WO2023046025A1 - 高海拔地区增压补氧模块化人居建筑群及使用方法 - Google Patents

高海拔地区增压补氧模块化人居建筑群及使用方法 Download PDF

Info

Publication number
WO2023046025A1
WO2023046025A1 PCT/CN2022/120587 CN2022120587W WO2023046025A1 WO 2023046025 A1 WO2023046025 A1 WO 2023046025A1 CN 2022120587 W CN2022120587 W CN 2022120587W WO 2023046025 A1 WO2023046025 A1 WO 2023046025A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
pressure
door
transition
air
Prior art date
Application number
PCT/CN2022/120587
Other languages
English (en)
French (fr)
Inventor
张琨
Original Assignee
中建三局集团有限公司
中国建筑股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122336236.0U external-priority patent/CN217151489U/zh
Priority claimed from CN202111130826.6A external-priority patent/CN113775236B/zh
Application filed by 中建三局集团有限公司, 中国建筑股份有限公司 filed Critical 中建三局集团有限公司
Publication of WO2023046025A1 publication Critical patent/WO2023046025A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/342Structures covering a large free area, whether open-sided or not, e.g. hangars, halls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H14/00Buildings for combinations of different purposes not covered by any single one of main groups E04H1/00-E04H13/00 of this subclass, e.g. for double purpose; Buildings of the drive-in type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the invention relates to the technical field of pressurized and oxygen-supplemented buildings in high-altitude areas, in particular to a high-altitude area pressurized and oxygen-supplemented modular residential buildings and a method for using them.
  • High-altitude areas have low temperature and severe cold all year round, thin air, low atmospheric pressure and oxygen content, and harsh geographical and climatic conditions.
  • people in plain areas enter high-altitude areas for living or economic and social construction, most of them will experience rapid heart rate, dizziness, and decreased physical fitness.
  • Altitude sickness such as dehydration endangers the work efficiency and quality of life of personnel, and even causes damage to human physiological functions in severe cases.
  • Supercharged oxygen supplementation is an effective means that has been proven to effectively solve personnel altitude sickness.
  • the common pressurized oxygen supplement technology products on the market have limited space, which can only alleviate altitude sickness to a certain extent, and cannot meet the long-term living and living needs of many people.
  • the technical problem to be solved by the present invention is to provide a pressurized and oxygen-supplementing modular residential complex in high-altitude areas and its use method in view of the above-mentioned deficiencies in the prior art.
  • the high-altitude pressurized oxygen supply building group with high capacity, more living functions, and lower cost operation can realize the energy self-sufficiency of the building group, satisfy the long-term life and residence of many people, and completely solve the problem of altitude sickness.
  • a modular residential building complex for pressurization and oxygen supplementation in high-altitude areas adopts a modular design and includes several standard cabins, connecting node cabins, connecting aisle cabins, transition cabins, equipment cabins, sewage collection cabins, and large-span Space module units, each module unit can be freely assembled in the plane direction and vertical direction and expand the function arbitrarily according to the scale of the site, functional requirements and the number of users, forming single-layer, double-layer and multi-layer buildings to meet different functional requirements. Spatial layout of buildings;
  • the standard cabin is used for living, office, meeting, sports, and medical needs in various functional scenarios;
  • the connecting node cabin and connecting corridor cabin are used between standard cabins, between standard cabins and transition cabins, and between standard cabins and long-span Space communication and personnel traffic between spaces;
  • the transition cabin is used for indoor and outdoor pressure transition and personnel entry and exit of the building group;
  • an intelligent pressurized oxygen supplement system is installed in the equipment compartment, and the intelligent pressurized oxygen supplement system is used for Control the automatic pressurization, automatic decompression and automatic pressure stabilization of the building group, and adjust the key living environment indicators in the building group to a level comparable to that of the plain;
  • the sewage collection chamber is used to collect and process internal sewage waste in the building group;
  • the large-span The space is used to meet large-scale conferences, large-scale gatherings, and sports for multiple groups of people.
  • the standard cabin, the connecting node cabin, the connecting walkway cabin and the transition cabin are formed by metal plate-skeleton welding or glass fiber reinforced plastic integral casting; the structural form is square or silo-shaped.
  • the standard cabin includes a cabin body welded by low-temperature-resistant metal plates and low-temperature-resistant metal skeletons, and the cabin body is used to withstand 5-100KPa internal pressure;
  • the non-combustible insulation material, the insulation cotton material is embedded between the metal plate and the skeleton of the cabin body;
  • several pressure-bearing airtight windows are set on the side and top of the cabin body, and standard Flange, some height-adjustable outriggers for supporting the cabin body are installed at the bottom of the cabin body.
  • the transition cabin also includes a pressure airtight door for the outdoor pressure transition of the building group and the entry and exit of personnel.
  • the pressure airtight door is divided into an inner door and an outer door.
  • the door is used to connect and communicate with the interior of the building group, and the outer door is used to connect and communicate with the outdoor of the building group;
  • the pressure-bearing airtight door includes a door frame, a door panel, a hinge device and a sealed lock, and the door frame and the door panel are connected by a hinge device
  • the airtight lock includes a lock groove installed on the door frame and an airtight lock installed on the door panel, the door panel is located on the inside of the door frame, and the pressure airtight door is opened to the inside of the cabin;
  • the outer surface of the door panel is provided with A sealing strip notch, a sealing strip is provided in the sealing strip notch;
  • the airtight lock includes a lock core and an oil seal, the lock core runs through the door panel, and an oil
  • the transition chamber has a built-in multi-stage automatic pressurization and decompression program to meet the needs of people with different physiques for different increase and decompression rates; the transition chamber is equipped with push-button pressurization and decompression buttons for simple and intuitive increase and decompression ;
  • the transition cabin is equipped with a push-button pressure increase and decompression pause button, and the increase and decompression process can be suspended when the human body is unwell; there are several multi-voice prompters and LED display screens on the side of the door aisle in the transition cabin and the top of the outside of the door room.
  • the connecting corridor cabin and connecting node cabin have the modular design of the number of channels, which can be quickly switched to two-way, three-way, four-way aisles and two-way, three-way, four-way aisles through the sealing plate. through nodes to achieve multi-directional connections.
  • the pressure-bearing airtight window includes a pressure-bearing window frame, an inflatable internal pressure glass, a flange bead, a sealing ring and a connector; the flange bead is installed on the inner side of the pressure-bearing window frame, and the inflatable inner
  • the pressed glass is installed between the flange bead and the pressure-bearing window frame, and the sealing ring is installed between the outer surface of the inflatable internal pressure glass and the pressure-bearing window frame; the flange bead and the pressure-bearing window frame are passed through
  • the connecting piece is fixedly connected, so as to clamp the inflatable internal pressure glass and the sealing ring;
  • the inflatable internal pressure glass includes two flat glasses arranged at intervals and high-pressure gas filled between the two flat glasses, the high-pressure gas
  • the air pressure is 5-100kPa higher than the indoor air pressure.
  • the flexible airtight connection includes a flexible airtight cloth, flexible standard flanges and sealing rings symmetrically installed on both sides of the flexible airtight cloth;
  • the flexible standard flange includes a flange plate, a C-shaped flange structure and a bead;
  • the flange is used to connect the standard flange, and the sealing ring is arranged on the sealing surface of the flange and the standard flange;
  • the C-shaped flanging structure and the bead are used to fix the flexible airtight cloth, wherein, The lower side of the C-shaped flanging structure extends to connect with the flange, and part of the flexible airtight cloth is laid between the upper surface of the C-shaped flanging structure and the bead, and the bead is connected to
  • the steel columns of the upper and lower module units are connected by one-way columns and connecting wedges to realize the fixing and combination of multi-layer spaces;
  • the one-way columns include column adjustment rods and
  • the foot post limiter is set on the foot post adjustment rod.
  • the upper and lower ends of the one-way foot post are respectively connected to the section steel columns of the upper and lower module units through connecting wedges.
  • the upper and lower ends of the adjustment rod pass through the connecting wedges respectively and fix the position through the adjustment rod limiter;
  • the lowest module unit is connected to the ground through a universal foot cup, and the universal foot cup includes a universal adjustment support plate, Universal support plate fixer, foot adjustment rod, adjustment rod limiter;
  • the lower end of the foot adjustment rod is connected to the universal adjustment support plate through a ball valve, and the upper end of the foot adjustment rod is connected to the modular unit through a wedge
  • the steel column is connected, the connecting wedge is embedded in the steel column, and the upper end bolt of the foot adjustment rod is connected to the wedge to fix the position through the adjustment rod limiter;
  • the universal support plate fixer passes through the foot adjustment rod
  • the ball at the lower end is imprisoned and fixed on the universal adjustment support plate by bolts to realize the large-angle continuous adjustment function of the universal adjustment support plate, and to meet the service conditions of complex terrain from two levels of height and angle.
  • the large-span space includes an external structure, an intermediate structure, an internal structure and a support structure; the external structure is formed by arraying a plurality of ring-shaped load-bearing members surrounding the intermediate structure along their respective axial directions
  • the self-balancing structural system is the main force-bearing structure; the intermediate structure is fixedly installed in the external structure, and the intermediate structure is assembled by a number of intermediate structural units, which is a large-space thermal insulation enclosure structure and transmits high internal pressure;
  • the internal structure is attached to the middle structure to ensure the high airtightness of the large space; the internal structure adopts a whole air film structure with high airtightness.
  • the internal structure When the large space is not pressurized, the internal structure can be separated from the middle structure, and the large space After the space is pressurized, the pressure makes the internal structure close to the middle structure; the external structure is installed on the support structure as a whole, the external structure does not touch the ground, the support structure is installed on the ground, and the height of the support structure can be adjusted to adapt to the site .
  • the intelligent pressurization and oxygen supply system includes a monitoring unit for monitoring the air quality parameters inside the building group, an air pressurization unit for pressurization and oxygen supplementation of the building group, and the monitoring unit and the air pressurization unit.
  • the compressor and the air storage tank connected to it, the surge tank and the air storage tank are connected to the air inlet of the building group through the corresponding pipeline, and the control unit controls the air pressurization unit according to the parameters obtained by the monitoring unit. Whether the first air pressurization mechanism and the second air pressurization mechanism are working.
  • the monitoring unit includes a temperature sensor, a humidity sensor, a pressure sensor, an oxygen concentration measuring instrument, and a carbon dioxide concentration measuring instrument located in the building group.
  • the control unit is a PLC automatic control system
  • the PLC automatic control system adopts a centralized monitoring-decentralized control distributed control architecture (DCS)
  • DCS distributed control architecture
  • an industrial-grade control network is composed of a master station and several sub-stations.
  • the station uses dual PLCs to form a redundant system to monitor the equipment in the equipment cabin.
  • the substation uses a single PLC to monitor each standard cabin and transition cabin.
  • Each monitoring station is equipped with a human-computer interaction touch screen HMI.
  • the entire PLC system has Decompression process control, process display, equipment operation status monitoring, fault detection and alarm functions.
  • the building group also includes an energy organization system, which includes off-site power supply, UPS uninterruptible power supply system, wind energy-photovoltaic-energy storage distributed power system, and air waste heat recovery system; wherein, the The wind energy-photovoltaic-energy storage distributed power system includes a photovoltaic array installed on the top of the building complex, a wind generator and a large-capacity lithium battery pack located in the building complex.
  • an energy organization system which includes off-site power supply, UPS uninterruptible power supply system, wind energy-photovoltaic-energy storage distributed power system, and air waste heat recovery system;
  • the The wind energy-photovoltaic-energy storage distributed power system includes a photovoltaic array installed on the top of the building complex, a wind generator and a large-capacity lithium battery pack located in the building complex.
  • the photovoltaic array provides energy for the building complex, and at night, the wind energy
  • the generator provides energy for the buildings, and the excess wind energy and photovoltaic energy are stored in the large-capacity lithium battery pack to maintain the normal energy supply of the buildings in less windy and rainy weather;
  • the UPS uninterruptible power supply system maintains the intelligence of the buildings
  • the pressurized oxygen supply system and the security system shall operate for no less than 16 hours, and maintain the normal living and living of the crowd for no less than 16 hours;
  • the first circulating water channel of the air waste heat recovery system is connected to the cooling water channel of the air compressor to recover Heat, the second circulating water channel of the air waste heat recovery system communicates with domestic water equipment to provide hot water.
  • the building group also includes an integrated energy storage system
  • the integrated energy storage system includes a compressed air energy storage mechanism, a battery energy storage mechanism and a heat storage energy storage mechanism, wherein the compressed air energy storage mechanism passes through the The air compressor and the air storage tank connected to it are composed;
  • the battery energy storage mechanism includes a battery pack;
  • the heat storage energy storage mechanism includes an air waste heat recovery system connected to the air compressor and a hot water storage tank connected to it;
  • the storage tank is connected to the hot water supply system of the closed buildings in the high altitude area to provide domestic hot water for the closed buildings in the high altitude area. Air intake duct connections for closed building complexes in the area.
  • the building group also includes a positive pressure chamber exhaust gas discharge system
  • the positive pressure chamber exhaust gas discharge system includes a self-circulating air treatment device for air purification of toilets in closed buildings in high altitude areas, and is used for monitoring high altitude areas.
  • the toilet of the airtight buildings in the high-altitude area is provided with an exhaust port, and an exhaust pipe is installed on the exhaust port, and a ventilation fan and a sealing valve are installed on the exhaust pipe.
  • the building group also includes a positive pressure chamber sewage discharge system
  • the positive pressure chamber sewage discharge system includes a terminal water collector for storing waste water without irritating odor, and is used to prevent the odor from escaping in the pipe network.
  • the water sealing device is located at the water outlet of the terminal water collector, the drainage pipe network is connected with the water outlet end of the water sealing device, the drainage diaphragm valve is installed on the drainage pipe network at the water outlet end of the water sealing device, the inflation system and the drainage diaphragm The intake port of the valve is connected.
  • the building group also includes a security system
  • the security system includes a people counting system, a monitoring system, an intercom system and an alarm system
  • the people counting system is set in the transition cabin to count the number of people entering the cabin in real time and the total number of people during the period
  • the monitoring system includes a camera terminal installed on the top of each cabin body in the standard cabin, connecting node cabins, connecting aisle cabins, transition cabins, and large-span spaces, and a network hard disk and a monitoring host that are arranged in the equipment cabin, for Real-time monitoring and monitoring review of key parts of the building group
  • the intercom system includes several multi-way intercoms and emergency buttons set in the building group, and users can call for help through multi-point communication
  • the alarm system includes The fire alarm devices on the top of each cabin in the standard cabin, connecting node cabin, connecting walkway cabin, transition cabin, and large-span space are used for smoke and possible fire alarms that are abnormally generated in the cabin, and are also installed in standard cabins, connecting nodes, etc.
  • the multi-parameter monitoring instruments in each cabin, connecting corridor cabin, transition cabin, and large-span space are used for alarming when the parameters of carbon dioxide concentration, oxygen concentration, pressure difference, temperature, and humidity inside the cabin exceed the set limit values. It adopts sound alarm and display screen image alarm mode.
  • the present invention also proposes a method for the personnel of the pressurized and oxygen-supplemented modular residential buildings in the above-mentioned high-altitude area to enter the room from the outside through the transition cabin, including the following steps:
  • An LED display is installed on the top of the outer door of the transition cabin.
  • the display shows the pressure difference between the transition cabin and the outside.
  • the text scrolls to display "The transition cabin is occupied!”, and there is a multi-voice prompt next to the display.
  • the device is used to prompt the state inside and outside the cabin;
  • Electronic access control is installed on the outside of the door of the transition cabin.
  • personnel need to enter the transition cabin they can open the access control by swiping card or password or fingerprint recognition or face recognition, and the transition cabin is quickly depressurized; when the pressure difference drops to the allowable range, The multi-sound prompter prompts "The pressure is balanced, you can enter", and the personnel push open the outer door to enter the transition cabin;
  • the outer door detection switch of the transition cabin detects whether the outer door is closed. If it is closed, the voice will broadcast "The outer door is closed”. Door";
  • the infrared sensor switch senses the presence of the personnel, and the display screen outside the transition cabin scrolls to display "the transition cabin is occupied";
  • Infrared induction lights are installed in the transition cabin. When the personnel enter the transition cabin, the lighting lights are automatically turned on, and when the personnel leave the transition cabin, the lighting lights go out;
  • the multi-sound prompter will give a voice prompt "If your ears feel uncomfortable, please swallow your saliva", after the prompt is over, start playing music;
  • An LED display is set above the outer side of the inner door of the transition cabin.
  • the LED display shows the pressure difference between the transition cabin and the aisle cabin.
  • Personnel can press different buttons on the button box next to the inner door according to their own feelings. Choose different pressure regulating speeds, and in case of emergency, you can press the emergency stop button on the button box;
  • the present invention also proposes a method for using the personnel of the pressurized and oxygen-supplemented modular residential buildings in the above-mentioned high-altitude area from indoors to outdoors through a transition cabin, including the following steps:
  • An LED display screen is set above the inner door of the transition cabin.
  • the LED screen displays the pressure difference between the transition cabin and the aisle cabin.
  • the pressure automatic control system quickly adjusts the pressure of the transition chamber
  • Modular residential complexes in high-altitude areas adopt a modular design, and each module unit can be freely assembled in the plane direction and vertical direction and expand its functions arbitrarily according to the scale of the site, functional requirements and the number of users. , to form a single-story, double-story and multi-story building group space layout that meets different functional requirements, and meets the design requirements of larger space scale, higher pressurization capacity, more living functions, and lower-cost operation.
  • the sealed connection structure between adjacent module units in the same plane adopts a flexible airtight connection.
  • a flexible airtight connection can coordinate the deviation during the installation process of the pressure-bearing space and the overall pressurized Deformation, releasing the additional internal force brought by the connection node due to installation deviation and pressurization of the pressure-bearing space, is safer and more reasonable, and can meet the needs of complex terrain.
  • the flexible airtight connection adopts the C-shaped flanging design to solve the problem of air leakage in the bolt hole when the flexible airtight cloth is fixed, so that the airtightness of the connection structure is good, and it is easy to increase and decrease pressure; at the same time, the bottom of the cabin is installed through the inner flange design It is installed inside the cabin instead, which solves the problem of insufficient installation space at the bottom of the cabin.
  • the lowest module unit is connected to the ground through a universal foot cup, which ensures that the combination of standard cabins, connecting aisle cabins, connecting node cabins, and transition cabins in the complex can meet complex terrain conditions with a height difference of up to 30 cm.
  • the module units on the upper and lower floors are connected by one-way feet. On the basis of not changing the top hook connection and the bottom foot connection form, it ensures the stable connection between the multi-layer module units in the building complex and facilitates construction. , The advantages of easy disassembly.
  • the large-space structure system is novel and well-defined.
  • the inner, middle and outer structures form a self-balancing force-bearing system. Only the self-weight of the components is transmitted to the supporting structure.
  • the force is clear and can withstand large internal pressure, giving full play to the performance of structural materials. , Green and low carbon.
  • the external structure and the intermediate structure are respectively assembled with ring-shaped load-bearing members and strip-shaped units/plate units. In high-altitude areas without large-scale equipment assistance, it can be transported and assembled on-site by small equipment and manpower.
  • the internal structure adopts the whole air film structure to ensure the high air tightness of the large space structure.
  • the large-space structure proposed by the present invention solves the problem that the large-space structure in the high-altitude area is difficult to withstand large internal pressure, and at the same time ensures the high airtightness of the large-space structure, and can realize the pressurization and supplementation of the large-space public buildings in the high-altitude area. Oxygen to meet the needs of people entering China to carry out strenuous exercise and large-scale meetings in plateau areas.
  • the air pressurization unit includes a first air pressurization mechanism and a second air pressurization mechanism.
  • the air storage tank can store energy on the one hand, and on the other hand, it can be used as an air source to supplement oxygen and pressurize airtight buildings in high-altitude areas in case of emergency (power failure).
  • the key living indicators such as atmospheric pressure, oxygen concentration, and ambient temperature and humidity in high-altitude areas are adjusted to the level of plains, providing long-term comfortable living environment for people in high-altitude areas and solving the problem of altitude sickness.
  • the buildings of the present invention can independently use the green energy system, and can also be connected to the off-site commercial power supply, and the power supply is stable and reliable.
  • the building group of the present invention is also equipped with a comprehensive energy storage system, which uses the principle of compressed air energy storage.
  • the air compressor is used to compress the air and store it. If the external power is insufficient or the electricity price peaks , compressed air is directly used to supply air in confined spaces, which is more efficient than traditional compressed air energy storage.
  • the waste heat in the air compression is recovered and used for heating and domestic hot water in winter, which solves the problem of heating in winter; the domestic electricity of airtight buildings is mainly provided by batteries, which better solves the problem of energy storage.
  • the waste gas discharge system of the positive pressure chamber in the high-altitude area proposed by the present invention can ensure the normal pressure in the bathroom while realizing air purification.
  • the positive pressure room sewage discharge system in the high altitude area proposed by the present invention ensures the smooth discharge of sewage in a positive pressure environment by setting a drainage diaphragm valve, and at the same time prevents harmful gases from the sewage system from escaping into the room, ensuring air quality .
  • the buildings of the present invention have safety redundancy design and ergonomic design, which can fully guarantee the safety and comfort of personnel.
  • Fig. 1 is the overall structure schematic diagram of the pressurized oxygen replenishment modularized residential building complex in the high altitude area of the present invention
  • Fig. 2 is the structural representation of the standard cabin of building group
  • Fig. 3 is the structural representation of the transition cabin of building group
  • Fig. 4 is the structural diagram of the connecting passage cabin of building complex, wherein, (4a) is two passage passage cabins, (4b) is three passage passage cabins, (4c) is four passage passage cabins;
  • Fig. 5 is the structural diagram of the connection node cabin of building complex, wherein, (5a) is two-way connection node cabin, (5b) is three-way connection node cabin, (5c) is four-way connection node cabin;
  • Fig. 6 is the structural drawing of the pressure-bearing airtight window of building group
  • Fig. 7 is the structural diagram of the pressure-bearing airtight door of building complex (opening lock cylinder state);
  • Fig. 8 is the structural diagram of the pressure airtight door of building complex (closed door lock cylinder state);
  • Fig. 9 is a structural schematic diagram of the sealing strip of the pressure-bearing airtight door shown in Fig. 7-8;
  • Fig. 10 is the structural diagram of the flexible airtight connection of buildings
  • Fig. 11 is a schematic diagram of the connection between the flexible airtight connection shown in Fig. 10 and the standard flange;
  • Fig. 12 is the structural representation of the universal foot cup of building group
  • Fig. 13 is a schematic diagram of the connection between the universal foot cup shown in Fig. 12 and the module unit;
  • Fig. 14 is the structural representation of the one-way foot column of building group
  • Fig. 15 is a schematic diagram of the connection between the one-way column shown in Fig. 14 and the module unit;
  • Fig. 16 is a structural schematic diagram of the large-span space (external structure is string beam type) of the building complex;
  • Fig. 17 is a structural schematic diagram of the large-span space (the external structure is a truss type) of the building complex;
  • Fig. 18 is a structural schematic diagram of the large-span space (external structure is grid type) of the building complex;
  • Fig. 19 is a structural schematic diagram of a large-span space (external structure is reticulated shell type) of the building complex;
  • Fig. 20 is the structural block diagram of the intelligent supercharging oxygen supply system of building group
  • Figure 21 is a schematic structural view of the positive pressure chamber exhaust gas discharge system of the building complex
  • Fig. 22 is a schematic structural view of the self-circulating air treatment device in the positive pressure chamber exhaust gas discharge system shown in Fig. 21;
  • Fig. 23 is a top view structural diagram of the positive pressure chamber sewage discharge system of the building group
  • Fig. 24 is a side view structural schematic diagram of the positive pressure room sewage discharge system of the building group
  • Fig. 25 is an enlarged schematic view of the details of the connection between the drainage diaphragm valve and the water sealing device in the sewage discharge system of the positive pressure chamber.
  • connection wedge 50. Standard flange; 60. Flexible airtight connection; 61. Flexible airtight cloth; 62. Flexible connection flange; 621. Flange; 622. C-shaped flange structure; 623. Bead ; 63, sealing ring; 70, universal foot cup; 71, universal adjustment support plate; 72, universal support plate fixer; 73, foot adjustment rod; 74, adjustment rod limiter; 80, one-way foot Column; 81, foot column adjustment lever; 82, foot column limiter;
  • 300 Positive pressure chamber exhaust gas discharge system; 310. Toilets in closed buildings in high altitude areas; 320. Self-circulating air treatment device; 3201. First filter device; 3202. Oxidation adsorption device; 3203. Second filter device; 3204. Centrifugal Fan; 3205, shell; 330, environmental monitoring device; 340, controller; 350, exhaust pipe; 360, ventilation fan; 370, sealing valve; 380, supply system;
  • Positive pressure chamber sewage discharge system 401. Terminal water collector; 402. Drainage diaphragm valve; 403. Drainage pipe network; 404. Water seal device; 405. Valve controller; 406. Vacuum pump station; 407. Liquid level measurement Meter; 408, intake solenoid valve.
  • FIG. 1 it is a high-altitude area pressurized and oxygen-supplemented modular residential building group provided by the embodiment of the present invention.
  • the building group adopts a modular design and includes several standard cabins 11, connecting node cabins 12, and connecting walkway cabins. 13. Transition cabin 14, equipment cabin 15, sewage collection cabin 16, and large-span space 17 modular units.
  • Each modular unit can be freely assembled and functioned in the plane direction and vertical direction according to the site scale, functional requirements and the number of users. Expand arbitrarily to form a single-story, double-story and multi-story space layout of buildings that meet different functional requirements.
  • the standard cabin 11 is used for various functional scenarios such as residence, office, meeting, sports, and medical treatment.
  • the connecting node cabin 12 and the connecting walkway cabin 13 are used for space communication and personnel traffic between the standard cabins 11 , between the standard cabin 11 and the transition cabin 14 , and between the standard cabin 11 and the long-span space 17 .
  • the transition chamber 14 is used for indoor and outdoor pressure transition and personnel entry and exit of the building complex.
  • the equipment compartment 15 is equipped with an intelligent pressurization and oxygen supply system 200, which is used to control the automatic pressurization, automatic decompression and automatic pressure stabilization of the buildings, and adjust the key living environment indicators in the buildings to the level of the plains. fairly level.
  • the sewage collection cabin 16 is used for collecting and processing sewage and excrement and other dirty wastes in the building complex.
  • the long-span space 17 is used to meet large-scale conferences, large-scale gatherings, and sports for multiple groups of people.
  • the standard cabin 11, the connecting node cabin 12, the connecting walkway cabin 13 and the transition cabin 14 are formed by metal sheet-skeleton welding or glass fiber reinforced plastic integral casting; the structural form is square or silo-shaped.
  • the standard cabin 11 includes a cabin body welded by a 3mm-6mm thick low-temperature-resistant metal plate and a 100mm-200mm-thick low-temperature-resistant metal skeleton, and the cabin body can withstand 5-100KPa internal pressure.
  • the whole cabin is sprayed with 1cm-3cm non-combustible insulation material for cabin insulation, and 3-7cm insulation cotton material is embedded between the cabin metal plate and frame.
  • a number of pressure-bearing airtight windows 20 for lighting and light transmission are provided on the side and top of the cabin, standard flanges 50 are installed at the end plates on the side where the cabin connects to adjacent module units, and the bottom of the cabin is installed to support the cabin.
  • standard flanges 50 are installed at the end plates on the side where the cabin connects to adjacent module units
  • the bottom of the cabin is installed to support the cabin.
  • Several height-adjustable outriggers of the body, several lifting lugs for hoisting and transshipment are installed on the top of the cabin, openings for connecting external pipelines are installed on the end plate of the cabin, and metal plates for installing decorative plates are welded between the cabin frames. skeleton.
  • the transition cabin 14 also includes a pressure airtight door 30 for the outdoor pressure transition of the building group and the entry and exit of personnel.
  • the pressure airtight door 30 is divided into inner doors And the outer door, the inner door is used to connect and connect the interior of the building complex, and the outer door is used to connect and communicate the outdoor of the building complex.
  • the connecting passage cabin 13 and the connecting node cabin 12 have a modular design for the number of passages, and the connecting passage cabin 13 can be quickly switched to two-way, three-way, and four-way aisles through the sealing plate, as shown in the figure 4; the connecting node compartment 12 can be quickly switched to two-way, three-way, and four-way nodes through the sealing plate, as shown in Figure 5, to realize multi-directional connection.
  • the sewage collection cabin 16 also includes a waste water lifting system, a vacuum toilet system or an incineration toilet system or an integrated toilet system and pipelines.
  • the pressure-bearing airtight window 20 includes a pressure-bearing window frame 21, an inflatable internal pressure glass 22, a flange bead 23, a sealing ring 24 and a connecting piece 25;
  • the flange bead 23 is installed on the pressure-bearing window Inside the frame 21, the inflatable internal pressure glass 22 is installed between the flange bead 23 and the pressure window frame 21, and the sealing ring 24 is installed between the outer surface of the inflatable internal pressure glass 22 and the pressure window frame 21;
  • the flange bead 23 It is fixedly connected with the pressure-bearing window frame 21 through the connecting piece 25, so that the inflatable internal pressure glass 22 and the sealing ring 24 are clamped to play a preliminary pre-tightening sealing effect.
  • the cross-section of the pressure-bearing window frame 21 is L-shaped, including an integrally formed reference frame 211 and a sealing frame 212, wherein the reference frame 211 is located on the outer ring of the inflatable internal pressure glass 22, and the sealing frame 212 is located outside the reference frame 211, covering On the outer surface of the inflatable internal pressure glass 22; the flange bead 23 is located inside the reference frame 211 and covers the inner surface of the inflatable internal pressure glass 22.
  • the cross section of the pressure-bearing window frame 21 and the flange bead 23 is U-shaped, and the inflatable internal pressure glass 22 is embedded in the U-shaped groove.
  • the inner surface of the sealing frame 212 is provided with a mounting groove for the sealing ring 24, and the sealing ring 24 is installed in the mounting groove.
  • Inflatable internal pressure glass 22 includes two pieces of flat glass 221 arranged at intervals and high-pressure gas 222 filled between the two pieces of flat glass 221. Prestress offsets part of the external pressure, so as to achieve high pressure bearing performance of large area glass, and has better light transmission and heat preservation effect.
  • the pressure-bearing airtight door 30 includes a pressure-bearing door frame 31, a door panel 32, a hinge device 33 and a sealing lock 34, and the pressure-bearing door frame 31 and the door panel 32 are connected in rotation through the hinge device 33 , realize locking by sealing lock 34.
  • the door panel 32 is located on the inner side of the pressure-bearing door frame 31, and the airtight door is opened to the inner side of the cabin body.
  • the outer surface of the door panel 32 is provided with a sealing strip notch 321
  • the sealing strip notch 321 is provided with a sealing strip 35 .
  • the sealing lock 34 includes a lock groove 341 installed on the pressure-bearing door frame 31 and a sealing lock 342 installed on the door panel 32, wherein the sealing lock 342 includes an inner handle 3421, an outer handle 3422, a lock core 3423 and an oil seal 3424, and the lock core 3423
  • the sealing lock 342 includes an inner handle 3421, an outer handle 3422, a lock core 3423 and an oil seal 3424, and the lock core 3423
  • the oil seal 3424 is set on the lock cylinder 3423 and is located in the oil seal groove 322.
  • the diameters are the same, and the diameter of the outer ring of the oil seal 3424 is the same as that of the oil seal groove 322 .
  • the inner handle 3421 and the outer handle 3422 are installed on the inner end and the outer end of the lock cylinder 3423 respectively, and the outer handle 3422 is provided with a lock tongue 343 adapted to the lock groove 341 .
  • the pressure-bearing airtight door is pre-tightened by the seal lock 342 and the pressure-bearing door frame 31, and the sealing strip 35 is squeezed to achieve the overall sealing effect; the partial sealing effect of the seal lock 342 is further ensured by setting the oil seal 3424 on the lock cylinder 3423, which can be used for high Airtight pressurization and personnel entry and exit of pressurized and oxygen-supplemented buildings in altitude areas.
  • the hinge device 33 comprises a hinge connecting plate 331, a hinge supporting plate 332 and a rotating shaft 333.
  • the hinge connecting plate 331 is installed on the pressure-bearing door frame 31, the hinge supporting plate 332 is installed on the door panel 32, and the hinge connecting plate 331 and the hinge supporting plate 332 are provided with There is a round hole for the shaft 333 to pass through, and the hinge connecting plate 331 and the hinge support plate 332 are connected through the shaft 333, and the shaft 333 can move in the inner and outer directions in the round hole.
  • the advantage of setting the waist hole is that when there is a pressure difference inside and outside the cabin, the door panel 32 is not constrained by the hinge device 33, and can move in translation to the side of the pressure-bearing door frame 31 under the action of pressure, squeezing the sealing strip 35 to achieve a sealing effect .
  • the outer surface of the sealing strip 35 is provided with a main wing 351 and a side wing 352.
  • the main wing 351 is an arc surface
  • the side wing 352 is a protrusion arranged beside the arc surface.
  • a cavity 353 is formed between the main wing 351 and the side wing 352. During the pressurization process, the cavity 353 acts as a buffer zone, and the sealing effect is better.
  • module units (standard cabin 11, connecting node cabin 12, connecting aisle cabin 13, transition cabin 14, large-span space 17) are connected through standard flanges 50 and flexible airtight connections 60,
  • the standard flanges 50 are installed on the module units, and the standard flanges 50 are connected through a flexible airtight connection 60 .
  • the flexible airtight connection 60 includes a flexible airtight cloth 61, a flexible connecting flange 62 and a sealing ring 63 symmetrically installed on both sides of the flexible airtight cloth 61;
  • the flexible connecting flange 62 includes a flange 621, C-shaped flanging structure 622 and bead 623;
  • flange 621 is used to connect standard flange 50, and sealing ring 63 is set on the sealing surface between flange 621 and standard flange 50;
  • C-shaped flanging structure 622 and bead 623 is used to fix the flexible airtight cloth 61, wherein the lower side of the C-shaped flange structure 622 extends to connect with the flange 621, and a part of the flexible air-tight cloth 61 is laid between the upper surface of the C-shaped flange structure 622 and the bead 623 , and the bead 623 and the upper side of the C-shaped flange structure 622 are fastened
  • the flange plate 621 of the flexible connection flange 62 and the standard flange 50 adopt the form of inner flanges that are compatible with each other.
  • the sealed connection structure between adjacent module units in the same plane adopts a flexible airtight connection 60.
  • the flexible airtight connection 60 can coordinate the deviation during the installation process of the pressurized space and the overall pressurized Deformation, releasing the additional internal force brought by the connection node due to installation deviation and pressurization of the pressure-bearing space, is safer and more reasonable, and can meet the needs of complex terrain.
  • the flexible airtight connection 60 is designed with a C-shaped flange to solve the problem of air leakage from bolt holes when the flexible airtight cloth 61 is fixed, so that the airtightness of the connection structure is good, and it is easy to realize increasing and decreasing pressure.
  • the installation at the bottom of the cabin is changed to the installation inside the cabin through the design of the inner flange, which solves the problem of insufficient installation space at the bottom of the cabin.
  • the steel columns 111 of the upper and lower modular units are connected through the one-way foot column 80 and the connecting wedge 40, so as to realize the fixing and combination of the multi-layer space.
  • the lowermost modular unit is connected to the ground through the universal foot cup 70 .
  • the universal foot cup 70 includes a universal adjustment support plate 71, a universal support plate fixer 72, a foot adjustment rod 73, and an adjustment rod limiter 74; the lower end of the foot adjustment rod 73 passes through
  • the ball valve is connected with the universal adjustment support plate 71, the upper end of the foot adjustment rod 73 is connected with the steel column 111 of the module unit through the connection wedge 40, the connection wedge 40 is embedded in the steel column 111, and the upper end of the foot adjustment rod 73 is bolted After the wedge 40, the position is fixed by the adjustment rod stopper 74 (i.e. bolted connection), and the stroke of the adjustment rod stopper 74 is 350mm.
  • the universal support plate fixer 72 passes through the foot adjustment rod 73 to imprison the lower end sphere, and is fixedly installed on the universal adjustment support plate 71 by bolts to realize the large-angle continuous adjustment function of the universal adjustment support plate 71.
  • the two levels meet the service conditions of complex terrain.
  • the lowest module unit is connected to the ground through the universal foot cup 70, which ensures that the combination of the standard cabin 11, the connecting aisle cabin 13, the connecting node cabin 12, and the transition cabin 14 in the building complex can meet the complex requirements of a height difference of up to 30 cm. terrain conditions.
  • the one-way foot column 80 includes the foot column adjustment rod 81 and the foot column limiter 82 sleeved on the foot column adjustment rod 81, and the upper and lower ends of the one-way foot column 80 are respectively connected by connecting wedges.
  • 40 is connected with the profiled steel column 111 of the upper and lower two-layer module unit, and the connecting wedge 40 is embedded in the profiled steel column 111, and the upper and lower ends of the foot adjustment rod 73 respectively pass through the connecting wedge 40 and then pass through the adjusting rod stopper 74 to fix the position.
  • the module units on the upper and lower floors are connected by one-way foot columns 80.
  • connection form of the top hook connection and the bottom foot seat ensures the stable connection between the multi-layers in the building complex, and has the advantages of convenient construction, The advantage of easy disassembly.
  • connection form various facade space combinations can be realized according to user needs.
  • the long-span space 17 includes an outer structure 171 , an intermediate structure 172 , an inner structure 173 and a supporting structure 174 .
  • the outer structure 171 is a self-balancing structure system formed by arraying a plurality of ring-shaped load-bearing members surrounding the intermediate structure 172 along their respective axial directions, and is the main load-bearing structure.
  • the intermediate structure 172 is fixedly installed in the external structure 171, and the intermediate structure 172 is assembled by several intermediate structure 172 units, which is a thermal insulation enclosure structure with a large space, and transmits high internal pressure.
  • the inner structure 173 is attached to the middle structure 172 to ensure high airtightness of the large space.
  • the internal structure 173 adopts the whole air-tight film structure.
  • the internal structure 173 can be disengaged from the intermediate structure 172. After the large space is pressurized, the pressure makes the internal structure 173 close to the intermediate structure 172 .
  • the external structure 171 is integrally installed on the support structure 174, the external structure 171 is not in contact with the ground, the support structure 174 is installed on the ground, and the height of the support structure 174 can be adjusted to adapt to the site.
  • the shape of the large space enclosed by the external structure 171, the intermediate structure 172 and the internal structure 173 includes box-shaped, spherical, ellipsoidal, and space surfaces with arbitrary curvature.
  • the length of the box-shaped space is not less than 10 meters, the width is not less than 10 meters, and the height is not low.
  • the diameter of the spherical space is not less than 10 meters, the major axis and minor axis radius of the ellipsoidal space and space surface are not less than 10 meters, and the polar axis radius is not less than 5 meters.
  • a plurality of annular force-bearing members include three types of annular force-bearing members whose axes are respectively parallel to the length, width, and height of the intermediate structure 172; Center or two kinds of ring-shaped load-bearing members parallel to the equator plane; for ellipsoidal space and space curved surface, multiple ring-shaped load-bearing members include two kinds of ring-shaped load-bearing members whose axes are parallel to the major axis and minor axis of the intermediate structure 172 member.
  • the structural form of the ring-shaped load-bearing member is a string beam (as shown in Figure 16), a truss (as shown in Figure 17), a network frame (as shown in Figure 18), a reticulated shell (as shown in Figure 19) or a frame, and the material Using high-strength materials.
  • the 172 unit of the intermediate structure adopts a modular design, including a main structure.
  • the edge of the main structure is provided with male and female notches or holes that are compatible with each other, and the main structures are closely spliced through the male and female notches or holes.
  • the membrane material of the internal structure 173 is a composite material made of glass fiber cloth, plastic film or metal fabric and paint.
  • the support structure 174 specifically adopts the structural form of the universal foot cup 70 .
  • the intelligent pressurized oxygen supply system 200 includes a monitoring unit 210 for monitoring the air quality parameters inside the closed buildings in high altitude areas, and a monitoring unit 210 for pressurized oxygen supply in closed buildings in high altitude areas
  • the control unit 209 controls the air pressurizing unit according to the parameters obtained by the monitoring unit 210, and controls whether the first air pressurizing mechanism and the second air pressurizing mechanism work.
  • the air storage tank 204 can be connected with multiple air compressors 203 to store the capacity of the air storage tank 204 to full capacity faster.
  • the pressure-stabilizing tank 202 is set to buffer and stabilize the air.
  • the capacity of the surge tank 202 is much smaller than the capacity of the air storage tank 204 .
  • the air stored in the air storage tank 204 should meet the breathing requirements within 24 hours of a preset number of people (the preset number is at least two) in a closed building complex in a high altitude area.
  • the volume of the air storage tank 204 is greater than 20m3, and the volume of the surge tank 202 is greater than 1m3.
  • a filter 208 for filtering the air is installed on the pipelines at the outlets of the surge tank 202 and the air storage tank 204 .
  • the surge tank 202 and the air storage tank 204 can also share a filter 208, and the surge tank 202 and the air storage tank 204 can also be provided with a filter 208 respectively.
  • the air quality is improved by setting the filter 208 to filter the air.
  • the pipeline at the outlet of the surge tank 202 and the air storage tank 204 is equipped with a first flow regulating device and a second flow regulating device connected in parallel;
  • the first flow regulating device includes a solenoid valve 205 and a first regulating valve 206 arranged in series
  • the second flow regulating device includes a second regulating valve 207 .
  • the monitoring unit 210 includes a temperature sensor, a humidity sensor, a pressure sensor, an oxygen concentration measuring instrument and a carbon dioxide concentration measuring instrument located in the closed building group in the high altitude area, so as to monitor the temperature, humidity, pressure, and oxygen concentration in the closed building group in the high altitude area respectively. and carbon dioxide concentration, the parameters monitored by the monitoring unit 210 are sent to the control unit 209.
  • the intelligent pressurization and oxygen supply system for airtight buildings in high altitude areas also includes a backup power supply unit electrically connected to the control unit 209, the first flow regulating device and the second flow regulating device.
  • the working process of the intelligent pressurized oxygen supply system obtain the pressure value, oxygen concentration value and carbon dioxide concentration value in the closed buildings in the current high altitude area in real time through the monitoring unit 210; when the three indicators of pressure value, oxygen concentration value and carbon dioxide concentration value When one of the preset conditions is not met, the control unit 209 controls the first air pressurization mechanism and/or the second air pressurization mechanism to pressurize and supplement oxygen in closed buildings in high altitude areas; when the pressure value, oxygen concentration value and When the three indicators of the carbon dioxide concentration value all meet the preset conditions, the control unit 209 controls the first air pressurization mechanism and the second air pressurization mechanism to close the valves on the pipelines connecting the air inlets of airtight buildings in high altitude areas (at this time , the fresh air system inside the airtight buildings in high-altitude areas operates at low power to reduce system energy consumption).
  • the air pressurization unit includes a first air pressurization mechanism and a second air pressurization mechanism.
  • the other air pressurization mechanism can also Normal work ensures normal pressurization and oxygen supplementation in airtight buildings in high-altitude areas.
  • the air storage tank 204 can store energy on the one hand (use the air compressor 203 to compress the air in advance, and slowly release the air in the air storage tank 204 when the power is cut off), and on the other hand, it can be used as an air storage tank in an emergency (when the power is cut off). Oxygen supplementation and pressurization of airtight buildings in high-altitude areas.
  • the intelligent pressurized oxygen supply system has the advantages of reliable operation and easy realization.
  • the transition cabin 14 and the standard cabin 11, the connecting node cabin 12, the connecting aisle cabin 13 and the long-span space 17 are pressure-divided through internal and external airtight doors, and the standard cabin 11, the connecting node cabin 12, the connecting aisle cabin 13 and the long-span space
  • the pressure of 17 can be connected internally, and can also be set in different areas.
  • the pressure in the building group can be adjusted in the range of 5KPa to 100KPa, and the pressure increase and decrease rate in the building group can be adjusted in the range of 0KPa/min to 25KPa/min.
  • the key living environment indicators in the building complex can be adjusted to the level of the plains, the oxygen concentration is 20% to 21%, the carbon dioxide concentration is 0.04% to 1%, the ambient temperature is 18°C to 22°C, and the ambient relative humidity is 40% to 60%.
  • the control unit 209 is a PLC automatic control system.
  • the PLC automatic control system adopts a centralized monitoring-decentralized control distributed control architecture (DCS). It consists of a master station and several sub-stations to form an industrial-grade control network.
  • the master station adopts dual PLCs A redundant system is formed to monitor the equipment in the equipment cabin 15.
  • the sub-station adopts a single PLC to monitor each standard cabin 11 and transition cabin 14.
  • Each monitoring station is equipped with a human-computer interaction touch screen HMI.
  • the entire PLC system has a plus Decompression process control, process display, equipment operation status monitoring, fault detection and alarm and other functions.
  • the building complex also includes an energy organization system, which includes off-site power supply, UPS uninterruptible power supply system, wind energy-photovoltaic-energy storage distributed power system, and air waste heat recovery system.
  • the wind energy-photovoltaic-energy storage distributed power system includes a photovoltaic array installed on the top of the building complex, a wind generator and a large-capacity lithium battery pack located in the building complex.
  • the photovoltaic array provides energy for the building complex, and at night it uses wind energy Generators provide energy for the buildings, and wind energy and photovoltaic surplus electricity are stored in large-capacity lithium battery packs to maintain the normal energy supply of the buildings in less windy and rainy weather; UPS uninterruptible power supply system maintains intelligent pressurization and oxygen supplementation of the buildings
  • the operation of the system and security system shall not be less than 16 hours, and the normal living and life of the crowd shall be maintained for no less than 16 hours;
  • the first circulating water channel of the air waste heat recovery system is connected with the cooling water channel of the air compressor 203 to recover heat, and the air waste heat recovery
  • the second circulating water channel of the system communicates with domestic water equipment to provide hot water.
  • the buildings can independently use the green energy system, and can also be connected to the off-site mains power supply.
  • the power supply is stable and reliable.
  • the complex also includes an integrated energy storage system.
  • the integrated energy storage system includes a compressed air energy storage mechanism, a battery energy storage mechanism, and a heat storage energy storage mechanism.
  • the compressed air energy storage mechanism consists of an air compressor 203 and an air storage tank.
  • the battery energy storage mechanism includes a battery pack
  • the heat storage energy storage mechanism includes the air waste heat recovery system and a hot water storage tank connected thereto.
  • the hot water storage tank is connected with the hot water supply system of the building complex to provide domestic hot water to the building complex.
  • the storage battery pack is electrically connected to the electrical equipment of the airtight building group in the high altitude area, and the air storage tank is connected to the air intake pipe of the airtight building group in the high altitude area.
  • the working process of the integrated energy storage system when the electricity price is low or self-provided power generation equipment such as solar power generation and wind power generation has a large amount of power generation, the air compressor 203 is started to store compressed air through the air storage tank 204, and the air waste heat recovery system recovers the air at the same time
  • the waste heat generated by the compressor 203 can be used for domestic water and heating water in the hot water storage tank, and the excess hot water is stored, and at the same time, the battery pack is charged to store electricity.
  • the compressed air in the air storage tank 204 is used to meet the demand for pressurization and oxygen supplementation of the airtight buildings, and the hot water stored in the hot water storage tank meets the heating and domestic hot water needs in the cabin. Discharge to the outside to meet the needs of domestic electricity in closed buildings.
  • the building group also includes a positive pressure chamber exhaust gas discharge system 300, as shown in Figure 21, the positive pressure chamber exhaust gas discharge system 300 includes a self-circulating air treatment device 320 for air purification of the toilet 310 of the airtight building group in high altitude areas.
  • An environmental monitoring device 330 for monitoring the air quality of toilets in closed buildings in high altitude areas, and a controller 340 electrically connected to the self-circulating air processing device 320 and the environmental monitoring device 330, wherein the self-circulating air processing device 320 and the environmental monitoring device 330 They are all installed in the toilets of closed buildings in high-altitude areas.
  • the toilets in closed buildings in high-altitude areas are equipped with exhaust outlets. Exhaust pipes 350 are installed on the exhaust outlets.
  • Ventilation fans 360 and sealing valves 370 are installed on the exhaust pipes 350.
  • the self-circulating air treatment device 320 includes a housing 3205, the housing 3205 is provided with an air inlet and an air outlet, and a first filter device 3201, an oxidation adsorption device 3202, and a first filter device 3201 are arranged in sequence from the air inlet to the air outlet.
  • the second filtering device 3203, the first filtering device 3201 and the second filtering device 3203 are all porous media, and the oxidation adsorption device 3202 is sprayed with a chemical solution for adsorbing exhaust gas (exhaust gas includes NH3, H2S and indole) and oxidizing it, Chemical solutions include acids or lyes.
  • the oxidation adsorption device 3202 includes a conduit, the first port of the conduit is set toward the outlet of the first filter device 3201, the second port of the conduit is set toward the inlet of the second filter device 3203, and the third port of the conduit is connected to the supply system of the chemical solution 380 connectivity.
  • the chemical solution supply system 380 sprays the solution into the conduit, so as to oxidize the gas, and oxidize some organic substances or other irritating odors that cannot be absorbed in the gas.
  • Both the first filter device 3201 and the second filter device 3203 include an activated carbon filter layer.
  • the self-circulating air treatment device 320 also includes a negative ion generator located in the casing 3205 . Negative oxygen ions are released through the negative ion generator to achieve the effect of sterilization and air purification.
  • a centrifugal fan 3204 is also installed in the housing 3205 , and the centrifugal fan 3204 draws indoor air into the housing 3205 for purification treatment in the housing 3205 , thereby improving the ventilation efficiency of the self-circulating air treatment device 320 .
  • the controller is also connected with an alarm, and when the exhaust gas concentration exceeds the preset threshold, the alarm will alarm to prompt the user.
  • the working principle of the positive pressure chamber exhaust gas discharge system 300 when the exhaust gas concentration in the indoor environment reaches the preset threshold, the environmental monitoring device 330 will alarm and send a signal, and at the same time drive the controller 340 to turn on the self-circulating air treatment device 320 to treat the indoor air.
  • the controller 340 opens the self-circulating air treatment device 320 for air treatment, and at the same time opens the sealing valve 370 and the ventilation fan 360, so that ventilation and waste gas treatment are carried out at the same time, so as to ensure that the indoor environment meets the use requirements.
  • the exhaust gas discharge system in the positive pressure chamber can not only realize air purification, but also ensure the normal pressure in the bathroom and avoid the occurrence of hypoxia for users.
  • the waste gas discharge system of the positive pressure chamber has the advantages of simple structure and convenient design and installation. Adopting the exhaust gas discharge system of the positive pressure chamber can ensure long air residence time, low flow velocity and air treatment effect.
  • the building complex also includes a plenum sewage discharge system 400, as shown in Figures 23-24, the plenum sewage discharge system 400 includes a terminal water collector for storing waste water without irritating odor (mainly water for showers) 401. Water sealing device for preventing odor from reversing in the pipe network 404. Drainage diaphragm valve 402 for isolating indoor and outdoor gas pressure to ensure that the indoor pressure does not leak out.
  • the plenum sewage discharge system 400 includes a terminal water collector for storing waste water without irritating odor (mainly water for showers) 401.
  • Water sealing device for preventing odor from reversing in the pipe network 404.
  • Drainage diaphragm valve 402 for isolating indoor and outdoor gas pressure to ensure that the indoor pressure does not leak out.
  • Drainage pipe for discharging indoor sewage into a positive pressure environment Net 403 (waste water storage tanks can be set in the drainage pipe network 403 to store sewage), and an inflation system for inflating the drainage diaphragm valve 402, wherein the water sealing device 404 is located at the water outlet of the terminal water collector 401, and the drainage pipe
  • the net 403 is connected with the water outlet of the water sealing device 404
  • the drainage diaphragm valve 402 is installed on the drainage pipe network 403 at the water outlet of the water sealing device 404
  • the inflation system communicates with the air inlet of the drainage diaphragm valve 402.
  • a liquid level gauge 407 is installed inside the terminal water collector 401 to measure the liquid level information of the terminal water collector 401 .
  • the positive pressure chamber sewage discharge system also includes a vacuum pump station 406, and the inflation system includes a three-way pipeline, the first port of the three-way pipeline communicates with the air inlet of the drainage diaphragm valve 402, and the second port of the three-way pipeline is connected to The external atmosphere is connected, and the third port of the three-way pipe is connected with the exhaust port of the vacuum pump station 406 through the intake solenoid valve 408 , and the suction port of the vacuum pump station 406 is connected with the drainage pipe network 403 .
  • Vacuum pump station 406 is used to generate vacuum in the pipeline, one end is connected to the drainage pipe network 403, and the other end is connected to the inflation system, and the negative pressure of the drainage pipe network 403 is used to transmit positive pressure to the inflation system to ensure that the drainage diaphragm valve 402 is in normal condition. flap closed. Inflate the drainage diaphragm valve 402 through the vacuum pump station 406. When the vacuum pump station 406 vacuumizes the drainage pipe network 403, the other end of the vacuum pump station 406 will generate a higher pressure than the outdoor atmospheric pressure.
  • the plenum sewage discharge system 400 also includes a valve controller 405 electrically connected to a liquid level gauge 407 , an exhaust solenoid valve, an intake solenoid valve 408 and a vacuum pump station 406 . According to the data measured by the liquid level gauge 407, the valve controller 405 realizes the automatic control of the opening and closing of the drainage diaphragm valve 402 automatically.
  • the water sealing device 404 adopts a U-shaped water trap, the height of the entrance of the U-shaped water trap is greater than the height of the outlet, and the height difference of the pipes on both sides of the U-shaped water trap (L3 in Figure 3) It is 1/6-1/4 of the distance from the outlet of the U-shaped trap to the drain diaphragm valve 402 (L1 in the figure).
  • the right side of the U-shaped trap is closed due to the drainage diaphragm valve 402, and there is an air of the length L1+L2.
  • the water seal must overcome this air pressure to realize the water seal. . Therefore, the height of the pipe on the inlet side of the U-shaped trap should be higher than that on the outlet side, and the height difference should be set reasonably to ensure the water sealing effect.
  • the working principle of the sewage discharge system 400 in the positive pressure chamber when drainage is required, the liquid level signal of the terminal water collector 401 or the signal input of the forced drainage signal is input, and under the action of the valve controller 405, the exhaust of the aeration system is controlled.
  • the solenoid valve is opened, and the inflatable system is connected to the outdoor at this time. Because the indoor pressure P1 is always greater than the outdoor pressure P2, the drainage diaphragm valve 402 will open under the action of indoor positive pressure, and the indoor sewage will pass through under the action of indoor positive pressure.
  • the pipe network is discharged into the vacuum pump station 406; when the liquid level drops after a period of drainage or according to the control command to close the drainage, the air intake solenoid valve 408 of the inflation system is opened, because the pressure P3 of the exhaust port of the vacuum pump station 406 is greater than the indoor pressure P1 , which is also greater than the outdoor pressure P2.
  • the drain diaphragm valve 402 will be closed under the pressure of the intake system, and then the water seal device 404 will be filled with water to ensure the integrity of the water seal and the pressure of the positive pressure chamber.
  • the system completes a drainage process under the positive pressure of the room.
  • the sewage discharge system of the positive pressure chamber ensures the smooth discharge of sewage under the positive pressure environment by setting the drainage diaphragm valve 402, and at the same time prevents harmful gases from the sewage system from escaping into the room, thereby ensuring air quality.
  • the positive pressure chamber sewage discharge system has the advantages of simple structure, easy realization and reliable operation.
  • the building complex also includes a security system
  • the security system includes a people flow statistics system, a monitoring system, an intercom system and an alarm system
  • the people flow statistics system is set in the transition cabin 14, and the real-time statistics of the number of people entering the cabin and the total number of people during the period can be calculated in real time
  • the total fresh air volume required by the people in the cabin is then controlled by the PLC to control the total air intake and exhaust volume of the cabin, and the statistical analysis of per capita energy consumption can also be performed according to the total number of people entering the cabin during the period
  • the monitoring system includes installations in standard cabins, It is composed of the camera terminal on the top of each cabin connecting the node cabin, connecting the aisle cabin, the transition cabin, and the large-span space, and the network hard disk and monitoring host installed in the equipment cabin, which are used for real-time monitoring and monitoring review of key parts of the building complex
  • the intercom system includes a number of multi-way intercoms and emergency buttons installed in the building complex.
  • the alarm system includes setting in the standard cabin, connecting node cabin, connecting aisle cabin, transition
  • the fire alarm device on the top of each cabin in the span space is used for abnormally generated smoke and possible fire alarms in the cabin, and is also installed in the standard cabin, connecting node cabin, connecting walkway cabin, transition cabin, and each cabin in the large-span space
  • the advanced multi-parameter monitoring instrument is used for alarming when the carbon dioxide concentration, oxygen concentration, pressure difference, temperature, humidity and other parameters inside the cabin exceed the set limit value.
  • the alarm adopts the sound alarm and display image alarm.
  • the present invention has high-altitude supercharged oxygen supplement modular residential buildings with safety redundancy, including: the master-slave station PLC control system adopts a distributed ring network structure, and when a master station or a single slave station fails, other PLCs can still It works independently and normally, effectively providing control system security; the master station PLC of the equipment room adopts dual CPU hard redundancy, which can effectively reduce unexpected downtime and effectively prevent data loss; the master and slave stations of the PLC control system have online monitoring hardware and fault self-diagnosis, which can effectively Find and replace faulty components in time; the aisle side of the transition cabin 14 adopts manual valve + electric valve, and when the electric valve fails, the transition cabin 14 can be manually released on the aisle side for emergency escape; the transition cabin 14 is equipped with dual differential pressure sensors, It can effectively avoid the failure of sensor failure to collect pressure data; the transition cabin 14 is equipped with double human body infrared sensor detectors, which can effectively avoid human error detection caused by human body infrared sensor detector failure, and avoid false pressure operations by people in the aisle
  • the pressurized and oxygen-supplemented modular residential building group in the high-altitude area of the present invention has an ergonomic design, including: the transition chamber 14 has a built-in multi-stage automatic pressurized and decompressed program to meet the needs of different physical groups for different rates of increase and decrease.
  • the transition cabin 14 is provided with push-button pressurization and decompression buttons, which are used for simply and intuitively increasing and depressurizing.
  • the transition chamber 14 is provided with a button-type increase and decrease pause button, and the increase and decrease can be suspended when the human body is unwell during the increase and decrease process.
  • the transition cabin 14 is provided with a people flow statistics system for real-time statistics of the number of people entering the cabin and the total number of people during the period.
  • the living cabin is equipped with a control panel with a man-machine interface, and the user can individually adjust the oxygen concentration, dioxide concentration, temperature, humidity, and pressure environment indicators in the cabin.
  • a number of multi-way intercoms and emergency buttons are set up in the building complex, and users can communicate with multiple points for help.
  • the present invention also proposes a method for the personnel of the above-mentioned pressurized and oxygen-supplemented modular residential buildings to enter the room from the outside through the transition cabin 14 in the high-altitude area, including the following steps:
  • An LED display screen is installed on the top of the outer door of the transition cabin 14.
  • the display screen shows the pressure difference between the transition cabin 14 and the outside.
  • a multi-sound prompter is used to prompt the status inside and outside the cabin.
  • Electronic access control is set outside the outer door of the transition cabin 14.
  • the access control is opened by swiping a card or password or fingerprint recognition or face recognition, and the transition cabin 14 quickly releases pressure.
  • the multi-sound prompter prompts "the pressure is balanced, you can enter", and the personnel push open the outer door to enter the transition chamber 14 .
  • the outer door detection switch of the transition cabin 14 detects whether the outer door is closed. If it is closed, the voice broadcast "the outer door is closed”. If the outer door is not closed, the voice broadcast "please Close the outer door”.
  • the transition chamber 14 is provided with an infrared induction lighting lamp. When a person enters the transition chamber 14, the lighting lamp is automatically turned on, and when the person leaves the transition chamber 14, the lighting lamp goes out.
  • the multi-sound prompter will give a voice prompt "If you feel uncomfortable in your ears, please swallow your saliva". After the prompt is over, start playing music.
  • An LED display is set above the outer side of the inner door of the transition cabin 14, and the LED display shows the pressure difference between the transition cabin 14 and the aisle cabin.
  • the personnel can press the button box next to the inner door according to their own feelings. button to select different pressure regulation speeds, and in case of emergency, you can press the emergency stop button on the button box.
  • the present invention also proposes a method for using the personnel of the pressurized and oxygen-supplemented modular residential buildings in high altitude areas from indoors through the transition cabin 14 to outdoors, including the following steps:
  • An LED display screen is set above the inner door of the transition cabin 14, and the LED screen displays the pressure difference between the transition cabin 14 and the walkway cabin. When there are people in the transition cabin 14, the LED display scrolls to display "the transition cabin 14 is occupied!", There is a multi-sound prompter next to the display screen, which is used for prompting the state inside and outside the cabin.
  • the automatic pressure control system quickly adjusts the pressure of the transition chamber 14 .
  • An LED display screen is arranged above the outer door of the transition chamber 14 to display the pressure difference between the transition chamber 14 and the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

本发明涉及一种高海拔地区增压补氧模块化人居建筑群,采用模块化设计,包括若干标准舱、连接节点舱、连接走道舱、过渡舱、设备舱、集污舱、大跨度空间模块单元,各模块单元能够进行平面方向和竖直方向的自由组拼和功能任意拓展;标准舱用于多种功能场景需求;连接节点舱与连接走道舱用于标准舱之间、标准舱与过渡舱之间、标准舱与大跨度空间之间的空间连通和人员交通;过渡舱用于建筑群室内外压力过渡和人员进出;设备舱内设有智能增压补氧系统;集污舱用于收集和处理建筑群内污废物;大跨度空间用于满足多人群大型会议、大型集会、体育运动。本发明满足更大空间规模、更高增压能力、更多人居功能、更加低成本运行的设计需求。

Description

高海拔地区增压补氧模块化人居建筑群及使用方法 技术领域
本发明涉及高海拔地区增压补氧建筑技术领域,具体涉及一种高海拔地区增压补氧模块化人居建筑群及使用方法。
背景技术
高海拔地区常年低温严寒、空气稀薄、低大气压力和氧分量,地理气候环境恶劣,平原地区人群进入高海拔地区旅居或经济社会建设,大多都会出现心率加快、头昏头胀、体能下降、人体脱水等高原反应,危害了人员的工作效率和生活品质,严重时甚至对人体生理机能造成损伤。增压补氧是被证实能够有效解决人员高原反应的有效手段。目前,市面上常见的增压补氧技术产品空间有限,仅能一定程度上缓解高原反应,无法满足多人群长期生活、居住的需求。
发明内容
本发明要解决的技术问题在于针对上述现有技术存在的不足,提供一种高海拔地区增压补氧模块化人居建筑群及使用方法,该建筑群为更大空间规模、更高增压能力、更多人居功能、更加低成本运行的高海拔增压补氧建筑群,实现建筑群能源自给,满足多人群长期生活、居住,彻底解决高原反应的问题。
本发明为解决上述提出的技术问题所采用的技术方案为:
一种高海拔地区增压补氧模块化人居建筑群,所述建筑群采用模块化设计,包括若干标准舱、连接节点舱、连接走道舱、过渡舱、设备舱、集污舱、大跨度空间模块单元,各模块单元能够根据场地规模、功能需求和使用人员数量,进行平面方向和竖直方向的自由组拼和功能任意拓展,形成单层、双层以及多层的满足不同功能需求的建筑群空间布局;
所述标准舱用于居住、办公、会议、运动、医疗多种功能场景需求;所述连接节点舱与连接走道舱用于标准舱之间、标准舱与过渡舱之间、标准舱与大跨度空间之间的空间连通和人员交通;所述过渡舱用于建筑群室内外压力过渡和人员进出;所述设备舱内设有智能增压补氧系统,所述智能增压补氧系统用于控制建筑群自动增压、自动减压和自动稳压,并调节建筑群内关键人居环境指标至平原相当水平;所述集污舱用于收集和处理建筑群内污废物;所述大跨度空间用于满足多人群大型会议、大型集会、体育运动。
上述方案中,所述标准舱、连接节点舱、连接走道舱和过渡舱采用金属板材-骨架焊接加工成型或者玻璃钢整体浇筑成型工艺;结构形式为方形或者筒仓形。
上述方案中,所述标准舱包括由耐低温金属板和耐低温型金属骨架焊接构成的舱体,所述舱体用于承受5-100KPa内压;所述舱体整体喷涂有用于舱体保温的不燃保温材料,舱体金属板-骨架之间嵌入保温棉材料;所述舱体侧面和顶面开设若干承压气密窗,舱体与相邻模块单元连接侧的端板处安装有标准法兰,舱体底部安装有用于支撑舱体的若干可调节高度支腿。
上述方案中,所述过渡舱除具有标准舱特征以外,还包括用于建筑群室外压力过渡和人员进出的承压气密门,所述承压气密门分为内门和外门,内门用于连接和连通建筑群室 内,外门用于连接和连通建筑群室外;所述承压气密门包括门框、门板、铰链装置和密封锁具,所述门框与门板之间通过铰链装置连接,所述密封锁具包括安装于门框上的锁槽和安装于门板上的密封锁,所述门板位于门框的内侧,所述承压气密门向舱体内侧开启;所述门板外表面设有密封条槽口,所述密封条槽口内设有密封条;所述密封锁包括锁芯和油封,所述锁芯贯穿门板,所述门板内表面与锁芯连接处设有油封槽,所述油封套在锁芯上并位于油封槽内。
上述方案中,所述过渡舱内置多级自动增压减压程序,满足不同体质人群对于不同增减压速率需求;过渡舱设置按键式增压减压按键,用于简易直观地进行增减压;过渡舱设置按键式增减压暂停按键,增减压过程人体不适时可暂停增减压;过渡舱内门走道侧和门室外侧的顶部设置有若干多声音提示器和LED显示屏,通过声光综合手段指引使用人员进出过渡舱;过渡舱外门采用电子门禁授权机制。
上述方案中,连接走道舱和连接节点舱具有标准舱特征以外,其通道数进行模块化设计,通过封板可分别快速切换为两通、三通、四通走道和两通、三通、四通节点,实现多向连接。
上述方案中,所述承压气密窗包括承压窗框、充气内压玻璃、法兰压条、密封圈和连接件;所述法兰压条安装于承压窗框的内侧,所述充气内压玻璃安装于法兰压条与承压窗框之间,所述密封圈安装于所述充气内压玻璃外侧面与承压窗框之间;所述法兰压条与承压窗框之间通过所述连接件固定连接,从而将充气内压玻璃与密封圈夹紧;所述充气内压玻璃包括两片间隔设置的平板玻璃以及填充于两片平板玻璃中间的高压气体,所述高压气体的气压高于室内气压5-100kPa。
上述方案中,在平面方向,相邻模块单元之间通过标准法兰和柔性气密连接相连;所述标准法兰安装于模块单元上,标准法兰之间通过柔性气密连接相连;所述柔性气密连接包括柔性气密布、对称安装于所述柔性气密布两侧的柔性标准法兰、密封圈;所述柔性标准法兰包括法兰盘、C字型翻边结构和压条;所述法兰盘用于连接标准法兰,所述密封圈设置于所述法兰盘与标准法兰的密封面;所述C字型翻边结构和压条用于固定所述柔性气密布,其中,C字型翻边结构的下边延伸至与所述法兰盘连接,C字型翻边结构的上边表面与压条之间铺设部分所述柔性气密布,且压条与C字型翻边结构的上边通过螺栓紧固连接;所述柔性标准法兰的法兰盘与标准法兰采用相互适配的内法兰形式。
上述方案中,在立面方向,通过单向脚柱和连接楔块连接上下两层模块单元的型钢立柱,以实现多层空间的固定与组合;所述单向脚柱包括脚柱调整杆和套装于脚柱调整杆上的脚柱限位器,单向脚柱的上下两端分别通过连接楔块与上下两层模块单元的型钢立柱连接,所述连接楔块嵌入型钢立柱内,地脚调整杆的上下两端分别穿过连接楔块后通过所述调整杆限位器固定位置;最下层模块单元通过万向脚杯与地面连接,所述万向脚杯包括万向调节支撑盘、万向支撑盘固定器、地脚调整杆、调整杆限位器;所述地脚调整杆的下端通过球阀与万向调节支撑盘连接,地脚调整杆的上端通过连接楔块与模块单元的型钢立柱连接,所述连接楔块嵌入型钢立柱内,地脚调整杆的上端螺栓连接楔块后通过所述调整杆限位器固定位置;所述万向支撑盘固定器穿过地脚调整杆禁锢其下端球体,并通过螺栓固定安装于万向调节支撑盘上,实现万向调节支撑盘大角度连续调节功能,从高度、角度两个层面满足复杂地形服役条件。
上述方案中,所述大跨度空间包括外部结构、中间结构、内部结构和支撑结构;所述外部结构是通过环绕所述中间结构的多个环状承力构件沿各自的轴向阵列而形成的自平衡结构体系,为主受力结构;所述中间结构固定安装于外部结构内,中间结构通过若干中间结构单元装配而成,为大空间的保温围护结构,并传递高内部压力;所述内部结构贴靠于中间结构内,确保大空间的高气密性;内部结构采用气密性高的整张气膜式结构,大空间未加压时,内部结构能够与中间结构脱开,大空间加压后,压力使内部结构紧贴中间结构;所述外部结构整体安装于所述支撑结构上,外部结构不与地面接触,所述支撑结构安装于地面,支撑结构可调节高度自适应场地。
上述方案中,所述智能增压补氧系统包括用于监测建筑群内部空气质量参数的监控单元、用于对建筑群进行增压补氧的空气加压单元、以及与监控单元和空气加压单元电连接的控制单元,空气加压单元包括第一空气加压机构和第二空气加压机构,第一空气加压机构包括鼓风机以及与其连接的稳压罐,第二空气加压机构包括空气压缩机以及与其连接的空气储罐,稳压罐和空气储罐均通过对应的管道与建筑群的进气口连通,控制单元根据监控单元得到的参数,来对空气加压单元进行控制,控制第一空气加压机构和第二空气加压机构是否工作。
上述方案中,所述监控单元包括位于建筑群内的温度传感器、湿度传感器、压力传感器、氧气浓度测量仪以及二氧化碳浓度测量仪。
上述方案中,所述控制单元为PLC自动控制系统,所述PLC自动控制系统采用集中监控-分散控制的集散控制架构(DCS),由1个主站和若干分站组成工业级控制网络,主站采用双PLC组成冗余系统,对设备舱内设备进行监控,分站采用单PLC,对各标准舱和过渡舱进行监控,每个监控站均配有人机交互触摸屏HMI,整个PLC系统具备加减压过程控制、流程显示、设备运行状态监控,故障检测及报警功能。
上述方案中,所述建筑群还包括能源组织系统,所述能源组织系统包括厂外电源、UPS不间断电源系统、风能-光伏-储能分布式电源系统、空气余热回收系统;其中,所述风能-光伏-储能分布式电源系统包括安装在建筑群顶部的光伏阵列、风能发电机和位于建筑群内的大容量锂电池组,白天通过所述光伏阵列为建筑群提供能源,夜间通过风能发电机为建筑群提供能源,风能和光伏多余电能储存至所述大容量锂电池组中,用于少风和阴雨天气时维持建筑群正常能源供给;所述UPS不间断电源系统维持建筑群智能增压补氧系统和安防系统运行不低于16小时,维持人群正常居住、生活不低于16小时;所述空气余热回收系统的第一循环水通道与空气压缩机的冷却水通道连接以回收热量,空气余热回收系统的第二循环水通道与生活用水设备连通以提供热水。
上述方案中,所述建筑群还包括综合储能系统,所述综合储能系统包括压缩空气储能机构、电池储能机构以及储热储能机构,其中,所述压缩空气储能机构通过所述空气压缩机以及与其连接的空气储罐组成;所述电池储能机构包括蓄电池组;储热储能机构包括与空气压缩机连接的空气余热回收系统以及与其连接的热水储罐;热水储罐与高海拔地区密闭建筑群的热水供应系统连接以对高海拔地区密闭建筑群提供生活热水,蓄电池组与高海拔地区密闭建筑群的用电设备电连接,空气储罐与高海拔地区密闭建筑群的进气管道连接。
上述方案中,所述建筑群还包括正压室废气排放系统,所述正压室废气排放系统包括用于高海拔地区密闭建筑群卫生间空气净化的自循环空气处理装置、用于监测高海拔地区密闭建筑群卫生间空气质量的环境监测装置、以及与自循环空气处理装置和环境监测装置电连接的控制器,其中,所述自循环空气处理装置和环境监测装置均安装于高海拔地区密闭建筑群卫生间内,所述高海拔地区密闭建筑群卫生间设置有排气口,排气口上安装有排气管道,排气管道上安装有换气风扇和密封阀。
上述方案中,所述建筑群还包括正压室污水排放系统,所述正压室污水排放系统包括用于储存无刺激性气味废水的末端水收集器、用于防止管网内臭气反逸的水封装置、用来隔断室内外气体压力以保证室内压力不外泄的排水隔膜阀、用于将室内污水排出正压环境的排水管网、以及用于给排水隔膜阀充气的充气系统,其中,所述水封装置位于末端水收集器的出水口处,排水管网与水封装置的出水端连接,排水隔膜阀安装于水封装置出水端处的排水管网上,充气系统与排水隔膜阀的进气口连通。
上述方案中,所述建筑群还包括安防系统,所述安防系统包括人流统计系统、监控系统、对讲系统和报警系统;所述人流统计系统设置于所述过渡舱,实时统计进入舱体人数和期间总人数;所述监控系统包括安装在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体顶部的摄像终端和设置在设备舱的网络硬盘和监控主机,用于建筑群各关键部位的实时监控和监控回看;所述对讲系统包括设置于建筑群内的若干多路对讲器和紧急按键,使用人员可多点通讯求助;所述报警系统包括设置在标准舱、连接节点舱、连接 走道舱、过渡舱、大跨度空间各舱体顶部的消防报警装置,用于舱体内非正常产生的烟雾及可能的火灾报警,还包括设置在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体内的多参数监测仪表,用于舱体内部二氧化碳浓度、氧气浓度、压差、温度、湿度各参数超出设定限值时的报警,报警采用声音报警和显示屏图像报警方式。
相应的,本发明还提出上述高海拔地区增压补氧模块化人居建筑群的人员从室外通过过渡舱进入室内的使用方法,包括以下步骤:
S1.过渡舱外门室外侧顶部设置LED显示屏,显示屏显示过渡舱和室外的压力差,当过渡舱有人时,文字滚动显示“过渡舱有人!”,显示屏旁边设有一个多声音提示器,用于提示舱内外状态;
S2.过渡舱外门室外侧设置电子门禁,人员需要进入过渡舱时,通过刷卡或密码或指纹识别或人脸识别方式打开门禁,过渡舱快速泄压;当压力差降到允许的范围后,多声音提示器提示“压力平衡,可以进入”,人员推开外门进入过渡舱;
S3.人员进入过渡舱后,过渡舱的外门检测开关检测外门是否关好,如果关好,则语音播报“外门已关闭”,如果外门没有关好,则语音播报“请关闭外门”;
S4.当人员进入过渡舱后,红外感应开关感应到人员的存在后,过渡舱外面的显示屏上滚动显示“过渡舱有人”;
S5.过渡舱内设置有红外感应照明灯,当人员进入过渡舱的时候,照明灯自动点亮,当人员离开过渡舱后,照明灯熄灭;
S6.内门和外门关好后,多声音提示器进行语音提示“如果感觉耳朵不舒服,请吞咽口水”,提示结束后,开始播放音乐;
S7.过渡舱内门的外侧上方设置LED显示屏,LED显示屏显示过渡舱和走道舱之间的压差,人员可以根据自身的感受情况,按下内门旁边的按钮盒上的不同按钮,选择不同的调压速度,当遇到紧急情况,可以按下按钮盒上的急停按钮;
S8.当过渡舱和走道舱之间的压力差在允许的范围之内后(小于1KPa)语音播报:“压力平衡,可以开门”;
S9.人员开门进入走道舱,然后把过渡舱的内门关闭;
S10.如果人员离开过渡舱后,内门没有关闭,则语音播报,提示关闭内门。
相应的,本发明还提出上述高海拔地区增压补氧模块化人居建筑群的人员从室内通过过渡舱到室外的使用方法,包括以下步骤:
S1.过渡舱内门上方设置LED显示屏,LED屏显示过渡舱和走道舱之间的压力差,当过渡舱有人的时候,LED显示屏上滚动显示“过渡舱有人!”,显示屏旁边设有一个多声音提示器,用于舱内外状态的提示;
S2.按下内门旁按钮盒上的请求进入按钮;
S3.压力自动控制系统快速调节过渡舱的压力;
S4.当走道舱和过渡舱的压差在允许的范围内,语音播报,“压力平衡,可以进入”;
S5.人员拉开内门,进入过渡舱;
S6.关闭舱门,当舱门检测开关检测到舱门关好,则语音播报“舱门已关闭”,当舱门检测开关没有检测到舱门关好,则语音播报“请关好舱门”;
S7.当舱门关好后,进行语音播报“如果感觉耳朵不舒服,请吞咽口水”,播报结束后,播放音乐;
S8.过渡舱外门上方设置有LED显示屏,显示过渡舱和室外的压力差;
S9.人员可以根据自身的感受情况,按下外门旁边的按钮盒上的不同按钮,选择不同的调压速度,当遇到紧急情况,可以按下按钮盒上的急停按钮;
S10.当过渡舱和室外的压力差在允许的范围之内,语音播报“压力平衡,可以出去”;
S11.人员旋转门锁上的旋钮,打开电子锁,然后拉开过渡舱的外门,离开过渡舱;
S12.人员离开过渡舱后,需要关闭舱门,若舱门没有关闭到位,则语音提示,请关闭舱门。
本发明的有益效果在于:
1、高海拔地区增压补氧模块化人居建筑群采用模块化设计,各模块单元能够根据场地规模、功能需求和使用人员数量,进行平面方向和竖直方向的自由组拼和功能任意拓展,形成单层、双层以及多层的满足不同功能需求的建筑群空间布局,满足更大空间规模、更高增压能力、更多人居功能、更加低成本运行的设计需求。
2、同一平面内的相邻模块单元之间的密封连接结构采用柔性气密连接,相比于刚性气密连接,柔性气密连接可以协调承压空间安装过程中的偏差以及整体加压后的变形,释放由于安装偏差以及承压空间加压对连接节点带来的附加内力,更安全合理,可以满足复杂地形的需求。柔性气密连接通过C字型翻边设计,解决固定柔性气密布时螺栓孔漏气问题,使得连接结构的气密性好,易于实现增减压;同时通过内法兰设计将舱体底部安装改为舱体内部安装,解决了舱体底部安装空间不足的问题。最下层模块单元通过万向脚杯与地面连接,保证了建筑群中的标准舱、连接走道舱、连接节点舱、过渡舱的组合均可满足上下高度差高达30厘米的复杂地形条件。上下两层模块单元之间通过单向脚柱连接,在不变更顶部吊钩连接以及底部脚座连接形式基础上,保证了建筑群中多层模块单元之间的稳固连接,并兼具施工便捷、拆卸方便的优点。
3、大空间结构体系新颖,层次分明,内、中、外部结构形成了自平衡受力体系,仅构件自重传递给支撑结构,受力明确,能够承受较大内压,充分发挥了结构材料性能,绿色低碳。其中,外部结构和中间结构分别采用环状承力构件和条带状单元/板块单元装配而成,在无大型设备辅助的高海拔地区,可以通过小型器械和人力实现搬运和现场装配。内部结构采用整张气膜式结构,确保大空间结构的高气密性。本发明提出的大空间结构解决了高海拔地区大空间结构难以承受较大内压问题,同时还确保了大空间结构的高气密性,可以实现对高海拔地区大空间公共建筑的增压补氧,满足进藏人群在高原地区开展剧烈运动、大型会议等需求。
4、本发明提出的智能增压补氧系统,空气加压单元包括第一空气加压机构和第二空气加压机构,当其中一空气加压机构出现故障时,另一空气加压机构还可正常工作,保证了高海拔地区密闭建筑群内正常增压补氧,提高了系统的可靠性。另外,空气储罐一方面可以储能,另一方面在紧急情况(停电时)下可作为气源对高海拔地区密闭建筑群进行补氧增压。通过智能增压补氧系统将高海拔地区大气压力、氧气浓度、环境温湿度等关键人居指标调节至平原相当水平,为高海拔地区人群提供长期舒适的人居环境,解决高原反应问题。
5、本发明建筑群可独立使用绿色能源系统,也可接入厂外市电,电源供应稳定可靠。同时,本发明建筑群还设置综合储能系统,利用压缩空气储能部分原理,当电价低谷或可再生能源发电量较大时,利用空气压缩机压缩空气并储存起来,外部电力不足或电价峰值时,压缩空气直接用于密闭空间供气,相比传统的压缩空气储能,效率更高。同时,对空气压缩中的余热进行回收,用于冬季供暖和生活热水,解决了冬季供暖的问题;密闭建筑群生活用电主要通过蓄电池提供,较好的解决了储能问题。
6、本发明提出的高海拔地区正压室废气排放系统,在实现空气净化的同时,可保证卫生间内压力正常。本发明提出的高海拔地区正压室污水排放系统,通过设置排水隔膜阀,保证了在正压环境下污水的顺利排放,同时使污水系统的有害气体不会反逸至房间,保证了空气质量。
7、本发明建筑群具有安全冗余性设计和人体工程学设计,能够充分保障人员的安全性及舒适度。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明高海拔地区增压补氧模块化人居建筑群的整体结构示意图;
图2是建筑群的标准舱的结构示意图;
图3是建筑群的过渡舱的结构示意图;
图4是建筑群的连接走道舱的结构图,其中,(4a)为两通走道舱,(4b)为三通走道舱,(4c)为四通走道舱;
图5是建筑群的连接节点舱的结构图,其中,(5a)为两通连接节点舱,(5b)为三通连接节点舱,(5c)为四通连接节点舱;
图6是建筑群的承压气密窗的结构图;
图7是建筑群的承压气密门的结构图(开门锁芯状态);
图8是建筑群的承压气密门的结构图(关门锁芯状态);
图9是图7-8所示承压气密门的密封条的结构示意图;
图10是建筑群的柔性气密连接的结构图;
图11是图10所示柔性气密连接与标准法兰的连接示意图;
图12是建筑群的万向脚杯的结构示意图;
图13是图12所示万向脚杯与模块单元的连接示意图;
图14是建筑群的单向脚柱的结构示意图;
图15是图14所示单向脚柱与模块单元的连接示意图;
图16是建筑群的大跨度空间(外部结构为张弦梁式)的结构示意图;
图17是建筑群的大跨度空间(外部结构为桁架式)的结构示意图;
图18是建筑群的大跨度空间(外部结构为网架式)的结构示意图;
图19是建筑群的大跨度空间(外部结构为网壳式)的结构示意图;
图20是建筑群的智能增压补氧系统的结构框图;
图21是建筑群的正压室废气排放系统的结构示意图;
图22是图21所示正压室废气排放系统中自循环空气处理装置的结构示意图;
图23是建筑群的正压室污水排放系统的俯视结构示意图;
图24是建筑群的正压室污水排放系统的侧视结构示意图;
图25是正压室污水排放系统中排水隔膜阀和水封装置连接的细节放大示意图。
图中:11、标准舱;111、型钢立柱;12、连接节点舱;13、连接走道舱;14、过渡舱;15、设备舱;16、集污舱;17、大跨度空间;171、外部结构;172、中间结构;173、内部结构;174、支撑结构;
20、承压气密窗;21、承压窗框;211、基准框;212、密封框;22、充气内压玻璃;221、平板玻璃;222、高压气体;23、法兰压条;24、密封圈;25、连接件;
30、承压气密门;31、承压门框;32、门板;321、密封条槽口;322、油封槽;33、铰链装置;331、铰链连接板;332、铰链支撑板;333、转轴;34、密封锁具;341、锁槽;342、密封锁;3421、内侧把手;3422、外侧把手;3423、锁芯;3424、油封;343、锁舌;35、密封条;351、主翼;352、侧翼;353、空腔;
40、连接楔块;50、标准法兰;60、柔性气密连接;61、柔性气密布;62、柔性连接法兰;621、法兰盘;622、C字型翻边结构;623、压条;63、密封圈;70、万向脚杯;71、万向调节支撑盘;72、万向支撑盘固定器;73、地脚调整杆;74、调整杆限位器;80、单向脚柱;81、脚柱调整杆;82、脚柱限位器;
200、智能增压补氧系统;201、鼓风机;202、稳压罐;203、空气压缩机;204、空气储罐;205、电磁阀;206、第一调节阀;207、第二调节阀;208、过滤器;209、控制单元;210、监控单元;
300、正压室废气排放系统;310、高海拔地区密闭建筑群卫生间;320、自循环空气处理装置;3201、第一过滤装置;3202、氧化吸附装置;3203、第二过滤装置;3204、离心风机;3205、壳体;330、环境监测装置;340、控制器;350、排气管道;360、换气风扇;370、密封阀;380、供给系统;
400、正压室污水排放系统;401、末端水收集器;402、排水隔膜阀;403、排水管网; 404、水封装置;405、阀门控制器;406、真空泵站;407、液位测量计;408、进气电磁阀。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,为本发明实施例提供的一种高海拔地区增压补氧模块化人居建筑群,建筑群采用模块化设计,包括若干标准舱11、连接节点舱12、连接走道舱13、过渡舱14、设备舱15、集污舱16、大跨度空间17模块单元,各模块单元能够根据场地规模、功能需求和使用人员数量,进行平面方向和竖直方向的自由组拼和功能任意拓展,形成单层、双层以及多层的满足不同功能需求的建筑群空间布局。其中,标准舱11用于居住、办公、会议、运动、医疗等多种功能场景需求。连接节点舱12与连接走道舱13用于标准舱11之间、标准舱11与过渡舱14之间、标准舱11与大跨度空间17之间的空间连通和人员交通。过渡舱14用于建筑群室内外压力过渡和人员进出。设备舱15内设有智能增压补氧系统200,智能增压补氧系统200用于控制建筑群自动增压、自动减压和自动稳压,并调节建筑群内关键人居环境指标至平原相当水平。集污舱16用于收集和处理建筑群内生活污水和粪便等污废物。大跨度空间17用于满足多人群大型会议、大型集会、体育运动。
进一步优化,标准舱11、连接节点舱12、连接走道舱13和过渡舱14采用金属板材-骨架焊接加工成型或者玻璃钢整体浇筑成型工艺;结构形式为方形或者筒仓形。其中,如图2所示,标准舱11包括由3mm-6mm厚的耐低温金属板和100mm-200mm厚的耐低温型金属骨架焊接构成的舱体,舱体能够承受5-100KPa内压。舱体整体喷涂有用于舱体保温的1cm-3cm的不燃保温材料,舱体金属板-骨架之间嵌入3-7cm保温棉材料。舱体侧面和顶面开设若干用于采光、透光的承压气密窗20,舱体与相邻模块单元连接侧的端板处安装有标准法兰50,舱体底部安装有用于支撑舱体的若干可调节高度支腿,舱体顶部安装有用于吊装转运的若干吊耳,舱体端板上安装有用于连接外部管线的开孔,舱体骨架之间焊接有用于安装装饰板材的金属骨架。
进一步优化,如图3所示,过渡舱14除具有标准舱11特征以外,还包括用于建筑群室外压力过渡和人员进出的承压气密门30,承压气密门30分为内门和外门,内门用于连接和连通建筑群室内,外门用于连接和连通建筑群室外。
进一步优化,连接走道舱13和连接节点舱12具有标准舱11特征以外,其通道数进行模块化设计,连接走道舱13通过封板可快速切换为两通、三通、四通走道,如图4所示;连接节点舱12通过封板可快速切换为两通、三通、四通节点,如图5所示,实现多向连接。
进一步优化,集污舱16除具有标准舱11特征以外,还包括废水提升系统、真空马桶系统或焚烧马桶系统或集成厕所系统以及管路。
进一步优化,如图6所示,承压气密窗20包括承压窗框21、充气内压玻璃22、法兰压条23、密封圈24和连接件25;法兰压条23安装于承压窗框21的内侧,充气内压玻璃22安装于法兰压条23与承压窗框21之间,密封圈24安装于充气内压玻璃22外侧面与承压窗框21之间;法兰压条23与承压窗框21之间通过连接件25固定连接,从而将充气内压玻璃22与密封圈24夹紧,起到初步预紧密封作用,利用室内气压和密封圈24的共同作用,压缩密封圈24,提高窗户在承压环境下的气密性能。需要说明的是,内侧指靠近室内的一侧,外侧指靠近室外的一侧。承压窗框21的横截面呈L形,包括一体成型的基准框211和密封框212,其中,基准框211位于充气内压玻璃22的外圈,密封框212位于基准框211的外侧、覆盖于充气内压玻璃22的外侧面;法兰压条23位于基准框211内侧、覆盖于充气内压玻璃22的内侧面。承压窗框21与法兰压条23的横截面呈U形,充气内压玻璃22内嵌于U形槽中。密封框212的内侧面开设有密封圈24的安装槽,密封圈24安装于安装槽内。充气内压玻璃22包括两片间隔设置的平板玻璃221以及填充于两片平板玻璃221中间的高压气体222,高压气体222的气压高于室内气压5-100kPa,形成预应力气 体夹层,通过玻璃内部预应力抵消部分外部压力,从而实现大面积玻璃高承压性能,且具有较好的透光保温效果。
进一步优化,如图7-9所示,承压气密门30包括承压门框31、门板32、铰链装置33和密封锁具34,承压门框31与门板32之间通过铰链装置33实现转动连接,通过密封锁具34实现锁紧。门板32位于承压门框31的内侧,气密门向舱体内侧开启。门板32外表面设有密封条槽口321,密封条槽口321内设有密封条35。密封锁具34包括安装于承压门框31上的锁槽341和安装于门板32上的密封锁342,其中,密封锁342包括内侧把手3421、外侧把手3422、锁芯3423和油封3424,锁芯3423贯穿门板32,门板32内表面与锁芯3423连接处设有油封槽322,油封3424套在锁芯3423上并位于油封槽322内,油封3424为环状,油封3424内圈直径与锁芯3423直径相同,油封3424外圈直径与油封槽322直径相同。内侧把手3421和外侧把手3422分别安装于锁芯3423的内端和外端,外侧把手3422上设有与锁槽341适配的锁舌343。承压气密门通过密封锁342与承压门框31预紧,挤压密封条35,达到整体密封效果;通过在锁芯3423上设置油封3424进一步保证密封锁342的局部密封效果,可用于高海拔地区增压补氧建筑的密闭保压和人员进出带压环境。铰链装置33包括铰链连接板331、铰链支撑板332和转轴333,铰链连接板331安装于承压门框31上,铰链支撑板332安装于门板32上,铰链连接板331和铰链支撑板332上设有用于转轴333穿过的腰圆孔,铰链连接板331与铰链支撑板332通过转轴333连接,且转轴333可以在腰圆孔中沿内外方向移动。设置腰圆孔的优点在于,当舱体内外存在压差时,门板32不受铰链装置33的约束,可以在压力作用下向承压门框31侧平动,挤压密封条35,达到密封效果。密封条35外侧面设有主翼351和侧翼352,主翼351为弧面,侧翼352为设置于弧面旁的凸起,在门板32推力作用下,主翼351和侧翼352同时挤压承压门框31,在主翼351和侧翼352之间形成空腔353,加压过程中,空腔353起到缓冲区的作用,密封效果更好。
进一步优化,在平面方向,相邻模块单元(标准舱11、连接节点舱12、连接走道舱13、过渡舱14、大跨度空间17)之间通过标准法兰50和柔性气密连接60相连,标准法兰50安装于模块单元上,标准法兰50之间通过柔性气密连接60相连。如图10-11所示,柔性气密连接60包括柔性气密布61、对称安装于柔性气密布61两侧的柔性连接法兰62、密封圈63;柔性连接法兰62包括法兰盘621、C字型翻边结构622和压条623;法兰盘621用于连接标准法兰50,密封圈63设置于法兰盘621与标准法兰50的密封面;C字型翻边结构622和压条623用于固定柔性气密布61,其中,C字型翻边结构622的下边延伸至与法兰盘621连接,C字型翻边结构622的上边表面与压条623之间铺设部分柔性气密布61,且压条623与C字型翻边结构622的上边通过螺栓紧固连接。柔性连接法兰62的法兰盘621与标准法兰50采用相互适配的内法兰形式。同一平面内的相邻模块单元之间的密封连接结构采用柔性气密连接60,相比于刚性气密连接,柔性气密连接60可以协调承压空间安装过程中的偏差以及整体加压后的变形,释放由于安装偏差以及承压空间加压对连接节点带来的附加内力,更安全合理,可以满足复杂地形的需求。柔性气密连接60通过C字型翻边设计,解决固定柔性气密布61时螺栓孔漏气问题,使得连接结构的气密性好,易于实现增减压。同时通过内法兰设计将舱体底部安装改为舱体内部安装,解决了舱体底部安装空间不足的问题。
进一步优化,在立面方向,通过单向脚柱80和连接楔块40连接上下两层模块单元的型钢立柱111,以实现多层空间的固定与组合。最下层模块单元通过万向脚杯70与地面连接。
如图12-13所示,万向脚杯70包括万向调节支撑盘71、万向支撑盘固定器72、地脚调整杆73、调整杆限位器74;地脚调整杆73的下端通过球阀与万向调节支撑盘71连接,地脚调整杆73的上端通过连接楔块40与模块单元的型钢立柱111连接,连接楔块40嵌入型钢立柱111内,地脚调整杆73的上端螺栓连接楔块40后通过调整杆限位器74固定位置(即螺栓式连接),调整杆限位器74的行程为350mm。万向支撑盘固定器72穿过地脚调 整杆73禁锢其下端球体,并通过螺栓固定安装于万向调节支撑盘71上,实现万向调节支撑盘71大角度连续调节功能,从高度、角度两个层面满足复杂地形服役条件。最下层模块单元通过万向脚杯70与地面连接,保证了建筑群中的标准舱11、连接走道舱13、连接节点舱12、过渡舱14的组合均可满足上下高度差高达30厘米的复杂地形条件。
如图14-15所示,单向脚柱80包括脚柱调整杆81和套装于脚柱调整杆81上的脚柱限位器82,单向脚柱80的上下两端分别通过连接楔块40与上下两层模块单元的型钢立柱111连接,连接楔块40嵌入型钢立柱111内,地脚调整杆73的上下两端分别穿过连接楔块40后通过调整杆限位器74固定位置。上下两层模块单元之间通过单向脚柱80连接,在不变更顶部吊钩连接以及底部脚座连接形式基础上,保证了建筑群中多层之间的稳固连接,并兼具施工便捷、拆卸方便的优点。采用这种连接形式,可以根据用户需求,实现各种立面空间组合形式。
进一步优化,大跨度空间17包括外部结构171、中间结构172、内部结构173和支撑结构174。外部结构171是通过环绕中间结构172的多个环状承力构件沿各自的轴向阵列而形成的自平衡结构体系,为主受力结构。中间结构172固定安装于外部结构171内,中间结构172通过若干中间结构172单元装配而成,为大空间的保温围护结构,并传递高内部压力。内部结构173贴靠于中间结构172内,确保大空间的高气密性。内部结构173采用气密性高的整张气膜式结构,大空间未加压时,内部结构173能够与中间结构172脱开,大空间加压后,压力使内部结构173紧贴中间结构172。外部结构171整体安装于支撑结构174上,外部结构171不与地面接触,支撑结构174安装于地面,支撑结构174可调节高度自适应场地。外部结构171、中间结构172和内部结构173围成的大空间形状包括箱形、球形、椭球形、任意曲率的空间曲面,箱形空间长不小于10米、宽不小于10米、高不低于5米,球形空间直径不小于10米,椭球形空间和空间曲面的长轴和短轴半径不小于10米、极轴半径不低于5米。对于箱形空间,多个环状承力构件包括轴线分别与中间结构172的长、宽、高平行的三种环状承力构件;对于球形空间,多个环状承力构件包括轴线通过球心或与赤道平面平行的两种环状承力构件;对于椭球形空间和空间曲面,多个环状承力构件包括轴线与中间结构172的长轴、短轴平行的两种环状承力构件。环状承力构件的结构形式为张弦梁(如图16所示)、桁架(如图17所示)、网架(如图18所示)、网壳(如图19所示)或框架,材料采用高强度材料。中间结构172单元采用模块化设计,包括主体结构,主体结构边缘设置相互适配的公母槽口或洞口,主体结构之间通过公母槽口或洞口实现紧密拼接。内部结构173的膜材采用玻璃纤维布、塑料薄膜或金属织物与涂料构成的复合材料。支撑结构174具体采用万向脚杯70的结构形式。
进一步优化,如图20所示,智能增压补氧系统200包括用于监测高海拔地区密闭建筑群内部空气质量参数的监控单元210、用于对高海拔地区密闭建筑群进行增压补氧的空气加压单元、以及与监控单元210和空气加压单元电连接的控制单元209,空气加压单元包括第一空气加压机构和第二空气加压机构,第一空气加压机构包括鼓风机201以及与其连接的稳压罐202,第二空气加压机构包括空气压缩机203以及与其连接的空气储罐204,稳压罐202和空气储罐204均通过对应的管道与高海拔地区密闭建筑群的进气口连通,控制单元209根据监控单元210得到的参数,来对空气加压单元进行控制,控制第一空气加压机构和第二空气加压机构是否工作。空气储罐204可连接多台空气压缩机203,以更快地将空气储罐204中的容量存储满。因鼓风机201直接对高海拔地区密闭建筑群进行加压时,其压力不稳定,因此设置稳压罐202对空气进行缓冲和稳压。稳压罐202的容量远小于空气储罐204的容量。空气储罐204将空气压缩机203压缩的空气存储起来后,因空气储罐的容量很大,因此,空气压缩机203在一段时间不需要工作,通过空气储罐204缓慢向高海拔地区密闭建筑群进行增压补氧。空气储罐204储存的空气应满足高海拔地区密闭建筑群内预设人数(预设人数至少为两个)在24小时内的呼吸要求。通常来说,空气储罐204的容积大于20m3,稳压罐202的容积大于1m3。稳压罐202和空气储罐204出口处的管道上均安装有用于对空气进行过滤的过滤器208。稳压罐202和空气储罐204也可共 用一过滤器208,也可稳压罐202和空气储罐204分别设置一过滤器208。本实施例中,通过设置过滤器208对空气进行过滤,提高了空气质量。稳压罐202和空气储罐204出口处的管道上均安装有并联设置的第一流量调节装置和第二流量调节装置;第一流量调节装置包括串联设置的电磁阀205和第一调节阀206,第二流量调节装置包括第二调节阀207。当第一流量调节装置或第二流量调节装置出现故障时,可启动第二流量调节装置或第一流量调节装置,即流量调节装置均冗余,发生问题时启用备用阀门。监控单元210包括位于高海拔地区密闭建筑群内的温度传感器、湿度传感器、压力传感器、氧气浓度测量仪以及二氧化碳浓度测量仪,从而分别监测高海拔地区密闭建筑群内温度、湿度、压力、氧气浓度和二氧化碳浓度,监控单元210监控的参数发送至控制单元209。本高海拔地区密闭建筑群智能增压补氧系统还包括与控制单元209、第一流量调节装置和第二流量调节装置电连接的备用电源单元。
智能增压补氧系统的工作过程:通过监控单元210实时获取当前高海拔地区密闭建筑群内的压力值、氧气浓度值和二氧化碳浓度值;当压力值、氧气浓度值和二氧化碳浓度值三个指标中一个不满足预设条件时,控制单元209控制第一空气加压机构和/或第二空气加压机构对高海拔地区密闭建筑群内进行增压补氧;当压力值、氧气浓度值和二氧化碳浓度值三个指标均满足预设条件时,控制单元209控制第一空气加压机构和第二空气加压机构与高海拔地区密闭建筑群的进气口连通管道上的阀门关闭(此时,高海拔地区密闭建筑群内部的新风系统以低功率运行以降低系统能耗)。
本实施例提出的智能增压补氧系统,空气加压单元包括第一空气加压机构和第二空气加压机构,当其中一空气加压机构出现故障时,另一空气加压机构还可正常工作,保证了高海拔地区密闭建筑群内正常增压补氧。另外,空气储罐204一方面可以储能(提前利用空气压缩机203将空气压缩,在断电时缓慢释放空气储罐204中空气),另一方面在紧急情况(停电时)下可作为气源对高海拔地区密闭建筑群进行补氧增压。本智能增压补氧系统,具有工作可靠以及容易实现的优点。建筑群内过渡舱14与标准舱11、连接节点舱12、连接走道舱13大跨度空间17通过内外气密门进行压力分区,标准舱11、连接节点舱12、连接走道舱13和大跨度空间17的压力可内部连通,也可分区设置,建筑群内压力在5KPa~100KPa区间可调,建筑群内压力增减压速率在0KPa/min~25KPa/min区间可调。建筑群内关键人居环境指标可调节至平原相当水平,氧气浓度20%~21%,二氧化碳浓度0.04%~1%,环境温度18℃~22℃,环境相对湿度40%~60%。
进一步优化,控制单元209为PLC自动控制系统,PLC自动控制系统采用集中监控-分散控制的集散控制架构(DCS),由1个主站和若干分站组成工业级控制网络,主站采用双PLC组成冗余系统,对设备舱15内设备等进行监控,分站采用单PLC,对各标准舱11和过渡舱14进行监控,每个监控站均配有人机交互触摸屏HMI,整个PLC系统具备加减压过程控制、流程显示、设备运行状态监控,故障检测及报警等功能。
进一步优化,建筑群还包括能源组织系统,能源组织系统包括厂外电源、UPS不间断电源系统、风能-光伏-储能分布式电源系统、空气余热回收系统。其中,风能-光伏-储能分布式电源系统包括安装在建筑群顶部的光伏阵列、风能发电机和位于建筑群内的大容量锂电池组,白天通过光伏阵列为建筑群提供能源,夜间通过风能发电机为建筑群提供能源,风能和光伏多余电能储存至大容量锂电池组中,用于少风和阴雨天气时维持建筑群正常能源供给;UPS不间断电源系统维持建筑群智能增压补氧系统和安防系统运行不低于16小时,维持人群正常居住、生活不低于16小时;空气余热回收系统的第一循环水通道与空气压缩机203的冷却水通道连接以回收热量,空气余热回收系统的第二循环水通道与生活用水设备连通以提供热水。建筑群可独立使用绿色能源系统,也可接入厂外市电,电源供应稳定可靠。
进一步优化,建筑群还包括综合储能系统,综合储能系统包括压缩空气储能机构、电池储能机构以及储热储能机构,其中,压缩空气储能机构由空气压缩机203以及空气储罐204构成,电池储能机构包括蓄电池组,储热储能机构包括所述空气余热回收系统以及与 其连接的热水储罐。热水储罐与建筑群的热水供应系统连接以对建筑群提供生活热水。蓄电池组与高海拔地区密闭建筑群的用电设备电连接,空气储罐与高海拔地区密闭建筑群的进气管道连接。
综合储能系统的工作过程:当电价低谷或自备发电设备如太阳能发电、风能发电发电量较大时,启动空气压缩机203,通过空气储罐204储存压缩空气,同时空气余热回收系统回收空气压缩机203产生的余热,热水储罐内可用于生活用水和供暖用水,多余热水储存起来,同时对蓄电池组进行充电,存储电量。当电价高峰或外部电力不足时,利用空气储罐204中的压缩空气满足密闭建筑群增压补氧的需求,热水储罐内储存的热水满足舱体内供暖和生活热水需求,蓄电池组对外放电,满足密闭建筑群内生活用电需要。
进一步优化,建筑群还包括正压室废气排放系统300,如图21所示,正压室废气排放系统300包括用于高海拔地区密闭建筑群卫生间310空气净化的自循环空气处理装置320、用于监测高海拔地区密闭建筑群卫生间空气质量的环境监测装置330、以及与自循环空气处理装置320和环境监测装置330电连接的控制器340,其中,自循环空气处理装置320和环境监测装置330均安装于高海拔地区密闭建筑群卫生间内,高海拔地区密闭建筑群卫生间设置有排气口,排气口上安装有排气管道350,排气管道350上安装有换气风扇360和密封阀370。如图22所示,自循环空气处理装置320包括壳体3205,壳体3205上设置有进风口和出风口,进风口至出风口方向依次设置有第一过滤装置3201、氧化吸附装置3202以及第二过滤装置3203,第一过滤装置3201和第二过滤装置3203均为多孔介质,氧化吸附装置3202中喷洒有用于吸附废气(废气包括NH3、H2S和吲哚)并对其进行氧化的化学溶液,化学溶液包括酸液或碱液。氧化吸附装置3202包括导管,导管的第一端口朝向第一过滤装置3201的出口方向设置,导管的第二端口朝向第二过滤装置3203的入口方向设置,导管的第三端口与化学溶液的供给系统380连通。化学溶液的供给系统380向导管中喷吹溶液,从而对气体进行氧化反应,氧化气体中一些无法被吸附的有机物或其他刺激性气味。第一过滤装置3201和第二过滤装置3203均包括活性碳过滤层。自循环空气处理装置320还包括位于壳体3205内的负离子发生器。通过负离子发生器释放负氧离子,达到杀菌和净化空气的作用。壳体3205内还安装有离心风机3204,离心风机3204将室内空气抽入壳体3205中在壳体3205内进行净化处理,从而提高自循环空气处理装置320的换气效率。控制器还连接有报警器,当废气浓度超过预设阈值时,报警器报警以提示用户。
正压室废气排放系统300的工作原理:当室内环境中废气浓度到达预设阈值时,通过环境监测装置330进行报警并发出信号,同时驱动控制器340开启自循环空气处理装置320对室内空气进行处理;当室内环境中的废气浓度下降到设定允许值时,关闭自循环空气处理装置320;当室内环境中废气浓度仍然超过预设阈值时同时自循环空气处理装置320工作时间超过预设时间时,由控制器340打开自循环空气处理装置320进行空气处理,同时将密封阀370和换气风扇360打开,则换气和处理废气同时进行,以此保证室内环境达到使用要求。正压室废气排放系统,在实现空气净化的同时,也可保证卫生间内压力正常,避免用户缺氧的情况发生。本正压室废气排放系统具有结构简单,便于设计与安装的优点。采用本正压室废气排放系统可保证空气停留时间长,流速小,并保证了空气处理效果。
进一步优化,建筑群还包括正压室污水排放系统400,如图23-24所示,正压室污水排放系统400包括用于储存无刺激性气味废水(主要为淋浴用水)的末端水收集器401、用于防止管网内臭气反逸的水封装置404、用来隔断室内外气体压力以保证室内压力不外泄的排水隔膜阀402、用于将室内污水排出正压环境的排水管网403(排水管网403中可设置储废水罐以存储污水)、以及用于给排水隔膜阀402充气的充气系统,其中,水封装置404位于末端水收集器401的出水口处,排水管网403与水封装置404的出水端连接,排水隔膜阀402安装于水封装置404出水端处的排水管网403上,充气系统与排水隔膜阀402的进气口连通。末端水收集器401内部还安装有液位测量计407,以测量末端水收集器401的液位信息。正压室污水排放系统还包括真空泵站406,充气系统包括三通管道,三通管道的第一端口与排水隔膜阀402的进气口连通,三通管道的第二端口经排气电磁阀与外部 大气连通,三通管道的第三端口经进气电磁阀408与真空泵站406的排气口连通,真空泵站406的抽气口与排水管网403连通。真空泵站406用来产生管道的真空,一端接至排水管网403,另一端接至充气系统,利用排水管网403的负压给充气系统传递正压,保证排水隔膜阀402在正常情况下阀瓣关闭。通过真空泵站406对排水隔膜阀402充气,当真空泵站406对排水管网403进行抽真空时,真空泵站406的另一端将会产生比室外大气压更高的压力,充气系统一端接于真空泵站406的出口端,另一端接至排水隔膜阀402,从而用来给排水隔膜阀402提供关闭阀瓣的压力。正压室污水排放系统400还包括与液位测量计407、排气电磁阀、进气电磁阀408和真空泵站406电连接的阀门控制器405。根据液位测量计407测得的数据,通过阀门控制器405实现自动对排水隔膜阀402开启和关闭的自动控制。如图25所示,水封装置404采用U型存水弯,U型存水弯入口处的高度大于出口处的高度,U型存水弯两侧的管道高度差(图3中为L3)为U型存水弯出口处至排水隔膜阀402距离(为图中的L1)的1/6~1/4。在对水封装置404充水的过程中,U型存水弯其右侧因为排水隔膜阀402关闭,存在L1+L2这一长度的空气,水封要克服这段空气压力,才能实现水封。因此,U型存水弯入口侧管道的高度要高于其出口侧的高度,其高度差要合理设置,从而保证水封效果。
正压室污水排放系统400的工作原理:当需要进行排水时,通过末端水收集器401的液位信号或者强制排水信号的信号输入,在阀门控制器405的作用下,控制充气系统的排气电磁阀开启,此时充气系统与室外联通,因室内的压力P1永远大于室外的压力P2,排水隔膜阀402将在室内正压的作用下打开,并且室内污水在室内正向压力的作用下通过管网排入真空泵站406;当经过一段时间排水后液位下降或者根据关闭排水的控制命令,充气系统的进气电磁阀408打开,因真空泵站406排气口的压力P3大于室内的压力P1,也大于室外的压力P2,此时排水隔膜阀402将在进气系统的压力作用下关闭,然后对水封装置404进行充水,保证水封完整的同时,保证正压室的压力不外泄,至此,系统在室内的正压作用下完成一次排水过程。本正压室污水排放系统通过设置排水隔膜阀402,保证了在正压环境下污水的顺利排放,同时使污水系统的有害气体不会反逸至房间,保证了空气质量。另外,本正压室污水排放系统具有结构简单、容易实现以及工作可靠的优点。
进一步优化,建筑群还包括安防系统,安防系统包括人流统计系统、监控系统、对讲系统和报警系统;人流统计系统设置于过渡舱14,实时统计进入舱体人数和期间总人数,可以实时计算出舱体内人群所需的总新风量进而通过PLC控制舱体总进气量和总排气量,也可根据期间总进入舱体人数进行人均能源消耗统计分析;监控系统包括安装在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体顶部的摄像终端和设置在设备舱的网络硬盘和监控主机组成,用于建筑群各关键部位的实时监控和监控回看;对讲系统包括设置于建筑群内的若干多路对讲器和紧急按键,使用人员在遇到操作问题和/或需要求助时,通过按下对讲器按键可与舱外管理人员进行对讲求助,通过按压紧急按键可将紧急求助信号发送至舱外管理人员,由管理人员针对具体情况采取针对性的处理措施;报警系统包括设置在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体顶部的消防报警装置,用于舱体内非正常产生的烟雾及可能的火灾报警,还包括设置在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体内的多参数监测仪表,用于舱体内部二氧化碳浓度、氧气浓度、压差、温度、湿度等参数超出设定限值时的报警,报警采用声音报警和显示屏图像报警方式。
本发明高海拔地区增压补氧模块化人居建筑群具有安全冗余性,包括:主从站PLC控制系统采用集散型环网架构,某主站或单一从站故障时,其余PLC仍能独立正常工作,有效提供控制系统安全;设备房主站PLC采用双CPU硬冗余,能够有效降低意外停机和有效防止数据丢失;PLC控制系统主从站具备在线监控硬件和故障自诊断,能够有效及时发现并更换故障元器件;过渡舱14走道侧采用手动阀+电动阀,电动阀故障时可在走道侧手动进行过渡舱14泄压,用于紧急逃生;过渡舱14设置双压差传感器,能够有效避免传感器故障导致无法采集压力数据;过渡舱14设置双人体红外感应探测器,能够有效避免人 体红外感应探测器故障导致人员误检测,避免走道和室外的人员误压力操作;过渡舱14外门采用电子门禁授权机制,能够有效避免非授权人员进入舱体进行误操作;过渡舱14内外气密门设置位置传感器,能够有效避免未完全关闭气密门导致的增减压故障;过渡舱14外门电子锁设置失电时常开,用于紧急逃生;各标准舱11设置独立的压差传感器、温湿度传感器、氧气浓度传感器和二氧化碳浓度传感器,建筑群传感器组能够自动识别判断并剔除无效的传感器数据,并采用平均值替代;各标准舱11设置独立安全泄压阀,能够有效避免建筑群内其他标准舱11安全泄压阀故障导致的建筑群过压。
本发明高海拔地区增压补氧模块化人居建筑群具有人体工程学设计,包括:过渡舱14内置多级自动增压减压程序,满足不同体质人群对于不同增减压速率需求。过渡舱14设置按键式增压减压按键,用于简易直观地进行增减压。过渡舱14设置按键式增减压暂停按键,增减压过程人体不适时可暂停增减压。过渡舱14内门走道侧和门室外侧的顶部设置有若干多声音提示器和LED显示屏,通过声光综合手段指引使用人员进出过渡舱14。过渡舱14设置有人流统计系统,用于实时统计进入舱体人数和期间总人数。生活舱设置有人机交互界面的控制屏,使用人员可个性化调节舱内氧气浓度、二氧化浓度、温度、湿度、压力环境指标。建筑群内设置若干多路对讲器和紧急按键,使用人员可多点通讯求助。
本发明还提出上述高海拔地区增压补氧模块化人居建筑群的人员从室外通过过渡舱14进入室内的使用方法,包括以下步骤:
S1.过渡舱14外门室外侧顶部设置LED显示屏,显示屏显示过渡舱14和室外的压力差,当过渡舱14有人时,文字滚动显示“过渡舱14有人!”,显示屏旁边设有一个多声音提示器,用于提示舱内外状态。
S2.过渡舱14外门室外侧设置电子门禁,人员需要进入过渡舱14时,通过刷卡或密码或指纹识别或人脸识别方式打开门禁,过渡舱14快速泄压。当压力差降到允许的范围后,多声音提示器提示“压力平衡,可以进入”,人员推开外门进入过渡舱14。
S3.人员进入过渡舱14后,过渡舱14的外门检测开关检测外门是否关好,如果关好,则语音播报“外门已关闭”,如果外门没有关好,则语音播报“请关闭外门”。
S4.当人员进入过渡舱14后,红外感应开关感应到人员的存在后,过渡舱14外面的显示屏上滚动显示“过渡舱14有人”。。
S5.过渡舱14内设置有红外感应照明灯,当人员进入过渡舱14的时候,照明灯自动点亮,当人员离开过渡舱14后,照明灯熄灭。
S6.内门和外门关好后,多声音提示器进行语音提示“如果感觉耳朵不舒服,请吞咽口水”,提示结束后,开始播放音乐。
S7.过渡舱14内门的外侧上方设置LED显示屏,LED显示屏显示过渡舱14和走道舱之间的压差,人员可以根据自身的感受情况,按下内门旁边的按钮盒上的不同按钮,选择不同的调压速度,当遇到紧急情况,可以按下按钮盒上的急停按钮。
S8.当过渡舱14和走道舱之间的压力差在允许的范围之内后(小于1KPa)语音播报:“压力平衡,可以开门”。
S9.人员开门进入走道舱,然后把过渡舱14的内门关闭。
S10.如果人员离开过渡舱14后,内门没有关闭,则语音播报,提示关闭内门。
本发明还提出高海拔地区增压补氧模块化人居建筑群的人员从室内通过过渡舱14到室外的使用方法,包括以下步骤:
S1.过渡舱14内门上方设置LED显示屏,LED屏显示过渡舱14和走道舱之间的压力差,当过渡舱14有人的时候,LED显示屏上滚动显示“过渡舱14有人!”,显示屏旁边设有一个多声音提示器,用于舱内外状态的提示。
S2.按下内门旁按钮盒上的请求进入按钮。
S3.压力自动控制系统快速调节过渡舱14的压力。
S4.当走道舱和过渡舱14的压差在允许的范围内,语音播报,“压力平衡,可以进入”。
S5.人员拉开内门,进入过渡舱14。
S6.关闭舱门,当舱门检测开关检测到舱门关好,则语音播报“舱门已关闭”,当舱门检测开关没有检测到舱门关好,则语音播报“请关好舱门”。
S7.当舱门关好后,进行语音播报“如果感觉耳朵不舒服,请吞咽口水”,播报结束后,播放音乐。
S8.过渡舱14外门上方设置有LED显示屏,显示过渡舱14和室外的压力差。
S9.人员可以根据自身的感受情况,按下外门旁边的按钮盒上的不同按钮,选择不同的调压速度,当遇到紧急情况,可以按下按钮盒上的急停按钮。
S10.当过渡舱14和室外的压力差在允许的范围之内,语音播报“压力平衡,可以出去”。
S11.人员旋转门锁上的旋钮,打开电子锁,然后拉开过渡舱14的外门,离开过渡舱14。
S12.人员离开过渡舱14后,需要关闭舱门,若舱门没有关闭到位,则语音提示,请关闭舱门。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (20)

  1. 一种高海拔地区增压补氧模块化人居建筑群,其特征在于,所述建筑群采用模块化设计,包括若干标准舱、连接节点舱、连接走道舱、过渡舱、设备舱、集污舱、大跨度空间模块单元,各模块单元能够根据场地规模、功能需求和使用人员数量,进行平面方向和竖直方向的自由组拼和功能任意拓展,形成单层、双层以及多层的满足不同功能需求的建筑群空间布局;
    所述标准舱用于居住、办公、会议、运动、医疗多种功能场景需求;所述连接节点舱与连接走道舱用于标准舱之间、标准舱与过渡舱之间、标准舱与大跨度空间之间的空间连通和人员交通;所述过渡舱用于建筑群室内外压力过渡和人员进出;所述设备舱内设有智能增压补氧系统,所述智能增压补氧系统用于控制建筑群自动增压、自动减压和自动稳压,并调节建筑群内关键人居环境指标至平原相当水平;所述集污舱用于收集和处理建筑群内污废物;所述大跨度空间用于满足多人群大型会议、大型集会、体育运动。
  2. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述标准舱、连接节点舱、连接走道舱和过渡舱采用金属板材-骨架焊接加工成型或者玻璃钢整体浇筑成型工艺;结构形式为方形或者筒仓形。
  3. 根据权利要求2所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述标准舱包括由耐低温金属板和耐低温型金属骨架焊接构成的舱体,所述舱体用于承受5-100KPa内压;所述舱体整体喷涂有用于舱体保温的不燃保温材料,舱体金属板-骨架之间嵌入保温棉材料;所述舱体侧面和顶面开设若干承压气密窗,舱体与相邻模块单元连接侧的端板处安装有标准法兰,舱体底部安装有用于支撑舱体的若干可调节高度支腿。
  4. 根据权利要求3所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述过渡舱除具有标准舱特征以外,还包括用于建筑群室外压力过渡和人员进出的承压气密门,所述承压气密门分为内门和外门,内门用于连接和连通建筑群室内,外门用于连接和连通建筑群室外;所述承压气密门包括门框、门板、铰链装置和密封锁具,所述门框与门板之间通过铰链装置连接,所述密封锁具包括安装于门框上的锁槽和安装于门板上的密封锁,所述门板位于门框的内侧,所述承压气密门向舱体内侧开启;所述门板外表面设有密封条槽口,所述密封条槽口内设有密封条;所述密封锁包括锁芯和油封,所述锁芯贯穿门板,所述门板内表面与锁芯连接处设有油封槽,所述油封套在锁芯上并位于油封槽内。
  5. 根据权利要求4所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述过渡舱内置多级自动增压减压程序,满足不同体质人群对于不同增减压速率需求;过渡舱设置按键式增压减压按键,用于简易直观地进行增减压;过渡舱设置按键式增减压暂停按键,增减压过程人体不适时可暂停增减压;过渡舱内门走道侧和门室外侧的顶部设置有若干多声音提示器和LED显示屏,通过声光综合手段指引使用人员进出过渡舱;过渡舱外门采用电子门禁授权机制。
  6. 根据权利要求3所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,连接走道舱和连接节点舱具有标准舱特征以外,其通道数进行模块化设计,通过封板可分别快速切换为两通、三通、四通走道和两通、三通、四通节点,实现多向连接。
  7. 根据权利要求3所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述承压气密窗包括承压窗框、充气内压玻璃、法兰压条、密封圈和连接件;所述法兰压条安装于承压窗框的内侧,所述充气内压玻璃安装于法兰压条与承压窗框之间,所述密封圈安装于所述充气内压玻璃外侧面与承压窗框之间;所述法兰压条与承压窗框之间通过所述连接件固定连接,从而将充气内压玻璃与密封圈夹紧;所述充气内压玻璃包括两片间隔设置的平板玻璃以及填充于两片平板玻璃中间的高压气体,所述高压气体的气压高于室内气压5-100kPa。
  8. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,在平面方向,相邻模块单元之间通过标准法兰和柔性气密连接相连;所述标准法兰安装于模块 单元上,标准法兰之间通过柔性气密连接相连;所述柔性气密连接包括柔性气密布、对称安装于所述柔性气密布两侧的柔性标准法兰、密封圈;所述柔性标准法兰包括法兰盘、C字型翻边结构和压条;所述法兰盘用于连接标准法兰,所述密封圈设置于所述法兰盘与标准法兰的密封面;所述C字型翻边结构和压条用于固定所述柔性气密布,其中,C字型翻边结构的下边延伸至与所述法兰盘连接,C字型翻边结构的上边表面与压条之间铺设部分所述柔性气密布,且压条与C字型翻边结构的上边通过螺栓紧固连接;所述柔性标准法兰的法兰盘与标准法兰采用相互适配的内法兰形式。
  9. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,在立面方向,通过单向脚柱和连接楔块连接上下两层模块单元的型钢立柱,以实现多层空间的固定与组合;所述单向脚柱包括脚柱调整杆和套装于脚柱调整杆上的脚柱限位器,单向脚柱的上下两端分别通过连接楔块与上下两层模块单元的型钢立柱连接,所述连接楔块嵌入型钢立柱内,地脚调整杆的上下两端分别穿过连接楔块后通过所述调整杆限位器固定位置;最下层模块单元通过万向脚杯与地面连接,所述万向脚杯包括万向调节支撑盘、万向支撑盘固定器、地脚调整杆、调整杆限位器;所述地脚调整杆的下端通过球阀与万向调节支撑盘连接,地脚调整杆的上端通过连接楔块与模块单元的型钢立柱连接,所述连接楔块嵌入型钢立柱内,地脚调整杆的上端螺栓连接楔块后通过所述调整杆限位器固定位置;所述万向支撑盘固定器穿过地脚调整杆禁锢其下端球体,并通过螺栓固定安装于万向调节支撑盘上,实现万向调节支撑盘大角度连续调节功能,从高度、角度两个层面满足复杂地形服役条件。
  10. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述大跨度空间包括外部结构、中间结构、内部结构和支撑结构;所述外部结构是通过环绕所述中间结构的多个环状承力构件沿各自的轴向阵列而形成的自平衡结构体系,为主受力结构;所述中间结构固定安装于外部结构内,中间结构通过若干中间结构单元装配而成,为大空间的保温围护结构,并传递高内部压力;所述内部结构贴靠于中间结构内,确保大空间的高气密性;内部结构采用气密性高的整张气膜式结构,大空间未加压时,内部结构能够与中间结构脱开,大空间加压后,压力使内部结构紧贴中间结构;所述外部结构整体安装于所述支撑结构上,外部结构不与地面接触,所述支撑结构安装于地面,支撑结构可调节高度自适应场地。
  11. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述智能增压补氧系统包括用于监测建筑群内部空气质量参数的监控单元、用于对建筑群进行增压补氧的空气加压单元、以及与监控单元和空气加压单元电连接的控制单元,空气加压单元包括第一空气加压机构和第二空气加压机构,第一空气加压机构包括鼓风机以及与其连接的稳压罐,第二空气加压机构包括空气压缩机以及与其连接的空气储罐,稳压罐和空气储罐均通过对应的管道与建筑群的进气口连通,控制单元根据监控单元得到的参数,来对空气加压单元进行控制,控制第一空气加压机构和第二空气加压机构是否工作。
  12. 根据权利要求11所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述监控单元包括位于建筑群内的温度传感器、湿度传感器、压力传感器、氧气浓度测量仪以及二氧化碳浓度测量仪。
  13. 根据权利要求11所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述控制单元为PLC自动控制系统,所述PLC自动控制系统采用集中监控-分散控制的集散控制架构(DCS),由1个主站和若干分站组成工业级控制网络,主站采用双PLC组成冗余系统,对设备舱内设备进行监控,分站采用单PLC,对各标准舱和过渡舱进行监控,每个监控站均配有人机交互触摸屏HMI,整个PLC系统具备加减压过程控制、流程显示、设备运行状态监控,故障检测及报警功能。
  14. 根据权利要求11所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述建筑群还包括能源组织系统,所述能源组织系统包括厂外电源、UPS不间断电源系统、风能-光伏-储能分布式电源系统、空气余热回收系统;其中,所述风能-光伏-储能分布式电 源系统包括安装在建筑群顶部的光伏阵列、风能发电机和位于建筑群内的大容量锂电池组,白天通过所述光伏阵列为建筑群提供能源,夜间通过风能发电机为建筑群提供能源,风能和光伏多余电能储存至所述大容量锂电池组中,用于少风和阴雨天气时维持建筑群正常能源供给;所述UPS不间断电源系统维持建筑群智能增压补氧系统和安防系统运行不低于16小时,维持人群正常居住、生活不低于16小时;所述空气余热回收系统的第一循环水通道与空气压缩机的冷却水通道连接以回收热量,空气余热回收系统的第二循环水通道与生活用水设备连通以提供热水。
  15. 根据权利要求14所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述建筑群还包括综合储能系统,所述综合储能系统包括压缩空气储能机构、电池储能机构以及储热储能机构,其中,所述压缩空气储能机构通过所述空气压缩机以及与其连接的空气储罐组成;所述电池储能机构包括蓄电池组;储热储能机构包括与空气压缩机连接的空气余热回收系统以及与其连接的热水储罐;热水储罐与高海拔地区密闭建筑群的热水供应系统连接以对高海拔地区密闭建筑群提供生活热水,蓄电池组与高海拔地区密闭建筑群的用电设备电连接,空气储罐与高海拔地区密闭建筑群的进气管道连接。
  16. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述建筑群还包括正压室废气排放系统,所述正压室废气排放系统包括用于高海拔地区密闭建筑群卫生间空气净化的自循环空气处理装置、用于监测高海拔地区密闭建筑群卫生间空气质量的环境监测装置、以及与自循环空气处理装置和环境监测装置电连接的控制器,其中,所述自循环空气处理装置和环境监测装置均安装于高海拔地区密闭建筑群卫生间内,所述高海拔地区密闭建筑群卫生间设置有排气口,排气口上安装有排气管道,排气管道上安装有换气风扇和密封阀。
  17. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述建筑群还包括正压室污水排放系统,所述正压室污水排放系统包括用于储存无刺激性气味废水的末端水收集器、用于防止管网内臭气反逸的水封装置、用来隔断室内外气体压力以保证室内压力不外泄的排水隔膜阀、用于将室内污水排出正压环境的排水管网、以及用于给排水隔膜阀充气的充气系统,其中,所述水封装置位于末端水收集器的出水口处,排水管网与水封装置的出水端连接,排水隔膜阀安装于水封装置出水端处的排水管网上,充气系统与排水隔膜阀的进气口连通。
  18. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群,其特征在于,所述建筑群还包括安防系统,所述安防系统包括人流统计系统、监控系统、对讲系统和报警系统;所述人流统计系统设置于所述过渡舱,实时统计进入舱体人数和期间总人数;所述监控系统包括安装在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体顶部的摄像终端和设置在设备舱的网络硬盘和监控主机,用于建筑群各关键部位的实时监控和监控回看;所述对讲系统包括设置于建筑群内的若干多路对讲器和紧急按键,使用人员可多点通讯求助;所述报警系统包括设置在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体顶部的消防报警装置,用于舱体内非正常产生的烟雾及可能的火灾报警,还包括设置在标准舱、连接节点舱、连接走道舱、过渡舱、大跨度空间各舱体内的多参数监测仪表,用于舱体内部二氧化碳浓度、氧气浓度、压差、温度、湿度各参数超出设定限值时的报警,报警采用声音报警和显示屏图像报警方式。
  19. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群的人员从室外通过过渡舱进入室内的使用方法,其特征在于,包括以下步骤:
    S1.过渡舱外门室外侧顶部设置LED显示屏,显示屏显示过渡舱和室外的压力差,当过渡舱有人时,文字滚动显示“过渡舱有人!”,显示屏旁边设有一个多声音提示器,用于提示舱内外状态;
    S2.过渡舱外门室外侧设置电子门禁,人员需要进入过渡舱时,通过刷卡或密码或指纹识别或人脸识别方式打开门禁,过渡舱快速泄压;当压力差降到允许的范围后,多声音提示器提示“压力平衡,可以进入”,人员推开外门进入过渡舱;
    S3.人员进入过渡舱后,过渡舱的外门检测开关检测外门是否关好,如果关好,则语音播报“外门已关闭”,如果外门没有关好,则语音播报“请关闭外门”;
    S4.当人员进入过渡舱后,红外感应开关感应到人员的存在后,过渡舱外面的显示屏上滚动显示“过渡舱有人”;
    S5.过渡舱内设置有红外感应照明灯,当人员进入过渡舱的时候,照明灯自动点亮,当人员离开过渡舱后,照明灯熄灭;
    S6.内门和外门关好后,多声音提示器进行语音提示“如果感觉耳朵不舒服,请吞咽口水”,提示结束后,开始播放音乐;
    S7.过渡舱内门的外侧上方设置LED显示屏,LED显示屏显示过渡舱和走道舱之间的压差,人员可以根据自身的感受情况,按下内门旁边的按钮盒上的不同按钮,选择不同的调压速度,当遇到紧急情况,可以按下按钮盒上的急停按钮;
    S8.当过渡舱和走道舱之间的压力差在允许的范围之内后(小于1KPa)语音播报:“压力平衡,可以开门”;
    S9.人员开门进入走道舱,然后把过渡舱的内门关闭;
    S10.如果人员离开过渡舱后,内门没有关闭,则语音播报,提示关闭内门。
  20. 根据权利要求1所述的高海拔地区增压补氧模块化人居建筑群的人员从室内通过过渡舱到室外的使用方法,其特征在于,包括以下步骤:
    S1.过渡舱内门上方设置LED显示屏,LED屏显示过渡舱和走道舱之间的压力差,当过渡舱有人的时候,LED显示屏上滚动显示“过渡舱有人!”,显示屏旁边设有一个多声音提示器,用于舱内外状态的提示;
    S2.按下内门旁按钮盒上的请求进入按钮;
    S3.压力自动控制系统快速调节过渡舱的压力;
    S4.当走道舱和过渡舱的压差在允许的范围内,语音播报,“压力平衡,可以进入”;
    S5.人员拉开内门,进入过渡舱;
    S6.关闭舱门,当舱门检测开关检测到舱门关好,则语音播报“舱门已关闭”,当舱门检测开关没有检测到舱门关好,则语音播报“请关好舱门”;
    S7.当舱门关好后,进行语音播报“如果感觉耳朵不舒服,请吞咽口水”,播报结束后,播放音乐;
    S8.过渡舱外门上方设置有LED显示屏,显示过渡舱和室外的压力差;
    S9.人员可以根据自身的感受情况,按下外门旁边的按钮盒上的不同按钮,选择不同的调压速度,当遇到紧急情况,可以按下按钮盒上的急停按钮;
    S10.当过渡舱和室外的压力差在允许的范围之内,语音播报“压力平衡,可以出去”;
    S11.人员旋转门锁上的旋钮,打开电子锁,然后拉开过渡舱的外门,离开过渡舱;
    S12.人员离开过渡舱后,需要关闭舱门,若舱门没有关闭到位,则语音提示,请关闭舱门。
PCT/CN2022/120587 2021-09-26 2022-09-22 高海拔地区增压补氧模块化人居建筑群及使用方法 WO2023046025A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111130826.6 2021-09-26
CN202122336236.0U CN217151489U (zh) 2021-09-26 2021-09-26 高海拔地区增压补氧模块化人居建筑群
CN202122336236.0 2021-09-26
CN202111130826.6A CN113775236B (zh) 2021-09-26 2021-09-26 高海拔地区增压补氧模块化人居建筑群及使用方法

Publications (1)

Publication Number Publication Date
WO2023046025A1 true WO2023046025A1 (zh) 2023-03-30

Family

ID=85720105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120587 WO2023046025A1 (zh) 2021-09-26 2022-09-22 高海拔地区增压补氧模块化人居建筑群及使用方法

Country Status (1)

Country Link
WO (1) WO2023046025A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117257588A (zh) * 2023-11-03 2023-12-22 浙江数理医学科技有限公司 一种带有五音疗法多部位综合的石墨烯理疗舱
CN117860506A (zh) * 2024-01-30 2024-04-12 雅勃医药化工设备(江苏)有限公司 一种用于皮肤抗老化的智能调压式微高压氧仓

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040050009A1 (en) * 2002-09-13 2004-03-18 Fuhr John C. Modular deck apparatus and method
CN110424540A (zh) * 2019-07-31 2019-11-08 天津市康达膜材建筑工程有限公司 舱段式气枕膜建筑房屋
CN110565985A (zh) * 2019-08-26 2019-12-13 中建三局集团有限公司 高海拔地区增压补氧居住空间及其使用方法
CN110886532A (zh) * 2019-11-26 2020-03-17 北京工业大学 大跨度双向拱桁架索膜料场封闭结构体系
CN210812178U (zh) * 2019-08-16 2020-06-23 潍坊华信氧业有限公司 模块化微压氧舱
CN111766810A (zh) * 2020-06-30 2020-10-13 北京航天新立科技有限公司 一种可移动智能共享压力舱系统及其实现方法
CN113718943A (zh) * 2021-09-26 2021-11-30 中建三局集团有限公司 一种易于组合的承压空间
CN113718956A (zh) * 2021-09-26 2021-11-30 中建三局集团有限公司 高海拔地区高内压高气密性大跨度空间结构
CN113775236A (zh) * 2021-09-26 2021-12-10 中建三局集团有限公司 高海拔地区增压补氧模块化人居建筑群及使用方法
CN113914759A (zh) * 2021-09-26 2022-01-11 中建三局集团有限公司 用于不同模块拓展拼接或可增减压的密封连接结构
CN114086796A (zh) * 2021-09-26 2022-02-25 中建三局安装工程有限公司 一种低气压环境下可居住模块化的正压舱体集群

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040050009A1 (en) * 2002-09-13 2004-03-18 Fuhr John C. Modular deck apparatus and method
CN110424540A (zh) * 2019-07-31 2019-11-08 天津市康达膜材建筑工程有限公司 舱段式气枕膜建筑房屋
CN210812178U (zh) * 2019-08-16 2020-06-23 潍坊华信氧业有限公司 模块化微压氧舱
CN110565985A (zh) * 2019-08-26 2019-12-13 中建三局集团有限公司 高海拔地区增压补氧居住空间及其使用方法
CN110886532A (zh) * 2019-11-26 2020-03-17 北京工业大学 大跨度双向拱桁架索膜料场封闭结构体系
CN111766810A (zh) * 2020-06-30 2020-10-13 北京航天新立科技有限公司 一种可移动智能共享压力舱系统及其实现方法
CN113718943A (zh) * 2021-09-26 2021-11-30 中建三局集团有限公司 一种易于组合的承压空间
CN113718956A (zh) * 2021-09-26 2021-11-30 中建三局集团有限公司 高海拔地区高内压高气密性大跨度空间结构
CN113775236A (zh) * 2021-09-26 2021-12-10 中建三局集团有限公司 高海拔地区增压补氧模块化人居建筑群及使用方法
CN113914759A (zh) * 2021-09-26 2022-01-11 中建三局集团有限公司 用于不同模块拓展拼接或可增减压的密封连接结构
CN114086796A (zh) * 2021-09-26 2022-02-25 中建三局安装工程有限公司 一种低气压环境下可居住模块化的正压舱体集群

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117257588A (zh) * 2023-11-03 2023-12-22 浙江数理医学科技有限公司 一种带有五音疗法多部位综合的石墨烯理疗舱
CN117860506A (zh) * 2024-01-30 2024-04-12 雅勃医药化工设备(江苏)有限公司 一种用于皮肤抗老化的智能调压式微高压氧仓

Similar Documents

Publication Publication Date Title
WO2023046025A1 (zh) 高海拔地区增压补氧模块化人居建筑群及使用方法
CN113775236B (zh) 高海拔地区增压补氧模块化人居建筑群及使用方法
CN210355746U (zh) 一种智慧式消防设备
CN109237674B (zh) 基于人工智能地下避难走廊防烟、防护和冷源系统及方法
CN212901789U (zh) 一种医疗隔离智能化模块及隔离病房
CN101746655A (zh) 微电脑控制及蓄电池驱动的高层建筑火灾高速逃生电梯
CN102296983A (zh) 移动救生舱或固定避难硐室的监测控制系统
CN217151489U (zh) 高海拔地区增压补氧模块化人居建筑群
CN201912661U (zh) 中央送风火灾救生系统
CN213418589U (zh) 增压增氧房屋
CN114086796A (zh) 一种低气压环境下可居住模块化的正压舱体集群
CN201276861Y (zh) 一种安全屋
CN206742714U (zh) 一种变电站户外自动巡视装置
CN206563881U (zh) 一种充气膜建筑智能控制装置
CN107544414A (zh) 一种楼宇安防监控系统
CN219264490U (zh) 一种适用于海上换流站的智能排烟系统
CN218493479U (zh) 多功能防火遮阳逃生隔音隐藏式电动驱动门窗
CN216275951U (zh) 一体化智慧泵房
CN216981606U (zh) 一种模块化预装式变电所安防综合监控系统
CN209451172U (zh) 火灾/烟雾灾害时期的家用应急自救避难舱
CN114412246A (zh) 单通道型模块化集成负压隔离病房
CN114613092B (zh) 用于防火的楼宇智能化节能环境监测装置及方法
CN206347694U (zh) 一种用于配电室的智能通风节能装置
CN114439287A (zh) 双通道型模块化集成负压隔离病房
TW201709163A (zh) 建築物內常見公共設備的監控系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202400000318

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE