WO2023041219A1 - Evaluating rounded sections of inner bore edges by means of machine learning using vibration data or the like - Google Patents

Evaluating rounded sections of inner bore edges by means of machine learning using vibration data or the like Download PDF

Info

Publication number
WO2023041219A1
WO2023041219A1 PCT/EP2022/069068 EP2022069068W WO2023041219A1 WO 2023041219 A1 WO2023041219 A1 WO 2023041219A1 EP 2022069068 W EP2022069068 W EP 2022069068W WO 2023041219 A1 WO2023041219 A1 WO 2023041219A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
inner bore
common rail
rail component
detection device
Prior art date
Application number
PCT/EP2022/069068
Other languages
German (de)
French (fr)
Inventor
Peter Hoeh
Stephan Wengerek
Ruben KAPP
Mario Herrera
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN202280075647.3A priority Critical patent/CN118234589A/en
Publication of WO2023041219A1 publication Critical patent/WO2023041219A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a method for rounding inner bore edges and a system for evaluating rounding of inner bore edges of a common rail component, injection nozzle or the like.
  • Fuel injection systems for internal combustion engines of motor vehicles such as so-called common rail systems, include fuel-carrying components that are subjected to an internal pressure of usually up to 1600 bar. This internal pressure is still subject to strong fluctuations. Accordingly, high strength requirements are placed on such components.
  • EP 1 435 454 A1 a component subject to internal pressure is known from EP 1 435 454 A1, which has a vertical inflow channel for connection to a high-pressure fuel accumulator and a horizontal connection channel branching off transversely therefrom for connecting an injector or the like.
  • a horizontal connection duct and an inflow duct form an intersection area in which a cross-section results that leads to lower local stresses.
  • an electrochemical machining process can be used for rounding, the machined Holes are usually checked with an endoscope.
  • ECM electrochemical machining process
  • an electrode is inserted into the inner bore of the component and a conductive electrolyte is pumped through the inner bore. Material is removed by the action of an electric current and the rounding occurs.
  • the ECM process usually has three phases. In a first phase, in which the inner bore is cleaned or pre-rinsed, the electrolyte is pumped through the inner bore at high pressure in order to free it from particles from the inside. In a second phase, which is the actual ECM processing, material is removed using an electric current between an electrode and the workpiece. In a subsequent, third phase, the electrolyte is pumped through the inner bore again in order to carry out cleaning.
  • the use of machine learning methods is known in order to save or reduce a complex visual inspection using an endoscope.
  • the aim is to be able to reliably make a prediction based on process data from the ECM process as to whether the rounding of inner edges is sufficient.
  • the process data can include current and volume flow curves.
  • the process data is occasionally incomplete or insufficient to make a reliable prediction.
  • a common rail component can in particular include a high-pressure accumulator, which is also referred to as a fuel distributor pipe or “rail”.
  • Injectors can be connected to the high-pressure accumulator via high-pressure connections, which have a flow direction running transversely to a main extension direction of the high-pressure accumulator, and are supplied with fuel from the high-pressure accumulator.
  • Other components in the form of valves or injector bodies are conceivable.
  • a classifier can be understood as an algorithm for automatically carrying out a classification method.
  • the classifier could be trained by a machine learning process to distinguish between at least two different classes, which in the present case could be understood as “not sufficiently rounded” and “sufficiently rounded”.
  • the training can take place, for example, by means of supervised learning while the classifier is in operation.
  • the method according to the invention is generally based on a conventional ECM method. This means that the three processing phases that are customary in the prior art and are described above are carried out. After a pre-rinse, the actual machining with material removal is carried out and a post-rinse process follows to clean the relevant inner bore. However, one focus here is on the Evaluation of the quality of the fillet in the inner bore. For this purpose, flow and volume flow curves during the ECM processing, in particular in the processing phase or the post-rinsing phase, can also be used, as is customary in the prior art. However, it is particularly advantageous to detect vibrations in the common rail component in the area of the relevant inner bore by means of at least one vibration detection device.
  • the inner bore in question is not properly rounded, the liquid flowing in it is subjected to severe deflection, which leads to the formation of turbulence within the inner bore. This can cause vibrations that stimulate the relevant common rail component to oscillate. These can be recorded and taken into account when evaluating the quality of the fillet.
  • the detection can be carried out by means of one or more vibration detection devices.
  • the delivered vibration data can be filtered in a suitable way in order to enable an evaluation.
  • at least one further classifier is made available to an already existing machine learning process, which enables the rounding to be evaluated.
  • the at least one vibration detection device could be attached to the common rail component and/or to an ECM electrode. It is particularly useful to arrange the corresponding measuring points as close as possible to the inner bore in question.
  • a vibration detection device could be arranged directly on the high-pressure accumulator.
  • a central measuring point in the high-pressure accumulator could be advantageous. If an arrangement on the high-pressure accumulator cannot be carried out when executing the ECM method, the distance to the high-pressure accumulator should be as small as possible and in particular should not exceed 15 cm.
  • the at least one vibration detection device can include a laser vibrometer, so that vibration data is detected without contact on at least one section of the common rail component.
  • a laser Vibrometers may include a laser light source that is aimed at the surface of the common rail component. If the surface moves due to vibration, the frequency of the backscattered laser light shifts due to the Doppler effect and can be evaluated to obtain frequency and amplitude. It can be particularly useful to aim the laser vibrometer at several sections of the component in question one after the other in order to generate a more complete set of data about the vibration behavior of the component. Using a laser vibrometer increases flexibility in assessing fillet quality and does not require mechanical interaction with the component in question.
  • the at least one vibration detection device includes a piezo or acceleration sensor that is mechanically connected to the common rail component. This could reduce the cost of the vibration detector and the component could have a dedicated flange or other prepared or marked surface portion to which the vibration detector could be attached for fillet quality evaluation.
  • the at least one vibration detection device can, for example, be glued on and completely detached again after the end of the method.
  • the filtering step therefore includes a Fourier transformation, an autocorrelation and/or a wavelet transformation.
  • the wavelet transformation is able to achieve improved resolution at different vibration frequencies, for example by having better frequency resolution at lower vibration frequencies and better time resolution at higher vibration frequencies.
  • the individual measurement data can be subdivided into short sections following one another in terms of time and by the Fourier transformation, in particular a short-time Fourier transformation (STFT) or a fast Fourier transformation or a wavelet transformation are processed.
  • the individual sections can have a length of about 1 to 10 s.
  • vibration features are additionally extracted directly from transient vibration data. These can include vibration amplitudes, for example.
  • the evaluation of the vibration characteristics could additionally be carried out using at least one further machine-taught classifier, with the further classifier being based on flow or volume flow curves during flushing and/or in a preceding ECM processing phase.
  • the evaluation of a rounding quality using a method known in the prior art and based on machine learning can therefore be expanded and supported by additional classifiers that result from the detected vibrations.
  • the invention also relates to a system for evaluating rounding of inner bore edges of a common rail component, having a computing unit and at least one vibration detection device coupled to the computing unit.
  • the computing unit is designed to detect vibrations in the common rail component in the region of the relevant inner bore by means of the at least one vibration detection device for at least a predetermined period of time, in particular when flushing an inner bore with an electrolyte solution during electrochemical machining (ECM). , filtering acquired vibration data to obtain vibration characteristics, and evaluating vibration characteristics using at least one machine-taught classifier to assess the quality of the fillet in the internal bore.
  • ECM electrochemical machining
  • the at least one vibration detection device could include a laser vibrometer, so that vibration data is detected without contact on at least one section of the common rail component.
  • the arithmetic unit could also be designed to evaluate the vibration characteristics using at least one additional machine-taught classifier, the additional classifier being based on current or volume flow profiles during flushing and/or in a preceding ECM processing phase.
  • FIG. 1 shows a schematic view of a common rail component
  • FIG. 2 shows a comparison of the inner edges of a bore with and without rounding
  • FIG. 3 shows a schematic, block-based representation of a method according to the invention
  • FIG. 4 shows a diagram with volume flow and vibration data
  • Figure 5 is a schematic view of vibration characteristics.
  • FIG. 1 shows a common rail component in the form of a high-pressure accumulator of a common rail system.
  • a plurality of connections 4 are provided on the component 2 , each of which has a bore 6 which extends into the interior of the component 2 transversely to a main direction of extent x of the component 2 . They each end in a throttle bore 8, which is shown in an enlarged sectional view. Inner bore edges 10 are present on the throttle bore 8 and are to be rounded off by an ECM process are.
  • an electrode 12 is provided, which is placed in the component 2 . Holes 6 and 8 are flushed with an electrolyte solution during the ECM process. If a voltage is present between the electrode 12 and the component 2, material is removed from the surfaces around which the flow occurs by means of the electrolyte solution.
  • a vibration detection device 13 is arranged on a surface of the component 2 and is designed to detect a vibration on the surface.
  • the vibration detection device 13 is connected to a computing unit 11, which receives or detects the detected vibration data and can consequently use it to carry out the method described further below.
  • the vibration detection device 13 and the computing unit 11 can consequently represent a system for evaluating rounding of inner bore edges 10 .
  • FIG. 2 shows in a left-hand part of the plane of the drawing that inner bore edges 10 that are not rounded can cause turbulence when a liquid, for example fuel, flows through.
  • the inner bore edges 10 are each rounded, so that the flow is in contact with the surfaces of the bores 6 and 8 . It makes sense to check the rounding of the inner bore edges 10 to ensure an even, harmonious flow. This is accomplished by a method illustrated in FIG.
  • the method for rounding the inner bore edges 10 of the common rail component 2 includes the step of rinsing 14 the inner bore 8 with an electrolytic solution during electrochemical machining (ECM).
  • ECM electrochemical machining
  • this can be a first phase or a third phase of an ECM process, since this involves working with significantly high pressure and flow.
  • a first flushing process without electrochemical removal only the electrolyte solution is flushed through the inner bore 8 in order to clean it.
  • a second phase in which material is removed by means of the electrolyte solution using an electric current.
  • rinsing is carried out again without electrochemical removal in order to achieve post-cleaning.
  • Step of rinsing 14 of the method according to the invention corresponds to the third phase.
  • it can also be useful to carry out an ECM processing operation several times and to carry out the method according to the invention at least partially during the first phase.
  • vibrations in common rail component 2 in the region of relevant inner bore 8 are detected 16 by at least one vibration detection device 13 over at least a predetermined period of time.
  • Detected vibration data is then filtered 18 to obtain vibration characteristics.
  • the vibration characteristics are evaluated 20 using at least one machine-taught classifier in order to assess the quality of the rounding in the inner bore 8 . If it is determined that the rounding is not yet sufficient, the ECM processing can be carried out again 22 in order to then check the rounding again.
  • FIG. 4 shows an example of a volume flow curve (upper part of the diagram) and a vibration curve (lower part of the diagram) in three phases of an ECM processing method.
  • a first phase 24, the rinsing phase is followed by a second phase 26, the material removal phase, and a third phase 28, the post-rinsing phase.
  • the first phase 24 and the third phase 28 are characterized by a very high volume flow and comparatively low vibration.
  • the second phase 26, in which material is removed, has a very low volume flow, but stronger vibrations. According to the prior art, among other things, the volume flow data from the second phase can be used to assess rounding.
  • vibration data from one of the two flushing phases 24 or 28 is used in order to carry out an evaluation of the rounding based on machine learning.
  • a short period of time for example 2 s
  • vibration features 30 can be examined.
  • FIG. 5 shows, by way of example, various vibration characteristics 30 which, for example, show different amplitudes, smallest, mean, average, maximum frequencies and the like.
  • mathematical features/characteristics are extracted from Fourier transform, wavelet transform, autocorrelation and others
  • Characteristics for example, assigned certain coefficients from the autocorrelation, number of peaks or the like. From around 1500 extracted features, 20-30 features are then usually used in practice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The invention relates to a method for rounding inner bore edges of a common rail component, having the steps of flushing an inner bore using an electrolyte solution or providing a flow of electrolyte solution through the inner bore during an electrochemical machining (ECM) process, detecting vibrations in the common rail components in the region of the inner bore in question using at least one vibration detection device over at least one specified period of time during the flushing process, filtering the detected vibration data in order to obtain vibration characteristics, and evaluating the vibration characteristics using at least one machine-learned classifier in order to evaluate the quality of the rounded section in the inner bore.

Description

Beschreibung Description
Titel: Title:
Bewerten von Verrundungen von Innenbohrungskanten mittels maschinellem Lernen unter Nutzung von Vibrationsdaten oder dergleichen Assess fillets of inner bore edges using machine learning using vibration data or the like
Die vorliegende Erfindung betrifft ein Verfahren zum Verrunden von Innenbohrungskanten sowie ein System zum Bewerten von Verrundungen von Innenbohrungskanten einer Common-Rail Komponente, Einspritzdüse oder dergleichen. The present invention relates to a method for rounding inner bore edges and a system for evaluating rounding of inner bore edges of a common rail component, injection nozzle or the like.
Stand der Technik State of the art
Kraftstoffeinspritzsysteme für Verbrennungsmotoren von Kraftfahrzeugen, etwa sogenannte Common-Rail-Systeme, umfassen kraftstoffführende Bauteile, die mit einem Innendruck von üblicherweise bis zu 1600 bar beaufschlagt werden. Dieser Innendruck ist weiterhin starken Schwankungen unterworfen. An derartige Bauteile werden demnach hohe Festigkeitsanforderungen gestellt. Fuel injection systems for internal combustion engines of motor vehicles, such as so-called common rail systems, include fuel-carrying components that are subjected to an internal pressure of usually up to 1600 bar. This internal pressure is still subject to strong fluctuations. Accordingly, high strength requirements are placed on such components.
Beispielsweise ist aus EP 1 435 454 Al ein innendruckbelastetes Bauteil bekannt, das einen vertikalen Zuströmkanal zur Anbindung an einen Kraftstoffhochdruckspeicher sowie einen hiervon quer abzweigenden horizontalen Anschlusskanal zum Anschluss eines Injektors oder dergleichen aufweist. Dabei bilden ein horizontaler Anschlusskanal und ein Zuströmkanal einen Verschneidungsbereich aus, in dem sich ein Querschnitt ergibt, der zu geringeren lokalen Beanspruchungen führt. For example, a component subject to internal pressure is known from EP 1 435 454 A1, which has a vertical inflow channel for connection to a high-pressure fuel accumulator and a horizontal connection channel branching off transversely therefrom for connecting an injector or the like. A horizontal connection duct and an inflow duct form an intersection area in which a cross-section results that leads to lower local stresses.
Es ist weiterhin bekannt, scharfe Kanten an Innenbohrungen derartiger Bauteile zu verrunden, um Kerbwirkungen und folglich einer Beschädigung der Bauteile zu verhindern. Zum Verrunden kann beispielsweise ein elektrochemisches Bearbeitungsverfahren (ECM) verwendet werden, wobei die bearbeiteten Bohrungen üblicherweise mit einem Endoskop geprüft werden. Bei einem ECM- Verfahren wird eine Elektrode in die Innenbohrung des Bauteils eingeführt und es wird ein leitfähiges Elektrolyt durch die Innenbohrung gefördert. Durch Einwirkung eines elektrischen Stroms wird Material abgetragen und die Verrundung entsteht. Das ECM-Verfahren weist dabei üblicherweise drei Phasen auf. In einer ersten Phase, in der die Innenbohrung gereinigt bzw. vorgespült wird, wird das Elektrolyt mit einem hohen Druck durch die Innenbohrung gefördert, um sie von Partikeln von der Innenseite zu befreien. In einer zweiten Phase, die die eigentliche ECM-Bearbeitung ist, wird durch einen elektrischen Strom zwischen einer Elektrode und dem Werkstück Material abgetragen. Bei einer nachfolgenden, dritten Phase wird das Elektrolyt erneut durch die Innenbohrung gefördert, um eine Reinigung durchzuführen. It is also known to round off sharp edges on inner bores of such components in order to prevent notch effects and consequent damage to the components. For example, an electrochemical machining process (ECM) can be used for rounding, the machined Holes are usually checked with an endoscope. In an ECM process, an electrode is inserted into the inner bore of the component and a conductive electrolyte is pumped through the inner bore. Material is removed by the action of an electric current and the rounding occurs. The ECM process usually has three phases. In a first phase, in which the inner bore is cleaned or pre-rinsed, the electrolyte is pumped through the inner bore at high pressure in order to free it from particles from the inside. In a second phase, which is the actual ECM processing, material is removed using an electric current between an electrode and the workpiece. In a subsequent, third phase, the electrolyte is pumped through the inner bore again in order to carry out cleaning.
Offenbarung der Erfindung Disclosure of Invention
Um eine aufwändige Sichtprüfung mittels Endoskop einzusparen oder zu reduzieren ist der Einsatz von maschinellen Lernverfahren bekannt. Ziel ist dabei, zuverlässig anhand von Prozessdaten aus dem ECM-Verfahren eine Vorhersage treffen zu können, ob die Verrundung von Innenkanten ausreichend ist. Die Prozessdaten können etwa Strom- und Volumenstromkurven umfassen. Es hat sich jedoch herausgestellt, dass die Prozessdaten gelegentlich nicht vollständig oder nicht ausreichend sind, um eine zuverlässige Vorhersage zu treffen. The use of machine learning methods is known in order to save or reduce a complex visual inspection using an endoscope. The aim is to be able to reliably make a prediction based on process data from the ECM process as to whether the rounding of inner edges is sufficient. The process data can include current and volume flow curves. However, it has been found that the process data is occasionally incomplete or insufficient to make a reliable prediction.
Es ist folglich eine Aufgabe der Erfindung, ein Verfahren zum Verrunden von Innenbohrungskanten einer Common-Rail Komponente vorzuschlagen, bei dem eine Qualität der Verrundung anhand von Prozessdaten besser beurteilt werden kann. It is consequently an object of the invention to propose a method for rounding the edges of the inner bore of a common rail component, in which the quality of the rounding can be better assessed on the basis of process data.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen sind den abhängigen Ansprüchen und der nachfolgenden Beschreibung zu entnehmen. Es wird ein Verfahren zum Verrunden von Innenbohrungskanten einer Common- Rail Komponente, aufweisend die Schritte des Spülens einer Innenbohrung mit einer Elektrolytlösung bei einer elektrochemischen Bearbeitung (ECM), des Erfassens von Vibrationen und/oder Körerschall in der Common-Rail Komponente im Bereich der betreffenden Innenbohrung mittels mindestens einer Vibrationserfassungseinrichtung über mindestens einen vorbestimmten Zeitraum während des Spülens, des Filterns von erfassten Vibrationsdaten zum Erhalten von Vibrationsmerkmalen mit Hilfe eines Transientensignals, einer Fouriertransformation, Autokorrelationen, Wavelet-Transformation oder dergleichen und des Auswertens dieser Vibrationsmerkmale unter Verwendung zumindest eines maschinell angelernten Klassifikators, um die Qualität der Verrundung in der Innenbohrung zu bewerten. This object is solved by a method having the features of independent claim 1 . Advantageous embodiments and developments can be found in the dependent claims and the following description. There is a method for rounding inner bore edges of a common rail component, comprising the steps of flushing an inner bore with an electrolyte solution during electrochemical machining (ECM), detecting vibrations and/or structure-borne noise in the common rail component in the area of the relevant Inner bore using at least one vibration detection device for at least a predetermined period of time during flushing, filtering of detected vibration data to obtain vibration characteristics using a transient signal, a Fourier transformation, autocorrelations, wavelet transformation or the like and evaluating these vibration characteristics using at least one machine-taught classifier to evaluate the quality of the fillet in the internal hole.
Eine Common-Rail Komponente kann insbesondere einen Hochdruckspeicher umfassen, der auch als Kraftstoffverteilerrohr oder „Rail“ bezeichnet wird. Injektoren sind mit dem Hochdruckspeicher über Hochdruckanschlüsse verbindbar, welche eine quer zu einer Haupterstreckungsrichtung des Hochdruckspeichers verlaufende Strömungsrichtung aufweisen, und werden aus dem Hochdruckspeicher mit Kraftstoff versorgt. Es sind weitere Komponenten in Form von Ventilen oder Injektorenkörpern denkbar. A common rail component can in particular include a high-pressure accumulator, which is also referred to as a fuel distributor pipe or “rail”. Injectors can be connected to the high-pressure accumulator via high-pressure connections, which have a flow direction running transversely to a main extension direction of the high-pressure accumulator, and are supplied with fuel from the high-pressure accumulator. Other components in the form of valves or injector bodies are conceivable.
Unter einem Klassifikator kann ein Algorithmus zum automatischen Durchführen eines Klassifikationsverfahrens verstanden werden. Der Klassifikator könnte durch einen maschinellen Lernvorgang dazu trainiert sein, zwischen zumindest zwei verschiedenen Klassen zu unterscheiden, welche vorliegend als „nicht ausreichend verrundet“ und „ausreichend verrundet“ verstanden werden könnten. Das Trainieren kann etwa durch überwachtes Lernen während eines laufenden Betriebs des Klassifikators erfolgen. A classifier can be understood as an algorithm for automatically carrying out a classification method. The classifier could be trained by a machine learning process to distinguish between at least two different classes, which in the present case could be understood as “not sufficiently rounded” and “sufficiently rounded”. The training can take place, for example, by means of supervised learning while the classifier is in operation.
Das erfindungsgemäße Verfahren basiert im Allgemeinen auf einem herkömmlichen ECM-Verfahren. Dies bedeutet, dass die vorangehend dargestellten, im Stand der Technik üblichen drei Phasen der Bearbeitung durchgeführt werden. Nach einer Vorspülung wird die eigentliche Bearbeitung mit Materialabtrag durchgeführt und ein Nachspülprozess schließt sich an, um die betreffende Innenbohrung zu reinigen. Ein Fokus liegt hier jedoch in der Bewertung der Qualität der Verrundung in der Innenbohrung. Hierzu können Strom- und Volumenstromkurven während der ECM-Bearbeitung, insbesondere in der Bearbeitungsphase oder der Nachspülphase, wie im Stand der Technik üblich ebenso herangezogen werden. Besonders vorteilhaft ist indes die Erfassung von Vibrationen in der Common-Rail Komponente im Bereich der betreffenden Innenbohrung mittels mindestens einer Vibrationserfassungseinrichtung. The method according to the invention is generally based on a conventional ECM method. This means that the three processing phases that are customary in the prior art and are described above are carried out. After a pre-rinse, the actual machining with material removal is carried out and a post-rinse process follows to clean the relevant inner bore. However, one focus here is on the Evaluation of the quality of the fillet in the inner bore. For this purpose, flow and volume flow curves during the ECM processing, in particular in the processing phase or the post-rinsing phase, can also be used, as is customary in the prior art. However, it is particularly advantageous to detect vibrations in the common rail component in the area of the relevant inner bore by means of at least one vibration detection device.
Ist die betreffende Innenbohrung nicht richtig verrundet, wird die darin strömende Flüssigkeit einer starken Umlenkung unterworfen, was zur Ausbildung von Turbulenzen innerhalb der Innenbohrung führt. Hierdurch können Vibrationen entstehen, die die betreffende Common-Rail Komponente zu Schwingungen anregen. Diese können erfasst und bei der Bewertung der Qualität der Verrundung berücksichtigt werden. Die Erfassung kann mittels einem oder mehreren Vibrationserfassungseinrichtungen durchgeführt werden. Die gelieferten Schwingungsdaten können auf eine geeignete Weise gefiltert werden, um eine Auswertung zu ermöglichen. Hierdurch wird einem bereits vorhandenen maschinellen Lernprozess zumindest ein weiterer Klassifikator bereitgestellt, der die Bewertung der Verrundung ermöglicht. Durch die im Stand der Technik völlig unbekannte Berücksichtigung von Vibrationsmerkmalen bei der Bewertung der Qualität der Verrundung kann eine deutlich höhere Präzision erreicht werden. If the inner bore in question is not properly rounded, the liquid flowing in it is subjected to severe deflection, which leads to the formation of turbulence within the inner bore. This can cause vibrations that stimulate the relevant common rail component to oscillate. These can be recorded and taken into account when evaluating the quality of the fillet. The detection can be carried out by means of one or more vibration detection devices. The delivered vibration data can be filtered in a suitable way in order to enable an evaluation. As a result, at least one further classifier is made available to an already existing machine learning process, which enables the rounding to be evaluated. By considering vibration characteristics when evaluating the quality of the rounding, which is completely unknown in the prior art, a significantly higher level of precision can be achieved.
Die mindestens eine Vibrationserfassungseinrichtung könnte an der Common- Rail Komponente und/oder an einer ECM-Elektrode befestigt werden. Es ist besonders sinnvoll, die entsprechenden Messstellen so nah wie möglich an der betreffenden Innenbohrung anzuordnen. Beispielsweise könnte eine Vibrationserfassungseinrichtung direkt an dem Hochdruckspeicher angeordnet sein. Es könnte eine zentrale Messstelle in dem Hochdruckspeicher von Vorteil sein. Ist eine Anordnung an dem Hochdruckspeicher beim Ausführen des ECM- Verfahrens nicht durchführbar, sollte der Abstand zu dem Hochdruckspeicher so gering wie möglich sein und insbesondere höchstens 15 cm betragen. The at least one vibration detection device could be attached to the common rail component and/or to an ECM electrode. It is particularly useful to arrange the corresponding measuring points as close as possible to the inner bore in question. For example, a vibration detection device could be arranged directly on the high-pressure accumulator. A central measuring point in the high-pressure accumulator could be advantageous. If an arrangement on the high-pressure accumulator cannot be carried out when executing the ECM method, the distance to the high-pressure accumulator should be as small as possible and in particular should not exceed 15 cm.
Die mindestens eine Vibrationserfassungseinrichtung kann ein Laser-Vibrometer umfassen, sodass das Erfassen von Vibrationsdaten berührungslos an mindestens einem Abschnitt der Common-Rail Komponente erfolgt. Ein Laser- Vibrometer kann eine Laserlichtquelle umfassen, die auf die Oberfläche des Common-Rail Komponente gerichtet wird. Bei einer vibrationsbedingten Bewegung der Oberfläche verschiebt sich aufgrund des Doppler- Effekts die Frequenz des zurückgestreuten Laserlichts und kann zum Erhalten von Frequenz und Amplitude ausgewertet werden. Es kann besonders sinnvoll sein, das Laser-Vibrometer gezielt auf mehrere Abschnitte der betreffenden Komponente nacheinander zu richten, um einen vollständigeren Datensatz über das Vibrationsverhalten der Komponente zu generieren. Das Verwenden eines Laser-Vibrometers erhöht die Flexibilität bei der Bewertung der Verrundungsqualität und erfordert keine mechanische Interaktion mit der betreffenden Komponente. The at least one vibration detection device can include a laser vibrometer, so that vibration data is detected without contact on at least one section of the common rail component. a laser Vibrometers may include a laser light source that is aimed at the surface of the common rail component. If the surface moves due to vibration, the frequency of the backscattered laser light shifts due to the Doppler effect and can be evaluated to obtain frequency and amplitude. It can be particularly useful to aim the laser vibrometer at several sections of the component in question one after the other in order to generate a more complete set of data about the vibration behavior of the component. Using a laser vibrometer increases flexibility in assessing fillet quality and does not require mechanical interaction with the component in question.
Es ist jedoch auch denkbar, dass die mindestens eine Vibrationserfassungseinrichtung einen Piezo- oder Beschleunigungssensor umfasst, der mechanisch mit der Common-Rail Komponente verbunden wird. Die Kosten für die Vibrationserfassungseinrichtung könnten dadurch gesenkt werden und die Komponente könnte für die Bewertung der Verrundungsqualität einen eigens dafür vorgesehenen Flansch oder anderen vorbereiteten oder markierten Flächenabschnitt aufweisen, auf dem die Vibrationserfassungseinrichtung anbringbar ist. Die mindestens eine Vibrationserfassungseinrichtung kann beispielsweise aufgeklebt und nach Beendigung des Verfahrens wieder vollständig abgelöst werden. However, it is also conceivable that the at least one vibration detection device includes a piezo or acceleration sensor that is mechanically connected to the common rail component. This could reduce the cost of the vibration detector and the component could have a dedicated flange or other prepared or marked surface portion to which the vibration detector could be attached for fillet quality evaluation. The at least one vibration detection device can, for example, be glued on and completely detached again after the end of the method.
Es ist vorteilhaft, wenn Vibrationsmerkmale durch eine Fourier-Transformation und/oder durch eine Wavelet-Transformation aus transienten Vibrationsdaten extrahiert werden. Der Schritt des Filterns umfasst demnach in dieser Ausführungsform eine Fourier-Transformation, eine Autokorrelation und/oder eine Wavelet-Transformation. Insbesondere die Wavelet-Transformation ist in der Lage, eine verbesserte Auflösung bei unterschiedlichen Schwingungsfrequenzen zu erreichen, indem etwa bei niedrigeren Schwingungsfrequenzen eine bessere Frequenzauflösung und bei höheren Schwingungsfrequenzen eine bessere Zeitauflösung. Die einzelnen Messdaten können in kurze zeitlich aufeinander folgende Abschnitte unterteilt und durch die Fourier-Transformation, insbesondere eine Kurzzeit-Fourier-Transformation (STFT) oder eine Fast- Fourier-Transformation oder eine Wavelet-Transformation verarbeitet werden. Die einzelnen Abschnitte können etwa eine Länge von 1 bis 10 s umfassen. Durch die Verarbeitung können im Zeit- und/oder Frequenzbereich signifikante Vibrationsmerkmale erhalten werden, welche sich als Klassifikatoren für das maschinelle Lernen eignen. It is advantageous if vibration features are extracted from transient vibration data by a Fourier transformation and/or by a wavelet transformation. In this embodiment, the filtering step therefore includes a Fourier transformation, an autocorrelation and/or a wavelet transformation. In particular, the wavelet transformation is able to achieve improved resolution at different vibration frequencies, for example by having better frequency resolution at lower vibration frequencies and better time resolution at higher vibration frequencies. The individual measurement data can be subdivided into short sections following one another in terms of time and by the Fourier transformation, in particular a short-time Fourier transformation (STFT) or a fast Fourier transformation or a wavelet transformation are processed. The individual sections can have a length of about 1 to 10 s. Through the processing, significant vibrational features can be obtained in the time and/or frequency domain, which are suitable as classifiers for machine learning.
Es ist dennoch denkbar, dass Vibrationsmerkmale zusätzlich direkt aus transienten Vibrationsdaten extrahiert werden. Diese können etwa Schwingungsamplituden umfassen. It is nevertheless conceivable that vibration features are additionally extracted directly from transient vibration data. These can include vibration amplitudes, for example.
Das Auswerten der Vibrationsmerkmale könnte zusätzlich unter Verwendung zumindest eines weiteren maschinell angelernten Klassifikators durchgeführt werden, wobei der weitere Klassifikator auf Strom- oder Volumenstromverläufen während des Spülens und/oder in einer vorhergehenden ECM- Bearbeitungsphase basiert. Das Bewerten einer Verrundungsqualität durch ein im Stand der Technik bekanntes, auf maschinellem Lernen basierendes Verfahren, kann demnach durch zusätzliche Klassifikatoren, die aus den erfassten Vibrationen resultieren, erweitert und gestützt werden. The evaluation of the vibration characteristics could additionally be carried out using at least one further machine-taught classifier, with the further classifier being based on flow or volume flow curves during flushing and/or in a preceding ECM processing phase. The evaluation of a rounding quality using a method known in the prior art and based on machine learning can therefore be expanded and supported by additional classifiers that result from the detected vibrations.
Analog zu den vorangegangen Ausführungen betrifft die Erfindung ferner ein System zum Bewerten von Verrundungen von Innenbohrungskanten einer Common-Rail Komponente, aufweisend eine Recheneinheit, und mindestens eine mit der Recheneinheit gekoppelte Vibrationserfassungseinrichtung. Erfindungsgemäß ist vorgesehen, dass die Recheneinheit dazu ausgebildet ist, insbesondere beim Spülen einer Innenbohrung mit einer Elektrolytlösung bei einer elektrochemischen Bearbeitung (ECM) Vibrationen in der Common-Rail Komponente im Bereich der betreffenden Innenbohrung mittels der mindestens einen Vibrationserfassungseinrichtung über mindestens einen vorbestimmten Zeitraum zu erfassen, erfasste Vibrationsdaten zum Erhalten von Vibrationsmerkmalen zu filtern, und Vibrationsmerkmale unter Verwendung zumindest eines maschinell angelernten Klassifikators auszuwerten, um die Qualität der Verrundung in der Innenbohrung zu bewerten. Analogously to the previous statements, the invention also relates to a system for evaluating rounding of inner bore edges of a common rail component, having a computing unit and at least one vibration detection device coupled to the computing unit. According to the invention, it is provided that the computing unit is designed to detect vibrations in the common rail component in the region of the relevant inner bore by means of the at least one vibration detection device for at least a predetermined period of time, in particular when flushing an inner bore with an electrolyte solution during electrochemical machining (ECM). , filtering acquired vibration data to obtain vibration characteristics, and evaluating vibration characteristics using at least one machine-taught classifier to assess the quality of the fillet in the internal bore.
Die mindestens eine Vibrationserfassungseinrichtung könnte ein Laser- Vibrometer umfassen, sodass das Erfassen von Vibrationsdaten berührungslos an mindestens einem Abschnitt der Common-Rail Komponente erfolgt. Die Recheneinheit könnte zudem ferner dazu ausgebildet sein, das Auswerten der Vibrationsmerkmale zusätzlich unter Verwendung zumindest eines weiteren maschinell angelernten Klassifikators durchzuführen, wobei der weitere Klassifikator auf Strom- oder Volumenstromverläufen während des Spülens und/oder in einer vorhergehenden ECM-Bearbeitungsphase basiert. The at least one vibration detection device could include a laser vibrometer, so that vibration data is detected without contact on at least one section of the common rail component. The arithmetic unit could also be designed to evaluate the vibration characteristics using at least one additional machine-taught classifier, the additional classifier being based on current or volume flow profiles during flushing and/or in a preceding ECM processing phase.
Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand von Figuren näher dargestellt. Further measures improving the invention are presented in more detail below together with the description of the preferred exemplary embodiments of the invention with the aid of figures.
Ausführungsbeispiele exemplary embodiments
Es zeigt: It shows:
Figur 1 eine schematische Ansicht einer Common-Rail Komponente; FIG. 1 shows a schematic view of a common rail component;
Figur 2 eine Gegenüberstellung von Innenkanten einer Bohrung ohne und mit Verrundung; FIG. 2 shows a comparison of the inner edges of a bore with and without rounding;
Figur 3 eine schematische, blockbasierte Darstellung eines erfindungsgemäßen Verfahrens; FIG. 3 shows a schematic, block-based representation of a method according to the invention;
Figur 4 ein Diagramm mit Volumenstrom- und Vibrationsdaten; und FIG. 4 shows a diagram with volume flow and vibration data; and
Figur 5 eine schematische Ansicht von Vibrationsmerkmalen. Figure 5 is a schematic view of vibration characteristics.
Figur 1 zeigt eine Common-Rail Komponente in Form eines Hochdruckspeichers eines Common-Rail Systems. An der Komponente 2 sind mehrere Anschlüsse 4 vorgesehen, welche jeweils eine Bohrung 6 aufweisen, die sich quer zu einer Haupterstreckungsrichtung x der Komponente 2 in das Innere der Komponente 2 erstrecken. Sie enden jeweils in einer Drosselbohrung 8, die in einer vergrößerten Schnittdarstellung gezeigt ist. An der Drosselbohrung 8 sind Innenbohrungskanten 10 vorhanden, die durch ein ECM-Verfahren zu verrunden sind. Hierzu ist beispielhaft eine Elektrode 12 vorgesehen, die in die Komponente 2 gesetzt ist. Die Bohrungen 6 und 8 werden während des ECM-Verfahrens von einer Elektrolytlösung durchspült. Liegt zwischen der Elektrode 12 und der Komponente 2 eine Spannung an, wird mittels der Elektrolytlösung Material an umströmten Flächen abgetragen. FIG. 1 shows a common rail component in the form of a high-pressure accumulator of a common rail system. A plurality of connections 4 are provided on the component 2 , each of which has a bore 6 which extends into the interior of the component 2 transversely to a main direction of extent x of the component 2 . They each end in a throttle bore 8, which is shown in an enlarged sectional view. Inner bore edges 10 are present on the throttle bore 8 and are to be rounded off by an ECM process are. For this purpose, an electrode 12 is provided, which is placed in the component 2 . Holes 6 and 8 are flushed with an electrolyte solution during the ECM process. If a voltage is present between the electrode 12 and the component 2, material is removed from the surfaces around which the flow occurs by means of the electrolyte solution.
An einer Oberfläche der Komponente 2 ist eine Vibrationserfassungseinrichtung 13 angeordnet, die dazu ausgebildet ist, eine Vibration an der Oberfläche zu erfassen. Die Vibrationserfassungseinrichtung 13 ist mit einer Recheneinheit 11 verbunden, die die erfassten Vibrationsdaten empfängt bzw. erfasst und folglich zur Durchführung des weiter nachfolgend beschriebenen Verfahrens verwenden kann. Die Vibrationserfassungseinrichtung 13 und die Recheneinheit 11 können folglich ein System zum Bewerten von Verrundungen von Innenbohrungskanten 10 darstellen. A vibration detection device 13 is arranged on a surface of the component 2 and is designed to detect a vibration on the surface. The vibration detection device 13 is connected to a computing unit 11, which receives or detects the detected vibration data and can consequently use it to carry out the method described further below. The vibration detection device 13 and the computing unit 11 can consequently represent a system for evaluating rounding of inner bore edges 10 .
In Figur 2 wird in einem linken Teil der Zeichnungsebene dargestellt, dass nicht verrundete Innenbohrungskanten 10 zu Turbulenzen beim Durchströmen mit einer Flüssigkeit, beispielsweise Kraftstoff, entstehen können. In einem rechten Teil der Zeichnungsebene sind die Innenbohrungskanten 10 jeweils verrundet, sodass die Strömung an den Oberflächen der Bohrungen 6 und 8 anliegt. Es ist sinnvoll, zum Gewährleisten einer gleichmäßigen, harmonischen Strömung die Verrundung der Innenbohrungskanten 10 zu prüfen. Dies wird durch ein Verfahren erreicht, das in Figur 3 dargestellt wird. FIG. 2 shows in a left-hand part of the plane of the drawing that inner bore edges 10 that are not rounded can cause turbulence when a liquid, for example fuel, flows through. In a right-hand part of the plane of the drawing, the inner bore edges 10 are each rounded, so that the flow is in contact with the surfaces of the bores 6 and 8 . It makes sense to check the rounding of the inner bore edges 10 to ensure an even, harmonious flow. This is accomplished by a method illustrated in FIG.
Das Verfahren zum Verrunden der Innenbohrungskanten 10 der Common-Rail Komponente 2 weist den Schritt des Spülens 14 der Innenbohrung 8 mit einer Elektrolytlösung bei einer elektrochemischen Bearbeitung (ECM) auf. Dies kann insbesondere eine erste Phase oder eine dritte Phase eines ECM-Prozesses sein, da hierbei mit signifikant hohem Druck und Durchfluss gearbeitet wird. Bei einem ersten Spülvorgang ohne elektrochemischem Abtrag wird lediglich die Elektrolytlösung durch die Innenbohrung 8 gespült, um diese zu reinigen. Hiernach schließt sich eine zweite Phase an, bei der unter Einsatz elektrischen Stroms Material mittels der Elektrolytlösung abgetragen wird. In einer dritten Phase wird ohne elektrochemischen Abtrag erneut eine Spülung durchgeführt, um eine Nachreinigung zu erreichen. Es ist besonders vorteilhaft, wenn der Schritt des Spülens 14 des erfindungsgemäßen Verfahrens der dritten Phase entspricht. Es kann jedoch auch sinnvoll sein, einen ECM-Bearbeitungsvorgang mehrere Male durchzuführen und zumindest teilweise während der ersten Phase das erfindungsgemäße Verfahren auszuführen. The method for rounding the inner bore edges 10 of the common rail component 2 includes the step of rinsing 14 the inner bore 8 with an electrolytic solution during electrochemical machining (ECM). In particular, this can be a first phase or a third phase of an ECM process, since this involves working with significantly high pressure and flow. In a first flushing process without electrochemical removal, only the electrolyte solution is flushed through the inner bore 8 in order to clean it. This is followed by a second phase in which material is removed by means of the electrolyte solution using an electric current. In a third phase, rinsing is carried out again without electrochemical removal in order to achieve post-cleaning. It is particularly advantageous if the Step of rinsing 14 of the method according to the invention corresponds to the third phase. However, it can also be useful to carry out an ECM processing operation several times and to carry out the method according to the invention at least partially during the first phase.
Beim Spülen 14 oder direkt während der ECM-Bearbeitung wird das Erfassen 16 von Vibrationen in der Common-Rail Komponente 2 im Bereich der betreffenden Innenbohrung 8 mittels mindestens einer Vibrationserfassungseinrichtung 13 über mindestens einen vorbestimmten Zeitraum durchgeführt. Erfasste Vibrationsdaten werden anschließend gefiltert 18, um Vibrationsmerkmale zu erhalten. Schließlich werden die Vibrationsmerkmale unter Verwendung zumindest eines maschinell angelernten Klassifikators ausgewertet 20, um die Qualität der Verrundung in der Innenbohrung 8 zu bewerten. Wird dabei festgestellt, dass die Verrundung noch nicht ausreichend ist, kann die ECM- Bearbeitung noch einmal durchgeführt werden 22, um dann erneut die Verrundung zu prüfen. During flushing 14 or directly during ECM processing, vibrations in common rail component 2 in the region of relevant inner bore 8 are detected 16 by at least one vibration detection device 13 over at least a predetermined period of time. Detected vibration data is then filtered 18 to obtain vibration characteristics. Finally, the vibration characteristics are evaluated 20 using at least one machine-taught classifier in order to assess the quality of the rounding in the inner bore 8 . If it is determined that the rounding is not yet sufficient, the ECM processing can be carried out again 22 in order to then check the rounding again.
In Figur 4 wird in einem Diagramm beispielhaft ein Volumenstromverlauf (oberer Teil des Diagramms) und ein Vibrationsverlauf (unterer Teil des Diagramms) in drei Phasen eines ECM-Bearbeitungsverfahrens gezeigt. Eine erste Phase 24, die Spülphase, wird von einer zweiten Phase 26, die Materialabtragphase und einer dritten Phase 28, die Nachspülphase, gefolgt. Die erste Phase 24 und die dritte Phase 28 sind von einem recht hohen Volumenstrom und einer vergleichsweise geringen Vibration gekennzeichnet. Die zweite Phase 26, in der ein Materialabtrag erfolgt, weist einen recht geringen Volumenstrom, jedoch stärkere Vibrationen auf. Gemäß dem Stand der Technik können unter anderem die Volumenstromdaten aus der zweiten Phase für die Beurteilung der Verrundung verwendet werden. Erfindungsgemäß werden jedoch aus einer der beiden Spülphasen 24 bzw. 28 Vibrationsdaten verwendet, um ein auf maschinellem Lernen basierendes Bewerten der Verrundung durchzuführen. Wie in einem im linken Teil der Zeichnungsebene dargestellten Ausschnitt ersichtlich kann ein kurzer Zeitabschnitt von beispielsweise 2 s verwendet werden. Nach dem Filtern 18 lassen sich Vibrationsmerkmale 30 untersuchen. Figur 5 zeigt schließlich beispielhaft verschiedene Vibrationsmerkmale 30, die etwa unterschiedliche Amplituden, kleinste, mittlere, durchschnittliche, maximale Frequenzen und dergleichen zeigen. Wie vorstehend erwähnt, werden mathematische Merkmalen/Kenngrößen aus der Fourier-Transformation, Wavelet-Transformation, Autokorrelation extrahiert und unterschiedlichenIn a diagram, FIG. 4 shows an example of a volume flow curve (upper part of the diagram) and a vibration curve (lower part of the diagram) in three phases of an ECM processing method. A first phase 24, the rinsing phase, is followed by a second phase 26, the material removal phase, and a third phase 28, the post-rinsing phase. The first phase 24 and the third phase 28 are characterized by a very high volume flow and comparatively low vibration. The second phase 26, in which material is removed, has a very low volume flow, but stronger vibrations. According to the prior art, among other things, the volume flow data from the second phase can be used to assess rounding. According to the invention, however, vibration data from one of the two flushing phases 24 or 28 is used in order to carry out an evaluation of the rounding based on machine learning. As can be seen in a detail shown in the left part of the plane of the drawing, a short period of time, for example 2 s, can be used. After filtering 18, vibration features 30 can be examined. Finally, FIG. 5 shows, by way of example, various vibration characteristics 30 which, for example, show different amplitudes, smallest, mean, average, maximum frequencies and the like. As mentioned above, mathematical features/characteristics are extracted from Fourier transform, wavelet transform, autocorrelation and others
Merkmalen beispielsweise gewisse Koeffizienten aus der Autokorrelation, Anzahl an Peaks oder dergleichen zugeordnet. Aus zirka 1500 extrahierten Merkmalen werden in der Praxis dann gewöhnlich 20-30 Merkmale verwendet. Characteristics, for example, assigned certain coefficients from the autocorrelation, number of peaks or the like. From around 1500 extracted features, 20-30 features are then usually used in practice.

Claims

Ansprüche Expectations
1. Verfahren zum Verrunden von Innenbohrungskanten (10) einer Common-Rail Komponente (2), aufweisend die Schritte: 1. A method for rounding inner bore edges (10) of a common rail component (2), comprising the steps:
Spülen (14) oder Durchströmen einer Innenbohrung (8) mit einer Elektrolytlösung bei einer elektrochemischen Bearbeitung (ECM), gekennzeichnet durch Flushing (14) or flowing through an inner bore (8) with an electrolyte solution in electrochemical machining (ECM), characterized by
Erfassen (16) von Vibrationen in der Common-Rail Komponente (2) im Bereich der betreffenden Innenbohrung (8) mittels mindestens einer Vibrationserfassungseinrichtung über mindestens einen vorbestimmten Zeitraum während des Spülens (14) oder Durchströmens, und Detection (16) of vibrations in the common rail component (2) in the region of the relevant inner bore (8) by means of at least one vibration detection device over at least a predetermined period of time during flushing (14) or throughflow, and
Filtern (18) von erfassten Vibrationsdaten zum Erhalten von Vibrationsmerkmalen (30), filtering (18) detected vibration data to obtain vibration characteristics (30),
Auswerten (20) der Vibrationsmerkmale (30) unter Verwendung zumindest eines maschinell angelernten Klassifikators, um die Qualität der Verrundung in der Innenbohrung (8) zu bewerten. Evaluating (20) the vibration characteristics (30) using at least one machine-taught classifier in order to evaluate the quality of the rounding in the inner bore (8).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine2. The method according to claim 1, characterized in that the at least one
Vibrationserfassungseinrichtung an der Common-Rail Komponente (2) und/oder an einer ECM-Elektrode (12) befestigt wird. Vibration detection device on the common rail component (2) and / or on an ECM electrode (12) is attached.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine3. The method according to claim 1 or 2, characterized in that the at least one
Vibrationserfassungseinrichtung ein Laser-Vibrometer umfasst, sodass das Erfassen (16) von Vibrationsdaten berührungslos an mindestens einem Abschnitt der Common-Rail Komponente (2) erfolgt. Vibration detection device comprises a laser vibrometer, so that the detection (16) of vibration data is contactless on at least a portion of the common rail component (2).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine4. The method according to any one of the preceding claims, characterized in that the at least one
Vibrationserfassungseinrichtung einen Piezo- oder Beschleunigungssensor umfasst, der mechanisch mit der Common-Rail Komponente (2) verbunden wird. Vibration detection device comprises a piezo or acceleration sensor, which is mechanically connected to the common rail component (2).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Vibrationsmerkmale (30) durch eine Fourier- Transformation und/oder durch eine Wavelet-Transformation aus transienten Vibrationsdaten extrahiert werden. 5. The method according to any one of the preceding claims, characterized in that vibration features (30) are extracted from transient vibration data by a Fourier transformation and/or by a wavelet transformation.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Vibrationsmerkmale (30) zusätzlich direkt aus transienten Vibrationsdaten extrahiert werden. 6. The method according to any one of the preceding claims, characterized in that vibration features (30) are additionally extracted directly from transient vibration data.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Auswerten (20) der Vibrationsmerkmale (30) zusätzlich unter Verwendung zumindest eines weiteren maschinell angelernten Klassifikators durchgeführt wird, wobei der weitere Klassifikator auf Strom- oder Volumenstromverläufen während des Spülens (14) und/oder in einer vorhergehenden ECM-Bearbeitungsphase (24, 26, 28) basiert. 7. The method according to any one of the preceding claims, characterized in that the evaluation (20) of the vibration characteristics (30) is additionally carried out using at least one further machine-taught classifier, the further classifier being based on current or volume flow profiles during the flushing (14) and/or in a previous ECM processing phase (24, 26, 28).
8. System zum Bewerten von Verrundungen von Innenbohrungskanten8. System for evaluating fillets of inner hole edges
(10) einer Common-Rail Komponente (2), aufweisend: eine Recheneinheit (11), und mindestens eine mit der Recheneinheit (11) gekoppelte Vibrationserfassungseinrichtung (13), dadurch gekennzeichnet, dass die Recheneinheit (11) dazu ausgebildet ist, beim Spülen (14) oder Durchströmen einer Innenbohrung (10) mit einer Elektrolytlösung bei einer elektrochemischen Bearbeitung (ECM) Vibrationen in der Common-Rail Komponente (2) im Bereich der betreffenden Innenbohrung (10) mittels der mindestens einen Vibrationserfassungseinrichtung (13) über mindestens einen vorbestimmten Zeitraum zu erfassen, erfasste Vibrationsdaten zum Erhalten von Vibrationsmerkmalen (30) zu filtern (18), und Vibrationsmerkmale (30) unter Verwendung zumindest eines maschinell angelernten Klassifikators auszuwerten (20), um die Qualität der Verrundung in der Innenbohrung (8) zu bewerten. (10) a common rail component (2), having: a computing unit (11) and at least one vibration detection device (13) coupled to the computing unit (11), characterized in that the computing unit (11) is designed to do so during flushing (14) or an electrolytic solution flowing through an inner bore (10) during electrochemical machining (ECM) Vibrations in the common rail component (2) in the area of the relevant inner bore (10) by means of the at least one vibration detection device (13) over at least one predetermined detecting period of time, filtering (18) detected vibration data to obtain vibration characteristics (30), and Evaluate (20) vibration characteristics (30) using at least one machine-taught classifier in order to evaluate the quality of the rounding in the inner bore (8).
9. System nach Anspruch 8, dadurch gekennzeichnet, dass die mindestens eine Vibrationserfassungseinrichtung (13) ein Laser-Vibrometer umfasst, sodass das Erfassen (16) von Vibrationsdaten berührungslos an mindestens einem Abschnitt der Common-Rail Komponente (2) erfolgt. 9. System according to claim 8, characterized in that the at least one vibration detection device (13) comprises a laser vibrometer, so that the detection (16) of vibration data takes place without contact on at least one section of the common rail component (2).
10. System nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Recheneinheit (11) ferner dazu ausgebildet, das Auswerten (20) der Vibrationsmerkmale (30) zusätzlich unter Verwendung zumindest eines weiteren maschinell angelernten Klassifikators durchzuführen, wobei der weitere Klassifikator auf Strom- oder10. System according to claim 8 or 9, characterized in that the computing unit (11) is further designed to evaluate (20) the vibration characteristics (30) additionally using at least one other machine-taught classifier, the other classifier based on current or
Volumenstromverläufen während des Spülens (14) und/oder in einer vorhergehenden ECM-Bearbeitungsphase (24, 26, 28) basiert. Volume flow curves during the flushing (14) and / or in a previous ECM processing phase (24, 26, 28) is based.
PCT/EP2022/069068 2021-09-15 2022-07-08 Evaluating rounded sections of inner bore edges by means of machine learning using vibration data or the like WO2023041219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280075647.3A CN118234589A (en) 2021-09-15 2022-07-08 Evaluating rounding of inner borehole edges using vibration data or the like by means of machine learning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021210205.0A DE102021210205A1 (en) 2021-09-15 2021-09-15 Assess fillets of inner bore edges using machine learning using vibration data or the like
DE102021210205.0 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023041219A1 true WO2023041219A1 (en) 2023-03-23

Family

ID=82742642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/069068 WO2023041219A1 (en) 2021-09-15 2022-07-08 Evaluating rounded sections of inner bore edges by means of machine learning using vibration data or the like

Country Status (3)

Country Link
CN (1) CN118234589A (en)
DE (1) DE102021210205A1 (en)
WO (1) WO2023041219A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909600B (en) * 2021-10-09 2024-07-23 中国航发北京航空材料研究院 Quality evaluation method for turbine blade electric spark machining air film hole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791810A (en) * 1986-05-01 1988-12-20 United Kingdom Atomic Energy Authority Flow monitoring
DE19949963A1 (en) * 1999-10-16 2001-04-26 Bosch Gmbh Robert Production of fuel high pressure storage for common-rail fuel injection system of IC engine, which is equipped with hollow basic body having several connection openings
EP1435454A1 (en) 2002-12-30 2004-07-07 Robert Bosch Gmbh Part bearing inner pressure, especially for fuel injection in a combustion engine with a high pressure fuel pump
WO2019043409A1 (en) * 2017-09-01 2019-03-07 Exnics Limited Method and apparatus for assessing fluid flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802009B1 (en) 1996-04-20 1998-12-09 Fritz-Herbert Frembgen Method for electrochemical machining of flow channels in metallic workpieces
DE102008043619A1 (en) 2008-11-10 2010-05-12 Robert Bosch Gmbh Method for manufacturing workpiece, involves producing through-hole by electro-chemical clearing, and accomplishing flow calibration during manufacturing of through-hole in workpiece by electro-chemical clearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791810A (en) * 1986-05-01 1988-12-20 United Kingdom Atomic Energy Authority Flow monitoring
DE19949963A1 (en) * 1999-10-16 2001-04-26 Bosch Gmbh Robert Production of fuel high pressure storage for common-rail fuel injection system of IC engine, which is equipped with hollow basic body having several connection openings
EP1435454A1 (en) 2002-12-30 2004-07-07 Robert Bosch Gmbh Part bearing inner pressure, especially for fuel injection in a combustion engine with a high pressure fuel pump
WO2019043409A1 (en) * 2017-09-01 2019-03-07 Exnics Limited Method and apparatus for assessing fluid flow
US20210381865A1 (en) * 2017-09-01 2021-12-09 Exnics Limited Method and apparatus for assessing fluid flow

Also Published As

Publication number Publication date
CN118234589A (en) 2024-06-21
DE102021210205A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
DE102009000741A1 (en) Method for determining a needle closure
DE10259797A1 (en) Device and method for detecting faults in a fuel injection system
WO2023041219A1 (en) Evaluating rounded sections of inner bore edges by means of machine learning using vibration data or the like
DE102013014539B4 (en) Apparatus and method for measuring a cavitation strength in a liquid medium
DE19548279A1 (en) Method and device for monitoring a fuel metering system
DE102012217741A1 (en) Method for determining plausibility of output signal of pressure sensor of direct-injection system of motor car internal combustion engine, involves detecting sensor failure upon comparison of calculation value with pressure value
DE2854529A1 (en) METHOD AND DEVICE FOR ULTRASOUND TESTING
EP3658882B1 (en) Device, system, and method for determining the state of a mechanical component
DE10305372B4 (en) Apparatus and method for detecting faults in a fuel injection system having a fuel pressure damper
EP2317308A2 (en) Method and device for inspecting a component for damage
DE102009024981A1 (en) Damages determining and analyzing method for e.g. rolling bearing, involves dividing data signals into number of different timing signals, and evaluating amplitudes of bispectrum, where amplitudes exceed predetermined value
DE102004024375B4 (en) Knock detection device and detection method
DE102011114058A1 (en) Evaluation method for acoustic evaluation of component, involves exciting component to generate sound, where sound of component is recorded by sensor for detection of sound
DE102005048226A1 (en) A method of testing a surface of a fuel injector assembly
EP3234328B1 (en) Method and apparatus for diagnosing a fuel supply system
DE102012222851B4 (en) Method for controlling a piezo injector
WO2016087129A1 (en) Acoustic monitoring device for fuel quality
DE102004012491B4 (en) Method for determining defective actuators of an internal combustion engine
DE102008019674B4 (en) Method and device for testing at least one knock sensor associated with an internal combustion engine
DE10258493A1 (en) Radius of curvature determination method for a curve or contour, for use in manufacturing, whereby a contour is divided into sections of equal predefined length
DE102004018683B3 (en) Method for quality control of a work piece especially the seating between two components using a measure of vibration as an indication of quality
EP3891467B1 (en) Method for testing a quality of a workpiece and computing apparatus
DE102012001148A1 (en) Method for manufacturing screw connection structure for antenna amplifier of vehicle, involves evaluating quality of electrical contact of screw and nut based on evaluated characteristic frequency
DE102009044076A1 (en) Method for detecting errors during fuel injection from tank to high-pressure pump of internal-combustion engine, involves correlating comparison results of operation values and reference values with each other for identifying errors
DE102017210508A1 (en) Method for generating an evaluation dataset for an evaluation of an ultrasound test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202280075647.3

Country of ref document: CN