WO2023039946A1 - 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统 - Google Patents

术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统 Download PDF

Info

Publication number
WO2023039946A1
WO2023039946A1 PCT/CN2021/121144 CN2021121144W WO2023039946A1 WO 2023039946 A1 WO2023039946 A1 WO 2023039946A1 CN 2021121144 W CN2021121144 W CN 2021121144W WO 2023039946 A1 WO2023039946 A1 WO 2023039946A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
blood oxygen
skin
postoperative
state detection
Prior art date
Application number
PCT/CN2021/121144
Other languages
English (en)
French (fr)
Inventor
吴豪
杨淦光
张瑾文
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US18/290,695 priority Critical patent/US20240260845A1/en
Publication of WO2023039946A1 publication Critical patent/WO2023039946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/166Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted on a specially adapted printed circuit board
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention belongs to the field of medical health monitoring, and more specifically relates to a skin-attached sensor system for detecting the blood flow state of postoperative skin flaps and reconstructed limbs.
  • a flap transplant is performed by separating and reattaching skin and blood vessels from one area of the body to another, usually using microsurgery to reattach the blood vessels.
  • the success rate of skin flap transplantation is more than 95%.
  • the failure of the skin flap is caused by vascular injury and ischemia of the transferred tissue, which mostly occurs within 24 hours after operation.
  • the causes of vascular damage include arterial and venous pathological abnormalities, such as external venous compression and venous thrombosis, and 17% of free flaps had vascular damage during and after surgery.
  • the reported success rate of salvage is only 70% to 80%.
  • the vascular health of the flap is particularly important after surgery. Therefore, the use of non-invasive blood oxygen sensors to measure the blood oxygen of the flap can further quantify and determine the health of the flap.
  • the physical principle of the detection method is the photoelectric volumetric method, which is calculated by detecting the change in the amount of light absorbed by the blood when the human blood vessels are pulsating.
  • the present invention provides a skin-attached sensor system for detecting the blood flow status of postoperative skin flaps and reconstructed limbs.
  • the adhesion layer endows the front-end blood oxygen and temperature signal detection module with the ability to closely adhere to the human skin and conform to the shape, while ensuring long-term detection and avoiding skin inflammation caused by bacterial growth. Receiving, processing and sending sensory data.
  • a skin-attached sensor system for detecting blood flow status of postoperative skin flaps and reconstructed limbs, including a front-end state detection module and a rear-end signal processing output module, wherein,
  • the front-end state detection module uses a flexible packaging material as the packaging layer, and the surface of the packaging layer is provided with a hydrogel adhesion layer, and the hydrogel adhesion layer is used to attach the front-end state detection module to the The skin surface of the measured object; the front-end state detection module is used to collect the blood oxygen photovolume waveform and body temperature data of the measured object;
  • the back-end signal processing output module is directly connected to the front-end state detection module and receives the blood oxygen volume waveform signal and body temperature data, and the back-end signal processing module is used to process and calculate the blood oxygen volume waveform signal to obtain the The blood oxygen saturation and pulse signal of the measured object, and then send the blood oxygen saturation, body temperature and pulse signal of the measured object to the mobile terminal.
  • the front-end state detection module includes a printed circuit board based on a flexible material, a blood oxygen detection circuit and a body temperature detection circuit, the blood oxygen detection circuit is used to collect the blood oxygen photovolume waveform of the measured object, the The body temperature detection circuit is used to detect the body temperature data of the measured object.
  • the back-end signal processing output module performs low-pass filtering and band-pass filtering on the blood oxygen photovolume waveforms of red light and infrared light collected by the blood oxygen detection circuit in a window of fixed time domain length, respectively.
  • Obtain the DC component and AC component of the blood oxygen volume waveform and then use the peak-seeking algorithm to process the AC component of the blood oxygen volume waveform of infrared light to obtain the peak position of the light volume waveform in the window, thereby calculating the fixed time domain length and determine the ratio of the AC component to the DC component of the red light and infrared light at the peak point through the peak position of the light volume waveform, and then use the calibrated blood oxygen calculation formula to map the average ratio in the fixed time domain length into
  • the window is moved according to the time interval of equal length, so as to obtain the time series signal of blood oxygen saturation and pulse, and then send the blood oxygen saturation and pulse signal of the measured object to the mobile terminal in real time.
  • the back-end signal processing output module includes a CC2640R2F core processing module, a power supply module, a Bluetooth radio frequency module, a program programming module and a clock crystal oscillator module;
  • the program programming module is used to write the required running programs and protocols into the CC2640R2F core processing module;
  • the power supply module is used to supply power to the CC2640R2F core processing module and the front-end state detection module;
  • the Bluetooth radio frequency module is used to communicate with the mobile terminal;
  • the clock crystal oscillator module is used to assist the CC2640R2F
  • the core processing module is functioning normally.
  • the hydrogel adhesive layer is prepared from precursor monomers, solvents and polymerization additives, wherein the precursor monomers include acrylamide with a mass fraction of 20-30wt%, carboxymethyl Chitosan and 0.5-2wt% tannic acid; the solvent includes deionized water and glycerol with a volume ratio of 1:1; the polymerization additive includes crosslinking agent N, N'-methylenebispropylene Amides and Initiators Irgacure2959.
  • precursor monomers include acrylamide with a mass fraction of 20-30wt%, carboxymethyl Chitosan and 0.5-2wt% tannic acid
  • the solvent includes deionized water and glycerol with a volume ratio of 1:1
  • the polymerization additive includes crosslinking agent N, N'-methylenebispropylene Amides and Initiators Irgacure2959.
  • the mass fraction of the crosslinking agent N, N'-methylenebisacrylamide is 0.02-0.1 wt% of the acrylamide monomer; the mass fraction of the initiator Irgacure2959 is 0.3-0.1 wt% of the pre-polymerized hydrogel solution. 1 wt%.
  • the sensing system includes the preparation of the front-end state detection module and the connection of the back-end signal processing output module;
  • the preparation of the front-end state detection module includes fixing the printed circuit board designed with the blood oxygen detection circuit and the body temperature detection circuit on the quartz glass plane, and pouring the flexible packaging layer; bonding the acrylic plate mold to the flexible packaging with double-sided adhesive layer, and evenly coat the benzophenone/ethanol solution on the flexible packaging layer, wherein the mass ratio of benzophenone and ethanol in the benzophenone/ethanol solution is 2:48; benzophenone/ethanol The solution treatment time is 10min.
  • the pre-polymerized hydrogel solution is injected into the upper surface of the flexible packaging layer treated by the benzophenone/ethanol solution, and after the pre-polymerization
  • the polymerized hydrogel solution just overflows the upper edge of the acrylic mold, stop the injection; completely cover the acrylic plate mold with the quartz glass cover; Under the 365nm ultraviolet light, the irradiation time is 40min, and the fully polymerized hydrogel adhesive layer is obtained; finally, the quartz glass cover and the acrylic mold are removed from the front-end state detection module in sequence, and the front-end state detection module can be obtained.
  • Module patch
  • the connection of the back-end signal processing output module includes selecting MAX30102EFD+T blood oxygen detection chip and TMP117AIDRVR semiconductor temperature sensor chip as the blood oxygen detection circuit and body temperature detection circuit of the front-end state detection module.
  • the CC2640R2F core processing module of the back-end signal processing output module communicates, and can share the same SCL and SDA port;
  • the CC2640R2FRHBR Bluetooth low-power wireless MCU is selected as the core processor of the back-end signal processing output module, and the DIO3 of the CC2640R2FRHBR and DIO4 ports are used as SCL and SDA ports for data communication with the front-end status detection module, and DIO10 port is used as INT port to control the MAX30102EFD+T blood oxygen detection chip;
  • the 135 passive crystal resonator is used as the crystal oscillator of the external clock crystal oscillator circuit of the CC2640R2F
  • the preparation of the pre-polymerized hydrogel solution includes adding acrylamide monomers, antibacterial monomers, and viscous monomer solutions to glass sample bottles in sequence, and fully oscillating on an oscillator after sealing to obtain precursor monomers mixture;
  • the material of the flexible encapsulation layer can adopt dark PDMS/carbon black mixed soft material, wherein PDMS: carbon black mass ratio is 100:1, and the mass ratio of the prepolymer of PDMS and curing agent is 10:1 , added to the plastic cup one by one, and kept stirring for 5 minutes to ensure that the curing agent and the prepolymer are mixed evenly; the polydimethylsiloxane that was sucked at a uniform speed by a 1ml medical syringe and removed the foam was evenly coated on the printed circuit board conductor base On the bottom layer, stand still for 2 minutes.
  • the flexible packaging layer is prepared from the base layer of the circuit board wires.
  • the above technical solutions conceived by the present invention are easy to achieve large-scale mass production because they all adopt the process of printed circuit boards.
  • the circuit board is covered with a hydrogel adhesive layer on the surface, so as to ensure that the front-end state detection module can be attached to the skin of the measured object for a long time to maintain a conformal shape without causing skin infection. Excellent wearing comfort.
  • the back-end signal processing output module adopts a low-power core processor, which can perform ultra-long-time standby work, and adopts the Bluetooth 5.0 communication protocol, so that the collected data can be transmitted and analyzed quickly and stably;
  • the success rate of flap transplantation and limb reconstruction surgery has been able to reach more than 95%, but it must be closely monitored within 24 hours after the operation.
  • medical staff usually judge the health status of the flaps by observing the color, swelling degree, edema, temperature, and bleeding of the flaps.
  • these observation indicators cannot obtain a highly quantified standard.
  • the present invention can quantitatively display the blood oxygen saturation, skin temperature and pulse of skin flaps or reconstructed limbs.
  • the mobile terminal human-computer interaction App When the measured object is in a dangerous state, the mobile terminal human-computer interaction App will send out The alarm informs the medical staff so that the patient can be treated in the shortest possible time.
  • the invention can not only increase the accuracy of clinical identification of postoperative skin flaps and reconstructed limb states by medical staff, but also greatly reduce the work intensity of medical staff, and has far-reaching significance.
  • Figure 1 is a schematic diagram of the manufacturing process of the front-end state detection module of the epidermis-attached sensor system for detecting the blood flow state of the postoperative skin flap and the reconstructed limb;
  • Figure 2 is a schematic diagram of the composition of the hydrogel adhesive layer of the epidermis-attached sensor system for detecting the blood flow status of the postoperative skin flap and the reconstructed limb;
  • Figure 3 is a schematic diagram of the device structure of the epidermis-attached sensor system for detecting the blood flow status of the postoperative skin flap and the reconstructed limb;
  • Fig. 4 is a schematic circuit diagram of the skin-attached sensor system for detecting the blood flow state of the postoperative skin flap and the reconstructed limb.
  • the present invention proposes a skin-attached sensing system for detection of postoperative skin flap and reconstructed limb blood flow state.
  • the system includes a front-end state detection module 11, a rear-end signal processing output module 12 and a mobile terminal.
  • Human-computer interaction App20 wherein: the front-end state detection module 11 is a flexible material-based printed circuit board (FPCB) that integrates a blood oxygen detection circuit 13 and a body temperature detection circuit 14, and can collect the blood oxygen light of the measured object Volume waveform and body temperature data.
  • FPCB flexible material-based printed circuit board
  • the surface of the printed circuit board is covered with a layer of flexible encapsulation layer 5, and its surface has a hydrogel adhesive layer 10, so that the entire front-end state detection module 11 can be attached to the skin of the measured object, while avoiding the long-term Bacterial infection caused by attachment.
  • the back-end signal processing output module 12 performs low-pass filtering and band-pass filtering on the collected blood oxygen photovolume waveforms of red light and infrared light in windows of fixed time domain length respectively to obtain blood oxygen DC and AC components of the photoplethysm waveform.
  • the peak-seeking algorithm is used to process the AC component of the blood oxygen volume waveform of infrared light to obtain the peak position of the volume waveform in the window, so that the average pulse within a fixed time domain length can be calculated.
  • the peak position of the light volume waveform can also determine the ratio of the AC component to the DC component of the red light and infrared light at the peak point, and then use the calibrated blood oxygen calculation formula to calculate the average ratio within a fixed time domain length Mapped to blood oxygen saturation.
  • the time series signals of blood oxygen saturation and pulse can be obtained by moving the window according to the time interval of equal length.
  • the back-end signal processing output module sends blood oxygen saturation, body temperature and pulse signals to the mobile terminal human-computer interaction App in real time through the Bluetooth radio frequency module. .
  • the mobile terminal platform corresponding to the mobile terminal human-computer interaction App is a smart phone or a personal computer.
  • the mobile terminal human-computer interaction App can display the blood oxygen saturation, body temperature and pulse signal of the measured object in real time.
  • the alarm function inside the app will be activated. Users can control the operation and stop of the entire detection system through the mobile terminal human-computer interaction App.
  • the human-computer interaction App of the mobile terminal can store the received blood oxygen saturation, body temperature and pulse in time series locally on the mobile terminal platform in real time.
  • the front-end state detection module 11 is directly connected to the back-end signal processing output module 12 through a connection line.
  • the back-end processing output module 12 provides a stable working voltage and ground potential for the front-end state detection module 11 through a connection line, and the back-end signal processing output module 12 can directly control the operation of the front-end state detection module 11 , and the front-end state detection module 11 also directly transmits the collected physiological signal data to the back-end signal processing output module 12 through a connection line.
  • the blood oxygen detection circuit 13 and the body temperature detection circuit 14 of the front-end state detection module 11 can use commercial blood oxygen detection chips and semiconductor temperature sensor chips to realize their functions.
  • the blood oxygen detection chip integrates photodiodes, red LEDs and infrared LEDs.
  • the blood oxygen detection chip and the semiconductor temperature sensing chip will not be covered by the flexible packaging layer and the hydrogel adhesive layer 10, and directly contact the skin part of the measured object, and then collect the red light and infrared light of the measured object.
  • Optical blood oxygen volume waveform and skin temperature data The sampling rate of the blood oxygen detection circuit 13 is 100 Hz, and the sampling rate of the body temperature detection circuit 14 is 1 Hz.
  • the precursor monomers of the hydrogel adhesive layer 10 of the front-end state detection module 11 are respectively selected from acrylamide, carboxymethyl chitosan, and tannic acid, wherein the mass fractions are respectively 20-30wt% , 1-3wt%, 0.5-2wt%; the solvent of the hydrogel adhesion layer, the volume ratio of deionized water and glycerin is 1:1; the polymerization additive of the hydrogel adhesion layer, cross-linked
  • the agent is N,N'-methylenebisacrylamide, and the mass fraction is 0.02-0.1 wt% of the acrylamide monomer; the initiator is Irgacure2959, and the mass fraction is 0.3-1 wt% of the prepolymerized hydrogel solution.
  • the preparation method of the hydrogel adhesive layer comprises:
  • Step 1 The weight of the acrylamide monomer is 2.5g; the carboxymethyl chitosan monomer and the tannic acid monomer are configured as a uniform solution, and the volume is 1000 microliters pipette, and evenly drop into a 30ml glass bottle; where the precursor monomer mixture was shaken on a shaker until the solution was evenly mixed.
  • Step 2 The volume ratio of the deionized water and glycerol is 1:1, inject it into a 30ml sample bottle at a constant speed, and use a glass rod to stir during the stirring operation, and the stirring time is 30min; the crosslinking agent N, N'- The methylenebisacrylamide aqueous solution and the photoinitiator Irgacure2959 were sequentially added to the mixed solution; the ultrasonic vibration was performed by using an ultrasonic machine with a power of 100w, the ultrasonic temperature was 25 degrees Celsius, and the ultrasonic wave was 30 minutes; the degassing operation was as follows: After the polymerized hydrogel solution was passed through nitrogen gas at a constant speed for 30 minutes, a completely degassed prepolymerized hydrogel solution was obtained.
  • Step 3 The pre-polymerized hydrogel solution is absorbed by a syringe at a constant speed, and at the same time, the pre-polymerized hydrogel solution is injected into the acrylic plate mold on the flexible packaging layer; wherein the flexible packaging layer needs to use benzophenone/ethanol
  • the solution was soaked for 30 minutes; during the sealing operation, a quartz glass sheet was used to completely cover the mold, and a UV lamp with a power of 60w and a wavelength of 365nm was used to initiate polymerization for 40 minutes to obtain a hydrogel adhesive layer.
  • the back-end signal processing output module 12 can use the CC2640R2F series Bluetooth low-power wireless MCU of Texas Instruments as the core processor.
  • the back-end signal processing output module 12 is composed of a CC2640R2F core processing module 15 , a program programming module 18 , a clock crystal oscillator module 19 , a Bluetooth radio frequency module 17 and a power supply module 16 .
  • the CC2640R2F core processing module 15 can control the operation of the front-end state detection module 11, analyze and process the physiological signals collected by the front-end state detection module 11, and communicate with the mobile terminal through the Bluetooth radio frequency module 17 Computer interaction App20 for data interaction.
  • the program programming module 18 is used to write the programs and protocols required by the back-end signal processing output module 12 into the CC2640R2F core processing module 15 .
  • the clock crystal oscillator module 19 is used to assist the normal operation of the CC2640R2F core processing module 15, and the clock crystal oscillator module 19 uses two passive crystal resonators of 24Mh and 32.768kHz.
  • the bluetooth radio frequency module 17 adopts a differential antenna to ensure excellent data communication, and the impedance of the bluetooth radio frequency antenna is 50 ⁇ .
  • the power supply module 16 is composed of a button battery 21 with an output voltage of 3V, a boost chip 22 and a decoupling capacitor 23. The voltage of the button battery is processed by the boost chip 22 to output a stable voltage of 3.3V, and then grounded through two parallel 100nF After the capacitor is decoupled, it supplies power to the hardware level of the entire system.
  • the back-end signal processing output module 12 converts the blood oxygen photovolume waveforms of red light and infrared light collected by the front-end state detection module 11 into blood oxygen saturation through a specific blood oxygen algorithm.
  • Degree and pulse signal output, the flow of the specific blood oxygen algorithm is:
  • Step 1 The sampling rate of the blood oxygen detection circuit of the front-end state detection module is 100 Hz, and a window with a time domain length of 5 s is taken.
  • the back-end signal processing output module controls the front-end state detection module to start running, it will The received blood oxygen volume waveform data of red light and infrared light are transmitted into respective windows.
  • a 0.5Hz low-pass filter is performed on the blood oxygen photovolume waveform data of the red light and infrared light in the window to obtain the blood oxygen volume of the red light and infrared light respectively.
  • the DC component of the photovolume waveform then band-pass filter the blood oxygen photovolume waveform data of the red light and infrared light in the window from 0.5 Hz to 5 Hz to obtain the blood oxygen volume of the red light and infrared light respectively.
  • the AC component of the photoplethysm waveform is the AC component of the photoplethysm waveform.
  • Step 2 Use a specific peak-finding algorithm to process the AC component of the blood oxygen volume waveform of the infrared light to obtain the positions of the peaks of the blood oxygen volume waveform in the window, which are also the red The positions of the peaks of the optical blood oxygen volume waveform in the window.
  • the blood oxygen volume waveform is equivalent to the pulse waveform of the human body to a certain extent, so the average pulse of the measured object within 5 seconds can be calculated from the position of the peak value of the blood oxygen volume waveform in the window.
  • Step 3 The average ratio D1 of the DC component to the AC component of the red light corresponding to the peak position and the average ratio D2 of the DC component to the AC component of the infrared light can be determined according to the peak position of the blood oxygen volume waveform in the window. Then through the blood oxygen calculation formula calibrated according to Lambert Beer's theorem Map the average ratio to blood oxygen saturation data, and A, B, and C are constants obtained through a large number of experimental data.
  • Step 4 Transmit the calculated average pulse and blood oxygen saturation signals to the human-computer interaction App of the mobile terminal through the Bluetooth radio frequency module.
  • the window with a length of 5s in the time domain will move backward by the data length of 1s and repeat the above steps to calculate the average pulse and blood volume.
  • the signal of oxygen saturation is transmitted to the human-computer interaction App of the mobile terminal.
  • the front-end state detection module 11 adopts a printed circuit board based on a flexible material, so as to ensure the portability and comfort of the device, so that it can conform well to the skin of the measured object .
  • the back-end signal processing output module 12 can adopt common printed circuit board technology, or can use flexible material-based printed circuit board technology like the front-end state detection module.
  • the present invention provides a skin-attached sensing system for detection of postoperative skin flap and reconstructed limb blood flow state.
  • Computer interactive App communication
  • Figure 1 is a schematic diagram of the preparation method of the front-end state detection module of the epidermis-attached sensor system for postoperative skin flap and reconstructed limb blood flow state detection.
  • the preparation process of the front-end state detection module is described below with examples.
  • the MAX30102EFD+T blood oxygen detection chip and the TMP117AIDRVR semiconductor temperature sensor chip are selected to realize the functions of the blood oxygen detection circuit 13 and the body temperature detection circuit 14 of the front-end state detection module 11 .
  • Both MAX30102EFD+T and TMP117AIDRVR use the I2C bus to communicate with the CC2640R2F core processing module 15 of the back-end signal processing output module 12, and can share the same SCL and SDA ports.
  • Select CC2640R2FRHBR Bluetooth low-power wireless MCU as the core processor of the back-end signal processing output module 12, use the DIO3 and DIO4 ports of CC2640R2FRHBR as SCL and SDA ports respectively for data communication with the front-end state detection module, and the DIO10 port as The INT port is used to control the MAX30102EFD+T blood oxygen detection chip.
  • the 24MHz TSX-3225 of EPSON and the 32.768kHz FC-135 passive crystal resonator are selected as the crystal oscillator of the external clock crystal oscillator module 19 of the CC2640R2F core processing module 15 .
  • AN2051-24 with an impedance of 50 ⁇ is selected as the Bluetooth antenna of the Bluetooth RF module 17, and the circuit adopts a differential design to enhance signal stability.
  • TPS63001DRCR is selected as the boost chip of the power supply module 16, and a CR2032 button battery is used as the 3V input power supply of the power supply module 16.
  • the material of the flexible packaging layer can be a dark PDMS/carbon black mixed soft material, wherein the mass ratio of PDMS: carbon black is 100:1, and the mass ratio of PDMS prepolymer and curing agent is 10:1, adding In the plastic cup, keep stirring for 5 minutes to ensure that the curing agent and the prepolymer are mixed evenly.
  • the stirred and mixed prepolymer in a vacuum drying oven to evacuate, and let it stand for half an hour until the air bubbles are completely It can be removed after elimination.
  • the air pressure of the vacuum box is 0-0.1 atmosphere.
  • the device is placed on an adjustable temperature hot plate, the temperature is adjusted to 90 degrees Celsius, and the heating time is 30 minutes, so that the flexible packaging layer 5 can be prepared on the lead base layer 2 of the printed circuit board.
  • the acrylic plate mold 4 is bonded on the flexible packaging layer 5 by double-sided adhesive tape, and the benzophenone/ethanol solution 3 is evenly coated on the flexible packaging layer, wherein two of the benzophenone/ethanol solutions 3
  • the mass ratio of benzophenone and ethanol is 2:48; the treatment time of benzophenone/ethanol solution 3 is 10 minutes, and after the solution treatment is completed, nitrogen gas is introduced to dry the residual solution on the surface.
  • the acrylic plate mold 4 is completely covered with the quartz glass cover 8 , and air bubbles in the prepolymerized hydrogel solution 7 should be avoided during this operation.
  • the front-end state detection module 11 covered with the quartz glass plate cover 8 is placed under an ultraviolet light lamp 9 with a power of 60w and a wavelength of 365nm, and the illumination time is 40min, and a fully polymerized hydrogel adhesion layer can be obtained 10.
  • quartz glass cover 8 and the acrylic mold 4 are sequentially removed from the front-end state detection module to obtain the front-end state detection patch.
  • the pre-polymerized hydrogel solution 7 includes acrylamide monomer 701, N,N'-methylenebisacrylamide 702, tannic acid 703, glycerin 704, Ir2959 photoinitiator 705; carboxymethyl chitosan 706;
  • the mass fractions of the acrylamide 701, carboxymethyl chitosan 706, and tannic acid 703 are respectively 20-30wt%, 1-3wt%, 0.5-2wt%; further preferably, the acrylamide monomer 701 weighs The mass is 2.5g; the carboxymethyl chitosan 706 and the tannic acid 703 are respectively configured as an aqueous carboxymethyl chitosan solution and a tannic acid solution, which are sucked by a 1000 micro
  • the volume ratio of deionized water and glycerol is 1:1, and it is injected into a 30ml sample bottle at a constant speed; a glass rod is used for stirring in the stirring operation, and the stirring time is 30min; the crosslinking agent is N,N'- Methylenebisacrylamide aqueous solution 702, the initiator is Irgacure2959 and added to the mixed solution in turn; the ultrasonic vibration is carried out by using an ultrasonic machine with a power of 100w, the ultrasonic temperature is 25 degrees Celsius, and the ultrasonic is 30min; the degassing operation is as follows: After passing nitrogen gas into the prepolymerized hydrogel solution 7 at a constant speed for 30 minutes, a completely degassed prepolymerized hydrogel solution 7 was obtained.
  • the pre-polymerized hydrogel solution 7 is injected into the mold 4 on the flexible packaging layer 5; wherein the flexible packaging layer 5 needs to be soaked in a benzophenone/ethanol solution 3 for 30 minutes; it is completely covered with a quartz glass cover 8 Above the acrylic mold 4; the UV-induced polymerization time is 40 minutes, and the hydrogel adhesive layer 10 can be prepared.
  • Fig. 4 is the circuit schematic diagram of the skin-attached sensor system for detecting the blood flow state of the postoperative skin flap and the reconstructed limb.
  • the programs and protocols to be run are written into the CC2640R2F core processing module 15 through the program programming module 18 of the back-end signal processing output module, and then the user uses the mobile terminal human-computer interaction App 20 to control the underlying hardware system through Bluetooth to start running
  • the blood oxygen detection circuit 13 and the body temperature detection circuit 14 of the front-end state detection module 11 transmit the collected blood oxygen photovolume waveform data and body temperature data of red light and infrared light to the rear signal processing output module 12 through the I2C bus.
  • the CC2640R2F core processing module 15 performs processing and analysis, and then the CC2640R2F core processing module 15 sends the processed blood oxygen saturation, body temperature and pulse signal to the mobile terminal human-computer interaction App 20 for real-time display through the Bluetooth radio frequency module 17.
  • the epidermis-attached sensor system for detecting the blood flow state of the postoperative skin flap and the reconstructed limb must be used in conjunction with a specially designed mobile terminal human-computer interaction app.
  • the bluetooth radio frequency module 17 outputted by the back-end signal processing and the mobile terminal human-computer interaction app 20 realize wireless bluetooth communication, and transmit blood oxygen saturation, body temperature and pulse data.
  • the APP has simple operation steps, low professional knowledge requirements, friendly human-computer interaction interface, and can be adapted to people of different ages.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Pulmonology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,属于医疗健康监测领域,包括前端状态检测模块(11)和后端信号处理输出模块(12),前端状态检测模块(11)实时采集术后皮瓣和重建肢体的血氧饱和度和温度状态,并采用柔性封装层(5)对印刷电路板进行封装,对柔性封装层(5)表面化学处理后,注入预聚合水凝胶溶液(7)进行交联得到水凝胶粘附层(10),以保证能长时间紧密贴附皮肤,同时避免皮肤表面细菌感染;后端信号处理输出模块(12)对血氧饱和度和温度数据处理,实时发送到移动终端。可以在线监测术后皮瓣与重建肢体的血流健康状态,同时当人体血氧饱和度低于正常值或体温、脉搏信号异常时,移动终端会触发报警功能,及时提醒医护人员和患者。

Description

术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统 【技术领域】
本发明属于医疗健康监测领域,更具体地,涉及一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统。
【背景技术】
根据美国癌症协会提供的数据可知,近五年来乳腺癌每年新增病例约252,710例,而头颈癌患者病例总数超过822,000例,其中乳腺癌治疗常采用乳房切除手术,头颈癌治疗常采用头颈部肿瘤消融术,考虑到患者手术部位的美观以及降低伤口感染的概率,伤口部位的重建尤为重要。其中皮瓣移植手术极大提高了皮肤组织的重建能力并有效避免术后部位的感染,同时能够重建面部、乳房、肢体等部位特征,在这两种癌症康复治疗中得到了广泛应用。
皮瓣移植手术具体实施过程为将身体的一个区域分离和重新连接皮肤和血管到另一个区域,医护人员通常采用显微手术重新接上血管。皮瓣移植手术的成功率为95%以上,其中导致皮瓣失败的原因是血管损伤和转移组织的缺血,多发生在术后24小时内。血管损害的原因包括动脉、静脉病理性异常,如外部静脉压迫和静脉血栓形成,17%的游离皮瓣在手术期间和术后出现血管损伤。然而,通常通过临床护理和二次手术补救,报道的抢救成功率仅为70%至80%。1978年研究人员证实缺血时间的延长与无回流现象导致的手术血管重建陈功率显著降低,缺血血管细胞的肿胀导致血管塌陷,内皮细胞的收缩导致微血栓的形成和增殖。皮瓣缺血12小时后,将会导致皮瓣移植手术失败。因此,早期进行皮瓣状态实时监测对于提高皮瓣移植成功率和降低血管损害具有重要的意义。
对于术后皮瓣的常规监测,通常基于医护人员通过观察皮瓣的颜色、肿胀程度、水肿、温度和是否出血等特征来判断皮瓣健康状态,但这些观察指标无法得到一个量化的标准,高度依赖医护人员的经验,因此需要对相关医护人员进行培训。由于皮瓣的血管损伤和缺血症状可能发生于术后24小时内,因此医护人员需要定期对患者进行皮瓣的监测,因此需要反复解开包扎术后伤口,这对患者和医护人员都造成了很大的困扰。
近些年来,科研人员相继开发出了多种新型皮瓣检测技术与仪器,其中包括基于皮瓣中血流血管检测技术;手持多普勒超声仪,植入式多普勒超声仪,彩色超声仪,荧光血管造影技术和激光多普勒血流测量仪;基于监测组织代谢和缺血的技术:近红外光谱仪和微透析技术。这些新兴的测试仪器对提高皮瓣移植成功率和早期预警皮瓣血管损伤和缺血等症状具有重要的意义,但上述测量技术中仍然存在一定的局限性,如植入式检测,非持续性测量,操作复杂,成本高,体积大等缺陷,因此开发一种低成本、可穿戴,非侵入式持续检测术后皮瓣与重建肢体血流状态表皮贴附式传感系统具有广阔的应用前景。
根据皮瓣失败原因分析和新型皮瓣检测技术可知,术后皮瓣的血管健康状态尤为重要,因此采用非侵入式血氧传感器测量皮瓣的血氧能进一步量化判定皮瓣的健康状况,该检测方法的物理原理为光电容积法,通过检测人体血管搏动时血液对光吸收量的变化以此来计算。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其目的在于通过结构设计和使用柔性材料和水凝胶粘附层赋予前端血氧、温度信号检测模块能够紧密贴附人体皮肤并共形的能力,同时保证长时间检测,避免细菌滋生引起的皮肤炎症,通过设计电路实现后端信号处理模块对前端传感数据的接受、 处理与发送。
为实现上述目的,按照本发明的一个方面,提供了一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,包括前端状态检测模块和后端信号处理输出模块,其中,
所述前端状态检测模块以柔性封装材料作为封装层,并且所述封装层的表面设有水凝胶粘附层,所述水凝胶粘附层用于使所述前端状态检测模块贴附于被测对象的皮肤表面;所述前端状态检测模块用于采集被测对象的血氧光容积波形和体温数据;
所述后端信号处理输出模块直接与所述前端状态检测模块连接并接收血氧光容积波形信号和体温数据,所述后端信号处理模块用于将血氧光容积波形信号进行处理计算得到被测对象的血氧饱和度和脉搏信号,进而将被测对象的血氧饱和度、体温和脉搏信号发送至移动终端。
优选地,所述前端状态检测模块包括以柔性材料为基底的印刷电路板、血氧检测电路和体温检测电路,所述血氧检测电路用于采集被测对象的血氧光容积波形,所述体温检测电路用于检测被测对象的体温数据。
优选地,所述后端信号处理输出模块将所述血血氧检测电路采集到的红光和红外光的血氧光容积波形在固定时域长度的窗内分别进行低通滤波和带通滤波得到血氧光容积波形的直流分量和交流分量,进而用寻峰算法对红外光的血氧光容积波形的交流分量进行处理得出窗内光容积波形峰值的位置,从而计算得到固定时域长度内的平均脉搏;并且通过光容积波形峰值的位置确定峰值点的红光和红外光的交流分量与直流分量的比值,再通过标定的血氧计算公式将固定时域长度内的平均比值映射成血氧饱和度,将窗按照等长度的时间间隔移动,从而得到血氧饱和度和脉搏的时间序列信号,进而将被测对象的血氧饱和度、脉搏信号实时发送至所述移动终端。
优选地,所述后端信号处理输出模块包括CC2640R2F核心处理模块、供电模块、蓝牙射频模块、程序烧写模块和时钟晶振模块;所述程序烧写 模块用于将所需运行的程序和协议写入所述CC2640R2F核心处理模块;所述供电模块用于给所述CC2640R2F核心处理模块及前端状态检测模块供电;所述蓝牙射频模块用于与移动终端通信连接;所述时钟晶振模块用于辅助CC2640R2F核心处理模块正常运行。
优选地,所述水凝胶粘附层为前驱单体、溶剂和聚合添加剂制备而成,其中所述前驱单体包括质量分数为20-30wt%的丙烯酰胺、1-3wt%的羧甲基壳聚糖和0.5-2wt%的单宁酸;所述溶剂包括体积比为1:1的去离子水和丙三醇;所述聚合添加剂包括交联剂N,N’-亚甲基双丙烯酰胺和引发剂Irgacure2959。
优选地,所述交联剂N,N’-亚甲基双丙烯酰胺质量分数为丙烯酰胺单体的0.02-0.1wt%;所述引发剂Irgacure2959质量分数为预聚合水凝胶溶液的0.3-1wt%。
优选地,所述传感系统包括前端状态检测模块的制备以及后端信号处理输出模块的连接;
所述前端状态检测模块的制备包括将设计有血氧检测电路和体温检测电路的印刷电路板固定在石英玻璃平面上,并浇灌柔性封装层;将亚克力板模具通过双面胶粘合在柔性封装层上,并将二苯甲酮/乙醇溶液均匀涂敷在柔性封装层上,其中二苯甲酮/乙醇溶液中二苯甲酮、乙醇的质量比为2:48;二苯甲酮/乙醇溶液处理的时间为10min,待溶液处理完毕后,通入氮气将表面的残余溶液吹干;将预聚合水凝胶溶液注入二苯甲酮/乙醇溶液处理过的柔性封装层上表面,待预聚合水凝胶溶液刚好漫过亚克力模具的上边沿时,停止注入;将石英玻璃盖具完全覆盖亚克力板模具;将盖有石英玻璃板盖具的前端状态检测模块置于功率为60w,波长为365nm的紫外光灯下,光照时间为40min,得到聚合完全的水凝胶粘附层;最后,依次将石英玻璃盖具和亚克力模具从前端状态检测模块中移除,即可制得前端状态检测模块贴片;
后端信号处理输出模块的连接包括选用MAX30102EFD+T血氧检测芯片和TMP117AIDRVR半导体温度传感芯片作为前端状态检测模块的血氧检测电路和体温检测电路,MAX30102EFD+T和TMP117AIDRVR均采用I2C总线与所述后端信号处理输出模块的CC2640R2F核心处理模块进行通讯,可共用同一个SCL和SDA端口;选用CC2640R2FRHBR蓝牙低功耗无线MCU作为所述后端信号处理输出模块的核心处理器,将CC2640R2FRHBR的DIO3和DIO4端口分别作为SCL和SDA端口与所述前端状态检测模块进行数据通讯,DIO10端口作为INT端口用于控制MAX30102EFD+T血氧检测芯片;选用EPSON的24MHz的TSX-3225和32.768kHz的FC-135无源晶体谐振器作为CC2640R2F核心处理模块的外部时钟晶振电路的晶振;选用阻抗为50Ω的AN2051-24作为蓝牙射频模块的蓝牙天线;选用TPS63001DRCR作为供电模块的升压芯片,CR2032纽扣电池作为供电模块的3V输入电源。
优选地,所述预聚合水凝胶溶液的制备包括将丙烯酰胺类单体,抗菌类单体,粘性单体溶液依次加入玻璃样品瓶,密封后在振荡器上充分震荡均匀,得到前驱单体混合物;
向得到前驱单体混合物中加入去离子水和有机醇混合溶液,搅拌混合均匀,并依次加入交联剂、引发剂,密封后,放入超声机超声震荡,待玻璃样品瓶中的溶质溶解完全,进行脱气处理,得到预聚合水凝胶溶液。
优选地,所述柔性封装层的材料可采用深色PDMS/碳黑混合软材料,其中PDMS:碳黑质量比为100:1,PDMS的预聚体和固化剂的质量配比为10:1,依次加入塑料杯中,持续搅拌5分钟以保证固化剂和预聚体混合均匀;将采用1ml医用注射器匀速吸取除去起泡后的聚二甲基硅氧烷均匀涂敷在印刷电路板导线基底层上,静止2min,待聚二甲基硅氧烷平整扩散在印刷电路板导线基底层后,放在可调温热板上,温度调为90摄氏度,加热时间为30min,即可实现在印刷电路板导线基底层制备柔性封装层。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,由于均采用了印刷电路板的工艺,容易实现大规模批量生产,其中前端状态检测模块采用以柔性材料为基底的印刷电路板,并且在表面覆盖水凝胶粘附层,以此确保了所述前端状态检测模块可以长时间贴附在被测对象的皮肤上保持共形,且不会引起皮肤的感染,具有极佳的穿戴舒适性。后端信号处理输出模块采用了低功耗的核心处理器,可以进行超长时间的待机工作,并且采用了蓝牙5.0通讯协议,使得采集数据能够快速稳定地传输与分析;尽管在近些年来皮瓣移植和肢体重建手术的成功率已经能够达到95%以上,但在术后24小时内必须要进行严密地监控。对于术后皮瓣的常规监测,通常基于医护人员通过观察皮瓣的颜色、肿胀程度、水肿、温度和是否出血等特征来判断皮瓣健康状态,但这些观察指标无法得到一个高度量化的标准,高度依赖医护人员的经验,本发明可将皮瓣或重建肢体的血氧饱和度、皮温和脉搏定量化地显示出来,当被测对象处于一个危险的状态时,移动终端人机交互App会发出警报告知医护人员,以便患者在最短的时间内得到救治。本发明既能够增加医护人员对于术后皮瓣与重建肢体状态临床鉴定的准确性,同时也大大减轻了医护人员的工作强度,具有深远的意义。
【附图说明】
图1是术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统的前端状态检测模块制作工艺示意图;
图2是术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统的水凝胶粘附层组成示意图;
图3是术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统的器件结构示意图;
图4是术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统的电路组成原理图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-芯片层;2-印刷电路板导线基底层;3-二苯甲酮/乙醇溶液;4-亚克力模具;5-柔性封装层;6-医用注射器;7-预聚合水凝胶溶液;701-丙烯酰胺;702-N,N’-亚甲基双丙烯酰胺;703-单宁酸;704-丙三醇;705-Ir2959光引发剂;706-羧甲基壳聚糖;8-石英玻璃盖具;9-紫外光灯具;10-水凝胶粘附层;11-前端状态检测模块;12-后端信号处理输出模块;13-血氧检测电路;14-体温检测电路;15-CC2640R2F核心处理模块;16-供电模块;17-蓝牙射频模块;18-程序烧写模块;19-时钟晶振模块;20-移动终端人机交互APP;21-3V纽扣电池;22-升压芯片;23-去耦电容。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图2所示,本发明提出了一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,该系统包括前端状态检测模块11,后端信号处理输出模块12与移动终端人机交互App20,其中:所述前端状态检测模块11是集成了血氧检测电路13和体温检测电路14的以柔性材料为基底的印刷电路板(FPCB),可以采集被测对象的血氧光容积波形和体温数据。在印刷电路板的表面覆盖有一层柔性封装层5,并且其表面具有水凝胶粘附层10,从而使得整个前端状态检测模块11可以贴附在被测对象的皮肤上,同时避免了因为长久贴附而造成的细菌感染。
更进一步的说明,所述后端信号处理输出模块12将采集到的红光和红外光的血氧光容积波形在固定时域长度的窗内分别都进行低通滤波和带通 滤波得到血氧光容积波形的直流分量和交流分量。用寻峰算法对红外光的血氧光容积波形的交流分量进行处理得出窗内光容积波形峰值的位置,从而可以计算得到固定时域长度内的平均脉搏。除了可以计算平均脉搏,通过光容积波形峰值的位置还可以确定峰值点的红光和红外光的交流分量与直流分量的比值,再通过标定的血氧计算公式将固定时域长度内的平均比值映射成血氧饱和度。将窗按照等长度的时间间隔移动,就可以得到血氧饱和度和脉搏的时间序列信号。所述后端信号处理输出模块将血氧饱和度、体温和脉搏信号通过蓝牙射频模块实时发送到移动终端人机交互App。。
所述移动终端人机交互App所对应的移动终端平台为智能手机或者个人电脑。所述移动终端人机交互App可以实时显示被测对象的血氧饱和度、体温和脉搏信号。当被测对象的血氧饱和度和体温持续一段时间处于较低的水平或是没有检测到被测对象的脉搏信号时,App内部的报警功能就会启动。使用者可以通过移动终端人机交互App控制整个检测系统的运行与停止。所述移动终端人机交互App可以实时地将接受到的血氧饱和度、体温和脉搏按照时间序列存储到移动终端平台本地。
更进一步的说明,所述前端状态检测模块11直接与所述后端信号处理输出模块12通过连接线相连。所述后端处理输出模块12通过连接线为所述前端状态检测模块11提供稳定的工作电压和接地电位,并且所述后端信号处理输出模块12可以直接控制所述前端状态检测模块11的运作,而所述前端状态检测模块11也将采集到的生理信号数据通过连接线直接传输给所述后端信号处理输出模块12。
更进一步的说明,所述前端状态检测模块11的血氧检测电路13和体温检测电路14可以采用商用的血氧检测芯片和半导体温度传感芯片来实现其功能。血氧检测芯片集成光电二极管和红光LED以及红外光LED。血氧检测芯片和半导体温度传感芯片不会被所述柔性封装层和所述水凝胶粘附层10覆盖,直接与被测对象的皮肤部分接触,进而采集被测对象的红光和 红外光的血氧光容积波形以及皮肤温度数据。所述血氧检测电路13的采样率为100Hz,所述体温检测电路14的采样率为1Hz。
更进一步的说明,所述前端状态检测模块11的水凝胶粘附层10的前驱单体,分别选用丙烯酰胺,羧甲基壳聚糖,单宁酸,其中质量分数分别为20-30wt%,1-3wt%,0.5-2wt%;所述水凝胶粘附层的溶剂,去离子水和丙三醇体积比为1:1;所述水凝胶粘附层的聚合添加剂,交联剂为N,N’-亚甲基双丙烯酰胺,质量分数为丙烯酰胺单体的0.02-0.1wt%;引发剂为Irgacure2959,质量分数为预聚合水凝胶溶液的0.3-1wt%。
作为本发明的优选实施例,所述水凝胶粘附层的制备方法包括:
步骤一:所述丙烯酰胺单体称取质量为2.5g;所述羧甲基壳聚糖单体、单宁酸单体配置为均匀的溶液,通过量程为1000微升移液枪,均匀滴入30ml玻璃瓶中;其中前驱单体混合物在振荡器上震荡直至溶液均匀混合。
步骤二:所述去离子水和丙三醇体积比为1:1,匀速注入到30ml样品瓶中,搅拌操作中采用玻璃棒搅拌,搅拌时间为30min;所述交联剂N,N’-亚甲基双丙烯酰胺水溶液、光引发剂Irgacure2959依次加入混合溶液中;其中超声震荡,采用功率为100w超声机,超声温度为25摄氏度,超声30min;所述脱气处理操作为,向装有预聚合水凝胶溶液匀速通入氮气30min后,得到脱气完全的预聚合水凝胶溶液。
步骤三:所述预聚合水凝胶溶液采用注射器匀速吸取,同时将预聚合水凝胶溶液注入到柔性封装层上的亚克力板模具中;其中所述柔性封装层需采用二苯甲酮/乙醇溶液进行浸泡30min;密封操作中,采用石英玻璃片完全覆盖在模具上方,采用功率为60w,波长为365nm紫外灯,光引发聚合40min,即可制得水凝胶粘附层。
作为本发明的优选实施例,考虑到整个系统低功耗和小巧灵便的特性,所述后端信号处理输出模块12可采用Texas Instruments的CC2640R2F系列蓝牙低功耗无线MCU作为核心处理器。所述后端信号处理输出模块12 由CC2640R2F核心处理模块15、程序烧写模块18、时钟晶振模块19、蓝牙射频模块17和供电模块16组成。所述CC2640R2F核心处理模块15能够控制所述前端状态检测模块11的运行,将所述前端状态检测模块11采集到的生理信号进行分析处理,并且通过所述蓝牙射频模块17与所述移动终端人机交互App20进行数据交互。所述程序烧写模块18用于将所述后端信号处理输出模块12所需要运行的程序和协议写入CC2640R2F核心处理模块15。所述时钟晶振模块19用于辅助CC2640R2F核心处理模块15正常运行,所述时钟晶振模块19采用了24Mh和32.768kHz两个无源的晶体谐振器。所述蓝牙射频模块17采用差分天线的形式确保了优良的数据通讯,蓝牙射频天线的阻抗为50Ω。供电模块16由输出电压为3V的纽扣电池21、升压芯片22和去耦电容23组成,纽扣电池的电压经过升压芯片22的处理输出3.3V的稳定电压,再通过两个并联的100nF接地电容进行解耦后给整个系统的硬件层面供电。
作为本发明的优选实施例,所述后端信号处理输出模块12通过特定的血氧算法将由所述前端状态检测模块11采集到的红光和红外光的血氧光容积波形转换为血氧饱和度和脉搏信号输出,所述特定的血氧算法的流程为:
步骤一:所述前端状态检测模块的血氧检测电路的采样率为100Hz,取时域长度为5s的窗,当所述后端信号处理输出模块控制所述前端状态检测模块开始运行后,将接受到的红光和红外光的血氧光容积波形数据传入各自的窗内。当数据长度到达窗的长度时,对窗内的所述红光和红外光的血氧光容积波形数据先各做一次0.5Hz的低通滤波,分别得到所述红光和红外光的血氧光容积波形的直流分量;接着再对窗内的所述红光和红外光的血氧光容积波形数据各一次0.5Hz到5Hz的带通滤波,分别得到所述红光和红外光的血氧光容积波形的交流分量。
步骤二:用特定的寻峰算法对所述红外光的血氧光容积波形的交流分量进行处理,得到所述红外光的血氧光容积波形在窗内的各个峰值所在的 位置,同时也是红光的血氧光容积波形在窗内的各个峰值所在的位置。所述血氧光容积波形在一定程度上等价于人体的脉搏波形,因此可以通过窗内所述血氧光容积波形峰值所在的位置计算得到在5s内被测对象的平均脉搏。
步骤三:通过窗内所述血氧光容波形积峰值的位置可以确定对应峰值位置红光的直流分量与交流分量的平均比值D1和红外光的直流分量与交流分量的平均比值D2。再通过根据朗博比尔定理标定的血氧计算公式
Figure PCTCN2021121144-appb-000001
将平均比值映射成血氧饱和度数据,A、B、C为通过大量实验数据得到的常数。
步骤四:将计算得到的平均脉搏和血氧饱和度的信号通过所述蓝牙射频模块向所述移动终端人机交互App传输。当后端信号处理输出模块再次接收到的血氧光容积波形的数据长度达到1s时,所述时域长度为5s的窗将向后移动1s的数据长度并再次重复上述步骤计算平均脉搏和血氧饱和度的信号并向所述移动终端人机交互App传输。
作为本发明的优选实施例,所述前端状态检测模块11采用以柔性材料为基底的印刷电路板,以此确保器件的便携性和舒适性,使之能与被测对象的皮肤良好地共形。所述后端信号处理输出模块12可以采用普通的印刷电路板工艺也可以与述所前端状态检测模块一样采用以柔性材料为基底的印刷电路板工艺。
下面通过具体实施例来进一步说明本发明的技术方案。
本发明提供了术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,该系统可以对被测对象的血氧饱和度、皮温和脉搏信号进行采集,再通过蓝牙与移动终端人机交互App通讯。
如图1所示为术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统的前端状态检测模块制备方法示意图,下面结合实例说明该前端状态检测 模块的制备过程。
选用MAX30102EFD+T血氧检测芯片和TMP117AIDRVR半导体温度传感芯片来实现所述前端状态检测模块11的血氧检测电路13和体温检测电路14的功能。MAX30102EFD+T和TMP117AIDRVR均采用I2C总线与所述后端信号处理输出模块12的CC2640R2F核心处理模块15进行通讯,可共用同一个SCL和SDA端口。
选用CC2640R2FRHBR蓝牙低功耗无线MCU作为所述后端信号处理输出模块12的核心处理器,将CC2640R2FRHBR的DIO3和DIO4端口分别作为SCL和SDA端口与所述前端状态检测模块进行数据通讯,DIO10端口作为INT端口用于控制MAX30102EFD+T血氧检测芯片。选用EPSON的24MHz的TSX-3225和32.768kHz的FC-135无源晶体谐振器作为CC2640R2F核心处理模块15的外部时钟晶振模块19的晶振。选用阻抗为50Ω的AN2051-24作为蓝牙射频模块17的蓝牙天线,电路采用差分的设计以增强信号的稳定性。选用TPS63001DRCR作为供电模块16的升压芯片,CR2032纽扣电池作为供电模块16的3V输入电源。
将设计有血氧检测电路和体温检测电路的印刷电路板固定在石英玻璃平面上,并确保整个印刷电路板平整,在浇灌柔性封装层5之前,用干纸巾擦拭印刷电路板导线基底层2与芯片层1表面的灰尘,确保表面无杂质。
其中柔性封装层的材料可采用深色PDMS/碳黑混合软材料,其中PDMS:碳黑质量比为100:1,其中PDMS的预聚体和固化剂的质量配比为10:1,依次加入塑料杯中,持续搅拌5分钟以保证固化剂和预聚体混合均匀,为除去其中的气泡,将搅拌混合后的预聚体置于真空干燥箱中抽真空,静置半小时,待气泡完全消除后即可取出。所述真空箱的气压为0-0.1个大气压。然后,将采用1ml医用注射器匀速吸取除去起泡后的聚二甲基硅氧烷均匀涂敷在印刷电路板导线基底层2上,静止2min,待聚二甲基硅氧烷平整扩散在印刷电路板导线基底层2后,将该器件放在可调温热板上, 温度调为90摄氏度,加热时间为30min,即可实现在印刷电路板导线基底层2制备柔性封装层5。
接着,将亚克力板模具4通过双面胶粘合在柔性封装层5上,并将二苯甲酮/乙醇溶液3均匀涂敷在柔性封装层上,其中二苯甲酮/乙醇溶液3中二苯甲酮、乙醇的质量比为2:48;二苯甲酮/乙醇溶液3处理的时间为10min,待溶液处理完毕后,通入氮气将表面的残余溶液吹干。
然后,采用医用注射器6将预聚合水凝胶溶液7注入二苯甲酮/乙醇溶液3处理过的柔性封装层5上表面,待预聚合水凝胶溶液7刚好漫过亚克力模具4的上边沿时,停止注入。
接着,将石英玻璃盖具8完全覆盖亚克力板模具4,该操作过程中应避免预聚合水凝胶溶液7中产生气泡。
随后,将盖有石英玻璃板盖具8的前端状态检测模块11置于功率为60w,波长为365nm的紫外光灯具9下,光照时间为40min,即可得到聚合完全的水凝胶粘附层10。
最后,依次将石英玻璃盖具8和亚克力模具4从前端状态检测模块中移除,即可制得前端状态检测贴片。
在本实例中,如图2所示的术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统片的水凝胶粘附层组成示意图。其中预聚合水凝胶溶液7包括丙烯酰胺单体701、N,N’-亚甲基双丙烯酰胺702、单宁酸703、甘油704、Ir2959光引发剂705;羧甲基壳聚糖706;所述丙烯酰胺701、羧甲基壳聚糖706、单宁酸703的质量分数分别为20-30wt%,1-3wt%,0.5-2wt%;进一步优选,所述丙烯酰胺单体701称取质量为2.5g;所述羧甲基壳聚糖706、单宁酸703分别配置为羧甲基壳聚糖水溶液、单宁酸溶液通过量程为1000微升移液枪吸取均匀滴入30ml玻璃瓶中;其中前驱单体混合物在振荡器上震荡直至溶液均匀混合。所述去离子水和丙三醇体积比为1:1,匀速注入到30ml样品瓶中;所述搅拌操作中采用玻璃棒搅拌,搅拌时间为30min; 所述交联剂为N,N’-亚甲基双丙烯酰胺水溶液702,所述引发剂为Irgacure2959依次加入混合溶液中;所述超声震荡,采用功率为100w超声机,超声温度为25摄氏度,超声30min;所述脱气处理操作为,向装有预聚合水凝胶溶液7匀速通入氮气30min后,得到脱气完全的预聚合水凝胶溶液7。同时将预聚合水凝胶溶液7注入到柔性封装层5上的模具4中;其中所述柔性封装层5需采用二苯甲酮/乙醇溶液3进行浸泡30min;采用石英玻璃盖具8完全覆盖在亚克力模具4上方;紫外光引发聚合时间为40min,即可制得水凝胶粘附层10。
在本实例中,如图4所示的是术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统的电路原理图。首先通过所述后端信号处理输出模块的程序烧写模块18将所需运行的程序和协议写入CC2640R2F核心处理模块15,接着使用者运用移动终端人机交互App20通过蓝牙控制底层硬件系统开始运行,所述前端状态检测模块11的血氧检测电路13和体温检测电路14将采集到的红光和红外光的血氧光容积波形数据和体温数据通过I2C总线传输到后信号处理输出模块12的CC2640R2F核心处理模块15进行处理与分析,接着再由CC2640R2F核心处理模块15将处理后得到的血氧饱和度、体温和脉搏信号再通过蓝牙射频模块17发送到移动终端人机交互App20进行实时显示。
本发明中术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统须配合专门设计移动终端人机交互App使用。通过所述后端信号处理输出的蓝牙射频模块17与移动终端人机交互APP20实现无线蓝牙通信,传输血氧饱和度、体温和脉搏数据。APP操作步骤简便,专业知识水平要求低,人机交互界面友好,能够适应于不同年龄段的人群。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,包括前端状态检测模块(11)和后端信号处理输出模块(12),其中,
    所述前端状态检测模块(11)以柔性封装材料作为封装层,并且所述封装层的表面设有水凝胶粘附层(10),所述水凝胶粘附层(10)用于使所述前端状态检测模块(11)贴附于被测对象的皮肤表面;所述前端状态检测模块(11)用于采集被测对象的血氧光容积波形和体温数据;
    所述后端信号处理输出模块(12)直接与所述前端状态检测模块(11)连接并接收血氧光容积波形信号和体温数据,所述后端信号处理模块(12)用于将血氧光容积波形信号进行处理计算得到被测对象的血氧饱和度和脉搏信号,进而将被测对象的血氧饱和度、体温和脉搏信号发送至移动终端。
  2. 根据权利要求1所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述前端状态检测模块(11)包括以柔性材料为基底的印刷电路板、血氧检测电路(13)和体温检测电路(14);所述血氧检测电路(13)和体温检测电路(14)设置于所述印刷电路板,所述血氧检测电路(13)用于采集被测对象的血氧光容积波形,所述体温检测电路(14)用于检测被测对象的体温数据。
  3. 根据权利要求2所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述后端信号处理输出模块(12)将所述血血氧检测电路(11)采集到的红光和红外光的血氧光容积波形在固定时域长度的窗内分别进行低通滤波和带通滤波得到血氧光容积波形的直流分量和交流分量,进而用寻峰算法对红外光的血氧光容积波形的交流分量进行处理得出窗内光容积波形峰值的位置,从而计算得到固定时域长度内的平均脉搏;并且通过光容积波形峰值的位置确定峰值点的红光和红外光的交 流分量与直流分量的比值,再通过标定的血氧计算公式将固定时域长度内的平均比值映射成血氧饱和度,将窗按照等长度的时间间隔移动,从而得到血氧饱和度和脉搏的时间序列信号,进而将被测对象的血氧饱和度、脉搏信号实时发送至所述移动终端。
  4. 根据权利要求3所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述后端信号处理输出模块(12)包括CC2640R2F核心处理模块(15)、供电模块(16)、蓝牙射频模块(17)、程序烧写模块(18)和时钟晶振模块(19);所述程序烧写模块(18)用于将所需运行的程序和协议写入所述CC2640R2F核心处理模块(15);所述供电模块(16)用于给所述CC2640R2F核心处理模块(15)及前端状态检测模块(11)供电;所述蓝牙射频模块(17)用于与移动终端通信连接;所述时钟晶振模块(19)用于辅助CC2640R2F核心处理模块(15)正常运行。
  5. 根据权利要求1所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述水凝胶粘附层为前驱单体、溶剂和聚合添加剂制备而成,其中所述前驱单体包括质量分数为20-30wt%的丙烯酰胺、1-3wt%的羧甲基壳聚糖和0.5-2wt%的单宁酸;所述溶剂包括体积比为1:1的去离子水和丙三醇;所述聚合添加剂包括交联剂N,N’-亚甲基双丙烯酰胺和引发剂Irgacure2959。
  6. 根据权利要求5所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述交联剂N,N’-亚甲基双丙烯酰胺质量分数为丙烯酰胺单体的0.02-0.1wt%;所述引发剂Irgacure2959质量分数为预聚合水凝胶溶液的0.3-1wt%。
  7. 根据权利要求1-6任一项所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述前端状态检测模块的制备包括将设计有血氧检测电路和体温检测电路的印刷电路板固定在石英玻璃平面 上,并浇灌柔性封装层;将亚克力板模具通过双面胶粘合在柔性封装层上,并将二苯甲酮/乙醇溶液均匀涂敷在柔性封装层上,其中二苯甲酮/乙醇溶液中二苯甲酮、乙醇的质量比为2:48;二苯甲酮/乙醇溶液处理的时间为10min,待溶液处理完毕后,通入氮气将表面的残余溶液吹干;将预聚合水凝胶溶液注入二苯甲酮/乙醇溶液处理过的柔性封装层上表面,待预聚合水凝胶溶液刚好漫过亚克力模具的上边沿时,停止注入;将石英玻璃盖具完全覆盖亚克力板模具;将盖有石英玻璃板盖具的前端状态检测模块置于功率为60w,波长为365nm的紫外光灯下,光照时间为40min,得到聚合完全的水凝胶粘附层;最后,依次将石英玻璃盖具和亚克力模具从前端状态检测模块中移除,即可制得前端状态检测模块贴片。
  8. 根据权利要求7所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述预聚合水凝胶溶液的制备包括将丙烯酰胺类单体,抗菌类单体,粘性单体溶液依次加入玻璃样品瓶,密封后在振荡器上充分震荡均匀,得到前驱单体混合物;
    向得到前驱单体混合物中加入去离子水和有机醇混合溶液,搅拌混合均匀,并依次加入交联剂、引发剂,密封后,放入超声机超声震荡,待玻璃样品瓶中的溶质溶解完全,进行脱气处理,得到预聚合水凝胶溶液。
  9. 根据权利要求7所述一种术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统,其特征在于,所述柔性封装层的材料采用深色PDMS/碳黑混合软材料,其中PDMS:碳黑质量比为100:1,PDMS的预聚体和固化剂的质量配比为10:1,依次加入塑料杯中,持续搅拌5分钟以保证固化剂和预聚体混合均匀;将采用1ml医用注射器匀速吸取除去起泡后的聚二甲基硅氧烷均匀涂敷在印刷电路板导线基底层上,静止2min,待聚二甲基硅氧烷平整扩散在印刷电路板导线基底层后,放在可调温热板上,温度调为90摄氏度,加热时间为30min,即可实现在印刷电路板导线基底层制备柔性封装层。
PCT/CN2021/121144 2021-09-14 2021-09-28 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统 WO2023039946A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/290,695 US20240260845A1 (en) 2021-09-14 2021-09-28 On-skin sensing system for detecting blood flow status in postoperative flap and reconstructed limb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111074743.X 2021-09-14
CN202111074743.XA CN113729654B (zh) 2021-09-14 2021-09-14 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统

Publications (1)

Publication Number Publication Date
WO2023039946A1 true WO2023039946A1 (zh) 2023-03-23

Family

ID=78738689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121144 WO2023039946A1 (zh) 2021-09-14 2021-09-28 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统

Country Status (3)

Country Link
US (1) US20240260845A1 (zh)
CN (1) CN113729654B (zh)
WO (1) WO2023039946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116649946A (zh) * 2023-06-16 2023-08-29 徐州医科大学附属医院 一种基于射频技术的微创皮下神经介入芯片

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114259219A (zh) * 2021-12-22 2022-04-01 华中科技大学 一种一次性术后血运检测监测系统及制备方法
CN115005791B (zh) * 2022-05-31 2024-08-06 华中科技大学 一种集成压力感知的可变光强血运监测系统、制备及应用
CN117898681B (zh) * 2024-03-19 2024-06-21 深圳启脉科技有限公司 一种基于无线监护的水肿信号的获取方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035860A (zh) * 2004-10-08 2007-09-12 信越聚合物株式会社 导电性组合物及其制造方法,防静电涂料、防静电膜、及防静电胶片、滤光器、光信息记录介质、以及电容器及其制造方法
JP2011054345A (ja) * 2009-08-31 2011-03-17 Asahi Kasei E-Materials Corp 透明導電基板の製造方法、及び透明導電基板
WO2017181129A2 (en) * 2016-04-15 2017-10-19 Worcester Polytechnic Institute Devices and methods for measuring vascular deficiency
WO2019059753A1 (es) * 2017-09-25 2019-03-28 Aragon Han Daniel Sistema y aparato para la medición y monitoreo de flujo sanguíneo y oxigenación en un tejido sano e injerto de tejido
CN110236503A (zh) * 2019-06-19 2019-09-17 杭州电子科技大学 一种柔性可穿戴睡眠生理参数检测方法及装置
CN113180618A (zh) * 2021-04-20 2021-07-30 华中科技大学 一种表皮贴附式健康检测系统及其制备方法
CN113336893A (zh) * 2021-06-07 2021-09-03 四川大学 一种抗菌导电黏附水凝胶的制备方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS154386B1 (zh) * 1970-07-10 1974-04-30
EP0085327B1 (en) * 1982-01-18 1986-04-30 Medtronic, Inc. Electrically conductive compositions and electrodes utilizing same
DE3917018A1 (de) * 1989-05-24 1990-11-29 Schmid Walter Selbstklebendes leitendes elastisches gel
US5173302A (en) * 1990-09-28 1992-12-22 Medtronic, Inc. Hydrophilic pressure sensitive adhesive for topical administration of hydrophobic drugs
JP3398809B2 (ja) * 1995-07-27 2003-04-21 日本光電工業株式会社 生体電極用導電性組成物の製法
US5863551A (en) * 1996-10-16 1999-01-26 Organogel Canada Ltee Implantable polymer hydrogel for therapeutic uses
JP2002542498A (ja) * 1999-04-22 2002-12-10 シグナス, インコーポレイテッド 干渉種を除去するための方法およびデバイス
US7150975B2 (en) * 2002-08-19 2006-12-19 Animas Technologies, Llc Hydrogel composition for measuring glucose flux
JP4772347B2 (ja) * 2005-03-11 2011-09-14 信越ポリマー株式会社 帯電防止塗料の製造方法および帯電防止性ハードコート層の製造方法
US7620439B2 (en) * 2005-08-04 2009-11-17 3M Innovative Properties Company Conductive adhesives and biomedical articles including same
US8419982B2 (en) * 2008-09-11 2013-04-16 Covidien Lp Conductive compositions and method
CN102675823A (zh) * 2011-03-18 2012-09-19 唐来江 一种大功率led封装用透明环氧纳米复合材料的制备工艺
JP3168835U (ja) * 2011-04-19 2011-06-30 株式会社ヒラカワコーポレーション 水ジェル材及び保水ジェルマット
JP5827584B2 (ja) * 2012-03-09 2015-12-02 積水化成品工業株式会社 粘着性ハイドロゲル及びその用途
WO2015113054A1 (en) * 2014-01-27 2015-07-30 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10244949B2 (en) * 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10107736B2 (en) * 2013-06-10 2018-10-23 Portland State University Hydrogel compositions and methods for electrochemical sensing
JP6774947B2 (ja) * 2014-12-09 2020-10-28 タンジブル サイエンス インコーポレイテッド 生体適合性層を有する医療デバイスコーティング
CN105504319B (zh) * 2015-12-23 2018-06-12 厦门理工学院 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用
CN106279542B (zh) * 2016-08-22 2018-11-02 华南理工大学 一种基于木聚糖的双网络纳米复合水凝胶及其制备与应用
US10836957B2 (en) * 2016-10-31 2020-11-17 Case Western Reserve University Suspending proppants with polymerized hydrogels
WO2018185313A1 (en) * 2017-04-07 2018-10-11 Noviosense B.V. Coating for implantable medical device
WO2018191325A1 (en) * 2017-04-11 2018-10-18 Sabic Global Technologies B.V. Sensor patch utilizing adhesive microstructures
JP6830164B2 (ja) * 2017-10-05 2021-02-17 積水化成品工業株式会社 粘着性ハイドロゲル及びそれを用いた医療用電極
CN109698071A (zh) * 2017-10-24 2019-04-30 王文建 一种高比容一体化电极的制备方法及高比容电容器
KR102237037B1 (ko) * 2018-11-26 2021-04-06 성균관대학교산학협력단 점착성 패치
US11912894B2 (en) * 2018-11-26 2024-02-27 Cornell University Antimicrobial and antifouling conformal hydrogel coatings
CN110974249B (zh) * 2019-12-13 2021-06-29 华中科技大学 一种表皮贴附式血氧饱和度检测系统及其制备
CN111234268B (zh) * 2020-04-01 2021-03-30 北京大学 多功能特异性生物粘合水凝胶、制备方法及其应用
CN112608431A (zh) * 2020-11-03 2021-04-06 华南理工大学 一种离子导电水凝胶及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035860A (zh) * 2004-10-08 2007-09-12 信越聚合物株式会社 导电性组合物及其制造方法,防静电涂料、防静电膜、及防静电胶片、滤光器、光信息记录介质、以及电容器及其制造方法
JP2011054345A (ja) * 2009-08-31 2011-03-17 Asahi Kasei E-Materials Corp 透明導電基板の製造方法、及び透明導電基板
WO2017181129A2 (en) * 2016-04-15 2017-10-19 Worcester Polytechnic Institute Devices and methods for measuring vascular deficiency
WO2019059753A1 (es) * 2017-09-25 2019-03-28 Aragon Han Daniel Sistema y aparato para la medición y monitoreo de flujo sanguíneo y oxigenación en un tejido sano e injerto de tejido
CN110236503A (zh) * 2019-06-19 2019-09-17 杭州电子科技大学 一种柔性可穿戴睡眠生理参数检测方法及装置
CN113180618A (zh) * 2021-04-20 2021-07-30 华中科技大学 一种表皮贴附式健康检测系统及其制备方法
CN113336893A (zh) * 2021-06-07 2021-09-03 四川大学 一种抗菌导电黏附水凝胶的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116649946A (zh) * 2023-06-16 2023-08-29 徐州医科大学附属医院 一种基于射频技术的微创皮下神经介入芯片
CN116649946B (zh) * 2023-06-16 2024-01-23 徐州医科大学附属医院 一种基于射频技术的微创皮下神经介入芯片

Also Published As

Publication number Publication date
CN113729654B (zh) 2023-03-28
US20240260845A1 (en) 2024-08-08
CN113729654A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023039946A1 (zh) 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统
US8574161B2 (en) Vital sign monitor for cufflessly measuring blood pressure using a pulse transit time corrected for vascular index
CN105852806A (zh) 一种用于伤口实时监测的电子皮肤
US10117598B1 (en) Non-invasive wearable respiration rate monitoring system
CN204520675U (zh) 一种腕式运动与健康管理手表
CN106725396A (zh) 一种基于双脉搏波的无创逐拍血压测量装置以及测量方法
CN104042200B (zh) 一种逐拍动脉血压的无创监测装置及其方法
CN207627308U (zh) 一种动态血压测量装置
CN108272446A (zh) 无创连续血压测量系统及其校准方法
CN201223386Y (zh) 便携式体征监测仪
CN111449637A (zh) 一种动静脉内瘘血管的评价系统及方法
CN103610454A (zh) 一种血压测量方法及系统
CN106073735A (zh) 一种用于连续检测人体血压的集成电路结构
CN201453280U (zh) 一种移动通讯终端
CN205041388U (zh) 血压测量装置
CN113855014B (zh) 用于术后皮瓣与断指检测的无线供电混合电子系统
CN214906862U (zh) 一种基于柔性pvdf压电薄膜的胎心监测仪
CN204581253U (zh) 基于射频识别(rfid)技术的慢性病人长期跟踪装置
CN113643800A (zh) 一种基于社区医疗模式的远程监控系统
CN207640399U (zh) 一种新型血压计
CN101822859B (zh) 低血容量休克液体复苏的闭环控制装置
CN203736176U (zh) 一种生理参数采集装置
CN211355429U (zh) 一种基于耳垂检测的血压血糖监测装置和监测系统
CN214284939U (zh) 一种高精度、运动型、无创便携式心肺功能参数测量设备
CN108814571A (zh) 失血性休克严重程度无创伤检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18290695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE