WO2023040535A1 - 一种基于电致伸缩材料的电震一体化监测方法和系统 - Google Patents
一种基于电致伸缩材料的电震一体化监测方法和系统 Download PDFInfo
- Publication number
- WO2023040535A1 WO2023040535A1 PCT/CN2022/112108 CN2022112108W WO2023040535A1 WO 2023040535 A1 WO2023040535 A1 WO 2023040535A1 CN 2022112108 W CN2022112108 W CN 2022112108W WO 2023040535 A1 WO2023040535 A1 WO 2023040535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- proppant
- current signal
- signal
- acoustic wave
- frequency
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title claims abstract description 24
- 230000005284 excitation Effects 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 238000011161 development Methods 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 8
- 230000005465 channeling Effects 0.000 claims description 7
- 239000013043 chemical agent Substances 0.000 claims description 7
- 239000003129 oil well Substances 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 5
- 230000035939 shock Effects 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
- G01V11/007—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00 using the seismo-electric effect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/288—Event detection in seismic signals, e.g. microseismics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/12—Signal generation
- G01V2210/123—Passive source, e.g. microseismics
- G01V2210/1234—Hydrocarbon reservoir, e.g. spontaneous or induced fracturing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/14—Signal detection
- G01V2210/142—Receiver location
- G01V2210/1429—Subsurface, e.g. in borehole or below weathering layer or mud line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/64—Geostructures, e.g. in 3D data cubes
- G01V2210/646—Fractures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Definitions
- the present application relates to the field of oil field development, in particular, to an electro-shock integrated monitoring method and system based on electrostrictive materials.
- microseismic and electromagnetic methods are the most common.
- the physical mechanism of microseismic is clear, and rock fracture can be identified, but it cannot judge the extent of liquid sweeping, nor can it identify effective supporting fractures.
- the physical mechanism of the electromagnetic method is also clear, and it can identify the range of liquid sweeping, but it cannot identify the extension law of the fracture network, nor can it accurately judge the effectively supported fractures.
- the key reason why microseismic and electromagnetic methods cannot identify effectively propped fractures is that it is difficult to monitor proppant.
- microseismic monitoring of microseismic events caused by stress field changes during the fracturing process The liquid does not necessarily arrive at the location of the event location, and the proppant does not necessarily arrive at the location where the liquid arrives. Therefore, the microseismic reconstruction volume is much larger than the effective support volume. Low levels of proppant are difficult to identify by electromagnetic methods.
- Embodiments of the present application provide an electro-shock integrated monitoring method and system based on electrostrictive materials, so as to at least solve the problem of difficulty in monitoring proppants in existing hydraulic fracturing monitoring technologies.
- an electro-shock integrated monitoring method based on an electrostrictive material including: sending a current signal, wherein the current signal includes: a multi-frequency current signal, and the frequency of the current signal is Determined according to the proppant, the proppant performs stretching vibration under the excitation of a current signal of a predetermined frequency, and there are multiple types of proppant, and each different proppant performs stretching vibration under the excitation of a current signal of a different frequency; For different fracturing layers of the same well, inject proppants with different frequency characteristics, and monitor multiple layers simultaneously by feeding multi-frequency current signals; acquire acoustic signals received by seismic sensors, wherein the acoustic signals The acoustic wave signal is the acoustic wave signal generated by the proppant doing stretching vibration caused by the current signal; the vibration position of the proppant in the fracturing layer is determined according to the acoustic wave signal, wherein the vibration position is used to determine the propped fracture
- sending the current signal includes: after the signal controller generates the current signal, sending the current signal to a power supply electrode, wherein the first electrode of the power supply electrodes is connected to a fracturing well, and the power supply electrode A second one of the electrodes is a predetermined distance away.
- the seismic sensor is a plurality of seismic sensors buried on the ground around the well site of the fracturing well.
- it also includes: for the hydraulic fracturing process, effectively supporting fractures according to the statistical results of the energy of the microseismic events; and monitoring the scale of temporary plugging and repeated reconstruction, and early warning of casing deformation and pressure channeling.
- it also includes: in the stage of oilfield development, injecting proppant together with water or chemical agent into the oil well, monitoring the displacement front and identifying the oil-water boundary for remaining oil monitoring.
- an electro-shock integrated monitoring system based on electrostrictive materials including: a signal controller for sending current signals, wherein the current signals include: multi-frequency current signals , the frequency of the current signal is determined according to the proppant, and the proppant performs stretching vibration under the excitation of the current signal of a predetermined frequency.
- the processor is used to obtain The sensor receives the acoustic wave signal, and determines the vibration position of the proppant in the fracturing layer according to the acoustic wave signal, wherein the acoustic wave signal is the acoustic wave signal generated by the electric current signal exciting the proppant to perform stretching vibration , the vibration position is used as a basis for determining the characteristics of propped fractures; the processor is also used to: perform statistics on the energy of multiple microseismic events, wherein the microseismic event is the current signal that excites the proppant to do expansion and contraction Vibration events generated by vibration; obtaining the three-dimensional space distribution form of the proppant according to statistical results.
- a power supply electrode wherein, after the signal controller generates the current signal, the current signal is sent to the power supply electrode, the first electrode of the power supply electrodes is connected to the fracturing well, and the power supply electrode The second electrode in is outside the predetermined distance.
- the seismic sensor is a plurality of seismic sensors buried on the ground around the well site of the fracturing well.
- the processor is also used for the hydraulic fracturing process, according to the statistical results of the energy of the microseismic events to obtain effective support fractures; and to monitor the temporary plugging diversion and repeated reconstruction scale, and to monitor casing deformation and pressure channeling Forewarning.
- the processor is also used for injecting proppant together with water or chemical agents into the oil well during the oilfield development stage, monitoring the displacement front and identifying the oil-water boundary, and used for remaining oil monitoring.
- the current signal is sent, wherein the current signal includes at least one of the following: multi-frequency current signal, single-frequency current signal, the frequency of the current signal is determined according to the proppant, the The proppant performs stretching vibration under the excitation of a current signal of a predetermined frequency; acquiring an acoustic wave signal received by the seismic sensor, wherein the acoustic wave signal is an acoustic wave signal generated by the current signal exciting the proppant to perform stretching vibration; The vibrating position of the proppant in the fracturing layer is determined according to the acoustic wave signal, wherein the vibrating position is used as a basis for determining the characteristics of propped fractures.
- This application combines the advantages of electrical signal frequency characteristics and microseismic positioning events, and develops the passive seismic source of the traditional microseismic monitoring method into a controllable artificial seismic source signal, which can accurately identify effective support cracks; through electrical signals to stimulate different frequency characteristics The proppant is stretched and vibrated to evaluate the effect of repeated stimulation; for different fracturing layers of the same well, conductive proppant with different frequency characteristics can be injected, and multi-frequency current signals can be supplied to realize simultaneous monitoring of multiple layers .
- Fig. 1 is a schematic diagram of a device for electro-seismic integrated monitoring of vertical wells/inclined wells based on electrostrictive materials according to an embodiment of the present application;
- FIG. 2 is a schematic diagram of a device for electro-seismic integrated monitoring of horizontal wells based on electrostrictive materials according to an embodiment of the present application;
- Fig. 3 is a schematic diagram of the implementation process of the electro-shock integrated monitoring technology based on the electrostrictive material according to the embodiment of the present application;
- FIG. 4 is a flow chart of an electro-seismic integrated monitoring method based on an electrostrictive material according to an embodiment of the present application
- reference numeral 1 is a generator
- 2 is a signal controller
- 3 is a seismic sensor
- FIG. 4 is a flowchart of an electro-shock integrated monitoring method based on electrostrictive materials according to an embodiment of the application, as shown in FIG. As shown, the process includes the following steps:
- Step S402 sending a current signal, wherein the current signal includes at least one of the following: a multi-frequency current signal, a single-frequency current signal, the frequency of the current signal is determined according to the proppant, and the proppant is at a predetermined frequency Stretching vibration under the excitation of current signal;
- the proppant may include at least one kind of proppant, wherein each different proppant performs stretching vibration under excitation of current signals of different frequencies.
- proppant components include ceramic matrix and functional components, such as piezoelectric materials, carbon nanoparticles, magnetic materials, pyrolytic carbon, conductive graphite or any combination thereof.
- functional components such as piezoelectric materials, carbon nanoparticles, magnetic materials, pyrolytic carbon, conductive graphite or any combination thereof.
- the functional components are substantially distributed throughout the ceramic matrix.
- Step S404 acquiring the acoustic wave signal received by the seismic sensor, wherein the acoustic wave signal is the acoustic wave signal generated by the electric current signal exciting the proppant to perform stretching vibration;
- the seismic sensor may be a plurality of seismic sensors embedded on the ground around the well site of the fracturing well.
- Step S406 determining the vibration position of the proppant in the fracturing layer according to the acoustic wave signal, wherein the vibration position is used as a basis for determining the characteristics of propped fractures.
- the above-mentioned steps solve the problem that the monitoring of the proppant is difficult in the existing hydraulic fracturing monitoring technology, and an electrostrictive material is used as the proppant so that the position of the proppant can be monitored through microseismic.
- the current signal can be transmitted to the corresponding position through the electrodes.
- the step of sending the current signal can include: after the signal controller generates the current signal, sending the current signal to the power supply electrode, Wherein, a first electrode of the power supply electrodes is connected to a fracturing well, and a second electrode of the power supply electrodes is outside a predetermined distance.
- the energy of multiple microseismic events can also be counted, wherein the microseismic event is a shock event generated by the electric current signal exciting the proppant to perform stretching vibration;
- the three-dimensional space distribution shape of the above-mentioned proppant can also be counted, wherein the microseismic event is a shock event generated by the electric current signal exciting the proppant to perform stretching vibration;
- effective support fractures can be obtained according to the statistical results of the energy of the microseismic events; Forewarning.
- the proppant can also be injected into the oil well together with water or chemical agents to monitor the displacement front and identify the oil-water boundary for remaining oil monitoring.
- an electro-shock integrated monitoring system based on electrostrictive materials, including: a signal controller for sending current signals, wherein the current signals include at least one of the following: multi-frequency current signal, a single-frequency current signal, the frequency of the current signal is determined according to the proppant, and the proppant performs stretching vibration under the excitation of the current signal of a predetermined frequency, for example, the proppant includes at least one proppant, Wherein, each different proppant performs stretching vibration under the excitation of current signals of different frequencies; the processor is used to obtain the acoustic wave signal received by the seismic sensor, and determine the The vibration position of the layer, wherein the acoustic wave signal is the acoustic wave signal generated by the electric current signal exciting the proppant to perform stretching vibration, and the vibration position is used as a basis for determining the characteristics of propped fractures.
- the current signals include at least one of the following: multi-frequency current signal, a single-frequency current signal, the frequency of the current signal is determined according to
- the current signal can be transmitted to the corresponding position through the electrode, that is, the system can also include: a power supply electrode, wherein, after the signal controller generates the current signal, the current signal is sent to the power supply electrode, and the power supply electrode A first electrode of the powered electrodes is connected to the fracture well, and a second electrode of the powered electrodes is a predetermined distance away.
- the processor is further configured to: perform statistics on the energy of multiple microseismic events, wherein the microseismic event is a shock event generated by the electric current signal exciting the proppant to perform stretching vibration, The three-dimensional space distribution shape of the proppant is obtained according to the statistical results.
- the processor can also be used for the hydraulic fracturing process, according to the statistical results of the energy of the microseismic event to effectively support the fracture; and monitor the temporary plugging and repeated transformation scale, and provide early warning for casing change and pressure channeling .
- the processor can also be used to inject proppant together with water or chemical agents into oil wells during the oilfield development stage, monitor displacement fronts and identify oil-water boundaries for residual oil monitoring.
- This optional embodiment provides an electro-shock integrated monitoring technology based on electrostrictive materials, using electrostrictive materials as proppants, and using multi-frequency or single-frequency current The signal is excited, and the proppant position is monitored by microseismic.
- FIG. 1 is a schematic diagram of a device for electro-seismic integrated monitoring of vertical wells/inclined wells based on electrostrictive materials according to an embodiment of the present application.
- generator 1 Provide power for the signal controller 2 and the power supply electrodes, electrode A is at the wellhead, electrode B is a predetermined distance away from electrode A, and then the seismic sensor 3 can be arranged according to the actual situation.
- FIG. 2 is a schematic diagram of a device for electro-seismic integrated monitoring of horizontal wells based on electrostrictive materials according to an embodiment of the present application.
- the generator 1 is a signal controller 2 and The power supply electrode provides power
- electrode A is at the wellhead
- electrode B has a predetermined distance from electrode A
- there are two target points these two target points are target point 1 and target point 2, in Figure 2, according to the actual Situation arranges seismic sensor 3 .
- FIG. 1 An electro-shock integrated monitoring technology based on electrostrictive materials is provided.
- FIG. 1 The technique involves the following steps:
- Step S1 laying out the field source: including a generator 1, a signal controller 2, and two power supply electrodes A and B, the generator 1 provides power, the signal controller 2 sends a multi-frequency or single-frequency current signal, and the The multi-frequency or single-frequency current signal stimulates the injection of conductive proppant during the fracturing process, the power supply electrode A is connected to the fracturing well, and the power supply electrode B is far away from the fracturing well;
- Step S2 observation system: embed seismic sensors 3 at the ground monitoring points around the well site, test the processing device, and ensure the normal operation of the communication equipment;
- Step S3 make the observation system work normally, the seismic sensor 3 receives the acoustic wave signal generated by the proppant vibration caused by the current during the fracturing process, and sends it to the processing device through the communication system;
- Step S4 the processing device accurately locates the vibration position of the proppant in the fracturing layer through the microseismic events according to the acoustic wave signals of the different monitoring points, and then effectively identifies the characteristics of propped fractures; at the same time, based on the energy of the massive microseismic events Statistical analysis to obtain the three-dimensional space distribution shape of proppant.
- This monitoring technology excites proppants with different frequency characteristics to do telescopic vibration through electrical signals, and can evaluate the effect of repeated reconstruction; the application of this monitoring technology can inject conductive proppants with different frequency characteristics for different fracturing layers of the same well , by feeding multi-frequency current signals, simultaneous monitoring of multi-layer positions can be realized.
- the above-mentioned embodiments can not only identify effective supporting fractures, but also monitor the scale of temporary plugging and repeated reconstruction, and provide timely early warning for casing change and pressure channeling.
- the above embodiments can also be applied to the stage of oilfield development.
- the electrostrictive material is injected into the oil well together with water or chemical agents, which can effectively monitor the displacement front and identify the oil-water boundary, realize remaining oil monitoring, and improve oil recovery.
- this embodiment provides a solution to the problems of casing change early warning, pressure channeling identification, temporary plugging diversion, repeated stimulation monitoring, and monitoring of displacement front, oil-water boundary, and remaining oil during oilfield development and injection-production. A technical idea and technical possibility.
- an electronic device including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the methods in the above embodiments.
- the above-mentioned program can run in the processor, or can also be stored in the memory (or called computer-readable medium), and the computer-readable medium includes permanent and non-permanent, removable and non-removable technology for information storage.
- Information may be computer readable instructions, data structures, modules of a program, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
- computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Remote Sensing (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Acoustics & Sound (AREA)
- Geology (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种基于电致伸缩材料的电震一体化监测方法和系统,检测方法包括:发送电流信号(S402),其中,电流信号包括以下至少之一:多频电流信号、单频电流信号,电流信号的频率是根据支撑剂确定的,支撑剂在预定频率的电流信号激发下做伸缩震动;获取通过地震传感器接收到的声波信号(S404),其中,声波信号为电流信号激发支撑剂做伸缩震动而产生的声波信号;根据声波信号确定支撑剂在压裂层的震动位置(S406),其中,震动位置用于确定支撑裂缝特征的依据。采用了电致伸缩材料作支撑剂从而能够通过微地震监测支撑剂位置,解决了现有水力压裂监测技术中对支撑剂的监测难度大的问题。
Description
本申请涉及到油田开发领域,具体而言,涉及一种基于电致伸缩材料的电震一体化监测方法和系统。
当前的水力压力监测技术中,以微地震和电磁法最为普遍,微地震的物理机制明确,可以识别岩石破裂,但不能判断液体波及范围,也无法识别有效支撑裂缝。电磁法的物理机制也是明确的,可以识别液体波及范围,但不能识别缝网延展规律,也无法准确判断有效支撑裂缝。微地震和电磁法都无法识别有效支撑裂缝的关键在于对支撑剂的监测难度大。
微地震监测压裂过程中应力场变化而引起的微地震事件,定位事件位置液体不一定到达,液体到达位置支撑剂不一定到达,因此,微震改造体积远远大于有效支撑体积。电磁法很难识别低含量的支撑剂。
综上,传统地球物理方法无法准确探测支撑剂分布,更不能监测有效支撑裂缝。
发明内容
本申请实施例提供了一种基于电致伸缩材料的电震一体化监测方法和系统,以至少解决现有水力压裂监测技术中对支撑剂的监测难度大问题。
根据本申请的一个方面,提供了一种基于电致伸缩材料的电震一体化监测方法,包括:发送电流信号,其中,所述电流信号包括:多频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动,所述支撑剂为多种,每种不同的支撑剂在不同频率的电流信号的激发下做伸缩震动;针对同一口井的不同压裂层位,注入不同频率特性的支撑剂,通过供入多频电流信号,对多层位同时监测;获取通过地震传感器接收到的声波信号,其中,所述声波信号为所述电流信号引起所述支撑剂做伸缩震动而产生的声波信号;根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述震动位置用于确定支撑裂缝特征的依据;对多个微震事件的能量进行统计,其中,所述微震事件为所述电流信号激发所述支撑剂做伸缩震动产生的震动事件;根据统计结果获取所述支撑剂的三维空间展布形态。
进一步地,发送所述电流信号包括:在信号控制器产生所述电流信号之后,将所述电流信号发送至供电电极,其中,所述供电电极中的第一电极连结压裂井,所述供电电极中的第 二电极在预定距离之外。
进一步地,所述地震传感器为在所述压裂井的井场周围地面埋置的多个地震传感器。
进一步地,还包括:针对水力压裂过程,根据所述微震事件的能量的统计结果得到有效支撑裂缝;以及对暂堵转向及重复改造规模进行监测,并对套变和压窜进行预警。
进一步地,还包括:在油田开发阶段,将支撑剂同水或化学剂一起注入油井,监测驱替前缘和识别油水边界,用于进行剩余油监测。
根据本申请的另一个方面,还提供了一种基于电致伸缩材料的电震一体化监测系统,包括:信号控制器,用于发送电流信号,其中,所述电流信号包括:多频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动,所述支撑剂为多种,每种不同的支撑剂在不同频率的电流信号的激发下做伸缩震动;针对同一口井的不同压裂层位,注入不同频率特性的支撑剂,通过供入多频电流信号,对多层位同时监测;处理器,用于获取通过地震传感器接收到的声波信号,并根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述声波信号为所述电流信号激发所述支撑剂做伸缩震动而产生的声波信号,所述震动位置用于确定支撑裂缝特征的依据;所述处理器还用于:对多个微震事件的能量进行统计,其中,所述微震事件为所述电流信号激发所述支撑剂做伸缩震动产生的震动事件;根据统计结果获取所述支撑剂的三维空间展布形态。
进一步地,还包括:供电电极,其中,在信号控制器产生所述电流信号之后,将所述电流信号发送至供电电极,所述供电电极中的第一电极连结压裂井,所述供电电极中的第二电极在预定距离之外。
进一步地,所述地震传感器为在所述压裂井的井场周围地面埋置的多个地震传感器。
进一步地,所述处理器还用于针对水力压裂过程,根据所述微震事件的能量的统计结果得到有效支撑裂缝;以及对暂堵转向及重复改造规模进行监测,并对套变和压窜进行预警。
进一步地,所述处理器还用于在油田开发阶段,将支撑剂同水或化学剂一起注入油井,监测驱替前缘和识别油水边界,用于进行剩余油监测。
在本申请实施例中,采用了发送电流信号,其中,所述电流信号包括以下至少之一:多频电流信号、单频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动;获取通过地震传感器接收到的声波信号,其中,所述声波信号为所述电流信号激发所述支撑剂做伸缩震动而产生的声波信号;根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述震动位置用于确定支撑裂缝特征的依据。
本申请综合了电信号频率特性与微地震定位事件的优势,将传统微地震监测方法的被动震源发展为可控的人工震源信号,能够准确识别有效支撑裂缝;通过电信号激发具有不同频 率特性的支撑剂做伸缩震动,可以对重复改造效果进行评估;针对同一口井的不同压裂层位,可注入不同频率特性的导电支撑剂,通过供入多频电流信号,能够实现多层位同时监测。
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的基于电致伸缩材料的电震一体化监测直井/斜井的装置示意图;
图2是根据本申请实施例的基于电致伸缩材料的电震一体化监测水平井的装置示意图;
图3是根据本申请实施例的基于电致伸缩材料的电震一体化监测技术的实现流程示意图;
图4是根据本申请实施例的基于电致伸缩材料的电震一体化监测方法流程图;
其中,附图标记1为发电机,2为信号控制器,3为地震传感器。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中提供了一种基于电致伸缩材料的电震一体化监测方法,图4是根据本申请实施例的基于电致伸缩材料的电震一体化监测方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,发送电流信号,其中,所述电流信号包括以下至少之一:多频电流信号、单频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动;
在该步骤中,可选地,所述支撑剂可以包括至少一种支撑剂,其中,每种不同的支撑剂在不同频率的电流信号的激发下做伸缩震动。
支撑剂的组成成分有很多种,支撑剂颗粒包含陶瓷基体和功能组分,如压电材料、碳纳米颗粒、磁性材料、热解碳、导电石墨或它们的任意组合。其中,在可选的实施方式中,所述功能组分基本上分布在整个所述陶瓷基体中。
步骤S404,获取通过地震传感器接收到的声波信号,其中,所述声波信号为所述电流信号激发所述支撑剂做伸缩震动而产生的声波信号;
在该步骤中,所述地震传感器可以为在所述压裂井的井场周围地面埋置的多个地震传感器。
步骤S406,根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述震动位置用于确定支撑裂缝特征的依据。
通过上述步骤解决了现有水力压裂监测技术中对支撑剂的监测难度大的问题,采用了电致伸缩材料作支撑剂从而能够通过微地震监测支撑剂位置。
电流信号可以通过电极传达到相应的位置,在本可选实施方式中,发送所述电流信号的步骤可以包括:在信号控制器产生所述电流信号之后,将所述电流信号发送至供电电极,其中,所述供电电极中的第一电极连结压裂井,所述供电电极中的第二电极在预定距离之外。
在一个可选的实施方式中,还可以对多个微震事件的能量进行统计,其中,所述微震事件为所述电流信号激发所述支撑剂做伸缩震动产生的震动事件;根据统计结果获取所述支撑剂的三维空间展布形态。
在一个可选实施方式中,还可以针对水力压裂过程,根据所述微震事件的能量的统计结果得到有效支撑裂缝;以及对暂堵转向及重复改造规模进行监测,并对套变和压窜进行预警。
在另一个可选实施方式汇总,在油田开发阶段,还可以将支撑剂同水或化学剂一起注入油井,监测驱替前缘和识别油水边界,用于进行剩余油监测。
在本实施例中还提供了一种基于电致伸缩材料的电震一体化监测系统,包括:信号控制器,用于发送电流信号,其中,所述电流信号包括以下至少之一:多频电流信号、单频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动,例如,所述支撑剂包括至少一种支撑剂,其中,每种不同的支撑剂在不同频率的电流信号的激发下做伸缩震动;处理器,用于获取通过地震传感器接收到的声波信号,并根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述声波信号为所述电流信号激发所述支撑剂做伸缩震动而产生的声波信号,所述震动位置用于确定支撑裂缝特征的依据。
电流信号可以通过电极传达到相应的位置,即在本系统中还可以包括:供电电极,其中,在信号控制器产生所述电流信号之后,将所述电流信号发送至供电电极,所述供电电极中的第一电极连结压裂井,所述供电电极中的第二电极在预定距离之外。
作为一个可选的实施方式,所述处理器还用于:对多个微震事件的能量进行统计,其中,所述微震事件为所述电流信号激发所述支撑剂做伸缩震动产生的震动事件,根据统计结果获 取所述支撑剂的三维空间展布形态。所述处理器还可以用于针对水力压裂过程,根据所述微震事件的能量的统计结果得到有效支撑裂缝;以及对暂堵转向及重复改造规模进行监测,并对套变和压窜进行预警。所述处理器还可以用于在油田开发阶段,将支撑剂同水或化学剂一起注入油井,监测驱替前缘和识别油水边界,用于进行剩余油监测。
下面结合附图对一个可选实施例进行说明,本可选实施例提供一种基于电致伸缩材料的电震一体化监测技术,采用电致伸缩材料作支撑剂,用多频或单频电流信号激发,通过微地震监测支撑剂位置。
本实施例可以用在直井和/或斜井中,图1是根据本申请实施例的基于电致伸缩材料的电震一体化监测直井/斜井的装置示意图,如图1所示,发电机1为信号控制器2以及供电电极提供电源,电极A在井口,电极B距离电极A有预定距离,然后可以按照实际情况布置地震传感器3。
本实施例可以用在水平井中,图2是根据本申请实施例的基于电致伸缩材料的电震一体化监测水平井的装置示意图,如图2所示,发电机1为信号控制器2以及供电电极提供电源,电极A在井口,电极B距离电极A有预定距离,还设置有两个靶点,这两个靶点分别为靶点1和靶点2,在图2中,可以按照实际情况布置地震传感器3。
在本实施例中提供了一种基于电致伸缩材料的电震一体化监测技术,图3是根据本申请实施例的基于电致伸缩材料的电震一体化监测技术的实现流程示意图,该监测技术包括以下步骤:
步骤S1、布设场源:包括发电机1、信号控制器2、两个供电电极A和B,所述发电机1提供电源,所述信号控制器2发送多频或单频电流信号,所述多频或单频电流信号激励压裂过程中注入导电支撑剂,所述供电电极A连结压裂井,所述供电电极B远离所述压裂井;
步骤S2、观测系统:在井场周围地面监测点埋置地震传感器3,测试处理装置,保证通讯设备正常运行;
步骤S3、使所述观测系统正常工作,所述地震传感器3接收压裂过程中电流引起支撑剂震动而产生的声波信号,并通过通讯系统发送给处理装置;
步骤S4、所述处理装置根据所述不同监测点的声波信号,通过微震事件准确定位支撑剂在压裂层的震动位置,进而有效识别支撑裂缝特征;同时,基于海量的微震事件的能量大小做统计分析,获取支撑剂三维空间展布形态。
在上述步骤中,综合了电信号频率特性与微地震定位事件的优势,将传统微地震监测方法的被动震源发展为可控的人工震源信号,能够准确识别有效支撑裂缝。
本监测技术通过电信号激发具有不同频率特性的支撑剂做伸缩震动,可以对重复改造效 果进行评估;应用本监测技术可针对同一口井的不同压裂层位,注入不同频率特性的导电支撑剂,通过供入多频电流信号,能够实现多层位同时监测。
上述实施例针对水力压裂过程,除了能够识别有效支撑裂缝外,也可对暂堵转向及重复改造规模进行监测,另外对套变和压窜可及时进行预警。
上述实施例还可以应用于油田开发阶段,将电致伸缩材料同水或化学剂一起注入油井,可有效监测驱替前缘和识别油水边界,实现剩余油监测,提高油田采收率。
综上,本实施例为解决压裂过程中的套变预警、压窜识别、暂堵转向、重复改造监测以及油田开发注采过程中驱替前缘、油水边界、剩余油的监测难题提供了一种技术思路和技术可能。
在本实施例中,提供一种电子装置,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行以上实施例中的方法。
上述程序可以运行在处理器中,或者也可以存储在存储器中(或称为计算机可读介质),计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
这些计算机程序也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤,对应与不同的步骤可以通过不同的模块来实现。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (10)
- 一种基于电致伸缩材料的电震一体化监测方法,其特征在于,包括:发送电流信号,其中,所述电流信号包括:多频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动,所述支撑剂为多种,每种不同的支撑剂在不同频率的电流信号的激发下做伸缩震动;针对同一口井的不同压裂层位,注入不同频率特性的支撑剂,通过供入多频电流信号,对多层位同时监测;获取通过地震传感器接收到的声波信号,其中,所述声波信号为所述电流信号引起所述支撑剂做伸缩震动而产生的声波信号;根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述震动位置用于确定支撑裂缝特征的依据;对多个微震事件的能量进行统计,其中,所述微震事件为所述电流信号激发所述支撑剂做伸缩震动产生的震动事件;根据统计结果获取所述支撑剂的三维空间展布形态。
- 根据权利要求1所述的方法,其特征在于,发送所述电流信号包括:在信号控制器产生所述电流信号之后,将所述电流信号发送至供电电极,其中,所述供电电极中的第一电极连结压裂井,所述供电电极中的第二电极在预定距离之外。
- 根据权利要求2所述的方法,其特征在于,所述地震传感器为在所述压裂井的井场周围地面埋置的多个地震传感器。
- 根据权利要求1所述的方法,其特征在于,还包括:针对水力压裂过程,根据所述微震事件的能量的统计结果得到有效支撑裂缝;以及对暂堵转向及重复改造规模进行监测,并对套变和压窜进行预警。
- 根据权利要求1所述的方法,其特征在于,还包括:在油田开发阶段,将支撑剂同水或化学剂一起注入油井,监测驱替前缘和识别油水边界,用于进行剩余油监测。
- 一种基于电致伸缩材料的电震一体化监测系统,其特征在于,包括:信号控制器,用于发送电流信号,其中,所述电流信号包括:多频电流信号,所述电流信号的频率是根据支撑剂确定的,所述支撑剂在预定频率的电流信号的激发下做伸缩震动,所述支撑剂为多种,每种不同的支撑剂在不同频率的电流信号的激发下做伸缩震动;针对同一口井的不同压裂层位,注入不同频率特性的支撑剂,通过供入多频电流信号,对多层位同时监测;处理器,用于获取通过地震传感器接收到的声波信号,并根据所述声波信号确定所述支撑剂在压裂层的震动位置,其中,所述声波信号为所述电流信号激发所述支撑剂做伸缩震动 而产生的声波信号,所述震动位置用于确定支撑裂缝特征的依据;所述处理器还用于:对多个微震事件的能量进行统计,其中,所述微震事件为所述电流信号激发所述支撑剂做伸缩震动产生的震动事件;根据统计结果获取所述支撑剂的三维空间展布形态。
- 根据权利要求6所述的系统,其特征在于,还包括:供电电极,其中,在信号控制器产生所述电流信号之后,将所述电流信号发送至供电电极,所述供电电极中的第一电极连结压裂井,所述供电电极中的第二电极在预定距离之外。
- 根据权利要求7所述的系统,其特征在于,所述地震传感器为在所述压裂井的井场周围地面埋置的多个地震传感器。
- 根据权利要求6所述的系统,其特征在于,所述处理器还用于针对水力压裂过程,根据所述微震事件的能量的统计结果得到有效支撑裂缝;以及对暂堵转向及重复改造规模进行监测,并对套变和压窜进行预警。
- 根据权利要求6所述的系统,其特征在于,所述处理器还用于在油田开发阶段,将支撑剂同水或化学剂一起注入油井,监测驱替前缘和识别油水边界,用于进行剩余油监测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/692,213 US20240385347A1 (en) | 2021-09-17 | 2022-08-12 | Electroseismic integrated monitoring method and system based on electrostrictive material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111090102.3A CN113625367B (zh) | 2021-09-17 | 2021-09-17 | 一种基于电致伸缩材料的电震一体化监测方法和系统 |
CN202111090102.3 | 2021-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023040535A1 true WO2023040535A1 (zh) | 2023-03-23 |
Family
ID=78390330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/112108 WO2023040535A1 (zh) | 2021-09-17 | 2022-08-12 | 一种基于电致伸缩材料的电震一体化监测方法和系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240385347A1 (zh) |
CN (1) | CN113625367B (zh) |
WO (1) | WO2023040535A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113625367B (zh) * | 2021-09-17 | 2022-08-26 | 中南大学 | 一种基于电致伸缩材料的电震一体化监测方法和系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102099545A (zh) * | 2008-05-20 | 2011-06-15 | 环氧乙烷材料股份有限公司 | 用于确定地下断层几何形状的功能性支撑剂的制造方法和用途 |
CN105785475A (zh) * | 2016-04-22 | 2016-07-20 | 吉林大学 | 水力压裂震电联合探测系统、探测方法及野外工作方法 |
US20160320518A1 (en) * | 2011-11-09 | 2016-11-03 | Micah Thomas Mangione | Apparatus, method and system for mapping fracture features in hydraulically fractured strata using functional proppant properties |
US20170097431A1 (en) * | 2015-05-27 | 2017-04-06 | Microseismic, Inc. | Method for determining fracture proppant spatial distribution using passive seismic signals |
CN109681181A (zh) * | 2018-11-28 | 2019-04-26 | 中国海洋石油集团有限公司 | 一种预测方法和装置 |
CN113625367A (zh) * | 2021-09-17 | 2021-11-09 | 中南大学 | 一种基于电致伸缩材料的电震一体化监测方法和系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110088462A1 (en) * | 2009-10-21 | 2011-04-21 | Halliburton Energy Services, Inc. | Downhole monitoring with distributed acoustic/vibration, strain and/or density sensing |
US20140374091A1 (en) * | 2013-06-20 | 2014-12-25 | Schlumberger Technology Corporation | Electromagnetic Imaging Of Proppant In Induced Fractures |
US9488043B2 (en) * | 2013-05-17 | 2016-11-08 | Halliburton Energy Services, Inc. | Method and apparatus for generating seismic pulses to map subterranean fractures |
US10254424B1 (en) * | 2014-04-04 | 2019-04-09 | Oceanit Laboratories, Inc. | Acoustic particles and metamaterials for use as localization and contrast agents |
-
2021
- 2021-09-17 CN CN202111090102.3A patent/CN113625367B/zh active Active
-
2022
- 2022-08-12 WO PCT/CN2022/112108 patent/WO2023040535A1/zh active Application Filing
- 2022-08-12 US US18/692,213 patent/US20240385347A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102099545A (zh) * | 2008-05-20 | 2011-06-15 | 环氧乙烷材料股份有限公司 | 用于确定地下断层几何形状的功能性支撑剂的制造方法和用途 |
US20160320518A1 (en) * | 2011-11-09 | 2016-11-03 | Micah Thomas Mangione | Apparatus, method and system for mapping fracture features in hydraulically fractured strata using functional proppant properties |
US20170097431A1 (en) * | 2015-05-27 | 2017-04-06 | Microseismic, Inc. | Method for determining fracture proppant spatial distribution using passive seismic signals |
CN105785475A (zh) * | 2016-04-22 | 2016-07-20 | 吉林大学 | 水力压裂震电联合探测系统、探测方法及野外工作方法 |
CN109681181A (zh) * | 2018-11-28 | 2019-04-26 | 中国海洋石油集团有限公司 | 一种预测方法和装置 |
CN113625367A (zh) * | 2021-09-17 | 2021-11-09 | 中南大学 | 一种基于电致伸缩材料的电震一体化监测方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113625367B (zh) | 2022-08-26 |
CN113625367A (zh) | 2021-11-09 |
US20240385347A1 (en) | 2024-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2799719C (en) | A method of real time diagnostic of fracture operations with combination of tube waves and microseismic monitoring | |
CA2783932A1 (en) | System, apparatus and method for stimulating wells and managing a natural resource reservoir | |
CN105756645A (zh) | 页岩中裂缝扩展的物理模拟系统及方法 | |
CN105556061A (zh) | 通过套管钻井进行的裂缝评估 | |
RU2575940C2 (ru) | Устройство и способы предоставления информации об одной или более подземных переменных | |
AU2015244289B2 (en) | Method for determining aggregate fracture properties for evaluation of fracture procedures | |
US20140374091A1 (en) | Electromagnetic Imaging Of Proppant In Induced Fractures | |
RU2630012C1 (ru) | Способ ультразвуковой интенсификации добычи нефти и устройство для его осуществления | |
US11091994B2 (en) | Method of refracturing in a horizontal well | |
WO2023040535A1 (zh) | 一种基于电致伸缩材料的电震一体化监测方法和系统 | |
Falser et al. | Reducing breakdown pressure and fracture tortuosity by in-plane perforations and cyclic pressure ramping | |
CN105003239A (zh) | 海上压裂水平井压后效果评价方法 | |
Wang et al. | Laboratory investigation of hydraulic fracture propagation using real-time ultrasonic measurement in shale formations with random natural fractures | |
US20140321240A1 (en) | Elastography for cement integrity inspection | |
CN113670204A (zh) | 一种酸液刻蚀体积及支撑剂嵌入深度的测量装置及方法 | |
CN115826085A (zh) | 一种基于电控微量炸药的电震一体化监测方法和装置 | |
CA2883643C (en) | System and method for recovering bitumen from a bitumen reserve using acoustic standing waves | |
US10550680B2 (en) | Process and system for enhanced depth penetration of an energy source | |
CA2917238C (en) | System and method for recovering hydrocarbons from a hydrocarbon bearing formation using acoustic standing waves | |
RU2018127256A (ru) | Способ прогноза зон поглощений бурового раствора при бурении скважин на основе трехмерной геомеханической модели и тектонической модели месторождения | |
RU2613381C1 (ru) | Способ определения границы вода-цемент в промежутке между трубами в углеводородной скважине | |
Leines-Artieda et al. | Assessing 3D Bedding Plane Effects on Well Performance in a Field-Scale Unconventional Reservoir Model Using EDFM | |
CA2940100C (en) | Method for mapping the propagation of earth fractures | |
RU2042782C1 (ru) | Способ консервации скважин | |
CN119026510A (zh) | 一种共振激励下的岩石水力压裂方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22868911 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18692213 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22868911 Country of ref document: EP Kind code of ref document: A1 |