WO2023050882A1 - 用于超表面加工的光刻系统及方法 - Google Patents

用于超表面加工的光刻系统及方法 Download PDF

Info

Publication number
WO2023050882A1
WO2023050882A1 PCT/CN2022/098338 CN2022098338W WO2023050882A1 WO 2023050882 A1 WO2023050882 A1 WO 2023050882A1 CN 2022098338 W CN2022098338 W CN 2022098338W WO 2023050882 A1 WO2023050882 A1 WO 2023050882A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear displacement
lithography
displacement platform
supersurface
axis linear
Prior art date
Application number
PCT/CN2022/098338
Other languages
English (en)
French (fr)
Inventor
郝成龙
谭凤泽
朱健
Original Assignee
深圳迈塔兰斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈塔兰斯科技有限公司 filed Critical 深圳迈塔兰斯科技有限公司
Publication of WO2023050882A1 publication Critical patent/WO2023050882A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection

Definitions

  • the present application relates to the technical field of supersurface processing, and in particular, relates to a photolithography system and method for supersurface processing.
  • the common process for processing metasurfaces is photolithography, which covers a layer of highly photosensitive photoresist on the surface of a wafer (usually a silicon wafer), and then uses light (usually ultraviolet light, deep ultraviolet light, extreme ultraviolet light, extreme ultraviolet light, etc.) Ultraviolet light) is irradiated on the surface of the wafer through the mask, and the photoresist irradiated by the light will react. After that, the irradiated/unirradiated photoresist is washed away with a specific solvent, and the transfer of the circuit pattern from the mask to the photoresist is realized. After the photolithography is completed, the part of the silicon wafer that is not protected by the photoresist is etched, and finally the remaining photoresist is washed away to realize the construction process of the metasurface nanostructure on the wafer surface.
  • a photolithography machine used for semiconductor processing usually includes a UV light source, an exposure projection system, and an ultra-high-precision workbench.
  • the ultra-high-precision workbench refers to a workbench whose precision reaches nanometer precision.
  • the embodiments of the present application provide a photolithography system and method for supersurface processing, so as to solve the problem of high cost of supersurface processing.
  • an embodiment of the present application provides a lithography system for supersurface processing, including a light source, an exposure projection system, and a double-sided mark alignment system for aligning the first and second sides of a lithographic object
  • the double-sided mark alignment system includes a collimated light source, a microscopic system, a workbench and a control system, in order to perform double-sided exposure alignment of the photolithography system of the metasurface
  • the photolithography system also includes: for alignment Marking unit for alignment mark of lithography object;
  • the workbench is used to realize the movement and/or rotation of the lithography object, and the precision of the workbench is hundreds of nanometers to micron level precision;
  • the light source and the exposure projection system are configured to, with the lithographic object aligned by means of the double-sided mark alignment system, respectively perform a first and second side image on the lithographic object. exposure.
  • the lithographic object includes a planar lithographic object or a non-planar lithographic object.
  • the non-planar lithographic object includes a stepped lithographic object.
  • the marking unit includes coarse alignment marks and fine alignment marks.
  • the shape of the marking unit includes one or more of a cross, a comb, a rectangle, a circle and a ring.
  • the marking unit is made of a material that is opaque to near-infrared light.
  • the collimated light source includes a near-infrared LED and a collimated lens.
  • the wavelength of radiation emitted by the collimated light source has an extinction coefficient of less than 0.01 for the lithography object, and after collimation, the divergence angle should be less than 10°
  • the wavelength of the radiation emitted by the collimated light source has an extinction coefficient of less than 0.01 for the material of the glass wafer, and after collimation, the divergence angle should be less than 10°.
  • the microscopic system includes a microscopic objective lens, a connecting tube and an imaging detector;
  • the microscopic objective lens and the imaging detector are respectively located at two ends of the connecting tube; the length of the connecting tube is the back intercept of the microscopic objective lens.
  • the connecting pipe is used to shield ambient light to improve the signal-to-noise ratio.
  • the transmittance of the microscope objective lens to the radiation emitted by the collimated light source is greater than 80%.
  • the connecting pipe is provided with a cantilever-type fixed structure to support the entire microscopic system.
  • the imaging detector is a detector working in the infrared light band, and the total number of pixels is greater than 300,000.
  • the workbench includes a posture adjustment device and a carrier;
  • the carrier is detachably connected to the pose adjusting device; the carrier is used to fix the lithography object, and the pose adjusting device is used to adjust the position and/or attitude of the carrier , so that the position and/or attitude of the lithography object is adjusted.
  • the posture adjustment device includes an X-axis linear displacement platform, a Y-axis linear displacement platform, a Z-axis linear displacement platform, and a rotating platform;
  • the Z-axis linear displacement platform is fixedly installed perpendicular to the horizontal plane;
  • the Y-axis linear displacement platform is connected to the displacement member of the Z-axis linear displacement platform, and the Y-axis linear displacement platform is perpendicular to the Z-axis linear displacement platform;
  • the X-axis linear displacement platform is connected to the displacement member of the Y-axis linear displacement platform, and the X-axis linear displacement platform is perpendicular to the Y-axis linear displacement platform and the Z-axis linear displacement platform respectively;
  • the rotating platform is connected to the displacement member of the X-axis linear displacement platform;
  • the Z axis is a direction perpendicular to the horizontal plane, and the X axis and the Y axis are respectively perpendicular to the Z axis.
  • the embodiment of the present application also provides a photolithography method for supersurface processing, using any of the above photolithography systems for supersurface processing, the method comprising:
  • Step S1 setting the marking unit on the edge of the first surface of the lithographic object
  • Step S2 positioning the first surface and taking a picture and recording it as an initial picture
  • Step S3 exposing the first surface
  • Step S4 after the exposure of the first surface is completed, aligning the second surface of the lithography object by using the initial image;
  • Step S5 exposing the second surface.
  • the lithography system for supersurface processing uses a collimated light source to image the marking unit on the first surface of the lithographic object, so that the marking unit is located in the center of the field of view of the microscopic system and is taken as an initial picture; By aligning the marking unit with the marking unit in the initial picture when the second surface of the lithographic object is placed, the alignment of the second surface of the lithographic object is realized.
  • the lithography processing of the metasurface is realized through the middle-precision movement of the worktable with a precision of 100 nanometers to microns; High-precision workbench, which reduces the cost of photolithography systems for metasurface processing, thereby reducing the cost of metasurface processing.
  • the lithography system also enables the fabrication of metasurfaces on non-planar substrates through movement and/or rotation of the stage during exposure.
  • FIG. 1 shows an optional structural schematic diagram of a photolithography system for metasurface processing provided by an embodiment of the present application
  • Fig. 2 shows a schematic diagram of the alignment of the marking unit of the photolithography system for supersurface processing provided by the embodiment of the present application;
  • FIG. 3 shows an optional misalignment schematic diagram of the marking unit of the photolithography system for supersurface processing provided by the embodiment of the present application
  • FIG. 4 shows another optional misalignment schematic diagram of the marking unit of the photolithography system for supersurface processing provided by the embodiment of the present application
  • FIG. 5 shows another optional misalignment schematic diagram of the marking unit of the photolithography system for supersurface processing provided by the embodiment of the present application
  • FIG. 6 shows a schematic flowchart of a photolithography method for metasurface processing provided by an embodiment of the present application.
  • 31-collimated light source 32-microsystem; 33-workbench; 34-control system;
  • 321-microscopic objective lens 322-connecting tube; 323-imaging detector;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be A mechanical connection can also be an electrical connection: it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.” If there is no conflict, the features in the following embodiments and implementations can be combined with each other. Embodiments of the present application are described below with reference to the drawings in the embodiments of the present application.
  • FIG. 1 shows a schematic diagram of an optional structure of a photolithography system for metasurface processing provided by an embodiment of the present application.
  • the system includes a light source 1, an exposure projection system 2, and a double-sided mark alignment system for aligning the first and second faces of a lithographic object 4, the double-sided mark alignment system including a collimated light source 31.
  • Microsystem 32, workbench 33 and control system 34 In order to perform double-sided exposure alignment of the lithography system for metasurfaces, the lithography system for supersurface processing also includes: aligning the lithography object 4 Marking unit 5 for quasi-marking.
  • the workbench 33 is used to realize the movement and/or rotation of the lithographic object 4 , and the precision of the workbench 33 is hundreds of nanometers to micron level.
  • the control system 34 is used to control the stage 33 and the microscopic system 32 .
  • the light source 1 and the exposure projection system 2 are configured to expose the lithographic object 4 on the first side and the second side, respectively, with the lithographic object 4 aligned by means of a double-sided mark alignment system.
  • the lithographic object 4 includes a planar lithographic object or a non-planar lithographic object.
  • planar lithographic objects include wafers or planar substrates; non-planar lithographic objects include stepped substrates or curved substrates, such as free-form substrates or discrete curved substrates.
  • the collimated light source 31 includes a light source (such as a near-infrared LED) and a collimating lens.
  • the light source and collimating lens can be integrated into one device.
  • the wavelength of the radiation (ie collimated light) generated by the light source has an extinction coefficient of less than 0.01 for the lithography object 4 (eg glass wafer), and the divergence angle after collimation is less than 10°.
  • the radiation generated by the light source includes near-infrared, mid-infrared, far-infrared, laser and visible light.
  • the near-infrared light generated by the light source includes incoherent light with wavelengths of 850nm, 940nm, 1310nm and 1550nm, and the divergence angle of the near-infrared light generated by the near-infrared light source after collimation is less than 10°.
  • the implementation of the photolithography system for metasurface processing provided by the embodiment of the present application is as follows:
  • the system includes a light source 1, an exposure projection system 2, and a double-sided mark alignment system for aligning the first and second faces of a lithographic object 4, and the double-sided mark alignment system includes a collimated light source 31, a microscope system 32 , workbench 33 and control system 34, in order to carry out double-sided exposure alignment of the lithography system of the metasurface, the lithography system for supersurface processing also includes: a marking unit 5 for aligning the lithography object 4 .
  • the workbench 33 is used to realize the movement and/or rotation of the lithographic object 4 , and the precision of the workbench 33 is hundreds of nanometers to micron level.
  • the light source 1 and the exposure projection system 2 are configured to expose the lithographic object 4 on the first side and the second side, respectively, with the lithographic object 4 aligned by means of a double-sided mark alignment system.
  • the movement modes of the light source 1 and the exposure projection system 2 include stepping, scanning or a combination of stepping and scanning.
  • the light source 1 is arranged above the exposure projection system 2
  • the double-sided mark alignment system is arranged below the exposure projection system 2
  • the lithography object 4 is arranged on the stage 33 of the double-sided mark alignment system.
  • the collimated light source 31 and the optical axis of the microscopic objective lens of the microscopic system 32 are coincidently arranged oppositely.
  • the microscope system 32 and the workbench 33 are respectively connected with the control system 34 .
  • the relative positions of the light source 1 , the exposure projection system 2 , the collimated light source 31 and the microscopic system 32 are fixed.
  • the lithography object 4 is set on the workbench 33 , and the marking unit 5 is set at the edge of the lithography object 4 .
  • the control table 33 moves the lithographic object 4 between the microsystem 32 and the collimated light source 31 , so that the marking unit 5 is located in the field of view of the microscopic objective lens of the microsystem 32 .
  • the lithography object 4 is moved and/or rotated by the worktable 33 , so that the marking unit 5 is located at the center of the field of view of the microscope objective lens of the microsystem 32 , and the marking unit 5 is perpendicular to the optical axis of the collimated light source 31 .
  • the microscopic system 32 takes a photo of the marking unit 5 and records it as an initial picture, and records the center point of the initial picture as the coordinate origin (0, 0, 0).
  • the lithography object 4 is moved under the exposure projection system 2 to perform the first surface exposure.
  • the focus position of the exposure projection device 2 is determined as the first coordinate
  • the center point of the area to be exposed of the lithographic object 4 is determined as the second coordinate.
  • the vector required to move the center point of the area to be exposed to the first coordinate for photolithography can be calculated as the first vector.
  • the second surface of the lithographic object 4 is placed on the workbench 33 .
  • the lithography object 4 is moved so that the marking unit 5 is located in the field of view of the microscope objective lens of the microscope system 32 .
  • the alignment ends when the photoresist object 4 is moved or rotated by the worktable 33 so that the imaging of the marking unit 5 in the microscope system 32 coincides with the marking unit 5 in the initial picture.
  • the height of the photolithographic object 4 is lowered by the worktable 33, the moving distance is the thickness of the photolithographic object 4, and the center of the marking unit 5 on the recording second surface is the coordinate origin (0, 0, 0).
  • the lithographic object 4 is first moved down by the thickness of the lithographic object 4 . Then move the lithography object 4 to the position corresponding to the first surface structure under the exposure projection system 2 , that is, the position of the first coordinate to perform the second surface exposure. At this time, the movement vector is equal to the first vector.
  • the second coordinates are the coordinates of the center of the equivalent plane of the area to be exposed
  • the first vector further includes a rotation vector.
  • the lithography object 4 is rotated according to the rotation vector, so that the normal of the equivalent plane of the region to be exposed coincides with the optical axis of the exposure projection system 2 . Since the writing field of the exposure projection device 2 is only a few micrometers, the non-planar curvature change within the writing field range can be ignored, which can be equivalent to a plane.
  • the equivalent method is as follows:
  • the positions of the light source 1 , the exposure projection system 2 and the double-sided mark alignment system are not limited to being placed up and down. As long as the light source 1 is able to project an image or structure onto the lithographic object 4 via the exposure projection system 2 .
  • the marking unit 5 includes a coarse alignment mark 51 and a fine alignment mark 52 .
  • the imaging of the marking unit 5 in the microscope system 32 coincides with both the coarse alignment mark 51 and the fine alignment mark 52 of the marking unit 5 in the initial picture, the alignment is completed.
  • the material of the marking unit 5 is opaque to the collimated light emitted by the collimated light source 31 .
  • the material of the marking unit 5 is a material opaque to near-infrared light.
  • the shape of the marking unit 5 includes one or more of cross, comb, rectangle, circle and ring.
  • the shapes of the coarse alignment mark 51 and the fine alignment mark 52 include one or more of a cross shape, a comb shape, a rectangle, a circle and a ring shape.
  • 2 to 5 show the imaging of the marking unit 5 in the microscope system 32 and the alignment and misalignment of the marking unit 5 in the initial pictures.
  • the workbench 33 includes a posture adjustment device 331 and a carrier 332 , and the carrier 332 is detachably connected to the posture adjustment device 331 .
  • the carrier 332 is used to fix the lithography object 4
  • the posture adjustment device 331 is used to adjust the position and/or posture of the carrier 332 so that the position and/or posture of the lithography object 4 can be adjusted.
  • the maximum displacement stroke of the pose adjustment device 331 is greater than the size of the lithographic object 4, the rotation stroke of the pose adjustment device 331 is 360°, and the minimum rotation angle of the pose adjustment device 331 is less than or equal to 0.1°.
  • the minimum rotation angle of the posture adjustment device 331 refers to the smallest angle at which the posture adjustment device 331 can rotate.
  • Position adjustment includes movement along at least one of X axis, Y axis and Z axis; attitude adjustment includes rotation around at least one of X axis, Y axis and Z axis.
  • the Z axis is a direction perpendicular to the horizontal plane, and the X axis and the Y axis are respectively perpendicular to the Z axis.
  • the carrier 332 is used to fix the lithographic object 4 , and the corresponding carrier 332 can be selected according to the shape of the lithographic object 4 . For example, when the lithographic object 4 is a wafer, the carrier 332 is an object stage; when the lithographic object 4 is a non-planar substrate, the carrier 332 is a holder.
  • the imaging of the marking unit 5 in the microscopic system 32 completely coincides with the marking unit 5 in the initial picture, and the second surface of the lithography object 4 is aligned.
  • the imaging of the marking unit 5 in the microscopic system 32 is not aligned with the marking unit 5 in the initial picture in the X-axis direction, and the position of the carrier 332 needs to be adjusted along the X-axis direction by a posture adjustment device 331 , so that the imaging of the marking unit 5 in the microscope system 32 completely coincides with the marking unit 5 in the initial picture, as shown in FIG. 2 .
  • the imaging of the marking unit 5 in the microscope system 32 is not aligned with the marking unit 5 in the initial picture in the Y-axis direction, and the position of the carrier 332 needs to be adjusted along the Y-axis direction by a posture adjustment device 331 , so that the imaging of the marking unit 5 in the microscope system 32 completely coincides with the marking unit 5 in the initial picture, as shown in FIG. 2 .
  • the imaging of the marking unit 5 in the microscope system 32 is not aligned with the angle at which the marking unit 5 rotates around the Z axis in the initial picture, and the carrier needs to be adjusted around the Z axis through the pose adjustment device 331 332, so that the imaging of the marking unit 5 in the microscope system 32 completely coincides with the marking unit 5 in the initial picture, as shown in FIG. 2 .
  • the coarse alignment mark 51 is used to complete the alignment along the X and Y axes, and then the fine alignment mark 52 is used to determine the imaging and initial picture of the marking unit 5 in the microscopic system 32
  • the marking unit 5 is aligned at an angle of rotation around the Z axis.
  • the posture adjustment device 331 includes an X-axis linear displacement platform 3311, a Y-axis linear displacement platform 3312, a Z-axis linear displacement platform 3313 and a rotating platform 3314.
  • the system includes a light source 1, an exposure projection system 2, and a double-sided mark alignment system for aligning the first surface and the second surface of a lithography object 4, and the double-sided mark alignment system includes Collimated light source 31, microscopic system 32, workbench 33 and control system 34, in order to carry out double-sided exposure alignment of the lithography system of the metasurface, the lithography system for supersurface processing also includes: 4 Marking unit 5 for alignment marks.
  • the workbench 33 includes a posture adjustment device 331 and a carrier 332 .
  • the posture adjustment device 331 includes an X-axis linear displacement platform 3311 , a Y-axis linear displacement platform 3312 , a Z-axis linear displacement platform 3313 and a rotation platform 3314 .
  • the Z-axis linear displacement platform 3313 is fixed and installed perpendicular to the horizontal plane; the Y-axis linear displacement platform 3312 is connected with the displacement parts of the Z-axis linear displacement platform 3313, and the Y-axis linear displacement platform 3312 is perpendicular to the Z-axis linear displacement platform 3313; the X-axis The linear displacement platform 3311 is connected to the displacement member of the Y-axis linear displacement platform 3312, and the X-axis linear displacement platform 3311 is perpendicular to the Y-axis linear displacement platform 3312 and the Z-axis linear displacement platform 3313 respectively.
  • the rotating platform 3314 is connected with the displacement member of the X-axis linear displacement platform 3311; the conveying platform 3314 at least rotates around the Z-axis.
  • the collimated light source 31 and the microscopic system 32 are installed oppositely, and the optical axes are parallel to the Z axis.
  • the light source 1 and the exposure projection system 2 are configured to expose the lithographic object 4 on the first side and the second side, respectively, with the lithographic object 4 aligned by means of a double-sided mark alignment system.
  • the implementation of the lithography system for metasurface processing provided in the embodiment of the present application is as follows:
  • the wafer is set on the workbench 33, and the marking unit 5 is set at the edge of the wafer.
  • the control table 33 moves the wafer between the microsystem 32 and the collimated light source 31 , so that the marking unit 5 is located in the field of view of the microscopic objective lens of the microsystem 32 .
  • the wafer is moved and rotated by the workbench 33 , so that the marking unit 5 is located at the center of the field of view of the microscope objective lens of the microscope system 32 , and the marking unit 5 is perpendicular to the optical axis of the collimated light source 31 .
  • the microscopic system 32 takes a photo of the marking unit 5 and records it as an initial picture, and records the center point of the picture as the coordinate origin (0, 0, 0).
  • the focus position of the exposure projection device 2 is determined as the first coordinate
  • the center point of the area to be exposed of the lithographic object 4 is determined as the second coordinate.
  • the vector that needs to be moved to move the central point of the area to be exposed to the first coordinate for photolithography can be calculated as the first vector.
  • the second side of the wafer is placed on the workbench 33 .
  • the wafer is moved so that the marking unit 5 is located in the field of view of the microscope objective lens of the microscope system 32 .
  • the alignment ends when the wafer is moved or rotated by the workbench 33 so that the imaging of the marking unit 5 in the microscope system 32 coincides with the marking unit 5 in the initial picture.
  • the height of the wafer is lowered by the workbench 33, the moving distance is the height of the wafer, and the center of the marking unit 5 on the second surface is recorded as the coordinate origin (0, 0, 0). Move the wafer to a position corresponding to the first surface structure under the exposure projection system 2 to perform second surface exposure.
  • the maximum displacement travel of the X-axis linear displacement platform 3311 , the Y-axis linear displacement platform 3312 , and the Z-axis linear displacement platform 3313 is greater than the diameter of the wafer.
  • the rotation stroke of the rotation platform 334 is 360°, and the minimum rotation angle is not greater than 0.1°.
  • the maximum displacement strokes of the X-axis linear displacement platform 3311 , the Y-axis linear displacement platform 3312 , and the Z-axis linear displacement platform 3313 are greater than 150 mm.
  • the alignment of the first surface and the second surface of the lithographic object 4 is the same as when the lithographic object 4 is a wafer.
  • the implementation of the lithography system for metasurface processing provided by the embodiment of the present application is as follows:
  • the implementation of the photolithography system for supersurface processing provided by the embodiment of the present application is as follows: the first surface of the free-form surface substrate is set upward on the workbench 33, and the marking unit 5 is set on the The location of the edge of the first face of the base of the freeform surface. Control the posture adjustment device 331 to move the free-form surface substrate between the microsystem 32 and the collimated light source 31 , so that the marking unit 5 is located in the field of view of the microscopic objective lens of the microsystem 32 .
  • the free-form surface substrate is moved and/or rotated by the posture adjustment device 331 , so that the marking unit 5 is located at the center of the field of view of the microscopic objective lens of the microsystem 32 , and the marking unit 5 is perpendicular to the optical axis of the collimated light source 31 .
  • the microscopic system 32 takes a photo of the marking unit 5 and records it as an initial picture, and records the center point of the picture as the coordinate origin (0, 0, 0). Move the free-form surface substrate under the exposure projection system 2 to perform the first surface exposure.
  • the equivalent plane of the to-be-exposed area of the free-form surface substrate on the carrier 332 is kept perpendicular to the optical axis of the exposure projection system 2 through the posture adjustment device 331 until the exposure of the first surface is completed.
  • the free-form surface substrate is placed on the workbench 33 with the second surface facing upward.
  • the free-form surface substrate is moved so that the marking unit 5 is located in the field of view of the microscope objective lens of the microscope system 32 .
  • the alignment ends when the wafer is moved or rotated by the workbench 33 so that the imaging of the marking unit 5 in the microscope system 32 coincides with the marking unit 5 in the initial picture.
  • the height of the free-form surface substrate is lowered by the workbench 33, the moving distance is the thickness of the free-form surface substrate at the coordinate position, and the center of the second surface marking unit 5 is recorded as the coordinate origin (0, 0, 0).
  • the maximum displacement travel of the X-axis linear displacement platform 3311 , the Y-axis linear displacement platform 3312 , and the Z-axis linear displacement platform 3313 is greater than the diameter of the wafer.
  • the rotation stroke of the rotation platform 334 is 360°, and the minimum rotation angle is not greater than 0.1°.
  • the maximum displacement strokes of the X-axis linear displacement platform 3311 , the Y-axis linear displacement platform 3312 , and the Z-axis linear displacement platform 3313 are greater than 150 mm.
  • the posture adjustment device 331 is not limited to the combination of linear displacement platforms and rotary platforms.
  • the microscopic system 32 provided in the embodiment of the present application includes a microscopic objective lens 321 , a connecting tube 322 and an imaging detector 323 .
  • the microscopic objective lens 321 is a microscope
  • the microscopic objective lens 321 and the imaging detector 323 are respectively located at two ends of the connecting tube 322 .
  • the length of the connecting tube 322 is the back intercept of the microscope objective lens 321, and the connecting tube 322 is also used to shield ambient light to improve the signal-to-noise ratio.
  • the connecting pipe 322 is provided with a cantilever-type fixed structure to support the entire microsystem 32 .
  • the working wavelength band of the imaging detector 323 is the infrared light band, and the total number of pixels is greater than 300,000.
  • the imaging detector 323 may be a Complementary Metal Oxide Semiconductor (CMOS, Complementary Metal Oxide Semiconductor), or a Charge Coupled Device (CCD, Charge Couple Device).
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the magnification of the microscope objective lens 321 is 60x
  • the numerical aperture is 0.75.
  • the transmittance of the microscopic objective lens 321 to the collimated light emitted by the collimated light source 31 is high, for example, the transmittance of the microscopic objective lens 321 to near-infrared light is greater than 80%.
  • the lithography system includes a light source 1, an exposure projection system 2, and a double-sided mark alignment system for aligning the first and second faces of a lithographic object 4, and the double-sided mark alignment system includes a collimated light source 31, Microsystem 32, workbench 33 and control system 34, in order to carry out the double-sided exposure alignment of the lithography system of the metasurface, the lithography system for supersurface processing also includes: making alignment marks on the lithography object 4 Marking unit 5.
  • the workbench 33 is used to realize the movement and rotation of the lithographic object 4 , and the precision of the workbench 33 is hundreds of nanometers to micrometers.
  • the light source 1 and the exposure projection system 2 are configured to expose the lithographic object 4 on the first side and the second side, respectively, with the lithographic object 4 aligned by means of a double-sided mark alignment system.
  • the workbench 33 includes a posture adjustment device 331 and a carrier 332 , and the carrier 332 is detachably connected to the posture adjustment device 331 .
  • the carrier 332 is used to fix the lithography object 4
  • the posture adjustment device 331 is used to adjust the position and/or posture of the carrier 332 so that the position and/or posture of the lithography object 4 can be adjusted.
  • the maximum displacement stroke of the pose adjustment device 331 is greater than the size of the lithography object 4, the rotation stroke of the pose adjustment device 331 is 360°, and the minimum rotation angle of the pose adjustment device 331 is less than or equal to 0.1°.
  • the minimum rotation angle of the posture adjustment device 331 refers to the smallest angle at which the posture adjustment device 331 can rotate.
  • the posture adjustment device 331 includes an X-axis linear displacement platform 3311 , a Y-axis linear displacement platform 3312 , a Z-axis linear displacement platform 3313 and a rotation platform 3314 .
  • the Z-axis linear displacement platform 3313 is fixed and installed perpendicular to the horizontal plane;
  • the Y-axis linear displacement platform 3312 is connected with the displacement parts of the Z-axis linear displacement platform 3313, and the Y-axis linear displacement platform 3312 is perpendicular to the Z-axis linear displacement platform 3313;
  • the X-axis The linear displacement platform 3311 is connected to the displacement member of the Y-axis linear displacement platform 3312, and the X-axis linear displacement platform 3311 is perpendicular to the Y-axis linear displacement platform 3312 and the Z-axis linear displacement platform 3313 respectively.
  • the rotating platform 334 is connected with the displacement member of the X-axis linear displacement platform 3311 .
  • the collimated light source 31 and the microscopic system 32 are installed oppositely, and the optical axes are parallel to the Z axis.
  • the radiation emitted by the collimated light source 31 is incoherent near-infrared light with a wavelength of 940nm, and the divergence angle of the near-infrared light after collimation is less than 10°.
  • the microscopic system 32 includes a microscopic objective lens 321 , a connecting tube 322 and an imaging detector 323 .
  • the microscopic objective lens 321 is a microscope
  • the microscopic objective lens 321 and the imaging detector 323 are respectively located at two ends of the connecting tube 322 .
  • the length of the connecting tube 322 is the back intercept of the microscope objective lens 321, and the connecting tube 322 is also used to shield ambient light to improve the signal-to-noise ratio.
  • the light source 1 is arranged above the exposure projection system 2
  • the double-sided mark alignment system is arranged below the exposure projection system 2
  • the lithography object 4 is arranged on the stage 33 of the double-sided mark alignment system.
  • the collimated light source 31 and the optical axis of the microscopic objective lens of the microscopic system 32 are coincidently arranged oppositely.
  • the microscope system 32 and the workbench 33 are respectively connected with the control system 34 .
  • the lithography object 4 is set on the carrier 332 , and the marking unit 5 is set at the edge of the lithography object 4 .
  • the position adjustment device 331 controls the carrier 332 to move the lithography object 4 between the microscopic objective lens 321 and the collimated light source 31 , so that the marking unit 5 is located in the field of view of the microscopic objective lens 321 .
  • the lithographic object 4 is moved and rotated by the workbench 33 , so that the marking unit 5 is located at the center of the field of view of the microscope objective lens of the microsystem 32 , and the marking unit 5 is perpendicular to the optical axis of the collimated light source 31 .
  • the microscopic system 32 takes a photo of the marking unit 5 and records it as an initial picture, and records the center point of the picture as the coordinate origin (0, 0, 0).
  • the lithography object 4 is moved under the exposure projection system 2 to perform the first surface exposure.
  • the second surface of the lithographic object 4 is placed on the carrier 332 .
  • the lithography object 4 is moved so that the marking unit 5 is located in the field of view of the microscope objective lens of the microscope system 32 .
  • the mark 51 and the fine alignment mark 52 coincide, and the alignment is completed.
  • the height of the lithography object 4 is lowered by the carrier 332 , the moving distance is the height of the lithography object 4 , and the center of the marking unit 5 on the recording second surface is the coordinate origin (0, 0, 0).
  • the lithographic object 4 is moved to the corresponding exposure position under the exposure projection system 2 to perform the second surface exposure.
  • the lithography system for metasurface processing in the embodiment of the present application uses a collimated light source to image the marking unit on the first surface of the lithographic object, so that the marking unit is located in the center of the field of view of the microscopic system and the photo is taken as The initial picture: when the second surface of the lithographic object is placed, the marking unit is aligned with the marking unit in the initial picture, so that the alignment of the second surface of the lithographic object is realized.
  • the photolithographic processing of the metasurface is realized by moving the worktable with a precision of 100 nanometers to microns; Replacing ultra-high-precision tables reduces the cost of metasurfacing.
  • the lithography system also enables the fabrication of metasurfaces on non-planar substrates through movement and/or rotation of the stage during exposure.
  • the embodiment of the present application also provides a photolithography method for supersurface processing, as shown in FIG. 6 , the method at least includes the following steps.
  • Step S1 setting the marking unit 5 on the edge of the first surface of the lithographic object 4 .
  • the lithographic object 4 is placed on the workbench 33 , and the marking unit 5 is set on the edge of the first surface of the lithographic object 4 .
  • Step S2 positioning the first surface and taking a picture and recording it as an initial picture.
  • the coordinates are the coordinate origin (0, 0, 0).
  • an XYZ coordinate system is established with the center of the initial picture as the origin, and the direction perpendicular to the horizontal plane is the Z axis, then the movement and rotation of the lithographic object 4 satisfy:
  • k is the normal vector of the equivalent plane of the lithography object 4
  • is the rotation vector of the lithography object 4 .
  • Step S3 exposing the first surface.
  • the lithography object 4 reaches the exposure position of the exposure projection system 2 to complete the exposure of the first surface of the lithography object 4 .
  • Step S4 after the exposure of the first surface is completed, the second surface of the photolithographic object 4 is aligned using the initial image.
  • the lithographic object 4 that has completed the first side exposure is turned over and placed on the workbench 33, and the lithographic object 4 is moved and/or rotated so that the imaging of the marking unit 5 in the microscope system 32 coincides with the marking unit 5 in the initial picture .
  • the marking unit 5 includes a coarse alignment mark 51 and a fine alignment mark 52 .
  • Step S5 exposing the second surface.
  • the height of the lithography object 4 is lowered, and the reduced height is the height of the lithography object 4 .
  • the lithography object 4 is placed on the workbench 33 with the first side facing up, and the marking unit 5 is set at the edge of the lithography object 4 .
  • the control table 33 moves the lithographic object 4 between the microsystem 32 and the collimated light source 31 , so that the marking unit 5 is located in the field of view of the microscopic objective lens of the microsystem 32 .
  • the lithography object 4 is moved and/or rotated by the worktable 3 so that the marking unit 5 is located at the center of the field of view of the microscope objective lens of the microsystem 32 , and the marking unit 5 is perpendicular to the optical axis of the collimated light source 31 .
  • the microscopic system 32 takes a photo of the marking unit 5 and records it as an initial picture, and records the center point of the initial picture as the coordinate origin (0, 0, 0).
  • the lithography object 4 is moved under the exposure projection system 2 to perform the first surface exposure.
  • the lithography object 4 is a non-planar substrate, the equivalent plane of the region to be exposed of the non-planar substrate is always perpendicular to the optical axis of the projection exposure system 2 during exposure.
  • the second surface of the lithographic object 4 is placed on the workbench 33 .
  • the lithography object 4 is moved so that the marking unit 5 is located in the field of view of the microscope objective lens of the microscope system 32 .
  • the alignment ends when the photoresist object 4 is moved or rotated by the worktable 33 so that the imaging of the marking unit 5 in the microscope system 32 coincides with the marking unit 5 in the initial image.
  • the height of the lithography object 4 is lowered by the worktable 33, the moving distance is the height of the lithography object 4, and the center of the marking unit 5 on the recording second surface is the coordinate origin (0, 0, 0).
  • the lithographic object 4 is moved to a position corresponding to the structure of the first surface under the exposure projection system 2 to perform the second surface exposure.
  • the initial picture is taken by taking a photo of the marking unit located in the center of the field of view of the microscopic system;
  • the marking unit coincides to realize the alignment of the second side of the lithographic object.
  • the photolithographic processing of the metasurface is realized by moving the worktable with a precision of 100 nanometers to microns; Replacing ultra-high-precision tables reduces the cost of metasurfacing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种用于超表面加工的光刻系统及方法,属于超表面领域。该系统包括光源(1)、曝光投影系统(2)和将光刻对象(4)的第一面和第二面对准的双面标记对准系统,双面标记对准系统包括准直光源(31)、显微系统(32)、工作台(33)及控制系统(34),为了进行超表面的光刻系统的双面曝光对准,该光刻系统还包括用于对光刻对象(4)做对准标记的标记单元(5);其中,工作台(33)用于实现光刻对象(4)的移动和旋转,工作台(33)的精度为百纳米至微米级精度;光源(1)和曝光投影系统(2)配置成:在借助于双面标记对准系统将光刻对象(4)对准的情况下,对光刻对象(4)分别进行第一面和第二面曝光。

Description

用于超表面加工的光刻系统及方法 技术领域
本申请涉及超表面加工技术领域,具体而言,涉及一种用于超表面加工的光刻系统及方法。
背景技术
目前,加工超表面的常用工艺是光刻工艺,在晶圆(一般为硅晶圆)表面覆盖一层具有高度光敏感性光刻胶,再用光线(一般是紫外光、深紫外光、极紫外光)透过掩模照射在晶圆表面,被光线照射到的光刻胶会发生反应。此后用特定溶剂洗去被照射/未被照射的光刻胶,就实现了电路图从掩模到光刻胶的转移。光刻完成后对没有光刻胶保护的硅片部分进行刻蚀,最后洗去剩余光刻胶,就实现了超表面纳米结构在晶圆表面的构建过程。
现有的超表面加工采用用于半导体加工的光刻机。用于半导体加工的光刻机通常包括紫外光源、曝光投影系统、超高精度工作台。其中,超高精度工作台是指精度达到纳米级精度的工作台。
在超表面的加工中,超高精度工作台的成本高造成光刻机价格高,从而导致了超表面加工成本高昂;并且,用于半导体加工的光刻机针对平面加工设计,在加工非平面基底的超表面时存在局限性。因此,亟需一种可以加工非平面基底且加工成本低的光刻系统。
发明内容
为解决现有存在的技术问题,本申请实施例提供一种用于超表面加工的光刻系统及方法,以解决超表面加工成本高的问题。
第一方面,本申请实施例提供了一种用于超表面加工的光刻系统,包括光源、曝光投影系统和将光刻对象的第一面和第二面对准的双面标记对准系统,所述双面标记对准系统包括准直光源、显微系统、工作台及控制系统,为了进行超表面的光刻系统的双面曝光对准,所述光刻系统还包括:用于对光刻对象做对准标记的标记单元;
其中,所述工作台用于实现所述光刻对象的移动和/或旋转,所述工作台的精度为百纳米至微米级精度;
所述光源和所述曝光投影系统配置成:在借助于所述双面标记对准系统将所述光刻对象对准的情况下,对所述光刻对象分别进行第一面和第二面曝光。
可选地,所述光刻对象包括平面光刻对象或非平面光刻对象。
可选地,所述非平面光刻对象包括阶梯状光刻对象。
可选地,所述标记单元包括粗对准标记和细对准标记。
可选地,所述标记单元的形状包括十字形、梳子形、矩形、圆形和环形中的一种或多种。
可选地,所述标记单元由对近红外光不透明的材料制成。
可选地,准直光源包括近红外光LED和准直透镜。
可选地,由所述准直光源发射的辐射的波长对于所述光刻对象的消光系数小于0.01,经过准直后,发散角应小于10°
可选地,由所述准直光源发射的辐射的波长对于玻璃晶圆材料的消光系数小于0.01,经过准直后,发散角应小于10°。
可选地,显微系统包括显微物镜、连接管及成像探测器;
其中,所述显微物镜和所述成像探测器分别位于所述连接管的两端;所述连接管的长度为显微物镜的后截距。
可选地,所述连接管用于屏蔽环境光,以提高信噪比。
可选地,所述显微物镜对于所述准直光源所发射的辐射的透过率大于80%。
可选地,所述连接管上设有悬臂式固定结构支撑起整个所述显微系统。
可选地,所述成像探测器选用红外光波段工作的探测器,且像素总数大于30万。
可选地,所述工作台包括位姿调节装置和载具;
其中,所述载具与所述位姿调节装置可拆卸地连接;所述载具用于固定所述光刻对象,所述位姿调节装置用于调节所述载具的位置和/或姿态,以使所述光刻对象的位置和/或姿态得到调节。
可选地,所述位姿调节装置包括X轴线性位移平台、Y轴线性位移平台、Z轴线性位移平台和转动平台;
其中,所述Z轴线性位移平台与水平面垂直固定安装;
所述Y轴线性位移平台与所述Z轴线性位移平台的位移件连接,且所述Y轴线性位移平台与所述Z轴线性位移平台垂直;
所述X轴线性位移平台与所述Y轴线性位移平台的位移件连接,且所述X轴线性位移平台分别与所述Y轴线性位移平台和所述Z轴线性位移平台垂直;
所述转动平台与所述X轴线性位移平台的位移件连接;
所述Z轴是与水平面垂直的方向,所述X轴和所述Y轴分别与所述Z轴垂直。
另一方面,本申请实施例还提供了一种用于超表面加工的光刻方法,采用上述的任一用于超表面加工的光刻系统,所述方法包括:
步骤S1,在所述光刻对象的第一面的边缘设置所述标记单元;
步骤S2,对所述第一面进行定位并拍照记录为初始图片;
步骤S3,对所述第一面进行曝光;
步骤S4,所述第一面完成曝光后,利用所述初始图片对所述光刻对象的第二面进行对准;
步骤S5,对所述第二面进行曝光。
本申请实施例提供的技术方案所取得的有益效果至少包括:
本申请实施例提供的的用于超表面加工的光刻系统,通过准直光源对将光刻对象第一面的标记单元成像,使标记单元位于显微系统的视野中心并拍照为初始图片;通过光刻对象第二面放置时标记单元与 初始图片中的标记单元对准,实现了光刻对象的第二面对准。通过准直光波段成像下标记单元的对准,使百纳米至微米级精度的工作台通过中精度移动实现了超表面的光刻加工;通过用精度在百纳米至微米级别的工作台替换超高精度工作台,降低了用于超表面加工的光刻系统的成本,从而降低了超表面加工的成本。该光刻系统还通过曝光过程中工作台的移动和/或旋转实现了非平面基底的超表面的加工。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1示出了本申请实施例所提供的用于超表面加工的光刻系统的一种可选的结构示意图;
图2示出了本申请实施例所提供的用于超表面加工的光刻系统的标记单元的对准示意图;
图3示出了本申请实施例所提供的用于超表面加工的光刻系统的标记单元的一种可选的未对准示意图;
图4示出了本申请实施例所提供的用于超表面加工的光刻系统的标记单元的再一种可选的未对准示意图;
图5示出了本申请实施例所提供的用于超表面加工的光刻系统的标记单元的又一种可选的未对准示意图;
图6示出了本申请实施例所提供的用于超表面加工的光刻方法的流程示意图。
图中附图标记分别表示:
1-光源;
2-曝光投影系统;
31-准直光源;32-显微系统;33-工作台;34-控制系统;
331-位姿调节装置;332-载具;
3311-X轴线性位移平台;3312-Y轴线性位移平台;3313-Z轴线 性位移平台;3314-转动平台;
321-显微物镜;322-连接管;323-成像探测器;
4-光刻对象;
5-标记单元;
51-粗对准标记;52-细对准标记。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是拆卸连接,或一体地连接;可以是机械连接,也可以是电连接:可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。下面结合本申请实施例中的附图对本申请实施例进行描述。
图1示出了本申请实施例所提供的用于超表面加工的光刻系统的可选的结构示意图。如图1所示,该系统包括光源1、曝光投影系统2和将光刻对象4的第一面和第二面对准的双面标记对准系统,双面标记对准系统包括准直光源31、显微系统32、工作台33及控制系统34,为了进行超表面的光刻系统的双面曝光对准,该用于超表面加工的光刻系统还包括:对光刻对象4做对准标记的标记单元5。
其中,工作台33用于实现光刻对象4的移动和/或旋转,工作台33的精度为百纳米至微米级精度。控制系统34用于控制工作台33和显微系统32。
光源1和曝光投影系统2配置成:在借助于双面标记对准系统将光刻对象4对准的情况下,对光刻对象4分别进行第一面和第二面曝光。
示例性地,光刻对象4包括平面光刻对象或非平面光刻对象。例如,平面光刻对象包括晶圆或平面基底;非平面光刻对象包括台阶状基底或曲面基底,如自由曲面基底或离散曲面基底。
示例性地,准直光源31包括光源(例如近红外光LED)和准直透镜。光源和准直透镜可集成为一个器件。光源的产生的辐射(即准直光)的波长对于光刻对象4(例如玻璃晶圆)的消光系数小于0.01,经过准直后的发散角小于10°。可选地,光源产生的辐射包括近红外、中红外、远红外、激光和可见光。优选地,光源产生的近红外光包括波长850nm、940nm、1310nm和1550nm的非相干光,且近红外光源产生的近红外光经过准直后的发散角小于10°。
具体而言,如图1所示,本申请实施例提供的用于超表面加工的光刻系统的实施方式如下:
该系统包括光源1、曝光投影系统2和将光刻对象4第一面和第二面对准的双面标记对准系统,该双面标记对准系统包括准直光源31、显微系统32、工作台33及控制系统34,为了进行超表面的光刻系统的双面曝光对准,该用于超表面加工的光刻系统还包括:对光刻对象4做对准标记的标记单元5。
其中,工作台33用于实现光刻对象4的移动和/或旋转,工作台33的精度为百纳米至微米级精度。
光源1和曝光投影系统2配置成:在借助于双面标记对准系统将光刻对象4对准的情况下,对光刻对象4分别进行第一面和第二面曝光。
示例性地,光源1和曝光投影系统2的移动模式包括步进式、扫描式或步进式与扫描式结合。
示例性地,光源1设置在曝光投影系统2的上方,双面标记对准系统设置在曝光投影系统2的下方。光刻对象4设置在双面标记对准系统的工作台33上。准直光源31和显微系统32的显微物镜光轴重合相对设置。显微系统32和工作台33分别与控制系统34连接。
在本申请示例性的实施例中,光源1、曝光投影系统2、准直光源31和显微系统32的相对位置固定。将光刻对象4设置在工作台33上,将标记单元5设置在光刻对象4的边缘位置。控制工作台33移动光刻对象4至显微系统32与准直光源31之间,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台33移动和/或旋转光刻对象4,使标记单元5位于显微系统32显微物镜的视野中心,且标记单元5垂直于准直光源31的光轴。此时,通过显微系统32对标记单元5拍照记录为初始图片,并记录初始图片的中心点为坐标原点(0,0,0)。移动光刻对象4到曝光投影系统2下方进行第一面曝光。
示例性地,确定曝光投影装置2的焦点位置为第一坐标,以及光刻对象4的待曝光区域的中心点为第二坐标。根据第一坐标和第二坐标可以计算出将待曝光区域中心点移动到第一坐标进行光刻需要移动的向量为第一向量。
当光刻对象4完成第一面曝光后,将光刻对象4第二面设置在工作台33上。移动光刻对象4,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台33移动或旋转光刻对象4,使标记单元5在显微系统32中的成像与初始图片中标记单元5重合时,结束对准。通过工作台33降低光刻对象4的高度,移动距离为光刻对象4的厚度, 记录第二面标记单元5的中心为坐标原点(0,0,0)。
示例性地,首先将光刻对象4向下移动光刻对象4的厚度。再移动光刻对象4到曝光投影系统2下方和第一面结构相对应的位置,即第一坐标的位置进行第二面曝光。此时,移动向量等于第一向量。
示例性地,当光刻对象4为非平面时,第二坐标为待曝光区域的等效平面的中心的坐标,第一向量还包括转动向量。按照转动向量转动光刻对象4,使待曝光区域的等效平面的法线与曝光投影系统2的光轴重合。由于曝光投影装置2的写场只有几微米,所以写场范围内的非平面的曲率变化可以忽略,可以等效为平面。等效方法如下:
确定待曝光区域的中心点(x 1,y 1,z 1),中心点的法向量为(k x,k y,k z),则此等效平面的方程为k x(x-x 1)+k y(y-y 1)+k z(z-z 1)=0。
应理解,在本申请实施例中,光源1、曝光投影系统2和双面标记对准系统的位置不局限于上下放置。只要光源1能够通过曝光投影系统2将图像或结构投影到光刻对象4上。
应当理解的是,如图2至图5所示,在本申请实施例中,可选地,标记单元5包括粗对准标记51和细对准标记52。当标记单元5在显微系统32的成像与初始图片中标记单元5的粗对准标记51和细对准标记52都重合时,对准完成。标记单元5的材质对准直光源31发出的准直光不透明。优选地,标记单元5的材质为近红外光不透明的材料。标记单元5的形状包括十字形、梳子形、矩形、圆形和环形中的一种或多种。
示例性地,粗对准标记51和细对准标记52的形状包括十字形、梳子形、矩形、圆形和环形中的一种或多种。图2至图5示出了标记单元5在显微系统32中的成像和初始图片中的标记单元5的对准及未对准的情况。
如图1所示,在本申请实施例中,可选地,工作台33包括位姿调节装置331和载具332,载具332与位姿调节装置331可拆卸地连接。载具332用于固定光刻对象4,位姿调节装置331用于调节载具332的位置和/或姿态,以使光刻对象4的位置和/或姿态得到调节。位 姿调节装置331的最大位移行程大于光刻对象4的尺寸,位姿调节装置331的转动行程为360°,位姿调节装置331的最小转动角小于或等于0.1°。位姿调节装置331的最小转动角是指位姿调节装置331能够转动的最小的角度。
需要说明的是,位姿调节是指对位置和/或姿态进行调节。位置调节包括沿着X轴、Y轴以及Z轴中的至少一个移动;姿态调节包括围绕X轴、Y轴以及Z轴中的至少一个旋转。Z轴是与水平面垂直的方向,X轴和Y轴分别与Z轴垂直。应当理解的是,载具332用于固定光刻对象4,可以根据光刻对象4的形状选择对应的载具332。例如,当光刻对象4为晶圆时,载具332为承物台;当光刻对象4为非平面基底时,载具332为夹持器。
示例性地,如图2所示,标记单元5在显微系统32中的成像与初始图片中的标记单元5完全重合,光刻对象4的第二面对准。如图3所示,标记单元5在显微系统32中的成像与初始图片中的标记单元5在X轴方向未对准,需要通过位姿调节装置331沿X轴方向调节载具332的位置,使标记单元5在显微系统32中的成像与初始图片中的标记单元5,如图2所示完全重合。
如图4所示,标记单元5在显微系统32中的成像与初始图片中的标记单元5在Y轴方向未对准,需要通过位姿调节装置331沿Y轴方向调节载具332的位置,使标记单元5在显微系统32中的成像与初始图片中的标记单元5,如图2所示完全重合。
如图5所示,标记单元5在显微系统32中的成像与初始图片中的标记单元5围绕Z轴旋转的角度未对准,需要通过位姿调节装置331围绕Z轴方向旋转调节载具332的姿态,使标记单元5在显微系统32中的成像与初始图片中的标记单元5,如图2所示完全重合。
本申请实施例中,优选地,先利用粗对准标记51完成沿X、Y轴方向上的对准,之后利用细对准标记52确定标记单元5在显微系统32中的成像与初始图片中的标记单元5围绕Z轴旋转的角度对准。
优选地,位姿调节装置331包括X轴线性位移平台3311、Y轴线 性位移平台3312、Z轴线性位移平台3313和转动平台3314。
示例性地,如图1所示,系统包括光源1、曝光投影系统2和将光刻对象4第一面和第二面对准的双面标记对准系统,该双面标记对准系统包括准直光源31、显微系统32、工作台33及控制系统34,为了进行超表面的光刻系统的双面曝光对准,该用于超表面加工的光刻系统还包括:对光刻对象4做对准标记的标记单元5。
其中,工作台33包括位姿调节装置331和载具332。位姿调节装置331包括X轴线性位移平台3311、Y轴线性位移平台3312、Z轴线性位移平台3313和转动平台3314。其中,Z轴线性位移平台3313与水平面垂直固定安装;Y轴线性位移平台3312与Z轴线性位移平台3313的位移件连接,且Y轴线性位移平台3312与Z轴线性位移平台3313垂直;X轴线性位移平台3311与Y轴线性位移平台3312的位移件连接,且X轴线性位移平台3311分别与Y轴线性位移平台3312和Z轴线性位移平台3313垂直。转动平台3314与X轴线性位移平台3311的位移件连接;转达平台3314至少围绕Z轴旋转。
准直光源31和显微系统32相对安装,且光轴都与Z轴平行。光源1和曝光投影系统2配置成:在借助于双面标记对准系统将光刻对象4对准的情况下,对光刻对象4分别进行第一面和第二面曝光。
以光刻对象4为晶圆为例,本申请实施例提供的用于超表面加工的光刻系统的实施方式如下:
将晶圆设置在工作台33上,将标记单元5设置在晶圆的边缘位置。控制工作台33移动晶圆至显微系统32与准直光源31之间,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台33移动和旋转晶圆,使标记单元5位于显微系统32显微物镜的视野中心,且标记单元5垂直于准直光源31的光轴。此时,通过显微系统32对标记单元5拍照记录为初始图片,并记录图片的中心点为坐标原点(0,0,0)。移动晶圆到曝光投影系统2下方进行第一面曝光。确定曝光投影装置2的焦点位置为第一坐标,以及光刻对象4的待曝光区域的中心点为第二坐标。根据第一坐标和第二坐标可以计算出将待曝光区域 中心点移动到第一坐标进行光刻需要移动的向量为第一向量。
当光刻对象4完成第一面曝光后,将晶圆第二面设置在工作台33上。移动晶圆,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台33移动或旋转晶圆,使标记单元5在显微系统32中的成像与初始图片中标记单元5重合时,结束对准。通过工作台33降低晶圆的高度,移动距离为晶圆的高度,记录第二面标记单元5的中心为坐标原点(0,0,0)。移动晶圆到曝光投影系统2下方和第一面结构相对应的位置进行第二面曝光。
X轴线性位移平台3311、Y轴线性位移平台3312、Z轴线性位移平台3313的最大位移行程大于晶圆直径。转动平台334的转动行程为360°,且最小转动角不大于0.1°。示例性地,光刻对象4为6寸的晶圆时,X轴线性位移平台3311、Y轴线性位移平台3312、Z轴线性位移平台3313的最大位移行程大于150mm。
类似地,当光刻对象4为非平面基底时,光刻对象4的第一面对准以及第二面对准与光刻对象4为晶圆时的对准实施方式相同。
以光刻对象4为自由曲面基底为例,本申请实施例提供的用于超表面加工的光刻系统的实施方式如下:
以自由曲面基底为例,本申请实施例提供的用于超表面加工的光刻系统的实施方式如下:将自由曲面基底的第一面朝上设置在工作台33上,将标记单元5设置在自由曲面基底第一面的边缘位置。控制位姿调节装置331移动自由曲面基底至显微系统32与准直光源31之间,使标记单元5位于显微系统32的显微物镜的视野中。通过位姿调节装置331移动和/或旋转自由曲面基底,使标记单元5位于显微系统32的显微物镜的视野中心,且标记单元5垂直于准直光源31的光轴。此时,通过显微系统32对标记单元5拍照记录为初始图片,并记录图片的中心点为坐标原点(0,0,0)。移动自由曲面基底到曝光投影系统2下方进行第一面曝光。第一面曝光时,通过位姿调节装置331使自由曲面基底的待曝光区域在载具332上的等效平面保持与曝光投影系统2的光轴垂直,直至第一面曝光完成。
当光刻对象4完成第一面曝光后,将自由曲面基底第二面朝上设置在工作台33上。移动自由曲面基底,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台33移动或旋转晶圆,使标记单元5在显微系统32中的成像与初始图片中标记单元5重合时,结束对准。通过工作台33降低自由曲面基底的高度,移动距离为该坐标位置的自由曲面基底的厚度,记录第二面标记单元5的中心为坐标原点(0,0,0)。移动自由曲面基底到曝光投影系统2下方和第一面结构相对应的位置进行第二面曝光。第二面曝光时,通过位姿调节使自由曲面基底的待曝光区域在载具332上的等效平面保持与曝光投影系统2的光轴垂直,直至第二面曝光完成。
X轴线性位移平台3311、Y轴线性位移平台3312、Z轴线性位移平台3313的最大位移行程大于晶圆直径。转动平台334的转动行程为360°,且最小转动角不大于0.1°。示例性地,光刻对象4为6寸的晶圆时,X轴线性位移平台3311、Y轴线性位移平台3312、Z轴线性位移平台3313的最大位移行程大于150mm。
可以理解的是,位姿调节装置331不局限于线型位移平台和转动平台的组合。
在一种可选的实施方式中,本申请实施例提供的显微系统32包括显微物镜321、连接管322和成像探测器323。其中,显微物镜321为显微镜,显微物镜321和成像探测器323分别位于连接管322的两端。连接管322的长度为显微物镜321的后截距,连接管322还用于屏蔽环境光,以提高信噪比。示例性地,如图1所示,连接管322上设有悬臂式固定结构支撑起整个显微系统32。
优选地,成像探测器323的工作波段为红外光波段,且像素总数大于30万。在本申请的实施例中,成像探测器323可以是互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor),也可以是电荷耦合器件(CCD,Charge Couple Device)。示例性地,显微物镜321的倍率为60x,数值孔径为0.75。应当理解的是,本申请实施例中,显微物镜321对准直光源31发出的准直光透过率高,例如 显微物镜321对近红外光的透过率大于80%。
示例性地,如图1所示,本申请实施例提供的用于超表面加工的光刻系统的实施方式如下:
该光刻系统包括该系统包括光源1、曝光投影系统2和将光刻对象4第一面和第二面对准的双面标记对准系统,双面标记对准系统包括准直光源31、显微系统32、工作台33及控制系统34,为了进行超表面的光刻系统的双面曝光对准,该用于超表面加工的光刻系统还包括:对光刻对象4做对准标记的标记单元5。
其中,工作台33用于实现光刻对象4的移动和旋转,工作台33的精度为百纳米至微米级精度。
光源1和曝光投影系统2配置成:在借助于双面标记对准系统将光刻对象4对准的情况下,对光刻对象4分别进行第一面和第二面曝光。
工作台33包括位姿调节装置331和载具332,载具332与位姿调节装置331可拆卸地连接。载具332用于固定光刻对象4,位姿调节装置331用于调节载具332的位置和/或姿态,以使光刻对象4的位置和/或姿态得到调节。位姿调节装置331的最大位移行程大于光刻对象4的尺寸,位姿调节装置331的转动行程为360°,位姿调节装置331的最小转动角小于或等于0.1°。位姿调节装置331的最小转动角是指位姿调节装置331能够转动的最小的角度。
位姿调节装置331包括X轴线性位移平台3311、Y轴线性位移平台3312、Z轴线性位移平台3313和转动平台3314。其中,Z轴线性位移平台3313与水平面垂直固定安装;Y轴线性位移平台3312与Z轴线性位移平台3313的位移件连接,且Y轴线性位移平台3312与Z轴线性位移平台3313垂直;X轴线性位移平台3311与Y轴线性位移平台3312的位移件连接,且X轴线性位移平台3311分别与Y轴线性位移平台3312和Z轴线性位移平台3313垂直。转动平台334与X轴线性位移平台3311的位移件连接。
准直光源31和显微系统32相对安装,且光轴都与Z轴平行。准 直光源31发射的辐射为波长940nm的非相干近红外光,该近红外光经过准直后的发散角小于10°。
显微系统32包括显微物镜321、连接管322和成像探测器323。其中,显微物镜321为显微镜,显微物镜321和成像探测器323分别位于连接管322的两端。连接管322的长度为显微物镜321的后截距,连接管322还用于屏蔽环境光,以提高信噪比。
示例性地,光源1设置在曝光投影系统2的上方,双面标记对准系统设置在曝光投影系统2的下方。光刻对象4设置在双面标记对准系统的工作台33上。准直光源31和显微系统32的显微物镜光轴重合相对设置。显微系统32和工作台33分别与控制系统34连接。
将光刻对象4设置在载具332上,将标记单元5设置在光刻对象4的边缘位置。通过位姿调节装置331控制载具332移动光刻对象4至显微物镜321与准直光源31之间,使标记单元5位于显微物镜321的视野中。通过工作台33移动和旋转光刻对象4,使标记单元5位于显微系统32显微物镜的视野中心,且标记单元5垂直于准直光源31的光轴。此时,通过显微系统32对标记单元5拍照记录为初始图片,并记录图片的中心点为坐标原点(0,0,0)。移动光刻对象4到曝光投影系统2下方进行第一面曝光。
当光刻对象4完成第一面曝光后,将光刻对象4第二面设置在载具332上。移动光刻对象4,使标记单元5位于显微系统32的显微物镜的视野中。通过位姿调节装置331移动或旋转光刻对象4,使标记单元5在显微系统32中的成像的粗对准标记51和细对准标记52分别与初始图片中标记单元5的粗对准标记51和细对准标记52重合,结束对准。通过载具332降低光刻对象4的高度,移动距离为光刻对象4的高度,记录第二面标记单元5的中心为坐标原点(0,0,0)。移动光刻对象4到曝光投影系统2下方对应的曝光位置进行第二面曝光。
综上所述,本申请实施例的用于超表面加工的光刻系统,通过准直光源对将光刻对象第一面的标记单元成像,使标记单元位于显微系统的视野中心并拍照为初始图片;通过光刻对象第二面放置时标记单 元与初始图片中的标记单元对准,实现了光刻对象的第二面对准。通过准直光波段成像下的粗对准标记和细对准标记的对准,使百纳米至微米级精度的工作台通过中精度移动实现了超表面的光刻加工;通过用中精度工作台替换超高精度工作台降低了超表面加工的成本。该光刻系统还通过曝光过程中工作台的移动和/或旋转实现了非平面基底的超表面的加工。
本申请实施例还提供了一种用于超表面加工的光刻方法,如图6所示,该方法至少包括以下步骤。
步骤S1,在光刻对象4的第一面的边缘设置标记单元5。将光刻对象4放置在工作台33上,并在光刻对象4第一面的边缘设置标记单元5。
步骤S2,对第一面进行定位并拍照记录为初始图片。移动和/或旋转光刻对象4,使标记单元5位于显微系统32的显微物镜的视野中心,对显微系统32对标记单元5拍照记录为初始图片,并记录初始图片的中心点的坐标为坐标原点(0,0,0)。
示例性地,以初始图片的中心为原点建立XYZ坐标系,垂直于水平面的方向为Z轴,则光刻对象4的移动和旋转满足:
Figure PCTCN2022098338-appb-000001
其中,k为光刻对象4的等效平面的法线向量,θ为光刻对象4的转动向量。
步骤S3,对第一面进行曝光。光刻对象4至曝光投影系统2的曝光位置,完成对光刻对象4的第一面曝光。
步骤S4,第一面完成曝光后,利用初始图片对光刻对象4的第二面进行对准。将完成第一面曝光的光刻对象4翻面放置在工作台33上,移动和/或旋转光刻对象4使标记单元5在显微系统32中的成像与初始图片中的标记单元5重合。示例性地,标记单元5包括粗对准标记51和细对准标记52。当标记单元5在显微系统32中的成像的粗 对准标记51和细对准标记52分别与初始图片中的粗对准标记51和细对准标记52重合时,第二面完成对准。
步骤S5,对第二面进行曝光。降低光刻对象4的高度,降低的高度为光刻对象4的高度。移动光刻对象4至曝光投影系统2的曝光位置,完成第二面曝光。
示例性地,本申请实施例提供的用于超表面加工的光刻方法的实施方式如下:
将光刻对象4第一面朝上设置在工作台33上,将标记单元5设置在光刻对象4的边缘位置。控制工作台33移动光刻对象4至显微系统32与准直光源31之间,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台3移动和/或旋转光刻对象4,使标记单元5位于显微系统32显微物镜的视野中心,且标记单元5垂直于准直光源31的光轴。此时,通过显微系统32对标记单元5拍照记录为初始图片,并记录初始图片的中心点为坐标原点(0,0,0)。移动光刻对象4到曝光投影系统2下方进行第一面曝光。当光刻对象4为非平面基底时,曝光时非平面基底的待曝光区域的等效平面始终与投影曝光系统2的光轴垂直。
当光刻对象4完成第一面曝光后,将光刻对象4第二面设置在工作台33上。移动光刻对象4,使标记单元5位于显微系统32的显微物镜的视野中。通过工作台33移动或旋转光刻对象4,使标记单元5在显微系统32中的成像与初始图片中标记单元5重合时,结束对准。通过工作台33降低光刻对象4的高度,移动距离为光刻对象4的高度,记录第二面标记单元5的中心为坐标原点(0,0,0)。移动光刻对象4到曝光投影系统2下方和第一面结构相对应的位置进行第二面曝光。
本申请实施例提供的用于超表面加工的光刻系统及方法,通过对位于显微系统的视野中心的标记单元拍照为初始图片;通过光刻对象第二面放置时标记单元与初始图片中的标记单元重合,实现了光刻对象的第二面对准。通过准直光波段成像下的粗对准标记和细对准标记的对准,使百纳米至微米级精度的工作台通过中精度移动实现了超表 面的光刻加工;通过用中精度工作台替换超高精度工作台降低了超表面加工的成本。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例披露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种用于超表面加工的光刻系统,其特征在于,包括光源(1)、曝光投影系统(2)和将光刻对象(4)的第一面和第二面对准的双面标记对准系统,所述双面标记对准系统包括准直光源(31)、显微系统(32)、工作台(33)及控制系统(34),为了进行超表面的光刻系统的双面曝光对准,所述光刻系统还包括:用于对所述光刻对象(4)做对准标记的标记单元(5);
    其中,所述工作台(33)用于实现所述光刻对象(4)的移动和/或旋转,所述工作台(33)的精度为百纳米至微米级精度;
    所述光源(1)和所述曝光投影系统(2)配置成:在借助于所述双面标记对准系统将所述光刻对象(4)对准的情况下,对所述光刻对象(4)分别进行第一面和第二面曝光。
  2. 如权利要求1所述的用于超表面加工的光刻机,其特征在于,所述光刻对象(4)包括平面光刻对象或非平面光刻对象。
  3. 如权利要求1所述的用于超表面加工的光刻机,其特征在于,所述非平面光刻对象包括阶梯状光刻对象。
  4. 如权利要求1所述的用于超表面加工的光刻机,其特征在于,所述标记单元(5)包括粗对准标记(51)和细对准标记(52)。
  5. 如权利要求1所述的用于超表面加工的光刻系统,其特征在于,所述标记单元(5)的形状包括十字形、梳子形、矩形、圆形和环形中的一种或多种。
  6. 如权利要求1所述的用于超表面加工的光刻系统,其特征在于,所述标记单元(5)由对近红外光不透明的材料制成。
  7. 如权利要求1所述的用于超表面加工的光刻系统,其特征在于,所述准直光源(31)包括近红外光LED和准直透镜。
  8. 如权利要求1所述的用于超表面加工的光刻系统,其特征在于,由所述准直光源(31)发射的辐射的波长对于所述光刻对象(4)的消光系数小于0.01,经过准直后,发散角应小于10°。
  9. 如权利要求1所述的用于超表面加工的光刻系统,其特征在 于,由所述准直光源(31)发射的辐射的波长对于玻璃晶圆材料的消光系数小于0.01,经过准直后,发散角应小于10°。
  10. 如权利要求1所述的用于超表面加工的光刻系统,其特征在于,显微系统(32)包括显微物镜(321)、连接管(322)及成像探测器(323);
    其中,所述显微物镜(321)和所述成像探测器(323)分别位于所述连接管(322)的两端;所述连接管(322)的长度为显微物镜(321)的后截距。
  11. 如权利要求8所述的用于超表面加工的光刻系统,其特征在于,所述连接管(322)用于屏蔽环境光,以提高信噪比。
  12. 如权利要求8所述的用于超表面加工的光刻系统,其特征在于,所述显微物镜(321)对于所述准直光源(31)所发射的辐射的透过率大于80%。
  13. 如权利要求8所述的用于超表面加工的光刻机,其特征在于,所述连接管(322)上设有悬臂式固定结构支撑起整个所述显微系统(32)。
  14. 如权利要求8所述的用于超表面加工的光刻系统,其特征在于,所述成像探测器(323)选用红外光波段工作的探测器,且像素总数大于30万。
  15. 如权利要求1所述的用于超表面加工的光刻系统,其特征在于,所述工作台(33)包括位姿调节装置(331)和载具(332);
    其中,所述载具(332)与所述位姿调节装置(331)可拆卸地连接;所述载具(332)用于固定所述光刻对象(4),所述位姿调节装置(331)用于调节所述载具(332)的位置和/或姿态,以使所述光刻对象(4)的位置和/或姿态得到调节。
  16. 如权利要求13所述的用于超表面加工的光刻系统,其特征在于,所述位姿调节装置(331)包括X轴线性位移平台(3311)、Y轴线性位移平台(3312)、Z轴线性位移平台(3313)和转动平台(3314);
    其中,所述Z轴线性位移平台(3313)与水平面垂直固定安装;
    所述Y轴线性位移平台(3312)与所述Z轴线性位移平台(3313)的位移件连接,且所述Y轴线性位移平台(3312)与所述Z轴线性位移平台(3313)垂直;
    所述X轴线性位移平台(3311)与所述Y轴线性位移平台(3312)的位移件连接,且所述X轴线性位移平台(3311)分别与所述Y轴线性位移平台(3312)和所述Z轴线性位移平台(3313)垂直;
    所述转动平台(3314)与所述X轴线性位移平台(3311)的位移件连接;
    所述Z轴是与水平面垂直的方向,所述X轴和所述Y轴分别与所述Z轴垂直。
  17. 一种用于超表面加工的光刻方法,采用如权利要求1-14任一所述的用于超表面加工的光刻系统,所述方法包括:
    步骤S1,在所述光刻对象(4)的第一面的边缘设置所述标记单元(5);
    步骤S2,对所述第一面进行定位并拍照记录为初始图片;
    步骤S3,对所述第一面进行曝光;
    步骤S4,所述第一面完成曝光后,利用所述初始图片对所述光刻对象(4)的第二面进行对准;
    步骤S5,对所述第二面进行曝光。
PCT/CN2022/098338 2021-09-30 2022-06-13 用于超表面加工的光刻系统及方法 WO2023050882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111166696.1 2021-09-30
CN202111166696.1A CN113791524A (zh) 2021-09-30 2021-09-30 用于超表面加工的光刻系统及方法

Publications (1)

Publication Number Publication Date
WO2023050882A1 true WO2023050882A1 (zh) 2023-04-06

Family

ID=79184517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098338 WO2023050882A1 (zh) 2021-09-30 2022-06-13 用于超表面加工的光刻系统及方法

Country Status (2)

Country Link
CN (1) CN113791524A (zh)
WO (1) WO2023050882A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200047612A (ko) 2017-08-31 2020-05-07 메탈렌츠 인코포레이티드 투과성 메타표면 렌즈 통합
KR20220035971A (ko) 2019-07-26 2022-03-22 메탈렌츠 인코포레이티드 개구-메타 표면 및 하이브리드 굴절-메타 표면 이미징 시스템
CN113791524A (zh) * 2021-09-30 2021-12-14 深圳迈塔兰斯科技有限公司 用于超表面加工的光刻系统及方法
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259202A (ja) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd 露光装置および露光方法
CN102540781A (zh) * 2010-12-28 2012-07-04 上海微电子装备有限公司 一种背面对准装置及方法
CN107662415A (zh) * 2016-07-27 2018-02-06 住友重机械工业株式会社 位置检测装置及位置检测方法
CN113791524A (zh) * 2021-09-30 2021-12-14 深圳迈塔兰斯科技有限公司 用于超表面加工的光刻系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259202A (ja) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd 露光装置および露光方法
CN102540781A (zh) * 2010-12-28 2012-07-04 上海微电子装备有限公司 一种背面对准装置及方法
CN107662415A (zh) * 2016-07-27 2018-02-06 住友重机械工业株式会社 位置检测装置及位置检测方法
CN113791524A (zh) * 2021-09-30 2021-12-14 深圳迈塔兰斯科技有限公司 用于超表面加工的光刻系统及方法

Also Published As

Publication number Publication date
CN113791524A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023050882A1 (zh) 用于超表面加工的光刻系统及方法
CN215932365U (zh) 用于超表面加工的光刻系统
JP4618253B2 (ja) 基板保持装置、露光装置、及びデバイス製造方法
TWI534408B (zh) Position measuring system, exposure apparatus, position measuring method, exposure method and component manufacturing method, and measuring tool and measuring method
JP4463863B2 (ja) リソグラフィ装置及びデバイス製造方法
TWI602033B (zh) Exposure apparatus, moving body driving system, pattern forming apparatus, exposure method, and device manufacturing method
TWI539239B (zh) Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, component manufacturing method, and measuring method
US11774850B2 (en) Method for disposing substrate and method for manufacturing article
US4414749A (en) Alignment and exposure system with an indicium of an axis of motion of the system
US20010055117A1 (en) Alignment method, exposure method, exposure apparatus and device manufacturing method
WO1999031717A1 (fr) Procede d'exposition par projection et graveur a projection
US10948829B2 (en) Pattern forming apparatus, alignment mark detection method, and pattern forming method
JP5472101B2 (ja) 露光装置及びデバイス製造方法
US6373552B1 (en) Optical correction plate, and its application in a lithographic projection apparatus
JP5099476B2 (ja) 清掃装置及び清掃システム、パターン形成装置、清掃方法及び露光方法、並びにデバイス製造方法
JP2006210570A (ja) 調整方法、露光装置
US6529262B1 (en) System and method for performing lithography on a substrate
WO1999028957A1 (fr) Appareil de maintien de substrat et appareil d'exposition l'utilisant
JP5045008B2 (ja) 液浸露光用基板、露光方法及びデバイス製造方法
JP2004273861A (ja) 露光装置
EP1022617A2 (en) Optical correction plate, and its application in a lithographic projection apparatus
JPH04115518A (ja) 露光装置
JP2000286178A (ja) 投影光学系、露光装置及び前記投影光学系の製造方法
JPH05216209A (ja) フォトマスク
WO2007007723A1 (ja) 液浸露光用基板、露光方法及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE