WO2023045219A1 - 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用 - Google Patents

一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用 Download PDF

Info

Publication number
WO2023045219A1
WO2023045219A1 PCT/CN2022/075858 CN2022075858W WO2023045219A1 WO 2023045219 A1 WO2023045219 A1 WO 2023045219A1 CN 2022075858 W CN2022075858 W CN 2022075858W WO 2023045219 A1 WO2023045219 A1 WO 2023045219A1
Authority
WO
WIPO (PCT)
Prior art keywords
add
ethanol
preparation
adsorption
reaction
Prior art date
Application number
PCT/CN2022/075858
Other languages
English (en)
French (fr)
Inventor
陈学平
潘建明
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2215562.6A priority Critical patent/GB2609582B/en
Publication of WO2023045219A1 publication Critical patent/WO2023045219A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the invention belongs to the technical field of preparation of environmental protection and biomedical functional materials, and relates to a preparation method suitable for selectively and efficiently enriching lead ion nanosheets in blood, in particular to a method based on a salt-containing droplet system and hyperbranched technology to synthesize lead ion nanosheets containing high A method of density-site circular nanosheet adsorbent and its application in the field of lead ion removal from blood.
  • Lead is one of the heavy metal elements with wide distribution, corrosion resistance and low melting point. It has good ductility and plasticity, so it is widely used in chemical industry, military industry and building materials. At present, the demand for lead resources in various countries in the world continues to increase. At the same time, due to the mining, smelting and incomplete recovery of lead, the pollution of lead ions is becoming more and more serious. Subsequently, the discharged lead ions enter organisms through water, air, soil, etc., and finally enter the human body through the food chain.
  • Existing studies have shown that lead is difficult to degrade in the human body, and its continuous accumulation can form blood lead, and excessive blood lead can directly lead to lead poisoning, showing diseases of the human nervous system, blood system, digestive system and other systems.
  • the existing lead pollution control methods include precipitation method, flocculation method, ion exchange method and adsorption method, etc.
  • the adsorption method can realize the efficient enrichment and recovery of lead ions, and can avoid secondary pollution during the adsorption process, and has the advantages of simple operation method , Adsorbent can be recycled and reused, etc. It is recognized as an effective means of lead pollution control. Therefore, it has become an extremely important research field to develop new adsorbents, realize the selective recycling of lead ions, and alleviate the harm caused by lead ion pollution.
  • the method of treating lead poisoning still relies on the use of chelating agents to promote the excretion of lead, but at the same time the side effects of chelating agents are still unavoidable.
  • researchers have focused their hope in the treatment of blood lead poisoning on the hemoperfusion strategy, which removes the heavy metal lead in the blood through extracorporeal blood circulation to achieve the purpose of detoxification.
  • This method puts forward new requirements on the biocompatibility of the adsorbent and the adsorption performance of lead ions. Therefore, it is of great significance to carry out the design and preparation of adsorbents to promote the application of lead ion pollution control and blood lead poisoning related fields.
  • Silicon is a chemical element second only to oxygen in the earth's crust, mainly in the form of silica and silicate.
  • Silica material has good biocompatibility and is often used in the preparation of biomaterials.
  • the surface of silica material is rich in functional groups, and it is easy to further functionalize the surface, so it is a good adsorbent substrate material.
  • mercaptosuccinic acid with mercapto and carboxyl groups has a strong selective recognition ability for lead ions.
  • L-cysteine has a similar structure and the same functional group, and its electron-rich sulfur element , nitrogen and carboxyl oxygen, highlighting its potential application in the field of adsorbing lead ions.
  • the morphology and structure of the adsorbent and the number of surface functional groups determine the adsorption efficiency of the material. Porous adsorbents will prolong the adsorption equilibrium time of the adsorbent while increasing the specific surface area of the material, while nanosheet materials have a higher specific surface area, which can expose functional sites to the maximum extent and shorten the equilibrium time of the adsorbent.
  • the types of nanosheet adsorbents are currently limited, and the site masking problem caused by stacking of nanosheets has not been well resolved.
  • the density of functional sites on the surface of traditional adsorbents is limited, resulting in unsatisfactory adsorption capacity.
  • the present invention first designs the emulsion system, utilizes the anisotropy of the emulsion interface and the hydrolysis condensation of the silane coupling agent to prepare nanometer-thick silica capsules, and obtains a circular surface through the collapse of spherical capsules Wrinkled silica nanosheets, this special structure can effectively avoid the stacking of nanosheets.
  • silica nanosheets as the base material and cysteine as the functional monomer, combined with hyperbranched technology to design and synthesize nanosheet adsorbents with high density sites, and apply it to the removal of lead ions in aqueous solution and blood .
  • the nanosheet adsorbent exhibits a faster adsorption rate and a higher adsorption capacity, and has good blood compatibility and high lead ion removal efficiency in the adsorption and separation of blood lead.
  • the present invention uses a salt-containing droplet system to construct nanosheets, and increases the amount of grafted functional monomers through hyperbranching technology to increase the site density on the surface of the adsorbent .
  • the present invention uses silica nanosheets as the base material, and uses cysteine as the unit to design and synthesize functionalized monomers to prepare a high-density site nanosheet adsorbent with better biocompatibility, and apply it to aqueous solutions and Remove lead ions from blood.
  • the present invention is based on the characteristics that ethanol can reduce the interfacial tension of oil-water two-phase and that sodium chloride liquid can enhance the interfacial tension of oil-water.
  • the oil phase is n-amyl alcohol
  • the water phase is a mixture of ethanol and ammonia water containing sodium chloride, which are mixed by hand.
  • TEOS tetraethylorthosilicate
  • CTMS 3-chloropropyltrimethoxysilane
  • TEOS tetraethylorthosilicate
  • CTMS 3-chloropropyltrimethoxysilane
  • the interface forms a nanoshell layer, and the circular silica nanosheets (Si-Cl) are obtained by centrifugation and ethanol washing and drying; then a large number of alcoholic hydroxyl groups are grafted on the surface by ion-induced free radical polymerization; finally, a cerium salt is used to initiate
  • the cysteine functional monomer was polymerized to the surface of the material by radical polymerization to obtain the nanosheet adsorbent (BM-SH).
  • BM-SH nanosheet adsorbent
  • this work directly used the sites on the Si-Cl surface to introduce functional monomers, and prepared an adsorbent (Si-SH) for comparative research.
  • a method for preparing circular nanosheets with high density sites comprising the steps of:
  • Dissolve NaCl in a certain amount of ammonia water add appropriate amount of ethanol after dissolving, mix by hand, pour into a round-bottomed flask filled with n-pentanol, shake by hand for 30-60s, add TEOS and CPTMS successively, mix by hand, Place in a water bath at 25-30°C, and react at a low speed of 20-200rmp for 20-180min;
  • step (1) the dosage ratio of sodium chloride, ammonia water, ethanol and n-amyl alcohol is (0.0035-0.1) g: (0.42-0.84) mL: 3 ⁇ 6 mL: 10 ⁇ 20 mL; the volume ratio of TEOS and CPTMS is 10 :1, the dosage ratio of sodium chloride and TEOS is (0.0035-0.1)g:50-250 ⁇ L.
  • step (1) Disperse the base material Si-Cl synthesized in step (1) in ethanol, add mixture a, mixture b and hydroxyethyl methacrylate HEMA successively in N2 atmosphere, and seal after 5-10min with nitrogen gas, and seal it at 25 React at -55°C, centrifuge after the reaction, wash the product, and store the material in ethanol for later use;
  • step (2)
  • the dosage ratio of CuCl 2 ⁇ 2H 2 O, PMDETA and ascorbic acid is 10-50mg:100-400 ⁇ L:0.05-0.3g,
  • the dosage ratio of base material Si-Cl and HEMA is 10-50mg:0.5-4mL,
  • the dosage ratio of CuCl 2 ⁇ 2H 2 O and the base material Si-Cl is 10-50mg:10-50mg.
  • the ratio of the total volume of ethanol to the volume of pure water is >10:1.
  • step (3) the dosage ratio of L-cysteine, MAA and NaOH solution is 1.2-3.5g:1-3mL:30-80mL, wherein the concentration of NaOH solution is 0.4-0.5M.
  • step (3) Disperse the BM-OH prepared in step (2) in deionized water, weigh cerium ammonium nitrate CAN and dissolve it in the mixture in the round-bottom flask, under the protection of nitrogen environment, add an appropriate amount of concentrated sulfuric acid, and then add step (3)
  • the monomer D-SH solution in the solution was ventilated with nitrogen for 5-10 minutes, sealed and reacted at 25-35° C. for 6-15 hours, centrifuged after the reaction was completed, and the product was washed to obtain BM-SH.
  • step (4) the consumption ratio of CAN, D-SH and BM-OH is 0.05-0.4g:1-8mL:10-50mg, and the volume ratio of concentrated sulfuric acid and deionized water is 0.5-0.7mL:50-70mL , the dosage ratio of CAN and concentrated sulfuric acid is 0.05-0.4g:0.5-0.7mL.
  • the high-density site circular nanosheet prepared by the invention is used for removing lead ions in aqueous solution or blood.
  • the adsorbent can reach adsorption equilibrium within 20 minutes, and its maximum adsorption capacity can reach 390 mg/g. At a concentration of 0.4 mg/mL, the removal rate of blood lead can reach 85%, reaching normal blood lead levels.
  • the present invention uses the salt-containing emulsion system as a template, and uses the branched polymerization technology as a functional means to prepare a novel silica nanosheet adsorbent with high-density sites, and apply it to lead in aqueous solution and blood removal of ions.
  • the preparation of nanosheets by this method also has the following advantages:
  • the present invention uses the salt-containing droplet emulsion system as a template, and the hydrolysis condensation product silicon dioxide of a silane coupling agent is used as a base material to prepare spherical silicon dioxide capsules, and utilizes the soft and easy-to-collapse nano-shell of the silicon dioxide capsules
  • the preparation of silicon oxide nanosheets provides a new method for the preparation of nanosheets, and the surface wrinkles of nanosheets caused by the collapse of spherical capsules effectively solve the problem of site masking caused by easy stacking of nanosheets;
  • the nanosheet uses the synthesized L-cysteine monomer as the functional monomer and silicon dioxide as the base material, which improves the biocompatibility of the material;
  • BM-SH has improved the adsorption rate, adsorption capacity and selectivity of the adsorbent, breaking through the bottleneck of the traditional adsorbent in the adsorption rate and adsorption capacity;
  • BM-SH has good blood compatibility and has application prospects in the treatment of blood lead poisoning.
  • the use of salt-containing emulsion system to construct nanosheets can not only increase the specific surface area of the material, but also shorten the time cost and economic cost of material manufacturing; the use of branched polymerization technology to functionalize the material can increase the function of the material surface sites to improve the adsorption capacity; the regulation of the surface functional groups of the adsorbent can achieve a breakthrough in the adsorption efficiency of the adsorbent; it has good potential in the treatment of lead-containing wastewater and the treatment of blood lead poisoning.
  • a-d in Fig. 1 are the SEM and TEM images of the base material Si-Cl in (1) in Example 1.
  • Fig. 2 is the AFM image and the thickness analysis of substrate material Si-Cl in (1) in the embodiment 1,
  • a 1 is the AFM image of the single-layer nanosheet material obtained after ultrasonic crushing
  • a 2 is the thickness analysis of the single-layer silica nanosheet (Si-Cl)
  • b 1 is the intact unbroken circular nanosheet material AFM image
  • b 2 is thickness analysis of nanosheets.
  • Fig. 3 is the proton nuclear magnetic resonance spectrogram of product D-SH in (3) in embodiment 1.
  • Fig. 4 is the SEM figure of product Si-Cl in step (1) in embodiment 1, product BM-OH in step (2) and product BM-SH in step (4), and BM-SH and in step (4) SEM and mapping diagram of the product Si-SH in step (5).
  • Fig. 5 is the infrared spectrum analysis of product Si-Cl in step (1) in embodiment 1, product BM-OH in step (2), product BM-SH in step (4) and product Si-SH in step (5) spectrogram.
  • Fig. 6 is the adsorption experiment result demonstration of embodiment 4-7
  • a is the comparison chart of adsorption capacity of Si-SH and BM-SH at different pHs in Example 4.
  • B is the adsorption kinetic data and fitting figure of Si-SH and BM-SH among the embodiment 5;
  • c is the adsorption equilibrium result display of Si-SH and BM-SH in embodiment 6;
  • d is the competitive adsorption performance of BM-SH for lead ions in the presence of multiple ions in Example 7.
  • Fig. 7 is a display of the results of applying BM-SH to blood lead adsorption in Example 8.
  • NaCl sodium chloride
  • Dissolve 0.017 sodium chloride (NaCl) in 0.84 mL of ammonia water add 6 mL of ethanol after dissolving, mix by hand, pour into a round-bottomed flask containing 20 mL of n-pentanol, shake by hand for 30 seconds, and add 200 ⁇ L of TEOS and 20 ⁇ L CPTMS were mixed evenly by hand, placed in a water bath at 28 °C, and reacted at a speed of 90 rpm for 60 min.
  • NaCl sodium chloride
  • a-d is the SEM and TEM image of substrate material Si-Cl in (1) in embodiment 1, and wherein a, b are SEM figure, can find out the circular shape and sheet-like structure of nanoplatelet therefrom, and surface Wrinkles due to collapse; c, d are TEM images, the circular shape and wrinkled structure can also be seen, and the extremely thin thickness of the nanosheets can be seen.
  • Fig. 2 is the AFM image and the thickness analysis of substrate material Si-Cl in (1) in implementing embodiment 1, a 1 is the single-layer nanosheet material obtained after ultrasonic crushing, a 2 is the single-layer silicon dioxide nanosheet (Si The thickness analysis of -Cl) can find out that nanosheet monolayer thickness is about 12nm; b 1 is the complete unbroken circular nanosheet material, b 2 is the thickness analysis of nanosheet, it can be seen that the nanosheet adsorbent is a double layer Structure and surface wrinkles, the thickness of the whole nanosheet is about 30nm.
  • Fig. 3 is the proton nuclear magnetic resonance spectrogram of the product D-SH in (3) in Example 1, it can be seen from the proton spectrum analysis chart that the polymerizable monomer was successfully synthesized.
  • Fig. 4 is the SEM figure of product Si-Cl in (1) in embodiment 1, product BM-OH in (2) and product BM-SH in (4), and in BM-SH in (4) and (5)
  • the SEM and mapping diagram of the product Si-SH it can be seen that after chemical modification and functional group grafting, the material still maintains a roughly circular shape and nano-scale thickness, and small particles on the surface become larger polymers; mapping diagram It can be seen that there are a large number of S and N elements on the product BM-SH in (4), while the S and N elements in the product Si-SH in (5) are relatively small, indicating that cysteine monomers have been successfully grafted onto The surface of the material also shows that BM-SH has a higher density of recognition sites.
  • Fig. 5 is the product Si-Cl in (1) in embodiment 1, product BM-OH in (2), product BM-SH in (4) and the infrared spectrum analysis spectrogram of product Si-SH in (5), three The change of the functional group on the surface of the material indicated that the material was successfully prepared, and the cysteine monomer was successfully grafted to the surface of the base material.
  • Figure 6 shows the results of the adsorption experiments of Examples 4-7, where a is the comparison chart of the adsorption capacities of Si-SH and BM-SH at different pHs in Example 4, and it can be seen that the adsorption capacity of Si-SH is always smaller than that of BM -SH, and both of them reach the best adsorption effect when the pH is 6; b is the adsorption kinetic data and fitting diagram of Si-SH and BM-SH in Example 5, as can be seen, BM-SH has a relatively Fast adsorption rate, can realize adsorption equilibrium within 20min, has better adsorption efficiency than Si-SH; c is the adsorption equilibrium result display of Si-SH and BM-SH in embodiment 6, can see that BM-SH is more Si-SH has a higher adsorption capacity, and its adsorption capacity is much higher than that of the reported adsorbents; d is the competitive adsorption performance of BM-SH to lead ions in the presence of multiple
  • Figure 7 shows the results of applying BM-SH to blood lead adsorption in Example 8. It can be seen that BM-SH has a good application prospect in the application of blood lead removal, and its removal rate exceeds 80%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于环保和生物医用功能材料技术领域,公开了一种适用于选择性分离铅离子的高密度位点吸附剂的制备方法及应用。以正戊醇为油相,水相为乙醇和含有氯化钠的氨水的混合物,以低能乳化的方式制备乳液体系,利用硅烷偶联剂在油水界面的水解缩合和囊泡的坍塌,制备圆形的纳米片;功能化修饰以超支化技术为核心,增加材料表面的有效官能团密度。不仅解决了纳米片堆叠导致的位点掩蔽的问题,而且有效的增加材料表面各功能位点密度。制备的高密度氧化硅纳米片用于水溶液中铅离子的吸附,可在20min内达到吸附平衡,最大吸附容量高达390mg/L,实现了吸附剂在吸附速率和吸附容量方面的突破;在血液中铅离子去除方面,去除效率达85%。

Description

一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用 技术领域
本发明属于环保和生物医用功能材料制备技术领域,涉及一种适用于选择性高效富集血液中铅离子纳米片的制备方法,尤其涉及一种基于含盐液滴体系和超支化技术合成含有高密度位点圆形纳米片吸附剂的方法,及其在血液中铅离子去除领域的应用。
背景技术
铅是分布广泛、耐腐蚀和熔点低的重金属元素之一,具有良好的延展性和可塑性,因此在化工行业、军工行业和建筑材料等方面具有广泛的使用。目前,世界上各个国家对铅资源的需求量依然持续增大。与此同时,由于铅的开采、冶炼以及不彻底回收,造成铅离子的污染日趋严重。随后,排放的铅离子通过水体、空气、土壤等进入生物体,最终通过食物链进入人体。已有研究表明:铅在人体内难以降解,其不断累积可以形成血铅,而血铅超标可直接导致铅中毒,表现出人体神经系统、血液系统、消化系统等系统的疾病。儿童和孕妇尤其容易受铅污染的影响,铅中毒可引起儿童智力低下,以及学习能力和感知能力降低。近十年来,血铅中毒的事件在我国各地时有发生,对铅污染以及血铅中毒的有效处理已经引起了广泛的关注。
已有的铅污染治理方法有沉淀法、絮凝法、离子交换法和吸附法等,其中吸附法能够实现铅离子的高效富集回收,而且吸附过程中能够避免二次污染,同时具有操作方法简单、吸附剂可重复回收利用等优点,是公认的铅污染治理有效的手段。因此,开发新型的吸附剂,实现铅离子的选择性回收利用,缓解铅离子污染带来的危害,已经成为极其重要的研究领域。目前,治疗铅中毒的方法仍然依赖于使用螯合剂促进铅的排泄,但同时螯合剂带来的副作用仍不可避免。近年来,研究人员将治疗血铅中毒的希望聚焦在血液灌流策略上,通过血液体外的循环去除掉血液中的重金属铅,达到解毒的目的。该方法对吸附剂的生物相容性以及铅离子的吸附性能提出了新的要求。因此,开展吸附剂的设计、制备工作,促进对铅离子污染治理以及血铅中毒相关领域的应用具有重大意义。
硅是地壳中含量仅次于氧元素的化学元素,主要以二氧化硅和硅酸盐的形式。二氧化硅材料具有良好的生物相容性,常被用于生物材料的制备。此外,二氧化硅材料表面具有丰富的官能团,且易于表面进一步功能化修饰,是良好的吸附剂基底材料。同时,已有报道表明,带有巯基和羧基的巯基琥珀酸对铅离子具有较强的选择性辨识能力,L-半胱氨酸与其具有相似的结构和相同的官能团,其富电子的硫元素、氮元素和羧基的氧元素,凸显了其在吸附铅离子领域方面的潜在应用。
吸附剂的形貌结构以及表面官能团的数量决定了材料的吸附效率。多孔吸附剂在增大材料比表面积的同时会延长吸附剂的吸附平衡时间,而纳米片状的材料具有较高的比表面积,能够最大限度的暴露功能位点,缩短吸附剂的平衡时间。但是目前纳米片吸附剂种类有限,纳米片堆叠造成的位点掩蔽问题还没有很好地解决。此外,传统吸附剂表面功能位点的密度有限,造成吸附容量尚不理想。已有吸附剂的制备方法耗时长,且在材料结构和表面功能化方面已经达到边界,难以在固有的吸附容量基础上取得突破性进展。超支化技术能够成倍提高接枝的功能单体数量,从而显著增加吸附剂表面功能位点的密度。
发明内容
针对现有技术中的问题,本发明首先通过设计乳液体系,利用乳液界面的各向异性和硅烷偶联剂的水解缩合制备纳米厚度的二氧化硅胶囊,并经球形胶囊的坍塌得到圆形表面褶皱的二氧化硅纳米片,这一特殊结构可以有效避免纳米片的堆叠。其次,以二氧化硅纳米片为基底材料、半胱氨酸为功能单体,结合超支化技术设计合成高密度位点的纳米片吸附剂,并将其应用于水溶液和血液中铅离子的去除。纳米片吸附剂表现出较快的吸附速率和较高的吸附容量,在血铅吸附分离方面有很好的血液相容性和较高的铅离子去除效率。
本发明为了解决铅离子吸附剂吸附容量低和吸附速率不够快的问题,采用含盐液滴体系构建纳米片,并通过超支化技术增加接枝功能单体量,提高吸附剂表面的位点密度。本发明以二氧化硅纳米片为基底材料,以半胱氨酸为单元设计合成功能化单体,制备生物相容性较好的高密度位点纳米片吸附剂,并将其应用于水溶液和血液中铅离子去除。
本发明基于乙醇能够降低油水两相界面张力和氯化钠液能增强油水界面张力的特点,以正戊醇为油相,水相为乙醇和含有氯化钠的氨水混合物,以手摇方式混合和乳化,制备乳液液滴体系;随后加入正硅酸乙酯(TEOS)和3-氯基丙基三甲氧基硅烷(CPTMS),利用氨水催化硅烷偶联剂水解缩合,在液滴和油相的界面形成纳米壳层,通过离心和乙醇洗涤烘干得到圆形二氧化硅纳米片(Si-Cl);然后通过离子引发自由基聚合在其表面接枝大量的醇羟基;最后利用铈盐引发自由基聚合将半胱氨酸功能单体聚合到材料表面,得到纳米片吸附剂(BM-SH)。与此同时,本工作直接利用Si-Cl表面的位点引入功能单体,制备了吸附剂(Si-SH)用于对比研究。
本发明采用的技术方案是:
一种高密度位点圆形纳米片的制备方法,包括如下步骤:
(1)基底材料Si-Cl的合成
将NaCl溶解在一定量的氨水中,溶解后加入适量乙醇,手摇混合后倒入装有正戊醇的圆底烧瓶中,手摇30-60s,先后加入TEOS和CPTMS,手摇混合均匀,置于25-30℃的水浴中,以低转速20-200rmp反应20-180min;
步骤(1)中,氯化钠、氨水、乙醇和正戊醇的用量比为(0.0035-0.1)g:(0.42-0.84)mL:3~6mL:10~20mL;TEOS和CPTMS的体积比为10:1,氯化钠和TEOS的用量比为(0.0035-0.1)g:50-250μL。
(2)羟基接枝材料BM-OH的合成
称取少量CuCl 2·2H 2O,分散在乙醇中,加入N,N,N',N,'N”-五甲基二亚乙基三胺PMDETA,得到混合物a;
称取适量抗坏血酸,溶解在纯水中,得到混合物b;
将步骤(1)中合成的基底材料Si-Cl分散到的乙醇中,在N 2氛围中依次加入混合物a、混合物b和甲基丙烯酸羟乙酯HEMA,通氮气5-10min后密封,在25-55℃下反应,反应结束后离心分离,洗涤产物,将材料置于乙醇中保存,备用;
步骤(2)中,
CuCl 2·2H 2O、PMDETA和抗坏血酸的用量比为10-50mg:100-400μL:0.05-0.3g,
基底材料Si-Cl和HEMA的用量比例为10-50mg:0.5-4mL,
CuCl 2·2H 2O和基底材料Si-Cl的用量比为10-50mg:10-50mg。
乙醇总体积和纯水体积比>10:1。
(3)可聚合半胱氨酸单体D-SH的合成
将一定量的L-半胱氨酸和甲基丙烯酸酐MAA加入圆底烧瓶中,随后加入NaOH溶液,超声分散,随后将其置于20-35℃的条件下搅拌反应24-50h;反应结束后萃取产物,利用旋转蒸发仪将溶剂蒸出,得到黄色粘稠的产物D-SH,将其溶于乙醇中保存备用;
步骤(3)中,L-半胱氨酸、MAA和NaOH溶液的用量比为1.2-3.5g:1-3mL:30-80mL,其中,NaOH溶液的浓度为0.4-0.5M。
(4)高密度位点纳米片吸附剂BM-SH的合成
将步骤(2)中制备的BM-OH分散在去离子水中,称量硝酸铈铵CAN溶解于圆底烧瓶的混合物中,在氮气环境的保护下,加入适量浓硫酸,再加入步骤(3)中的单体D-SH溶液,通氮气5-10min后,在25-35℃下密封反应6-15h,反应结束后离心分离, 洗涤产物,得到BM-SH。
步骤(4)中,CAN、D-SH和BM-OH的用量比例为0.05-0.4g:1-8mL:10-50mg,浓硫酸和去离子水的体积比为0.5-0.7mL:50-70mL,CAN和浓硫酸的用量比例为0.05-0.4g:0.5-0.7mL。
将本发明制得的高密度位点圆形纳米片用于去除水溶液或血液中铅离子的用途。该吸附剂能够在20min之内达到吸附平衡,其最大吸附容量可达390mg/g,该材料在0.4mg/mL的浓度下,对血铅的去除率可达85%,达到正常的血铅水平
对比研究用未枝化纳米片(Si-SH)的合成:
称取10-50mg CuCl 2·2H 2O,分散在1mL乙醇中,加入100-400uL PMDETA,得到混合物a(CuCl 2·2H 2O和PMDETA的比值为10-50mg:100-400uL);将(1)中合成的Si-Cl加入60mL的乙醇中,通N 2 2-4min后,在N 2氛围中依次加入溶液a和1-8mL D-SH(D-SH:Si-Cl的用量比为1-8mL:10-50mg),通气5-10min,密封反应,与25-55℃环境下反应10-24h,反应结束后,离心分离,分别用水和乙醇洗3次,烘干备用。
与现有技术相比较,本发明的有益效果体现在如下方面:
本发明以含盐乳液体系为模板,以枝化聚合技术为功能化手段,制备了一种新型的具有高密度位点的二氧化硅纳米片吸附剂,并将其应用于水溶液和血液中铅离子的去除。以该法制备纳米片还具有以下优势:
1)本发明采用含盐液滴乳液体系为模板,以硅烷偶联剂的水解缩合产物二氧化硅为基底材料,制备了球形二氧化硅胶囊,利用二氧化硅胶囊纳米壳层柔软易坍塌的特点制备了氧化硅纳米片,为纳米片的制备提供了新方法,而且球形胶囊坍塌带来的纳米片表面褶皱,有效的解决了纳米片易于堆叠而导致位点掩蔽的问题;
2)以正戊醇为油相、乙醇为助溶剂的含盐乳液体系制备是以低能乳化方式完成,能耗低、设备简单;
3)以超支化聚合技术为核心的功能化过程,增加了吸附剂表面的识别位点,在比表面积最大化的基础上提高了材料的吸附容量和吸附速率;
4)该纳米片以合成的L-半胱氨酸单体为功能单体、二氧化硅为基底材料,提高了材料的生物相容性;
5)BM-SH以其优越的纳米结构以及高密度的功能位点,实现了吸附剂吸附速率、吸附容量和选择性能的提高,突破了传统吸附剂在吸附速率和吸附容量上的瓶颈;
6)BM-SH具有较好的血液相容性,在血铅中毒治疗方面具有应用前景。综上所述,利用含盐乳液体系构建纳米片不仅能够增大材料的比表面积,而且缩短材料制造的时间成本,经济成本;利用支化聚合技术对材料进行功能化,能够增加材料表面的功能位点,提高吸附容量;对吸附剂进行表面官能团的调控,能够实现吸附剂吸附效率的突破;在含铅废水处理和血铅中毒治疗方面具有很好的潜力。
附图说明
图1中a-d是实施例1中(1)中基底材料Si-Cl的SEM和TEM图像。
图2是实施实施例1中(1)中基底材料Si-Cl的AFM图像以及厚度分析,
a 1是超声破碎后得到的单层纳米片材料的AFM图像,a 2是单层二氧化硅纳米片(Si-Cl)的厚度分析;b 1是完整的未破碎的圆形纳米片材料的AFM图像,b 2是纳米片的厚度分析。
图3是实施例1中(3)中产物D-SH的核磁共振氢谱图。
图4是实施例1中步骤(1)中产物Si-Cl,步骤(2)中产物BM-OH以及步骤(4)中产物BM-SH的SEM图,和步骤(4)中BM-SH和步骤(5)中产物Si-SH的SEM和mapping图。
图5是实施例1中步骤(1)中产物Si-Cl,步骤(2)中产物BM-OH,步骤(4)中产物BM-SH以及步骤(5)中产物Si-SH的红外光谱分析谱图。
图6是实施例4-7的吸附实验结果展示,
a是实施例4中Si-SH和BM-SH在不同pH下的吸附容量对比图;
b是实施例5中Si-SH和BM-SH的吸附动力学数据及拟合图;
c是实施例6中Si-SH和BM-SH的吸附平衡结果展示;
d是实施例7中BM-SH在多种离子存在下对铅离子的竞争吸附性能展示。
图7是实施例8中将BM-SH应用于血铅吸附的结果展示。
具体实施方式
实施例1:
(1)基底材料(Si-Cl)的设计合成
将0.0085g的氯化钠(NaCl)溶解在0.42mL的氨水中,溶解后加入3mL的乙醇,手摇混合后倒入装有10mL正戊醇的圆底烧瓶中,手摇30s,先后加入100μL的TEOS和10μL CPTMS,手摇混合均匀,置于25℃的水浴中,以80rmp的转速反应40min。
(2)羟基接枝材料(BM-OH)的设计合成
称取15mg二水合氯化铜(CuCl 2·2H 2O),分散在1mL乙醇中,加入150μL PMDETA,得到混合物a;称取0.1g抗坏血酸,溶解在1mL纯水中,得到混合物b;将20mg(1)中合成的二氧化硅基底材料Si-Cl加入50mL的乙醇中,通N 2 2min后,在N 2氛围中依次加入溶液a、溶液b和1mL甲基丙烯酸羟乙酯(HEMA),通气5min,密封反应,与50℃环境下反应10h,反应结束后,离心分离,分别用水和乙醇洗3次,将材料置于乙醇中保存,备用。
(3)可聚合半胱氨酸单体的设计合成
将1.3g的L-半胱氨酸和1mL的甲基丙烯酸酐(MAA)加入圆底烧瓶中,随后加入50mL氢氧化钠(NaOH)溶液(0.5M),超声分散,随后将其置于25℃的条件下反应48h。反应结束后向混合物中投入大量的乙酸乙酯用于萃取,利用旋转蒸发仪将溶剂蒸出,得到黄色粘稠的液体(D-SH),将其溶于20mL乙醇中保存备用。
(4)高密度位点纳米片吸附剂(BM-SH)的设计合成
向圆底烧瓶中加入(2)中制备的20mg BM-OH材料与20mL的去离子水,使BM-OH充分分散后,称量0.1g硝酸铈铵并使其充分溶解于圆底烧瓶的混合物中。在氮气环境保护下,加入0.5mL浓硫酸,再加入2mL(3)中的溶解在乙醇中的单体(D-SH)溶液。25℃下反应6h,并通过离心获得最终产物。最后,通过去离子水和无水乙醇将产品洗涤至中性,冷冻干燥得到BM-SH。
(5)对比研究用未枝化纳米片(Si-SH)的设计合成
称取20mg CuCl 2·2H 2O,分散在1mL乙醇中,加入200μL PMDETA,得到混合物a;将20mg(1)中合成的Si-Cl加入50mL的乙醇中,通N 2 2-4min后,在N 2氛围中依次加入溶液a和2mL(3)中的单体D-SH,通气5min,密封反应,与50℃环境下反应10h,反应结束后,离心分离,分别用水和乙醇洗3次,冻干备用。
实施例2
(1)基底材料(Si-Cl)的设计合成
将0.017的氯化钠(NaCl)溶解在0.84mL的氨水中,溶解后加入6mL的乙醇,手摇混合后倒入装有20mL正戊醇的圆底烧瓶中,手摇30s,先后加入200μL的TEOS和20μL CPTMS,手摇混合均匀,置于28℃的水浴中,以90rmp的转速反应60min。
(2)羟基接枝材料(BM-OH)的设计合成
称取30mg二水合氯化铜(CuCl 2·2H 2O),分散在1mL乙醇中,加入300μL PMDETA,得到混合物a;称取0.2g抗坏血酸,溶解在2mL纯水中,得到混合物b; 将30mg(1)中合成的Si-Cl加入60mL的乙醇中,通N 2 3min后,在N 2氛围中依次加入溶液a、溶液b和甲基丙烯酸羟乙酯(HEMA)2mL,通气6min,密封反应,于55℃环境下反应11h,反应结束后,离心分离,分别用水和乙醇洗3次,将材料置于乙醇中保存备用。
(3)可聚合半胱氨酸单体的设计合成
将1.4g的L-半胱氨酸和1.1mL的甲基丙烯酸酐(MAA)加入100mL的圆底烧瓶中,随后加入60mL氢氧化钠(NaOH)溶液(0.5M),超声分散,随后将其置于30℃的条件下反应30h。反应结束后向混合物中投入大量的乙酸乙酯用于萃取,利用旋转蒸发仪将溶剂蒸出,得到黄色粘稠的产物(D-SH),将其溶于20mL乙醇中保存备用。
(4)高密度位点纳米片吸附剂(BM-SH)的设计合成
向圆底烧瓶中加入(2)中制备的30mg BM-OH材料与70mL的去离子水,使BM-OH充分分散后,称量0.2g硝酸铈铵(CAN)并使其充分溶解于圆底烧瓶的混合物中。通氮气,在氮气环境的保护下加入0.7mL浓硫酸,再加入4mL(3)中的单体(D-SH)溶液。通气6min,密封反应,30℃下反应5h,并通过离心获得最终产物。最后,通过去离子水和无水乙醇将产品洗涤至中性,离心洗涤冷冻干燥得到固体BM-SH。
(5)对比研究用未枝化纳米片(Si-SH)的设计合成
称取30mg CuCl 2·2H 2O,分散在1mL乙醇中,加入300μL PMDETA,得到混合物a;将30mg(1)中合成的Si-Cl加入60mL的乙醇中,通N 2 3min后,在N 2氛围中依次加入溶液a和4mL(3)中的单体(D-SH)溶液,通气6min后,密封反应,与55℃环境下反应11h,反应结束后,离心分离,分别用水和乙醇洗3次,冻干备用。
实施例3
(1)基底材料(Si-Cl)的设计合成
将0.007g的氯化钠(NaCl)溶解在0.50mL的氨水中,溶解后加入3mL的乙醇,手摇混合后倒入装有10mL正戊醇的圆底烧瓶中,手摇40s,先后加入100μL的TEOS和10μL CPTMS,手摇混合均匀,置于30℃的水浴中,以60rmp的转速反应180min。
(2)羟基接枝材料(BM-OH)的设计合成
称取40mg二水合氯化铜(CuCl 2·2H 2O),分散在1mL乙醇中,加入400μL PMDETA,得到混合物a;称取0.3g抗坏血酸,溶解在3mL纯水中,得到混合物b;将50mg(1)中合成的Si-Cl加入70mL的乙醇中,通N 2 2-4min后,在N 2氛围中依次加入溶液a、溶液b和4mL甲基丙烯酸羟乙酯,通气8min,密封反应,于45℃环 境下反应15h,反应结束后,离心分离,分别用水和乙醇洗3次,将材料置于乙醇中保存,备用。
(3)可聚合半胱氨酸单体的设计合成
将2g的L-半胱氨酸和1.7mL的甲基丙烯酸酐(MAA)加入圆底烧瓶中,随后加入80mL氢氧化钠(NaOH)溶液(0.5M),超声分散,随后将其置于35℃的条件下反应50h。反应结束后向混合物中投入大量的乙酸乙酯用于萃取,利用旋转蒸发仪将溶剂蒸出,得到黄色粘稠的产物(D-SH),将其溶于20mL乙醇中保存。
(4)高密度位点纳米片吸附剂(BM-SH)的设计合成
向圆底烧瓶中加入(2)中制备的50mg BM-OH材料与60mL的去离子水,使BM-OH充分分散后,称量0.4g硝酸铈铵(CAN)并使其充分溶解于圆底烧瓶的混合物中。在氮气环境的保护下,加入0.6mL浓硫酸后,再加入8mL(3)中的单体(D-SH)溶液。通气5min,密封反应,35℃下反应15h,并通过离心获得最终产物。最后,通过去离子水和无水乙醇将产品洗涤至中性,离心后所得固体BM-SH冷冻干燥备用。
(5)对比研究用未枝化纳米片(Si-SH)的设计合成
称取40mg CuCl 2·2H 2O,分散在1mL乙醇中,加入400μL PMDETA(N,N,N',N,'N”-五甲基二亚乙基三胺),得到混合物a;将50mg(1)中合成的Si-Cl加入60mL的乙醇中,通N 2 3min后,在N 2氛围中依次加入溶液a和8mL D-SH,通气5min,密封反应,于45℃环境下反应12h,反应结束后,离心分离,分别用水和乙醇洗3次,冻干备用。
实施例4
将2mg在实施例1所述条件下制备的BM-SH,Si-SH,分别加入到2mL pH初始值分别为3,4,5,6,浓度为100mg/L的铅离子溶液中,25℃水浴震荡器中维持6h最终溶液中的铅离子浓度石墨炉原子吸收来测定,平行实验做三组。
实施例5
分别准确称取2mg的BM-SH,Si-SH分别加入3mL铅离子溶液(250mg/L)和2mL铅离子溶液(100mL),置于25℃水浴振荡器中,分别间隔5min,10min,20min,40min,60min,120min,240min收集吸附液,平行实验做三组,用石墨炉原子吸收来测定剩余铅离子浓度。
实施例6
准确称取6份2mg的BM-SH,分别加入3mL浓度为100mg/L,150mg/L,200 mg/L,250mg/L,300mg/L,350mg/L的铅离子溶液,25℃水浴振荡器中放置3h,收集吸附液,用石墨炉原子吸收来测定剩余铅离子浓度;准确称取6份2mg的Si-SH,分别加入2mL浓度为50mg/L,100mg/L,150mg/L,200mg/L,250mg/L,300mg/L的铅离子溶液,25℃水浴振荡器中放置3h,收集吸附液,平行实验做三组,用石墨炉原子吸收来测定剩余铅离子浓度。
实施例7
准确称取2mg的BM-SH,加入10mL含有Pb 2+,K +,Na +,Ca 2+,Mg 2+的混合溶液(100mg/L),25℃水浴振荡器中放置1h,离心分离后收集上清液,利用电感耦合等离子体发射光谱仪(ICP)检测铅离子浓度。
实施例8
取5组1mL抗凝血液,用生理盐水稀释2倍,一组作空白,其余4组加入含铅溶液,配置浓度分别为100μg/L,200μg/L,400μg/L,600μg/L的含铅血液,在37℃的环境下孵育1h,得到铅污染的血液,分别加入0.8mg的BM-SH,混匀后置于37℃环境下静置1h,结束后2000rmp下离心20min取上清液1mL,高温高压消解后利用电感耦合等离子体发射光谱仪(ICP)检测铅离子浓度,同时开展三组平行实验,收集数据。
图1中a-d是实施例1中(1)中基底材料Si-Cl的SEM和TEM图像,其中a、b为SEM图,从中可以看出纳米片圆形的形状和片状的结构,以及表面由于坍塌导致的褶皱;c、d是TEM图像,同样可以看出圆形的形状和褶皱结构,并且可以看出纳米片极薄的厚度。
图2是实施实施例1中(1)中基底材料Si-Cl的AFM图像以及厚度分析,a 1是超声破碎后得到的单层纳米片材料,a 2是单层二氧化硅纳米片(Si-Cl)的厚度分析可以看出纳米片单层厚度约12nm;b 1是完整的未破碎的圆形纳米片材料,b 2是纳米片的厚度分析,可以看出纳米片吸附剂呈双层结构以及表面的褶皱,整个纳米片厚度约30nm。
图3是实施例1中(3)中产物D-SH的核磁共振氢谱图,从氢谱分析图中可以看出可聚合单体成功合成。
图4是实施例1中(1)中产物Si-Cl,(2)中产物BM-OH以及(4)中产物BM-SH的SEM图,和(4)中BM-SH和(5)中产物Si-SH的SEM和mapping图,可以看出经过之化修饰以及官能团接枝材料依旧保持大致圆形的形状以及纳米级的厚度,表面有细小的颗粒变成较大的聚合物;mapping图可以看出,(4)中产物BM-SH上有大量的 S和N元素,而(5)中产物Si-SH的S、N元素相对较少,说明半胱氨酸单体成功接枝到材料表面,同时也表明BM-SH具有较高密度的识别位点。
图5是实施例1中(1)中产物Si-Cl,(2)中产物BM-OH,(4)中产物BM-SH以及(5)中产物Si-SH的红外光谱分析谱图,三种材料表面官能团的变化表明材料制备成功,且半胱氨酸单体成功的接枝到基底材料表面。
图6是实施例4-7的吸附实验结果展示,其中a是实施例4中Si-SH和BM-SH在不同pH下的吸附容量对比图,可以看出Si-SH的吸附量始终小于BM-SH,且二者均在pH为6时达到最佳吸附效果;b是实施例5中Si-SH和BM-SH的吸附动力学数据及拟合图,可以看出,BM-SH具有较快的吸附速率,能够在20min内实现吸附平衡,较Si-SH具有更好的吸附效率;c是实施例6中Si-SH和BM-SH的吸附平衡结果展示,可以看出BM-SH较Si-SH具有更高的吸附容量,且其吸附容量远高于已报道的吸附剂;d是实施例7中BM-SH在多种离子存在下对铅离子的竞争吸附性能展示,结果表明,BM-SH对铅离子具有很好的吸附性能。
图7是实施例8中将BM-SH应用于血铅吸附的结果展示,可以看出BM-SH在去除血铅的应用方面具有较好的应用前景,其去除率超过80%。

Claims (9)

  1. 一种高密度位点圆形纳米片的制备方法,其特征如下,包括如下步骤:
    (1)基底材料Si-Cl的合成:
    将NaCl溶解在一定量的氨水中,溶解后加入适量乙醇,手摇混合后倒入装有正戊醇的圆底烧瓶中,手摇30-60s,先后加入TEOS和CPTMS,手摇混合均匀,置于一定温度的水浴中,以低转速反应20-180min;
    (2)羟基接枝材料BM-OH的合成:
    称取少量CuCl 2·2H 2O,分散在乙醇中,加入N,N,N',N,'N”-五甲基二亚乙基三胺PMDETA,得到混合物a;
    称取适量抗坏血酸,溶解在纯水中,得到混合物b;
    将步骤(1)中合成的基底材料Si-Cl分散到的乙醇中,在N 2氛围中依次加入混合物a、混合物b和甲基丙烯酸羟乙酯HEMA,通氮气后密封,在一定温度下反应,反应结束后离心分离,洗涤产物,将材料置于乙醇中保存,备用;
    (3)可聚合半胱氨酸单体D-SH的合成:
    将一定量的L-半胱氨酸和甲基丙烯酸酐MAA加入圆底烧瓶中,随后加入NaOH溶液,超声分散,随后将其置于20-35℃的条件下搅拌反应24-50h;反应结束后萃取产物,利用旋转蒸发仪将溶剂蒸出,得到黄色粘稠的产物D-SH,将其溶于乙醇中保存备用;
    (4)高密度位点纳米片吸附剂BM-SH的合成:
    将步骤(2)中制备的BM-OH分散在去离子水中,称量硝酸铈铵CAN溶解于圆底烧瓶的混合物中,在氮气环境的保护下,加入适量浓硫酸,再加入步骤(3)中的单体D-SH溶液,通氮气后,在一定温度下密封反应,反应结束后离心分离,洗涤产物,得到BM-SH。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,氯化钠、氨水、乙醇和正戊醇的用量比为(0.0035-0.1)g:(0.42-0.84)mL:3~6mL:10~20mL;TEOS和CPTMS的体积比为10:1,氯化钠和TEOS的用量比为(0.0035-0.1)g:50-250μL。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,水浴温度为25-30℃,反应转速为20-200rmp。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,
    CuCl 2·2H 2O、PMDETA和抗坏血酸的用量比为10-50mg:100-400μL:0.05-0.3g,
    基底材料Si-Cl和HEMA的用量比例为10-50mg:0.5-4mL,
    CuCl 2·2H 2O和基底材料Si-Cl的用量比为10-50mg:10-50mg。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,乙醇总体积和水的体积比>10:1,通氮气的时间为5-10min,反应温度为25-55℃。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,L-半胱氨酸、MAA和NaOH溶液的用量比为1.2-3.5g:1-3mL:30-80mL,其中,NaOH溶液的浓度为0.4-0.5M。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,CAN、D-SH和BM-OH的用量比例为0.05-0.4g:1-8mL:10-50mg,浓硫酸和去离子水的体积比为0.5-0.7mL:50-70mL,CAN和浓硫酸的用量比例为0.05-0.4g:0.5-0.7mL。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中,通氮气时间为5-10min,反应温度为25-35℃,反应时间为6-15h。
  9. 将权利要求1~8任一项所述制备方法制得的高密度位点圆形纳米片用于去除水溶液或血液中铅离子的用途。
PCT/CN2022/075858 2021-09-24 2022-02-10 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用 WO2023045219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2215562.6A GB2609582B (en) 2021-09-24 2022-02-10 Preparation method of circular nanosheet with high-density sites, and use of circular nanosheet in adsorption of blood lead

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111119029.8A CN113753903B (zh) 2021-09-24 2021-09-24 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用
CN202111119029.8 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045219A1 true WO2023045219A1 (zh) 2023-03-30

Family

ID=78797189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075858 WO2023045219A1 (zh) 2021-09-24 2022-02-10 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用

Country Status (2)

Country Link
CN (1) CN113753903B (zh)
WO (1) WO2023045219A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753903B (zh) * 2021-09-24 2023-01-17 江苏大学 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用
CN116332222B (zh) * 2023-03-23 2024-07-09 河南科技大学 一种由纳米片层状堆叠的ZnO微米花的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974316A (zh) * 2012-12-13 2013-03-20 西北师范大学 纳米二氧化硅吸附剂的制备及在吸附污水中重金属离子Pb2+的应用
KR20140110145A (ko) * 2013-03-04 2014-09-17 코아텍주식회사 복합흡착제 및 복합흡착제 제조방법
CN104399427A (zh) * 2014-12-16 2015-03-11 莆田学院 一种多孔二氧化硅微球吸附剂的制备方法及应用
CN109126748A (zh) * 2018-09-05 2019-01-04 辽宁大学 基于无机硅源的复合材料pei-cs-kit-6及其制备方法和在除铅中的应用
CN110270313A (zh) * 2019-06-26 2019-09-24 江苏大学 蒸汽冷凝法制备硅球及功能化硅球吸附剂的方法及其应用
CN113753903A (zh) * 2021-09-24 2021-12-07 江苏大学 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118916B2 (en) * 2005-10-21 2012-02-21 The University Of Cincinnati High capacity materials for capture of metal vapors from gas streams
CN104475040B (zh) * 2014-12-31 2017-02-08 湖南大学 改性磁性纳米吸附材料及其制备方法和应用
WO2016191802A1 (en) * 2015-05-29 2016-12-08 Adelaide Research & Innovation Pty Ltd Composite graphene-based material
CN108837810B (zh) * 2018-05-04 2021-02-12 江苏大学 一种雅努斯型双功能分子印迹吸附剂的制备方法及应用
CN111871388B (zh) * 2020-07-28 2021-06-15 南昌航空大学 一种木瓜蛋白酶改性金纳米颗粒修饰淀粉/二氧化硅复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974316A (zh) * 2012-12-13 2013-03-20 西北师范大学 纳米二氧化硅吸附剂的制备及在吸附污水中重金属离子Pb2+的应用
KR20140110145A (ko) * 2013-03-04 2014-09-17 코아텍주식회사 복합흡착제 및 복합흡착제 제조방법
CN104399427A (zh) * 2014-12-16 2015-03-11 莆田学院 一种多孔二氧化硅微球吸附剂的制备方法及应用
CN109126748A (zh) * 2018-09-05 2019-01-04 辽宁大学 基于无机硅源的复合材料pei-cs-kit-6及其制备方法和在除铅中的应用
CN110270313A (zh) * 2019-06-26 2019-09-24 江苏大学 蒸汽冷凝法制备硅球及功能化硅球吸附剂的方法及其应用
CN113753903A (zh) * 2021-09-24 2021-12-07 江苏大学 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YAN, PAN JIAN-MING, CHEN JING, XIE JI-MIN, LI CHUN-XIANG, YAN YONG-SHENG: "Progress of modified silica-based micro-/nano-materials and its application in separation chemistry", YEJIN FENXI, YEJIN FENXI BIANJIBU, vol. 30, no. 9, 15 September 2010 (2010-09-15), pages 37 - 46, XP093054983, ISSN: 1000-7571, DOI: 10.13228/j.issn.1000-7571.2010.09.016 *

Also Published As

Publication number Publication date
CN113753903B (zh) 2023-01-17
CN113753903A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023045219A1 (zh) 一种高密度位点圆形纳米片的制备方法及其吸附血铅的应用
CN104801262B (zh) 一种磁性复合铀吸附剂的制备方法及其应用
CN108854996A (zh) 一种铝盐吸附剂及其在盐湖卤水提锂中的用途
Xiong et al. Microwave hydrothermal synthesis of gallotannin/carbon nanotube composites for the recovery of gallium ion
CN107961764A (zh) 一种羧甲基-β-环糊精功能化磁性介孔硅微球的制备方法
CN105080512B (zh) 一种氧化石墨烯基镉离子印迹聚合物的制备方法及应用
CN105817213A (zh) 一种基于中空介孔二氧化硅的吸附剂及其制备方法和回收黄金的应用
CN106517155A (zh) 一种环境友好型制备石墨烯的方法
CN113353917B (zh) 自支撑二维介孔纳米材料的可控制备方法
CN109078602B (zh) 磁性微孔锂吸附剂及其制备方法与应用
Tian et al. Removal of fluorine ions from industrial zinc sulfate solution by a layered aluminum-based composite
CN107282021A (zh) 一种有机‑无机复合膨润土材料及其制备方法和应用
CN104289200B (zh) 一种磁性hacc/氧化多壁碳纳米管吸附剂的制备方法及应用
WO2023029381A1 (zh) 一种基于液滴限域空间制备氧化锆复合吸附剂的方法及其除氟应用
CN114345293A (zh) 一种改性生物质灰材料及其制备方法与应用
Guo et al. Desorption enhancement of aluminum-based adsorbent in lithium extraction from sulfate-type salt lakes
CN105967238A (zh) 一种特种树脂高效净化含高Mo的钨酸铵溶液的方法
Wang et al. A diatomite-template self-sacrificing route for Mg-chlorite and its adsorption behavior towards Pb (II)/Cd (II)
Tao et al. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions
CN113526563B (zh) 一种含砷废液砷的长期稳定化处理方法
CN110339805A (zh) 一种溶液除铁方法以及铁基吸附材料的制备方法
CN112981112B (zh) 一种废三元锂电池正极材料制备高纯硫酸钴溶液的方法
CN214829053U (zh) 一种盐湖卤水吸附提锂装置
GB2609582A (en) Preparation method of circular nanosheet with high-density sites, and use of circular nanosheet in adsorption of blood lead
Yang et al. Performance and mechanism of hierarchical porous Al2O3-MgO nanosheets for removing fluoride ions from industrial ZnSO4 solution

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202215562

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220210

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE