A 4彼此相同或不同,且各自独立地为
Figure PCTCN2022100184-appb-000008
各R 21和各R 22各自和彼此相同或不同,且各R 21和各R 22各自独立地为H、取代或未取代的C 1~6的烷基、取代或未取代的C 3~10的环烷基、C 1~6的酰基或取代或未取代的C 6~20的芳基;优选为H、取代或未取代的C 6~20的芳基;更优选为H、萘基、甲氧基取代的萘基、1,2,3,4-四氢萘或
Figure PCTCN2022100184-appb-000009
其中R x和R y彼此相同或不同,且各自独立地为氢、卤素、腈基、取代或未取代的C 1~10的烷基、取代或未取代的C 1~10的烷氧基;优选为氢、卤素、或C 1~6的烷基;并且
R 21和R 22之间可以通过单键、C 1~6的亚烷基、亚苯基或者C 1~6的烷基取代的亚苯基键合成环;
Q为单键、C 1~3的亚烷基、氧原子、氮原子、或者含有氧原子或氮原子的C 1~3的亚烷基;优选为单键、亚甲基或氧原子。
应用于本发明中的多齿亚磷酸酯配体分子,其具有更高的电子云密度,且单位质量的多齿配体分子中可以参与配位的磷含量更高,从而提升了含有该配体的多齿亚磷酸酯-镍络合物催化剂的催化活性,降低了反应过程中该催化剂的用量。同时,通过对配体骨架结构的设计和优化,可以调节亚磷酸酯配体-镍络合物的立体空间构型,再结合对配体分子结构上取代基的电子效应与空间位阻效应的灵活调控,可以改变金属中心周围的化学环境和立体空间效应,提高线性产物己二腈的选择性。
在本发明的催化合成己二腈的方法中所采用的催化剂为由具有特定结构的多齿亚磷酸酯配体与镍前体配位而形成的多齿亚磷酸酯配体-镍催化剂,其在用于氢氰化反应制备己二腈时,具有高催化活性、高反应选择性的特点,3-戊烯腈氢氰化反应生成己二腈的选择性最高可达94.2%。而且,催化剂的用量较少,降低了催化剂的用量。另外,配体-镍络合物催化剂的耐水性与单齿或者二齿配体-镍络合物催化剂相比较有所提升,降低了催化剂或者配体在循环回收套用过程中的损耗,降低了催化剂的消耗,降低了实际工业生产过程中催化剂成本。
在优选情况下,通式(I)中的结构A 1、A 2、A 3和A 4彼此相同或不同,并且各自独立地为以下结构中的一种:
Figure PCTCN2022100184-appb-000010
更优选的是,通式(I)中的结构A 1、A 2、A 3和A 4各自独立地为以下结构中的一种:
Figure PCTCN2022100184-appb-000011
在优选情况下,通式(I)中,结构A 1、A 2、A 3和A 4中的至少两个不同。更优选的是,结构A 1与A 4不同,结构A 2与A 3不同,结构A 1与A 2或A 3相同,并且结构A 4与A 3或A 2相同。
在本发明的己二腈的制备方法中,所采用的催化剂中的多齿亚磷酸酯配体的具体结构列于下表1中,但是本发明中的多齿亚磷酸酯配体并不限于以下具体的多齿亚磷酸酯配体。
表1
Figure PCTCN2022100184-appb-000012
Figure PCTCN2022100184-appb-000013
在本发明的催化合成己二腈的方法中使用的催化剂中包含的多齿亚磷酸酯配体优选为通式(I)中,结构A 1与A 4不同,结构A 2与A 3不同,结构A 1与A 2或A 3相同,并且结构A 4与A 3或A 2相同的四齿亚磷酸酯配体,由此获得的催化剂可以使得获得的己二腈产品的线性选择性更高,且催化剂的以镍计的质量用量更少。
用于本发明的催化合成己二腈的方法中的催化剂中含有的多齿亚磷酸酯配体的制备方法包括:
在有机溶剂的存在下,使以下通式(II)所示的化合物、以下通式(III)所示的至少一种卤代亚磷化物和三乙胺反应,
Figure PCTCN2022100184-appb-000014
其中,R 0′表示-OH、H、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或者取代或未取代的C 6~20的芳基;优选R 0′为-OH;
R 11~R 16、R 21和R 22以及Q的定义与上述通式(I)中的相同,且X为卤素,优选为Cl或Br;并且,当通式(III)所示的至少一种卤代亚磷化物为多种时,多个R 21和多个R 22的各自和彼此相同或不同。
上述多齿亚磷酸酯配体的具体制备方法为:以1:3~6:3~6的摩尔比获取上式(II)所示的化合物、式(III)所示的至少一种卤代亚磷化物和三乙胺,将式(II)的化合物溶于有机溶剂(如甲苯、四氢呋喃等)中,于-10~10℃的温度下滴加入至少一种式(III)所示的卤代亚磷化物和三乙胺在有机溶剂(如甲苯、四氢呋喃等)中的溶液(或者将至少一种式(III)所示的卤代亚磷化物溶于有机溶剂(如甲苯、四氢呋喃等)中,于-10~10℃的温度下滴加入式(II)的化合物和三乙胺在有机溶剂(如甲苯、四氢呋喃等)中的溶液),反应液继续在10~50℃搅拌反应2~10小时。反应结束后过滤除去三乙胺盐酸盐,脱去溶剂,再通过柱层析分离得到多齿亚磷酸酯配体。
在本发明的催化合成己二腈的方法中,在优选情况下,第一催化剂、第二催化剂和第三催化剂彼此相同。
在本发明的催化合成己二腈的方法中,催化剂的制备可以包括,通过将多齿亚磷酸酯配体与作为镍前体的单质镍或具有易取代的配体的零价镍配合物接触而形成。其具体的制备方法包括以下:
以1:0.5~10的摩尔比分别获取镍前体和多齿亚磷酸酯配体,将其溶于有机溶剂(如甲苯、丙腈、3-戊烯腈等)中,并于50℃下保温搅拌反应5-15小时,反应结束后通过直接除溶剂或者冷却重结晶的方法得到相应的催化剂。
上述镍前体为单质镍、或者零价镍配合物。这些零价镍配合物的实例包括双(1,5-环辛二烯)镍、二茂镍、羰基镍、烯丙基(环戊二烯基)镍、四(三苯基膦)镍、双三苯基膦二羰基镍、双(乙基环戊二烯)镍、二(甲基环戊二烯基)镍、双(四甲基环戊二烯基)镍、Ni(acac) 2、Ni[P(O-o-C 6H 4CH 3) 3] 3和Ni[P(O-o-C 6H 4CH 3) 3] 2(C 2H 4)等中的一种或者两种以上的混合物(其中,acac为乙酰丙酮,P(O-o-C 6H 4CH 3) 3为亚磷酸三(邻-甲苯基)酯);可选地,可以采用二价镍化合物与还原剂的组合代替上 述镍前体或与其共用,以在式(I)的多齿亚磷酸酯配体的存在下用作反应中的零价镍源。适合的二价镍化合物包括二价镍的卤化物、羧酸盐或乙酰丙酮化物;适合的还原剂包括金属硼氢化物、金属铝氢化物、金属烷基化物、Li、Na、K、Zn或H 2
在本发明的己二腈的制备方法中,在一次氢氰化反应中,丁二烯与氢氰酸的摩尔比为1.0~1.5,所述氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为1~1000:1,优选为10~70:1,反应温度为60~140℃,反应压力为0.1~5.0MPa,反应时间为0.01~5.0h;
在支化单腈的异构化反应中,支化单腈混合物的摩尔数与催化剂以零价镍计的摩尔数的比例为1~500:1,优选为50~200:1,反应温度为80~170℃,反应压力为0.1~5.0MPa,反应时间为0.1~10.0h;
在二次氢氰化反应中,线性单腈混合物与氢氰酸的摩尔比为1.0~1.5,氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为为20~3000:1,优选20~500:1,反应温度为30~120℃,反应压力为0.1~5.0MPa,反应时间为1.0~20.0h。
在本发明的己二腈的制备方法中,反应促进剂的摩尔数与催化剂以零价镍计的摩尔数的比例为0.05~2.5:1;反应促进剂为路易斯酸。
作为反应促进剂的路易斯酸,选自元素周期表第Ib、IIb、IIIa、IIIb、IVa、IVb、Va、Vb、VIb、VIIb和VIII族元素的盐,所述盐选自卤化物、硫酸盐、磺酸盐、卤代烷基磺酸盐、全卤代烷基磺酸盐、卤代烷基乙酸盐、全卤代烷基乙酸盐、羧酸盐和磷酸盐;
优选地,所述的路易斯酸选自氯化锌、溴化锌、碘化锌、氯化锰、溴化锰、氯化镉、溴化镉、氯化亚锡、溴化亚锡、硫酸亚锡、酒石酸亚锡、三氟甲基磺酸铟、三氟乙酸铟、三氟乙酸锌、稀土元素如镧、铈、镨、钕、钐、铕、钆、铽、镝、铪、铒、铊、镱和镥的氯化物或溴化物、氯化钴、氯化铁、氯化钇以及它们的混合物;
更优选地,路易斯酸为氯化锌、溴化锌、氯化铁、氯化亚锡、溴化亚锡中的至少一种。
以下采用实施例来描述本发明,但是本发明绝不限于以下实施例。
实施例1
四齿亚磷酸酯配体L1的制备
Figure PCTCN2022100184-appb-000015
在5℃下,向含有式C1表示的氯代亚磷酸酯C1(18.96g,100mmol)的甲苯溶液中滴加入含有2,2',6,6'-四羟基联苯(4.36g,20mmol)、三乙胺(11.33g,112mmol)的甲苯(150mL)溶液。滴加结束后,保温搅拌反应2h并将体系缓慢升温至25℃,继续搅拌2h。随后,将反应液过滤除去三乙胺盐酸盐,除去甲苯,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L1(13.72g),收率为86.1%,纯度(以质量百分比计)为96.7%。
四齿亚磷酸酯配体-镍催化剂A的制备
在氮气氛围下,将10.3mmol四齿亚磷酸酯配体L1与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯 中。接着,在50℃下混合并反应10小时。反应结束后,脱除溶剂,直接得到催化剂A,其镍含量为1.82mmol/g。
己二腈的制备
(i)丁二烯的一次氢氰化反应
向装有5.0mmol(以镍计)四齿亚磷酸酯配体-镍催化剂A的反应器中加入丁二烯(BD)2.5mol,在反应温度为60~90℃和反应压力为2.0MPa的条件下缓慢加入2.0mol的HCN,加料结束后继续反应1.0h,反应结束后,取样通过GC分析产物的分布。
分析结果为,>99.9%的起始HCN被转化成3-戊烯腈(3PN)与2-甲基-3-丁烯腈(2M3BN),3PN和2M3BN总选择性为96.5%。同时3-戊烯腈(3PN)与2-甲基-3-丁烯腈(2M3BN)的比例(3PN/2M3BN)为72.3/27.7。
(ii)2-甲基-3-丁烯腈(2M3BN)的异构化:
从步骤(i)的反应产物分离得到2M3BN,将1.5mol的2M3BN加入装有3.0mmol(以镍计)四齿亚磷酸酯配体-镍催化剂A的反应器中,在反应温度为120~150℃和反应压力为1.2MPa的条件下反应8~10h,反应结束后,取样用GC(以戊腈为内标)分析产物3PN和2M3BN的分布。
结果为,2M3BN的转化率为93.2%,3PN选择性为95.0%。
(iii)3-戊烯腈(3PN)的二次氢氰化反应:
收集步骤(i)和步骤(ii)分离得到的3PN产物,将2.5mol的3PN和反应促进剂无水氯化锌10.0mmol加入装有7.5mmol(以镍计)四齿亚磷酸酯配体-镍催化剂A的反应器中,在反应温度为60~80℃和反应压力为1.2MPa的条件下缓慢滴加2.0mol的HCN。反应结束后,取样通过GC分析产物的分布。
分析以下结果,转为己二腈(ADN)产物的基于HCN的产率百分比,以及对线性己二腈的选择性以反应混合物中ADN的百分比表示。
测试结果为,>99.9%的HCN被转为己二腈及其类似物,线性ADN的选择性为83.1%。
实施例2~4
四齿亚磷酸酯配体L2~L4的制备
Figure PCTCN2022100184-appb-000016
除了将含有氯代亚磷酸酯C1的甲苯溶液分别改变为含有式C2~C4表示的氯代亚磷酸酯C2~C4的甲苯溶液以外,按照实施例1中四齿亚磷酸酯配体L1的制备方法,分别制备四齿亚磷酸酯配体L2~L4,其各自获得的量、收率和纯度如表2所示。
Figure PCTCN2022100184-appb-000017
四齿亚磷酸酯配体-镍催化剂B~D的制备
除了将四齿亚磷酸酯配体L1分别改变为上述获得的四齿亚磷酸酯配体L2~L4以外,按照实施例1中四齿亚磷酸酯配体-镍催化剂A的制备方法,分别制备四齿亚磷酸酯配体-镍催化剂B~D,所得催化剂的Ni含量示于表2中。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于分别采用催化剂B~D。
实施例5
四齿亚磷酸酯配体L5的制备
Figure PCTCN2022100184-appb-000018
在5℃下,向含有氯代亚磷酸酯C3(27.65g,66mmol)的甲苯溶液中滴加入含2,2',6,6'-四羟基联苯(6.55g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液中分别滴加氯代亚磷酸酯C1(12.51g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L5(18.54g),收率为42.3%,纯度为86.2%。
四齿亚磷酸酯配体-镍催化剂E的制备
在氮气氛围下,将11.6mmol四齿亚磷酸酯配体L5与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合并反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得四齿亚磷酸酯配体-镍络合物催化剂E,其镍含量为1.33mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂E。
实施例6
四齿亚磷酸酯配体L6的制备
Figure PCTCN2022100184-appb-000019
在5℃下,向含有氯代亚磷酸酯C4(31.49g,66mmol)的甲苯溶液中滴加入含2,2',6,6'-四羟基联苯(6.55g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液中分别滴加氯代亚磷酸酯C2(16.67g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L6(15.15g),收率为30.8%,纯度为93.4%。
四齿亚磷酸酯配体-镍催化剂F的制备
在氮气氛围下,将10.7mmol四齿亚磷酸酯配体L6与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得四齿亚磷酸酯配体-镍络合物催化剂F,其镍含量为1.16mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂F。
实施例7
四齿亚磷酸酯配体L7的制备
Figure PCTCN2022100184-appb-000020
在5℃下,向含有式C5表示的氯代亚磷酸酯C5(27.78g,66mmol)的甲苯溶液中滴加入含2,2',6,6'-四羟基-3,3'-二异丙基联苯(9.07g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液滴加氯代亚磷酸酯C1(12.51g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L7(8.60g),收率为19.6%,纯度为91.8%。
四齿亚磷酸酯配体-镍催化剂G的制备
在氮气氛围下,将10.9mmol四齿亚磷酸酯配体L7与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,经乙腈重结晶获得四齿亚磷酸酯配体-镍络合物催化剂G,其镍含量为1.25mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂G。
实施例8
四齿亚磷酸酯配体L8的制备
Figure PCTCN2022100184-appb-000021
在5℃下,向含有氯代亚磷酸酯C4(31.49g,66mmol)的甲苯溶液中加入含2,2',6,6'-四羟基-3,3'-二异丙基联苯(9.07g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液滴加氯代亚磷酸酯C2(16.67g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L8(13.95g),收率为24.6%,纯度为85.4%。
四齿亚磷酸酯配体-镍催化剂H的制备
在氮气氛围下,将11.7mmol四齿亚磷酸酯配体L8与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得四齿亚磷酸酯配体-镍络合物催化剂H,其镍含量为1.10mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂H。
实施例9
四齿亚磷酸酯配体L9的制备
Figure PCTCN2022100184-appb-000022
在5℃下,向含有氯代亚磷酸酯C3(27.65g,66mmol)的甲苯溶液中滴加入含2,2',6,6'-四羟基-3,3'-二甲基联苯(7.39g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液滴加氯代亚磷酸酯C1(12.51g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L9(15.87g),收率为38.7%,纯度为94.2%。
四齿亚磷酸酯配体-镍催化剂I的制备
在氮气氛围下,将10.6mmol四齿亚磷酸酯配体L9与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂后直接得到催化剂I,其镍含量为1.26mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂I。
实施例10
四齿亚磷酸酯配体L10的制备
Figure PCTCN2022100184-appb-000023
在5℃下,向含有氯代亚磷酸酯C4(31.49g,66mmol)的甲苯溶液中加入含2,2',6,6'-四羟基-3,3'-二甲基联苯(7.39g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液滴加氯代亚磷酸酯C2(16.67g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L10(16.36g),收率为29.3%,纯度为83.7%。
四齿亚磷酸酯配体-镍催化剂J的制备
在氮气氛围下,将11.9mmol四齿亚磷酸酯配体L10与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂后直接得到催化剂J,其镍含量为1.11mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂J。
实施例11
四齿亚磷酸酯配体L11的制备
Figure PCTCN2022100184-appb-000024
在5℃下,向含有氯代亚磷酸酯C3(27.65g,66mmol)的甲苯溶液中加入含2,2',6,6'-四羟基联苯(6.55g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液中滴加式C6表示的氯代亚磷酸酯C6(14.36g,66mmol)、三乙胺(6.80g, 67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L11(15.99g),收率为38.2%,纯度为94.3%。
四齿亚磷酸酯配体-镍催化剂K的制备
在氮气氛围下,将10.6mmol四齿亚磷酸酯配体L11与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得四齿亚磷酸酯配体-镍络合物催化剂K,其镍含量为1.31mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂K。
实施例12
四齿亚磷酸酯配体L12的制备
Figure PCTCN2022100184-appb-000025
在5℃下,向含有氯代亚磷酸酯C4(31.49g,66mmol)的甲苯溶液中加入含2,2',6,6'-四羟基联苯(6.55g,30mmol)、三乙胺(6.80g,67.2mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液中滴加式C7表示的氯代亚磷酸酯C7(22.23g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L12(16.16g),收率为29.5%,纯度为93.1%。
四齿亚磷酸酯配体-镍催化剂L的制备
在氮气氛围下,将10.7mmol四齿亚磷酸酯配体L12与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得四齿亚磷酸酯配体-镍络合物催化剂L,其镍含量为1.02mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂L。
实施例13
三齿亚磷酸酯配体L13的制备
Figure PCTCN2022100184-appb-000026
在5℃下,向含有氯代亚磷酸酯C3(13.83g,33mmol)的甲苯溶液中加入含2,2',6,-三羟基联苯(6.07g,30mmol)、三乙胺(3.40g,33.6mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液中滴加氯代亚磷酸酯C1(12.51g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L13(20.96g),收率为75.8%,纯度为93.4%。
三齿亚磷酸酯配体-镍催化剂M的制备
在氮气氛围下,将21.4mmol三齿亚磷酸酯配体L13与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂后直接得到催化剂M,其镍含量为0.93mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,其中一次氢氰化反应中催化剂M用量(以镍摩尔数计)为原料BD摩尔数的0.3%,异构化反应中催化剂M用量(以镍摩尔数计)为2M3BN摩尔数的0.3%,二次氢氰化反应中催化剂M用量(以镍摩尔数计)为3PN摩尔数的0.6%。
实施例14
三齿亚磷酸酯配体L14的制备
Figure PCTCN2022100184-appb-000027
在5℃下,向含有氯代亚磷酸酯C4(15.75g,33mmol)的甲苯溶液中加入含2,2',6-三羟基联苯(6.07g,30mmol)、三乙胺(3.40g,33.6mmol)的甲苯(200mL)溶液。加料结束后,继续保温反应2小时。接着,向反应液中滴加氯代亚磷酸酯C2(16.67g,66mmol)、三乙胺(6.80g,67.2mmol)的甲苯溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体L14(23.16g),收率为66.5%,纯度为92.6%。
三齿亚磷酸酯配体-镍催化剂N的制备
在氮气氛围下,将21.6mmol三齿亚磷酸酯配体L14与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得三齿亚磷酸酯配体-镍络合物催化剂N,其镍含量为0.84mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,其中一次氢氰化反应中催化剂N用量(以镍摩尔数计)为原料BD摩尔数的0.3%,异构化反应中催化剂N用量(以镍摩尔数计)为2M3BN摩尔数的0.3%,二次氢氰化反应中催化剂N用量(以镍摩尔数计)为3PN摩尔数的0.6%。
比较例1
双齿亚磷酸酯配体D1的制备
Figure PCTCN2022100184-appb-000028
在5℃下,向含有氯代亚磷酸酯C2(12.63g,50mmol)的甲苯溶液中加入含2,2'-二羟基联苯(4.47g,24mmol)、三乙胺(5.67g,56.0mmol)的甲苯(100mL)溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体D1(13.94g),收率为91.2%,纯度为97.1%。
双齿亚磷酸酯配体-镍催化剂Da的制备
在氮气氛围下,将20.6mmol双齿亚磷酸酯配体D1与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂后直接得到催化剂Da,其镍含量为1.22mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,其中一次氢氰化反应中催化剂Da用量(以镍摩尔数计)为原料BD摩尔数的0.4%,异构化反应中催化剂Da用量(以镍摩尔数计)为2M3BN摩尔数的0.4%,二次氢氰化反应中催化剂Da用量(以镍摩尔数计)为3PN摩尔数的0.6%。
比较例2
双齿亚磷酸酯配体D2的制备
Figure PCTCN2022100184-appb-000029
在5℃下,向含有式C8表示的氯代亚磷酸酯C8(12.53g,50mmol)的甲苯溶液中加入含2,2'-二羟基-5,5’-二甲基联苯(5.14g,24mmol)、三乙胺(5.67g,56.0mmol)的甲苯(100mL)溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体D2(13.94g),收率为84.5%,纯度为93.5%。
齿亚磷酸酯配体-镍催化剂Db的制备
在氮气氛围下,将21.4mmol双齿亚磷酸酯配体D2与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得双齿亚磷酸酯配体-镍络合物催化剂Db,其镍含量为1.19mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,其中一次氢氰化反应中催化剂Db用量(以镍摩尔数计)为原料BD摩尔数的0.4%,异构化反应中催化剂Db用量(以镍摩尔数计)为2M3BN摩尔数的0.4%,二次氢氰化反应中催化剂Db用量(以镍摩尔数计)为3PN摩尔数的0.6%。
比较例3
双齿亚磷酸酯配体D3的制备
Figure PCTCN2022100184-appb-000030
在5℃下,向含有氯代亚磷酸酯C7(16.84g,50mmol)的甲苯溶液中加入含2,2'-二羟基-3,3’,5,5’-四甲基联苯(5.82g,24mmol)、三乙胺(5.67g,56.0mmol)的甲苯(100mL)溶液。加料结束后,保温搅拌反应2h并将体系缓慢升温至25℃继续搅拌4h。随后,将反应液过滤除去三乙胺盐酸盐,除去溶剂,再通过柱层析(洗脱剂为乙酸乙酯/正己烷=1/200~1/100)分离纯化后得到配体D3(17.83g),收率为83.9%,纯度为95.2%。
双齿亚磷酸酯配体-镍催化剂Dc的制备
在氮气氛围下,将21.0mmol双齿亚磷酸酯配体D3与20mmol双(1,5-环辛二烯)镍加入到100mL甲苯中。接着,在50℃下混合反应10小时。反应结束后,脱除溶剂,通过乙腈溶剂降温重结晶获得双齿亚磷酸酯配体-镍络合物催化剂Dc,其镍含量为1.03mmol/g。
己二腈的制备
以与实施例1相同的方式进行制备和分析,其中一次氢氰化反应中催化剂Dc用量(以镍摩尔数计)为原料BD摩尔数的0.4%,异构化反应中催化剂Dc用量(以镍摩尔数计)为2M3BN摩尔数的0.4%,二次氢氰化反应中催化剂Dc用量(以镍摩尔数计)为3PN摩尔数的0.6%。
以上实施例所涉及的多齿亚磷酸酯配体、多齿亚磷酸酯配体-镍催化剂合成结果以及催化合成己二腈及其中间体结果汇总分别如表2和表3所示。
表2 多齿亚磷酸酯配体以及多齿亚磷酸酯配体-镍催化剂合成结果汇总
Figure PCTCN2022100184-appb-000031
Figure PCTCN2022100184-appb-000032
表3 多齿亚磷酸酯配体-镍催化剂催化合成己二腈及其中间体结果汇总
Figure PCTCN2022100184-appb-000033
从上表3可见,在本发明实施例1-14,通过在用于制备己二腈的催化剂中采用多齿亚磷酸酯配体,使获得的产品己二腈的线性选择性较高,并且催化剂的(以镍计)用量较少。
特别是,在实施例5-12中,四齿亚磷酸酯配体由两种氯代亚磷酸酯形成,即,该四齿亚磷酸酯配体为通式(I)中结构A 1与A 4不同,结构A 2与A 3不同,结构A 1与A 2或A 3相同,和结构A 4与A 3或A 2相同的化合物,由此获得的产品的线性选择性更高,并且催化剂的(以镍计)用量更少。
比较例1-3的催化剂采用双齿亚磷酸酯配体,与本发明实施例1-12相比,产品的线性选择性低,且 催化剂的以镍计的质量用量多。
实施例15 考察亚磷酸酯配体-镍催化剂用量对己二腈制备的影响
与以与实施例1相同的方式进行己二腈制备和分析,对催化剂的用量进行调整,其中一次氢氰化反应中催化剂用量(以镍摩尔数计)与原料BD摩尔百分比,异构化反应中催化剂用量(以镍摩尔数计)与2M3BN摩尔百分比,以及二次氢氰化反应中催化剂用量(以镍摩尔数计)与3PN摩尔百分比见下表4。具体的实验结果汇总如表4所示。
表4 催化剂用量对氢氰化反应和异构化反应的影响
Figure PCTCN2022100184-appb-000034
从上表可以看出,对于四齿亚磷酸酯配体制备获得的催化剂E、G和I,第一氢氰化、异构化、第二氢氰化三步反应的催化剂用量从0.2%/0.2%/0.3%下降到0.12%/0.12%/0.18%,反应效果依然稳定。而对于催化剂G和I,第一氢氰化、异构化、第二氢氰化三步反应的催化剂用量下降到0.10%/0.10%/0.15%,三步反应的转化率和选择性依然维持在同一水平。同样地,将双齿亚磷酸酯-镍催化剂Db、Dc的用量降低到0.2%/0.2%/0.3%时,三步反应的转化率都有明显的下降,氢氰酸的残留量明显升高。
以上结果表明,多齿亚磷酸酯-镍催化剂相比双齿亚磷酸酯-镍催化剂而言,具有更高的催化活性,在反应过程中的用量更低。
实施例16 使实施例6中的配体L7与比较例3中的配体D3进行耐水稳定性测定
分别称取配体L7和D3样品1.0g,在干燥的高纯氮气保护下,分别溶解在含水量为500ppm的3-戊烯腈溶液(20mL)中,50℃保存。通过高效液相色谱(HPLC)测定配体的含量(质量百分比)随时间的变化。具体实验结果如表5所示。
表5 配体L7和D3耐水稳定性测试结果
Figure PCTCN2022100184-appb-000035
Figure PCTCN2022100184-appb-000036
上表5中,配体L7样品中包括的其它相关杂质分别为L7-1、L7-2、L7-3、L7-4,配体D3样品中包括的其它相关杂质分别为D3-1、D3-2和D3-3,其中,L7-3、D3-2主要来源于配体合成过程中产生,其余物质由配体等经水解反应得到。
Figure PCTCN2022100184-appb-000037
反应式1 配体L7样品中各相关物质的水解副反应
Figure PCTCN2022100184-appb-000038
反应式2 配体D3样品中各相关物质的水解副反应
从表5可以看出,在同样的条件下,四齿亚磷酸酯配体L7对水的稳定性比双齿亚磷酸酯配体D3对水的稳定性好。四齿亚磷酸酯配体L7在前48小时内,表现出了相当好的耐水性,含量仅下降1.1%。48小时以后,由于水解产物的不断累积,配体溶液环境的酸性不算增强,造成了自催化水解现象,第48~96小时,配体含量从90.7%下降到88.7%。通过对比可以发现,双齿亚磷酸酯配体D3在前面48小时内含量从95.2%下降到90.5%,再经过48小时,配体含量继续下降到82.2%。
为了进一步对比四齿配体和双齿配体的耐水性,发明人将四齿亚磷酸酯配体L7和双齿亚磷酸酯配体D3共同溶解在水含量为500ppm的3-戊烯腈溶液中,观察两个配体的含量随时间的变化情况。实验情况如下:
分别称取配体L7和D3样品各1.0g,在干燥的高纯氮气保护下,共同溶解在含水量为500ppm的3-戊烯腈溶液(40mL)中,50℃保存。通过高效液相色谱(HPLC)测定配体的含量随时间的变化。具体实验结果如表6所示。
表6 配体L7和D3混合溶液的耐水稳定性测试结果
Figure PCTCN2022100184-appb-000039
由表6可见,在50℃下保存96小时,四齿亚磷酸酯配体L7表现出了更好的耐水性,经过96小时,四齿配体含量从46.0%下降到45.3%。而双齿亚磷酸酯配体D3,在96小时之内,含量从47.4%下降到了 40.2%。
由以上表5和表6的结果可以得出,本发明的多齿亚磷酸酯配体在耐水性方面比现有技术中的双齿亚磷酸酯配体更好。由此能够减少多齿亚磷酸酯配体在回收套用过程中的水解损失,能够降低配体和催化剂的消耗,降低己二腈生产成本。

Claims (12)

  1. 一种多齿亚磷酸酯配体在催化合成己二腈中的应用,所述多齿亚磷酸酯配体为由以下通式(I)表示的化合物,所述催化合成己二腈的方法包括依次进行的以下步骤:
    在第一催化剂存在下,使丁二烯与氢氰酸进行一次氢氰化反应;在第二催化剂存在下,使从所述一次氢氰化反应中获得的产物中分离出的支化单腈混合物进行支化单腈的异构化反应;在第三催化剂和反应促进剂的存在下,使从所述一次氢氰化反应和异构化反应中得到的产物中分离出的线性单腈混合物与氢氰酸进行二次氢氰化反应,得到含有己二腈的产物;
    其中,所述第一催化剂、第二催化剂和第三催化剂相同或不同,并且各自包括由镍前体和所述多齿亚磷酸酯配体组成的亚磷酸酯配体-零价镍络合物:
    Figure PCTCN2022100184-appb-100001
    式(I)中,R 0为-O-A 4、H、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或者取代或未取代的C 6~20的芳基;优选R 0为-O-A 4
    R 11~R 16彼此相同或不同,且各自独立地为氢、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或取代或未取代的C 6~20的芳基;优选为氢、或C 1~6的烷基;
    A 1、A 2、A 3和A 4彼此相同或不同,且各自独立地为
    Figure PCTCN2022100184-appb-100002
    各R 21和各R 22各自和彼此相同或不同,且各R 21和各R 22各自独立地为H、取代或未取代的C 1~6的烷基、取代或未取代的C 3~10的环烷基、C 1~6的酰基或取代或未取代的C 6~20的芳基;优选为H、取代或未取代的C 6~20的芳基;更优选为H、萘基、甲氧基取代的萘基、1,2,3,4-四氢萘或
    Figure PCTCN2022100184-appb-100003
    其中R x和R y彼此相同或不同,且各自独立地为氢、卤素、腈基、取代或未取代的C 1~10的烷基、取代或未取代的C 1~10的烷氧基;优选为氢、卤素、或C 1~6的烷基;并且
    R 21和R 22之间可以通过单键、C 1~6的亚烷基、亚苯基或者C 1~6的烷基取代的亚苯基键合成环;
    Q为单键、C 1~3的亚烷基、氧原子、氮原子、或者含有氧原子或氮原子的C 1~3的亚烷基;优选为单键、亚甲基或氧原子。
  2. 根据权利要求1所述的应用,其中,通式(I)中的结构A 1、A 2、A 3和A 4彼此相同或不同,并且各自独立地为以下结构中的一种:
    Figure PCTCN2022100184-appb-100004
  3. 根据权利要求1或2所述的应用,其中,通式(I)中的结构A 1、A 2、A 3和A 4各自独立地为以下结构中的一种:
    Figure PCTCN2022100184-appb-100005
  4. 根据权利要求1-3任一项所述的应用,其中,通式(I)中的结构A 1、A 2、A 3和A 4中的至少两个不同。
  5. 根据权利要求1-4任一项所述的应用,其中,通式(I)中,结构A 1与A 4不同,结构A 2与A 3不同,结构A 1与A 2或A 3相同,并且结构A 4与A 3或A 2相同。
  6. 根据权利要求1-5任一项所述的应用,其中,所述多齿亚磷酸酯配体的制备方法包括:
    在有机溶剂的存在下,使以下通式(II)所示的化合物、以下通式(III)所示的至少一种卤代亚磷化物和三乙胺反应,
    Figure PCTCN2022100184-appb-100006
    其中,R 0′表示-OH、H、C 1~6的烷基、取代或未取代的C 3~10的环烷基、或者取代或未取代的C 6~20的芳基;优选R 0′为-OH;
    R 11~R 16、R 21和R 22以及Q的定义与上述通式(I)中的相同,且X为卤素,优选为Cl或Br;并且,当通式(III)所示的至少一种卤代亚磷化物为多种时,多个R 21和多个R 22的各自和彼此相同或不同。
  7. 根据权利要求6所述的应用,其中,通式(II)所示的化合物的摩尔数、通式(III)所示的至少一种卤代亚磷化物的总摩尔数和三乙胺的摩尔数之比为1:3~6:3~6。
  8. 根据权利要求1-7任一项所述的应用,其中,所述第一催化剂、第二催化剂和第三催化剂彼此相同。
  9. 根据权利要求1-8任一项所述的应用,其中,所述镍前体与所述多齿亚磷酸酯配体的摩尔比为1:2~20。
  10. 根据权利要求1-9任一项所述的应用,其中,所述镍前体为单质镍、双(1,5-环辛二烯)镍、二茂镍、羰基镍、烯丙基(环戊二烯基)镍、四(三苯基膦)镍、双三苯基膦二羰基镍、双(乙基环戊二烯)镍、二(甲基环戊二烯基)镍、双(四甲基环戊二烯基)镍、Ni(acac) 2、Ni[P(O-o-C 6H 4CH 3) 3] 3和Ni[P(O-o-C 6H 4CH 3) 3] 2(C 2H 4)中的一种或者两种以上的混合物,其中,acac为乙酰丙酮,P(O-o-C 6H 4CH 3) 3为亚磷酸三(邻-甲苯基)酯;或者为二价镍化合物与还原剂的组合,其中所述二价镍化合物是二价镍的卤化物、羧酸盐或乙酰丙酮化物,所述还原剂包括金属硼氢化物、金属铝氢化物、烷基金属、Li、Na、K、Zn或H 2
  11. 根据权利要求1-10任一项所述的应用,其中,所述一次氢氰化反应中,所述丁二烯与氢氰酸的摩尔比为1.0~1.5,所述氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为1~1000:1,优选为10~70:1,反应温度为60~140℃,反应压力为0.1~5.0MPa;
    所述支化单腈的异构化反应中,所述支化单腈混合物的摩尔数与所述催化剂以零价镍计的摩尔数的比例为1~500:1,优选为50~200:1,反应温度为80~170℃,反应压力为0.1~5.0MPa;
    所述二次氢氰化反应中,所述线性单腈混合物与氢氰酸的摩尔比为1.0~1.5,氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为20~3000:1,优选20~500:1,反应温度为30~120℃,反应压力为0.1~5.0MPa。
  12. 根据权利要求1-11任一项所述的应用,其中,所述反应促进剂的摩尔数与所述催化剂以零价镍计的摩尔数的比例为0.05~2.5:1;所述反应促进剂为路易斯酸。
PCT/CN2022/100184 2021-10-15 2022-06-21 一种多齿亚磷酸酯配体在催化合成己二腈中的应用 WO2023060929A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22750655.7A EP4190769A4 (en) 2021-10-15 2022-06-21 USE OF A MULTIDENTATE PHOSPHITE LIGAND IN THE CATALYST SYNTHESIS OF ADIPONITRILE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111203682.2A CN113912516B (zh) 2021-10-15 2021-10-15 一种多齿亚磷酸酯配体在催化合成己二腈中的应用
CN202111203682.2 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023060929A1 true WO2023060929A1 (zh) 2023-04-20

Family

ID=79240922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100184 WO2023060929A1 (zh) 2021-10-15 2022-06-21 一种多齿亚磷酸酯配体在催化合成己二腈中的应用

Country Status (3)

Country Link
EP (1) EP4190769A4 (zh)
CN (1) CN113912516B (zh)
WO (1) WO2023060929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118307591A (zh) * 2024-06-06 2024-07-09 浙江新和成股份有限公司 用于合成己二腈的催化剂配体及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912516B (zh) * 2021-10-15 2023-06-27 浙江新和成股份有限公司 一种多齿亚磷酸酯配体在催化合成己二腈中的应用

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159799A (zh) 1994-10-07 1997-09-17 纳幕尔杜邦公司 氢氰化方法及所用多配位亚磷酸酯和镍催化剂复合物
WO1999052632A1 (en) 1998-04-16 1999-10-21 E.I. Du Pont De Nemours And Company Hydrocyanation of olefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles
CN1265093A (zh) * 1997-07-29 2000-08-30 纳幕尔杜邦公司 二烯烃的氢氰化和非共轭2-烷基-3-单烯烃腈的异构化
CN1356335A (zh) * 1995-01-27 2002-07-03 纳幕尔杜邦公司 亚磷酸酯衍生物,其制备方法以及含亚磷酸酯的催化剂前体
CN1387534A (zh) 1999-11-03 2002-12-25 巴斯福股份公司 亚磷酸酯
CN101484416A (zh) * 2006-07-14 2009-07-15 因温斯特技术公司 降低收率损失的氢氰化方法
CN101489992A (zh) * 2006-07-14 2009-07-22 因温斯特技术公司 通过丁二烯的氢氰化制备3-戊烯腈的方法
CN101676261A (zh) 2008-09-19 2010-03-24 于网林 己二腈生产工艺
CN102089275A (zh) * 2008-06-17 2011-06-08 罗地亚管理公司 由烯属不饱和化合物生产腈化合物的方法
CN103180290A (zh) 2010-07-07 2013-06-26 因温斯特技术公司 用于制备腈的方法
CN103664691A (zh) * 2013-12-27 2014-03-26 安徽省安庆市曙光化工股份有限公司 制备己二腈的方法
CN103804229A (zh) * 2014-02-17 2014-05-21 重庆中平紫光科技发展有限公司 丁二烯法合成己二腈中抑制含磷配体降解的方法
CN104379590A (zh) * 2012-06-01 2015-02-25 因温斯特技术公司 稳定氢氰化催化剂的方法
CN105188928A (zh) * 2012-12-07 2015-12-23 因温斯特技术公司 用于改善镍-配体的溶解性的组合物
CN111892514A (zh) * 2020-08-13 2020-11-06 阳泉煤业(集团)有限责任公司 一种丁二烯直接氢氰化制备己二腈的方法
CN111995547A (zh) * 2020-01-19 2020-11-27 浙江新和成股份有限公司 己二腈的制备方法和装置
CN112794948A (zh) * 2020-12-31 2021-05-14 浙江大学 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN113264847A (zh) * 2021-04-23 2021-08-17 浙江新和成股份有限公司 一种己二腈的制备方法
CN113372239A (zh) * 2021-07-21 2021-09-10 青岛普泰克化工有限公司 1,3-丁二烯与氰化氢反应制取c5单烯腈的方法
CN113416152A (zh) * 2021-08-02 2021-09-21 青岛普泰克化工有限公司 线性c5单烯腈与氰化氢反应制取己二腈的方法
CN113912516A (zh) * 2021-10-15 2022-01-11 浙江新和成股份有限公司 一种多齿亚磷酸酯配体在催化合成己二腈中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181095A1 (en) * 2012-06-01 2013-12-05 Invista North America S.A R.L. Stable ligand mixtures and processes for making same
CN111909207B (zh) * 2019-08-02 2023-09-15 广东欧凯新材料有限公司 一种新型联苯四齿亚膦酸酯配体的制备及其在混合/醚后碳四氢甲酰化反应中的应用
CN111909209A (zh) * 2020-08-10 2020-11-10 惠州凯特立斯科技有限公司 联苯四齿亚膦酸酯配体的制备方法
CN111848683A (zh) * 2020-07-16 2020-10-30 南方科技大学 联苯三齿亚磷酸酯配体及其制备方法和应用

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159799A (zh) 1994-10-07 1997-09-17 纳幕尔杜邦公司 氢氰化方法及所用多配位亚磷酸酯和镍催化剂复合物
CN1356335A (zh) * 1995-01-27 2002-07-03 纳幕尔杜邦公司 亚磷酸酯衍生物,其制备方法以及含亚磷酸酯的催化剂前体
CN1265093A (zh) * 1997-07-29 2000-08-30 纳幕尔杜邦公司 二烯烃的氢氰化和非共轭2-烷基-3-单烯烃腈的异构化
WO1999052632A1 (en) 1998-04-16 1999-10-21 E.I. Du Pont De Nemours And Company Hydrocyanation of olefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles
CN1387534A (zh) 1999-11-03 2002-12-25 巴斯福股份公司 亚磷酸酯
CN101484416A (zh) * 2006-07-14 2009-07-15 因温斯特技术公司 降低收率损失的氢氰化方法
CN101489992A (zh) * 2006-07-14 2009-07-22 因温斯特技术公司 通过丁二烯的氢氰化制备3-戊烯腈的方法
CN102089275A (zh) * 2008-06-17 2011-06-08 罗地亚管理公司 由烯属不饱和化合物生产腈化合物的方法
CN101676261A (zh) 2008-09-19 2010-03-24 于网林 己二腈生产工艺
CN103180290A (zh) 2010-07-07 2013-06-26 因温斯特技术公司 用于制备腈的方法
CN104379590A (zh) * 2012-06-01 2015-02-25 因温斯特技术公司 稳定氢氰化催化剂的方法
CN105188928A (zh) * 2012-12-07 2015-12-23 因温斯特技术公司 用于改善镍-配体的溶解性的组合物
CN103664691A (zh) * 2013-12-27 2014-03-26 安徽省安庆市曙光化工股份有限公司 制备己二腈的方法
CN103804229A (zh) * 2014-02-17 2014-05-21 重庆中平紫光科技发展有限公司 丁二烯法合成己二腈中抑制含磷配体降解的方法
CN111995547A (zh) * 2020-01-19 2020-11-27 浙江新和成股份有限公司 己二腈的制备方法和装置
CN111892514A (zh) * 2020-08-13 2020-11-06 阳泉煤业(集团)有限责任公司 一种丁二烯直接氢氰化制备己二腈的方法
CN112794948A (zh) * 2020-12-31 2021-05-14 浙江大学 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN113264847A (zh) * 2021-04-23 2021-08-17 浙江新和成股份有限公司 一种己二腈的制备方法
CN113372239A (zh) * 2021-07-21 2021-09-10 青岛普泰克化工有限公司 1,3-丁二烯与氰化氢反应制取c5单烯腈的方法
CN113416152A (zh) * 2021-08-02 2021-09-21 青岛普泰克化工有限公司 线性c5单烯腈与氰化氢反应制取己二腈的方法
CN113912516A (zh) * 2021-10-15 2022-01-11 浙江新和成股份有限公司 一种多齿亚磷酸酯配体在催化合成己二腈中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4190769A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118307591A (zh) * 2024-06-06 2024-07-09 浙江新和成股份有限公司 用于合成己二腈的催化剂配体及其制备方法和应用

Also Published As

Publication number Publication date
EP4190769A4 (en) 2023-11-08
EP4190769A1 (en) 2023-06-07
CN113912516B (zh) 2023-06-27
CN113912516A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2023060929A1 (zh) 一种多齿亚磷酸酯配体在催化合成己二腈中的应用
RU2283831C2 (ru) Способ гидроцианирования диолефиновых соединений или соединений, содержащих по меньшей мере одну этиленовую связь и цианогруппу
TWI236465B (en) Multidentate phosphite ligands, catalytic compositions containing such ligands and catalytic processes utilizing such catalytic compositions
TWI235144B (en) Multidentate phosphite ligands, catalytic compositions containing such ligands and catalytic processes utilizing such catalytic compositions
MXPA02003764A (es) Fosfitos.
BRPI0507193B1 (pt) Processo para hidrocianar continuamente 1,3-butadieno
EP1073520B1 (en) Hydrocyanation of olefins and isomerisation of nonconjugated 2-alkyl-3-monoalkenenitriles
CN102300843B (zh) 含有腈官能团的化合物的制备方法
KR20060040585A (ko) 불포화 화합물의 시안화수소화 방법
KR20080031521A (ko) 디니트릴 제조 방법
JP5710508B2 (ja) 有機リン化合物、該化合物を含む触媒系及び該触媒を使用するヒドロシアン化又はヒドロホルミル化方法
CN102482204B (zh) 由烯属不饱和化合物生产腈化合物的方法
RU2530018C2 (ru) Фосфорорганические соединения, каталитические системы, содержащие эти соединения, и способ гидроцианирования с использованием этих каталитических систем
CN114105817B (zh) 1,3-丁二烯氢氰化连续制备己二腈的方法
KR20140082669A (ko) 에틸렌성 불포화 화합물로부터의 니트릴 화합물 제조 방법
EP2937355B1 (en) Phosphorus compound and transition metal complex of the same
CN118307591A (zh) 用于合成己二腈的催化剂配体及其制备方法和应用
KR100714324B1 (ko) 다좌 포스파이트 리간드, 및 이를 함유하는 촉매 조성물
Grigg et al. Cyclometallated Ir (III), Rh (III) and Ru (II) complexes as catalysts for the cyclotrimerisation of 1, 6-diynes with monoynes
Guard Synthesis and Reactivity of Organometallic and Coordination Complexes of Mg and Ni

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17800452

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022750655

Country of ref document: EP

Effective date: 20220817

NENP Non-entry into the national phase

Ref country code: DE