WO2023039692A1 - 检测载台、检测装置及激光切割检测方法 - Google Patents

检测载台、检测装置及激光切割检测方法 Download PDF

Info

Publication number
WO2023039692A1
WO2023039692A1 PCT/CN2021/118091 CN2021118091W WO2023039692A1 WO 2023039692 A1 WO2023039692 A1 WO 2023039692A1 CN 2021118091 W CN2021118091 W CN 2021118091W WO 2023039692 A1 WO2023039692 A1 WO 2023039692A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
plate
bottom plate
track
adsorption hole
Prior art date
Application number
PCT/CN2021/118091
Other languages
English (en)
French (fr)
Inventor
黄伟耿
曾威
张贇
李东宇
尹建刚
高云峰
Original Assignee
大族激光科技产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大族激光科技产业集团股份有限公司 filed Critical 大族激光科技产业集团股份有限公司
Priority to CN202180100851.1A priority Critical patent/CN118302647A/zh
Priority to PCT/CN2021/118091 priority patent/WO2023039692A1/zh
Publication of WO2023039692A1 publication Critical patent/WO2023039692A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present application relates to the technical field of display panels, in particular to a detection carrier, a detection device and a laser cutting detection method.
  • the product needs to be smoothly adsorbed on the stage. After the cutting edge is illuminated by the light source, the image collected by the camera is used to analyze the cutting edge to detect and obtain the cutting accuracy.
  • the image collected by the camera is used to analyze the cutting edge to detect and obtain the cutting accuracy.
  • it is often necessary to re-make the processing stage after switching products, and the flatness of the stage needs to be re-adjusted after each switch, resulting in low efficiency of the entire inspection operation.
  • a detection carrier comprising: a bottom plate with a plurality of loading partitions, and each of the loading partitions is configured with an adsorption hole one;
  • the second adsorption hole, the first adsorption hole in each of the loading partitions can communicate with the corresponding second adsorption hole;
  • the middle plate is interposed between the bottom plate and the carrying plate, and the middle
  • the plate structure has a plurality of third adsorption holes corresponding to the plurality of second adsorption holes, and the first adsorption hole communicates with the second adsorption hole through the third adsorption holes.
  • the above-mentioned detection carrier includes a bottom plate, a middle plate and a carrying plate which are sequentially arranged from bottom to top, and the three are respectively provided with the first adsorption hole, the third adsorption hole and the second adsorption hole which are connected to each other.
  • the material When the material is placed on the carrying plate, the material can be adsorbed on the carrying plate through the above-mentioned adsorption hole 1, adsorption hole 3 and adsorption hole 2 by means of vacuuming, so as to realize the fixing of the material. Because a plurality of object-carrying subregions are arranged on the bottom plate, each of the object-carrying subregions is respectively provided with an adsorption hole one.
  • the loading partition suitable for the material type can be selected, thereby opening the adsorption hole 1 corresponding to the loading partition, and the adsorption hole 1 passes through the adsorption hole 3 corresponding to its position. Negative pressure transmission is realized with the adsorption hole 2, so that the material is adsorbed at the position adapted to the corresponding loading partition.
  • the bottom plate has a slotted area, and the slotted area is provided with a plurality of grooves, and the size of at least one of the grooves is different from that of the rest of the grooves; each of the grooves The groove corresponds to one of the loading partitions, and the opening of the first adsorption hole extends to the bottom of the groove.
  • the plurality of adsorption holes 2 and/or the plurality of adsorption holes 3 corresponding to each loading area are distributed according to the shape of the groove.
  • the corresponding adsorption holes in each of the load compartments are at least disposed in the middle of the groove.
  • the bottom plate has a filling area adjacent to the slotted area, and the filling area is protruded with a plurality of filling protrusions; a plurality of the filling protrusions and a plurality of the filling protrusions
  • the spacer protrusions jointly form a ballast surface, and the middle plate is pressed on the ballast surface.
  • the side of the bottom plate adjacent to the grooved area is recessed along the thickness direction to separate the leveling area.
  • transparent glue is adhered between the middle board and the loading board.
  • the middle board is made of diffuse reflection board, and the color of the middle board is milky white; the carrying board is made of transparent acrylic material.
  • a plurality of mutually independent airflow passages are constructed in the bottom plate; one end of each airflow passage passes through the bottom plate, and the other end corresponds to one of the adsorption holes in one of the loading partitions; each Each of the airflow passages is used to connect the air extraction device.
  • the detection carrier further includes an air joint, the through end of each of the gas flow channels is respectively connected with the air joint, and the air joint is used for connecting with the air pipe of the air extraction device.
  • the detection stage further includes a plurality of leveling members, and the plurality of leveling members are arranged at intervals around the circumference of the bottom plate; the detection stage further includes a plurality of buffer members, And a plurality of buffer members are arranged at intervals around the circumference of the bottom plate.
  • the embodiment of the present application also provides a laser cutting detection method, which is used to alleviate the technical problem of low detection efficiency in the prior art.
  • a laser cutting detection method comprising the following steps: illuminating from the bottom of the detection stage from bottom to top; moving the detection camera along a zigzag track between two opposite sides of the detection stage, scanning the cutting edge and cutting Marked images to derive the spacing between the two.
  • the detection stage and the material are illuminated by lighting from bottom to top, and then the camera is moved along a zigzag track between two opposite sides of the detection stage, and during the moving process
  • the medium camera will scan the image between the cutting edge and the cutting mark, so as to obtain the distance between the two, which is used to judge the cutting accuracy. It is precisely because the camera moves along the zigzag track between the two opposite sides of the detection stage during the movement, so the camera does not need to move to every edge of the material, thereby improving the scanning efficiency and thus the detection efficiency.
  • one of the broad sides of the material is used as the starting track of the moving track, and the other wide side of the material is used as the ending track of the moving track; moving along the starting track to one of the long sides of the material, And after passing through at least one trajectory bending between two opposite long sides of the material, it moves to the said termination trajectory.
  • the number of track bending is obtained according to the long side dimension of the material.
  • the number of bending times of the track is two.
  • the embodiment of the present application also provides a detection device, which is used to alleviate the technical problem of low detection efficiency in the prior art.
  • a detection device comprising the above-mentioned detection stage, and further comprising a light source and a detection camera; the light source is arranged below the detection stage, and the detection camera is arranged above the detection stage;
  • the detection camera is capable of moving along the X axis and the Y axis relative to the detection stage for projecting illuminating light relative to the detection stage, and the detection camera is used for scanning cutting edges and cutting marks of materials.
  • the number of the detection stages is at least two, and at least two detection stages are arranged at intervals; each detection stage is correspondingly provided with a group of the light source and the detection camera, and each The detection cameras in a group move synchronously.
  • Figure 1 is a schematic diagram of a detection carrier equipped with materials provided by an embodiment of the present application
  • Figure 2 is an exploded view of the detection carrier provided in Figure 1;
  • Fig. 3 is a top view of the bottom plate of the detection carrier provided in Fig. 2;
  • FIG. 4 is a flow chart of a laser cutting detection method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the moving track in the laser cutting detection method provided in Fig. 4;
  • FIG. 6 is a schematic diagram of a detection device provided by an embodiment of the present application.
  • a detection carrier 100 provided by an embodiment of the present application includes a base plate 10 , a carrying plate 20 and a middle plate 30 .
  • the bottom plate 10 has a plurality of load compartments 101 , and each load compartment 101 is configured with a first adsorption hole 12 .
  • the mounting plate 20 is disposed on the bottom plate 10 , and the mounting plate 20 is configured with a plurality of adsorption holes 21 , and the adsorption holes 12 in each loading section 101 can communicate with part of the corresponding adsorption holes 21 .
  • the middle plate 30 is sandwiched between the bottom plate 10 and the carrying plate 20.
  • the middle plate 30 is configured with a plurality of three adsorption holes 31 corresponding to the second adsorption hole 21.
  • the first adsorption hole 12 passes through the third adsorption hole 31 and the second adsorption hole 21. connected.
  • the bottom plate 10 , the middle plate 30 and the carrying plate 20 are arranged sequentially from bottom to top, and the carrying plate 20 is used to directly contact the material 200 .
  • the arrangement of the bottom plate 10 is used to support the mounting plate 20 , and the arrangement of the middle plate 30 can not only satisfy the negative pressure transmission of the airflow, but also improve the structural strength of the detection carrier 100 itself.
  • the negative pressure airflow can be transmitted through the first adsorption hole 12, the second adsorption hole 21 and the third adsorption hole 31 by vacuuming, and the material 200 can be adsorbed on the carrying plate 20, thereby realizing the material 200 fixed.
  • each loading partition 101 is respectively provided with an adsorption hole 1 12 . Therefore, when different types of materials 200 need to be adsorbed, the loading partition 101 suitable for the type of the material 200 can be selected, thereby opening the adsorption hole one 12 corresponding to the loading partition 101, and passing through the loading partition 101.
  • the corresponding adsorption hole three 31 and the second adsorption hole 21 realize negative pressure transmission, so that the material 200 is adsorbed at a position corresponding to the loading partition 101 .
  • a sealing member such as an annular sealing ring
  • an annular sealing ring may be filled between the edge of the mounting plate 20 and the edge of the bottom plate 10 .
  • at least one of the mounting plate 20 and the bottom plate 10 is provided with an annular groove, so as to install an annular sealing ring.
  • the bottom plate 10 has a grooved area 102, the grooved area 102 is provided with a plurality of grooves 11, and the size of at least one groove 11 is the same as the size of the remaining grooves 11 different.
  • Each groove 11 corresponds to a load compartment 101 , and the opening of the first adsorption hole 12 extends to the bottom of the groove 11 .
  • a groove 11 is dug downward along the thickness direction of the bottom plate 10 on a side of the bottom plate 10 facing the middle plate 30 . Through the arrangement of multiple grooves 11 , multiple loading partitions 101 are more intuitively presented on the bottom plate 10 .
  • Each groove 11 is correspondingly provided with a first adsorption hole 12, and one end of the first adsorption hole 12 needs to extend to the bottom of the groove 11, so as to facilitate the transmission of negative pressure airflow.
  • the number of corresponding adsorption holes 12 in each groove 11 may be one, or two, three or even more.
  • the corresponding adsorption holes 12 in each load compartment 101 are at least disposed in the middle of the groove 11 .
  • the arrangement in the middle of the groove 11 is conducive to the uniform distribution of force along the circumferential direction of the groove 11 , thereby ensuring that the negative pressure airflow acts on the material 200 evenly.
  • one adsorption hole one 12 is arranged in the middle of the groove 11 .
  • at least one adsorption hole 12 is in the middle of the groove 11, and the rest of the adsorption holes 12 can be evenly spaced compared to the middle adsorption holes and the size of the combined groove 11.
  • the plurality of adsorption holes 21 and the plurality of adsorption holes 31 corresponding to each loading area 101 are distributed according to the shape of the groove 11 .
  • the third adsorption holes 31 on the middle plate 30 and the second adsorption holes 21 on the mounting plate 20 all present a shape suitable for the cross-section of the corresponding groove 11 .
  • the groove 11 is a rectangular groove
  • the corresponding second adsorption holes 21 and third adsorption holes 31 are distributed in a rectangular shape.
  • the adsorption hole one 12 in the load compartment 101 corresponding to the material 200 is opened to transmit the negative pressure airflow, it is transmitted to the material 200 only through the corresponding adsorption hole two 21 and the third adsorption hole 31 as much as possible to improve the airflow. Concentration and utilization, so as to improve the accuracy and stability of adsorption, and reduce the risk of air dispersion caused by the irregular distribution of adsorption hole three 31 and adsorption hole two 21.
  • the plurality of adsorption holes 21 corresponding to each load partition 101 may be distributed according to the shape of the groove 11, or the plurality of adsorption holes 3 31 corresponding to each load partition 101 may be distributed according to the shape of the groove 11. shape distribution.
  • the arrangement of the spacing protrusions 13 separates any adjacent grooves 11 , making the division of the grooves 11 clearer.
  • the arrangement of the spacing protrusions 13 is also used to support the middle plate 30 and the mounting plate 20 , thereby improving the stability of the entire detection platform 100 for loading objects.
  • a spacing protrusion 13 is reserved between any two adjacent grooves 11 by digging grooves along the thickness direction of the bottom plate 10 .
  • the number of grooves 11 is eight.
  • first grooves there are four grooves 11 whose length direction is in the same direction as the length direction of the bottom plate 10, which are called first grooves; four grooves 11 whose length direction is in the same direction as the width direction of the bottom plate 10 are called second grooves.
  • the four first grooves are arranged in groups of two at intervals on both sides of the bottom plate 10 in the width direction, and the four second grooves are arranged between two groups of the first grooves.
  • the two first slots in one group have different widths, the larger one is located on the side, and the smaller one is located on the side facing the second slot.
  • the lengths are the same, but the widths are different.
  • the four second slots can be arranged at intervals along the length direction of the bottom plate 10 from small to large according to their own widths, or they can be arranged in a staggered manner.
  • materials 200 of the same length can be adsorbed and fixed at the position corresponding to the same first tank, and materials 200 of the same width can be adsorbed and fixed at the position corresponding to the same second tank.
  • the shape and size of the groove 11 are set according to the type of the material 200 to be tested.
  • a complete base plate 10 is manufactured, a plurality of materials 200 that need to be tested in the same field are placed on the base plate 10, and assembled on the base plate 10 according to the size and shape of each type of material 200, Thus, the space of the bottom plate 10 is utilized to the maximum extent. Then make a mark according to the determined position, and then open the groove 11 .
  • the aforementioned material 200 is a display panel. That is, the inspection carrier 100 provided in this embodiment is used to carry the display panel, so as to inspect the laser cutting accuracy of the display panel.
  • the bottom plate 10 has a filling area 103 adjacent to the grooved area 102 , and a plurality of filling protrusions 14 protrude from the filling area 103 .
  • a plurality of leveling protrusions 14 and a plurality of spacing protrusions 13 jointly form a ballast surface, and the middle plate 30 is pressed on the ballast surface.
  • the grooved area 102 and the leveling area 103 are distributed along the length direction of the bottom plate 10 .
  • the grooved area 102 is set on the right half
  • the filling area 103 is set on the left half.
  • the leveling area 103 is provided for the purpose of supporting the middle plate 30 and the carrying plate 20 , so as to ensure good flatness of the carrying plate 20 for carrying the materials 200 .
  • the ballast surface is jointly formed by the plurality of protruding leveling protrusions 14 in the leveling area 103 and the plurality of spaced protrusions 13 in the grooved area 102, and the plurality of leveling protrusions 14
  • the height is exactly the same as the height of the plurality of spaced protrusions 13 to ensure good flatness of the ballast surface. In this way, when the middle plate 30 is ballasted on the ballast surface and the carrying plate 20 is ballasted on the middle plate 30 , good flatness can be ensured.
  • the side of the bottom plate 10 adjacent to the grooved area 102 is recessed along the thickness direction to separate the leveling area 103 . That is to say, a groove is dug out on the left half of the bottom plate 10 along its thickness direction, and the groove forms a filling area 103, and the filling protrusion 14 is arranged in the groove. Wherein, in the process of digging the groove, a filling protrusion 14 is reserved on the bottom plate 10 . In this way, both the leveling protrusions 14 and the spacing protrusions 13 are cut from the bottom plate 10 itself, which improves the structural strength.
  • the leveling protrusions 14 and the spacer protrusions 13 are equal to the structure of the bottom plate 10 reserved when the groove is dug, it can be ensured that the reserved leveling protrusions 14 and the spacer protrusions 13 are flush on the surface.
  • the number of filling protrusions 14 is 10, and the 10 filling protrusions 14 are arranged in a rectangular array in the filling area 103 .
  • transparent glue is adhered between the middle board 30 and the mounting board 20 .
  • the setting of the transparent glue is used to bond the carrying board 20 to the middle board 30 , so as to realize the bottom of the carrying board 20 relative to the middle board 30 .
  • the setting of the transparent glue also facilitates the penetration of the light source 300 for detecting the bottom of the carrier 100 to irradiate the carrier board 20 and the material 200 .
  • the detection carrier 100 also includes fixing screws, which are used to connect the mounting plate 20 and the middle plate 30 to the bottom plate 10 by using the fixing screws, so as to realize the connection between the bottom plate 10, the middle plate 30 and the carrying plate 20. assembly.
  • the fixing screws adopt light-colored screws. The setting of light color will not produce larger shadow interference when the light source 300 passes through, which is beneficial for the detection camera 400 to collect image information.
  • the middle plate 30 is a diffuse reflection plate, and the color of the middle plate 30 is milky white.
  • the carrying board 20 is made of transparent acrylic material. Specifically, with the arrangement of the milky white diffuse reflection plate, when the light source 300 irradiates from the bottom to the top of the detection stage 100, diffuse reflection can occur when the irradiated light passes through the middle plate 30, so that other impurities under the middle plate 30 It can be faded, and can make the background of the overlapping plate appear light, which is more conducive to the detection camera 400 to collect image information.
  • the carrying plate 20 is made of transparent acrylic material, which also has anti-static performance and anti-friction performance while satisfying the process of facilitating light penetration.
  • the carrying board 20 is made of Mitsubishi Rayon acrylic board.
  • the board is a high-transparency hardened board, the surface is very clean, the light transmittance reaches 93%, and it has excellent scratch resistance. It can keep the surface smooth, non-yellowing and non-fading for a long time.
  • a plurality of independent airflow channels 15 are configured in the bottom plate 10 .
  • One end of each airflow channel 15 runs through the bottom plate 10, and the other end corresponds to the first adsorption hole 12 in a load compartment 101, and each airflow channel 15 is used to connect to an air extraction device.
  • the arrangement of the air flow channel 15 facilitates the communication between the external suction device and the adsorption hole on the bottom plate 10, thereby forming a negative pressure air flow.
  • the base plate 10 is provided with a plurality of independent loading partitions 101, the corresponding adsorption holes in each independent loading partition 101 are also independent, that is, the adsorption holes corresponding to any two adjacent loading partitions 101 are disconnected.
  • the airflow channel 15 is configured as an air hole, and the length of the air hole extends along the width direction of the bottom plate 10 so as to pass through the side of the bottom plate 10 .
  • the air flow channels 15 are distributed so as not to cause interference, and can also be bent accordingly.
  • how to configure the airflow channel 15 is an existing mature technology, and does not belong to the improvement point of the present application, so it will not be repeated here.
  • the detection carrier 100 also includes an air connector 40, and the through ends of each air flow channel 15 are respectively connected to the head air connector 40, and the gas connector 40 is used to connect with the air extraction device. Tracheal connection. Specifically, the arrangement of the air joint 40 facilitates the connection of the air pipe of the air extraction device relative to the bottom plate 10 . Solenoid valves can be installed on the gas connectors 40 to control the opening and closing of the gas connectors 40 so as to control whether the air flow channels 15 corresponding to each gas connector 40 have negative pressure gas flow. Wherein, the electromagnetic valve is controlled by the control center of the detection device 1000 .
  • the input ends of the above-mentioned plurality of airflow passages 15 all extend to a long side on the same side of the bottom plate 10, such an arrangement facilitates the centralized installation of the air connector 40 corresponding to each airflow passage 15 on the bottom plate 10 , so as to facilitate the planning of the assembly of the bottom plate 10 relative to the detection device 1000 .
  • the detection stage 100 further includes a plurality of leveling members 50 , and the plurality of leveling members 50 are arranged at intervals around the circumference of the bottom plate 10 .
  • the detection carrier 100 further includes a plurality of buffer pieces 60 , and the plurality of buffer pieces 60 are arranged at intervals around the circumference of the bottom plate 10 .
  • the setting of the leveling member 50 is convenient for fine-tuning the height of the bottom plate 10 , so as to maintain the levelness of the mounting plate 20 .
  • the setting of the buffer member 60 provides support to the base plate 10 while buffering the downward force on the base plate 10, thereby improving the protection of the base plate 10, the middle plate 30 and the carrying plate 20.
  • the number of leveling members 50 is six. Four of them are arranged at the top corners of the bottom plate 10, and the other two are respectively arranged at the middle of the long sides.
  • There are four buffer members 60 which are respectively arranged at four corners of the bottom plate 10 .
  • the buffer member 60 is a buffer spring.
  • the leveling member 50 is an existing mature technology, so it will not be repeated.
  • a laser cutting inspection method includes the following steps: from the inspection stage 100 to the bottom to the top, and then on the two sides of the inspection stage 100 Move the detection camera 400 along a zigzag track between two opposite sides, scan the images of the cutting edge of the material 200 and the cutting mark, and obtain the distance between the two.
  • the light source 300 is placed at the bottom of the above-mentioned detection stage 100 so as to realize lighting from bottom to top to illuminate the detection stage 100 and the material 200 . Then move the detection camera 400, take one of the vertices of the material 200 as the starting point, make the detection camera 400 move along a zigzag track between a side where the point is located and its opposite side, utilize the detection camera 400 to scan the material 200 cutting edge and cut mark, and transmit the scanning information to the control unit, and the control unit calculates the distance between the cutting edge and the cutting mark.
  • the detection camera 400 may be a CCD (charge coupled device, charge coupled device) camera with its own scale.
  • the laser cutting detection method provided in this embodiment moves along the zigzag track between two opposite sides of the detection carrier 100, so that when scanning the material 200, there is always a part that does not need the detection camera 400 to move to area, that is, there is no need for the detection camera 400 to move and scan to every edge of the material 200, thereby shortening the scanning time and improving the scanning efficiency, thereby improving the detection efficiency.
  • one of the broad sides of the material 200 is used as the starting track of the moving track, and the other wide side of the material 200 is used as the ending track of the moving track. Move to one of the long sides of the material 200 along the starting track, and move to the ending track after at least one track bending between two opposite long sides of the material 200 .
  • the material 200 to be tested in this embodiment is a display panel, and its shape is mostly rectangular.
  • the two broad sides are respectively the first wide side and the second wide side, and one or two long sides are respectively the first long side and the second long side.
  • the detection camera 400 stays at one end of the first wide side as a starting point, and moves along the length of the first wide side (ie, the width direction of the material 200) to the other end, which is the joint between the first wide side and the first long side . Then, after the rotation detection camera 400 moves a certain distance along the length of the first long side (i.e.
  • the first track bending is performed, that is, the rotation detection camera 400 moves along the width direction of the material 200 to the first position of the material 200.
  • Two long sides Rotate the detection camera 400 again and move a certain distance along the length of the second long side to perform the second track bending, and move to the first long side of the material 200 along the width direction of the material 200 .
  • the long side as the benchmark to carry out track bending, it is ensured that there is a sufficient scanning range as far as possible along the longest length of the material 200.
  • the material 200 is a mobile phone screen panel, so the two wide sides of the panel often have special-shaped edge parts for adapting to installation and design.
  • the number of track bends is obtained according to the length of the material 200 .
  • the number of track bends is set according to the longest length of the material 200, so as to ensure that the detection camera 400 can have a relatively sufficient scanning range on the longest length of the material 200 relative to the material 200, thereby improving detection accuracy.
  • precisely because of the track setting of the broken line there is no need for the detection camera 400 to move to every cutting edge of the material 200, thereby improving the detection efficiency.
  • the width of the material 200 is substantially the same as half the length of the material 200, the number of track bending times is two.
  • Such a setting can also make at least half of the two long sides within the scanning range.
  • the detection camera 400 moves from point A to point B along the width direction, rotates the detection camera 400 to move the angle to the long side direction, moves from point B to point C, and performs the first time by rotating the moving angle. Bending the track, moving from point C to point D along the width direction, turning the moving angle to move from point D to point E along the length direction, turning the moving angle again for the second track bending, moving from point E to point F along the width direction point.
  • an embodiment of the present application further provides a detection device 1000 , which includes the above-mentioned detection carrier 100 , and also includes a light source 300 and a detection camera 400 .
  • the light source 300 is disposed below the detection stage 100
  • the detection camera 400 is disposed above the detection stage 100 .
  • the light source 300 is used to project illumination light relative to the inspection stage 100
  • the inspection camera 400 can move relative to the inspection stage 100 along the X axis and the Y axis
  • the inspection camera 400 is used to scan the cutting edge and the cutting mark of the material 200 .
  • the above-mentioned laser cutting detection method is used to detect the cutting edge of the material 200 placed on the mounting plate 20 of the detection platform 100, so as to judge the accuracy of the cutting edge.
  • the cutting accuracy is greater; when the difference between the two is larger, the cutting accuracy is lower.
  • the light source 300 is placed on the detection platform 100 from below by an upper cover, and under the joint action of the milky white diffuse reflection plate (that is, the middle plate 30) and the transparent acrylic plate (that is, the mounting plate 20), This makes the detection stage 100 present a light color and facilitates the light passing through the illuminating material 200 .
  • the loading partition 101 on the bottom plate 10 and the corresponding effect with the carrying plate 20 it is ensured that the material 200 can be adsorbed in the corresponding area, and the situation that the edge of the material 200 hangs outside the detection carrier 100 is improved, and the fixing effect of the material 200 is improved.
  • the detection accuracy of the detection camera 400 is improved.
  • the movement of the X-axis and the Y-axis is mainly realized based on a linear module, that is, the detection camera 400 is moved horizontally and vertically along the horizontal plane.
  • the linear module on how to realize translation is an existing mature technology, so it will not be repeated here.
  • the number of detection carriers 100 is at least two, and at least two detection carriers 100 are arranged at intervals.
  • Each detection stage 100 is correspondingly provided with a group of light sources 300 and detection cameras 400, and the detection cameras 400 in each group move synchronously.
  • the arrangement of a plurality of detection stages 100 is equivalent to setting a plurality of detection stations, so as to realize the detection of cutting accuracy of various types of materials 200 at the same time, thereby improving the working efficiency.
  • the synchronous movement of multiple detection cameras 400 facilitates the simultaneous detection of multiple detection stations, which can be controlled simultaneously by a control unit.
  • the number of detection carriers 100 is two, forming a double-station detection mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

本申请涉及一种检测载台、检测装置及激光切割检测方法。检测载台包括由下至上依次设置的底板、中间板和搭载板,且三者上分别设置有彼此的连通的吸附孔一、吸附孔三和吸附孔二。因为在底板上设置有多个载物分区,每个载物分区内分别设置有吸附孔一。故而当需要吸附不同型号的物料时,能够选择与该物料型号相适配的载物分区。通过这样的设置,当更换物料时无需更换新的加工载台,只需要选择相适配的载物分区,从而开启该载物分区中的吸附孔一即可实现物料固定,降低作业成本。同时,在更换物料的过程中也无需重新调配载台的平面度,从而提高作业效率。

Description

检测载台、检测装置及激光切割检测方法 技术领域
本申请涉及显示面板技术领域,特别是涉及检测载台、检测装置及激光切割检测方法。
背景技术
在显示面板激光切割行业中,产品需要平稳的吸附在载物台上,利用光源对切割边缘打光后,再利用相机对切割边缘采集图像进行分析,以检测获得切割精度。然而目前常用的方式中,往往在切换产品后需要重新对应制作加工载台,且每次切换之后还需要重新调整载台的平面度,导致整个检测操作效率较低。
发明内容
基于此,本申请有必要针对现有技术中存在检测效率较低的技术问题,提供一种检测载台、检测装置及激光切割检测方法。
一种检测载台,包括:底板,具有多个载物分区,且每个所述载物分区均构造有吸附孔一;搭载板,设置于所述底板,且所述搭载板构造有多个吸附孔二,每个所述载物分区中的所述吸附孔一能够与部分对应的所述吸附孔二连通;中间板,夹设于所述底板与所述搭载板之间,所述中间板构造有与多个所述吸附孔二对应的多个吸附孔三,所述吸附孔一通过所述吸附孔三与所述吸附孔二连通。
上述的检测载台,包括由下至上依次设置的底板、中间板和搭载板,且三者上分别设置有彼此的连通的吸附孔一、吸附孔三和吸附孔二。当物料放置于搭载板上时,能够采用抽真空的方式通过上述的吸附孔一、吸附孔三和吸附孔二将物料吸附在搭载板上,实现物料的固定。因为在底板上设置有多个载物分区,每个载物分区内分别设置有吸附孔一。故而当需要吸附不同型号的物料时,能够选择与该物料型号相适配的载物分区,从而开启该载物分区对应的吸附孔一,且该吸附孔一通过与之位置对应的吸附孔三和吸附孔二实现负压传递,从而将该物料吸附在对应载物分区适配的位置处。通过这样的设置,当更换物料时无需更换新的加工载台,只需要选择相适配的载物分区,从而开启该载物分区中的吸附孔一即可实现物料固定,降低作业成本。同时,在更换物料的过程中也无需重新调配载台 的平面度,从而提高作业效率。
在其中一个实施例中,所述底板具有开槽区,所述开槽区开设有多个凹槽,且至少一个所述凹槽的尺寸与其余所述凹槽的尺寸不同;每个所述凹槽对应一个所述载物分区,所述吸附孔一的孔口延伸至所述凹槽的槽底。
在其中一个实施例中,每个所述载物分区对应的多个所述吸附孔二和/或多个所述吸附孔三均按照所述凹槽的形状分布。
在其中一个实施例中,每个所述载物分区中对应的所述吸附孔一至少设置于所述凹槽的中部。
在其中一个实施例中,任意相邻的所述凹槽之间具有间隔凸起。
在其中一个实施例中,所述底板具有与所述开槽区邻接的补平区,所述补平区凸设有多个补平凸起;多个所述补平凸起和多个所述间隔凸起共同形成压载面,所述中间板压设于所述压载面。
在其中一个实施例中,所述底板与所述开槽区邻接的一侧沿厚度方向凹陷分隔出所述补平区。
在其中一个实施例中,所述中间板与所述搭载板之间粘附有透明胶脂。
在其中一个实施例中,所述中间板采用漫反射板,且所述中间板的颜色为乳白色;所述搭载板采用透明亚克力材料制成。
在其中一个实施例中,所述底板内构造有多个彼此独立的气流通道;每个气流通道的一端贯穿所述底板,另一端对应一个所述载物分区内的所述吸附孔一;每个所述气流通道均用于连接抽气装置。
在其中一个实施例中,所述检测载台还包括气接头,每个所述气流通道的贯穿端分别连接有所述气接头,所述气接头用于与所述抽气装置的气管连接。
在其中一个实施例中,所述检测载台还包括多个调平件,且多个所述调平件环绕所述底板的周向间隔布置;所述检测载台还包括多个缓冲件,且多个所述缓冲件环绕所述底板的周向间隔布置。
本申请实施例还提供一种激光切割检测方法,用于缓解现有技术中进行检测中效率较低的技术问题。
一种激光切割检测方法,包括以下步骤:从检测载台的下方由下往上打光;在检测载台的两个相对的边之间沿曲折轨迹移动检测相机,扫物料描切割边缘与切割标记的图像,以得出二者之间的间距。
上述的激光切割检测方法中,利用由下往上打光的方式照亮检测载台和物料,而后使 得相机在检测载台的两个相对的边之间沿曲折轨迹移动,且在移动的过程中相机会扫描切割边缘与切割标记之间的图像,从而得出二者之间的间距,用于判断切割精度。正是因为在移动的过程中,相机在检测载台的两个相对的边之间沿曲折轨迹移动,故而相机无需移动至物料边缘的每一处,从而提高扫描效率,进而提高检测效率。
在其中一个实施例中,以物料其中一个宽边为移动轨迹的起始轨迹,以物料的另一个宽边为移动轨迹的终止轨迹;沿所述起始轨迹移动至物料的其中一个长边,并在物料的两个相对的长边之间经过至少一个轨迹弯折后,移动至所述终止轨迹。
在其中一个实施例中,根据物料的长边尺寸得出轨迹弯折次数。
在其中一个实施例中,当物料宽度与物料长度的一半基本相同时,所述轨迹弯折次数为两次。
本申请实施例还提供一种检测装置,用于缓解现有技术中检测效率较低的技术问题。
一种检测装置,包括上述的检测载台,还包括光源和检测相机;所述光源设置于所述检测载台的下方,所述检测相机设置于所述检测载台的上方;所述光源用于相对检测载台投射照明光,所述检测相机能够相对所述检测载台沿X轴和Y轴移动,所述检测相机用于扫描物料的切割边缘和切割标记。
在其中一个实施例中,所述检测载台的数量为至少两个,至少两个检测载台间隔布置;每个所述检测载台对应设置有一组所述光源和所述检测相机,且每组中的所述检测相机同步移动。
附图说明
图1为本申请一实施例提供的检测载台装配有物料的示意图;
图2为图1中提供的检测载台的爆炸图;
图3为图2中提供的检测载台中底板的俯视图;
图4为本申请一实施例提供的激光切割检测方法的流程图;
图5为图4中提供的激光切割检测方法中移动轨迹示意图;
图6为本申请一实施例提供的检测装置的示意图。
附图标记:10-底板;11-凹槽;12-吸附孔一;13-间隔凸起;14-补平凸起;15-气流通道;20-搭载板;21-吸附孔二;30-中间板;31-吸附孔三;40-气接头;50-调平件;60-缓冲件;100-检测载台;101-载物分区;102-开槽区;103-补平区;200-物料;300-光源;400-检测相机;1000-检测装置。
具体实施方式
如图1-图3所示,本申请一实施例提供的一种检测载台100,包括底板10、搭载板20和中间板30。其中,底板10具有多个载物分区101,且每个载物分区101均构造有吸附孔一12。搭载板20设置在底板10上,且搭载板20构造有多个吸附孔二21,每个载物分区101中的吸附孔一12能够与部分对应的吸附孔二21连通。中间板30夹设在底板10与搭载板20之间,中间板30构造有多个与吸附孔二21对应的多个吸附孔三31,吸附孔一12通过吸附孔三31与吸附孔二21连通。
具体的,当检测载台100用于承载物料200时,底板10、中间板30和搭载板20由下至上依次设置,搭载板20用于与物料200直接接触。底板10的设置用于支撑搭载板20,中间板30的设置在满足气流负压传递的同时,还能够提高该检测载台100自身的结构强度。当物料200放置在搭载板20上,能够利用抽真空的方式通过吸附孔一12、吸附孔二21和吸附孔三31传递负压气流,将物料200吸附在搭载板20上,从而实现物料200的固定。同时,因为在底板10上设置有多个载物分区101,且每个载物分区101内分别设置有吸附孔一12。故而,当需要吸附不同型号的物料200时,能够选择与该物料200型号相适配的载物分区101,从而开启该载物分区101对应的吸附孔一12,并通过与该载物分区101对应的吸附孔三31和吸附孔二21实现负压传递,从而将该物料200吸附在对应载物分区101适配的位置处。通过这样的设置,当更换物料200进行检测时也就无需更换新的载台,只需要选择相适配的载物分区101,从而开启该载物分区101中的吸附孔一12即可实现物料200的固定,降低了作业成本。同时,在更换物料200的过程中也就无需重新调配载台的平面度,从而提高作业效率。在其他的实施例中,为提高气流的利用率,搭载板20的边缘与底板10的边缘之间密封连接,从而确保抽真空的气流仅来自于搭载板20与底板10之间,从而提高对物料200的吸附固定作用。其中,关于二者之间的密封连接,可以是在搭载板20的边缘与底板10的边缘之间填充密封件,例如环形密封圈。此时,搭载板20和底板10中至少一者设置有环形槽,以便于安装环形密封圈。
如图2和图3所示,在一些实施例中,底板10具有开槽区102,开槽区102开设有多个凹槽11,且至少一个凹槽11的尺寸与其余凹槽11的尺寸不同。每个凹槽11对应一个载物分区101,吸附孔一12的孔口延伸至凹槽11的槽底。具体而言,底板10朝向中间板30的一侧沿底板10的厚度方向向下挖设凹槽11。通过多个凹槽11的设置使得底板10上更直观的呈现出来多个载物分区101。每个凹槽11内均对应设置有吸附孔一12,且该吸附孔一12的一端孔口需要延伸至凹槽11的槽底,从而便于负压气流传递。其中,每个凹槽11内对应的吸附孔一12的数量可以为一个,也可以为两个、三个甚至更多个。
如图2和图3所示,在一个具体的实施例中,每个载物分区101中对应的吸附孔一12至少设置于凹槽11的中部。具体的,在凹槽11中部的设置,有利于沿凹槽11周向受力均匀的分布,从而确保负压气流均匀作用于物料200上。其中,当吸附孔一12的数量为一个时,一个吸附孔一12设置在凹槽11的中部。当吸附孔的数量为多个时,至少一个吸附孔一12在凹槽11的中部,其余的吸附孔一12相较于中部的吸附孔以及结合凹槽11的尺寸间隔均布即可。
如图2所示,在一些实施例中,每个载物分区101对应的多个吸附孔二21和多个吸附孔三31均按照凹槽11的形状分布。具体而言,使得中间板30上的多个吸附孔三31和搭载板20上的多个吸附孔二21均呈现出与对应凹槽11横截面相适配的形状。假设凹槽11为长方形槽,则对应的多个吸附孔二21和多个吸附孔三31均分布呈长方形。这样的设置,搭载板20与物料200相对于底板10上载物分区101的适配精度,能够更为清晰的通过选择相适配的位置放置物料200。而且,当物料200对应位置的载物分区101中的吸附孔一12开启传递负压气流时,尽可能的只通过与之对应的吸附孔二21和吸附孔三31传递至物料200,提高气流集中性和利用率,从而提高吸附精准和稳定性,降低因吸附孔三31和吸附孔二21分布不规律而导致气流分散的风险。在其他的实施例中,可以是每个载物分区101对应的多个吸附孔二21按照凹槽11的形状分布,或者每个载物分区101对应的多个吸附孔三31按照凹槽11的形状分布。
如图2和图3所示,在一些实施例中,任意相邻的凹槽11之间具有间隔凸起13。该间隔凸起13的设置将任意相邻的凹槽11分隔开,使得凹槽11的划分更为清晰明了。同时,该间隔凸起13的设置还用于支撑中间板30和搭载板20,从而提高整个检测载台100的载物稳定性。在一个具体的实施例中,通过沿底板10厚度方向挖槽的方式,在任意相邻的两个凹槽11之间预留出间隔凸起13。在又一个具体的实施例中,凹槽11的数量为八个。其中凹槽11的长度方向与底板10长度方向同向的有四个,称之为第一槽;凹槽11的长度方向与底板10的宽度方向同向的有四个,称之为第二槽。四个第一槽两两一组间隔布置在底板10宽度方向的两侧,四个第二槽设置于两组第一槽之间。一组中的两个第一槽,其宽度尺寸存在差异,较大的位于边侧,较小的位于朝向第二槽的一侧。四个第二槽中,其长度尺寸相同,但是宽度尺寸均不一。四个第二槽能够依照自身宽度大小,由小到大沿底板10的长度方向间隔布置,也可以是交错布置。通过这样的设置,可以对应同一个第一槽的位置处吸附固定相同长度的物料200,对应同一个第二槽的位置处吸附固定相同宽度的物料200。或者,也可以在第一槽吸附固定相同宽度,第二槽吸附固定相同长度的物料200。
需要说明的是,凹槽11的形状、尺寸大小等都是依照需要进行检测的物料200型号设置的。例如在制造该检测载台100之前,制造出完整的底板10,将多个同领域需要进行检测的物料200放置在底板10上,根据各个型号物料200的尺寸和形状,在底板10上拼装,从而最大化利用底板10的空间。而后根据确定后的位置做出标记,进行凹槽11开设即可。其中,上述的物料200为显示面板。即本实施例提供的检测载台100用于承载显示面板,从而进行显示面板的激光切割精度检测。
如图2和图3所示,在一些实施例中,底板10具有与开槽区102邻接的补平区103,补平区103凸设有多个补平凸起14。多个补平凸起14和多个间隔凸起13共同形成压载面,中间板30压设于压载面上。具体的,以底板10为长方形板为例,开槽区102和补平区103沿底板10的长度方向分布。例如,开槽区102设置在右半侧,补平区103设置在左半侧。补平区103的设置,用于起到支撑中间板30和搭载板20的目的,从而确保用于承载物料200的搭载板20平面度良好。具体而言,通过补平区103中多个凸设的补平凸起14与开槽区102中多个凸设的间隔凸起13共同形成压载面,且多个补平凸起14的高度和多个间隔凸起13的高度完全相同,才可确保压载面平面度良好。如此,当中间板30压载于压载面,搭载板20压载于中间板30上,才可以保证具有良好的平面度。
如图2和图3所示,在一个具体的实施例中,底板10与开槽区102邻接的一侧沿厚度方向凹陷分隔出补平区103。也就是说,在底板10的左半侧沿自身厚度方向挖设出一槽,该槽形成补平区103,补平凸起14设置在该槽内。其中,在挖槽的过程中,在底板10上预留出补平凸起14。如此,补平凸起14和间隔凸起13均由底板10自身切割而成,提高结构强度。而且,正是因为补平凸起14和间隔凸起13均时挖槽时预留出的底板10自身结构,故而能够确保预留出的补平凸起14和间隔凸起13表面平齐。其中,补平凸起14的数量为10个,10个补平凸起14在补平区103呈矩形整列分布。当然也可以是,在补平区103粘接多个补平凸起14,在开槽区102粘接多个间隔凸起13,从而不仅分隔出凹槽11,而且还可形成压载面。其只要确保多个补平凸起14和多规格间隔凸起13的顶面平齐即可。
如图1和图2所示,在一些实施例中,中间板30与搭载板20之间粘附有透明胶脂。透明胶脂的设置用于将搭载板20粘接在中间板30上,实现搭载板20相对中间板30的谷底你那个。同时透明胶脂的设置,还有便于检测载台100底部的光源300透过,以照射在搭载板20和物料200上。在一个具体的实施例中,该检测载台100还包括固定螺钉,利用固定螺钉将穿过搭载板20、中间板30连接于底板10上,从而实现底板10、中间板30和搭载板20的装配。其中,固定螺钉采用浅色螺钉。浅色的设置,当光源300透过时不 会产生较大的阴影干涉,有利于检测相机400采集图像信息。
如图1和图2所示,在一些实施例中,中间板30采用漫反射板,且中间板30的颜色为乳白色。搭载板20采用透明亚克力材料制成。具体而言,乳白色漫反射板的设置,当光源300从该检测载台100的下方由下至上照射时,照射光穿过中间板30时可以发生漫反射,从而使得中间板30下方的其他杂质淡化,并且能够使得搭接板的背景呈现出浅色,更有利于检测相机400采集图像信息。同时,搭载板20采用透明亚克力材料制成,在满足便于光线穿透的过程中,还具有防静电性能和防摩擦性能。在一个具体的实施例中,搭载板20采用三菱丽阳亚克力板。该板材为高透明度硬化板,表面非常洁净,透光率达到93%,而且具有优异的耐擦伤性能,长时间使用能保持表面光滑、不发黄、不褪色。
如图2所示,在一些实施例中,底板10内构造有多个彼此独立的气流通道15。每个气流通道15的一端贯穿底板10,另一端对应一个载物分区101内的吸附孔一12,且每个气流通道15均用于连接抽气装置。具体而言,气流通道15的设置便于将外部的抽气装置与底板10上的吸附孔连通,从而形成负压气流。因为,底板10上设置有多个独立的载物分区101,每个独立的载物分区101中对应的吸附孔也是独立的,即任意相邻的两个载物分区101分别对应的吸附孔是不连通的。故而,针对每个载物分区101分别设置有对应的气流通道15。在一个具体的实施例中,气流通道15设置呈气孔,且气孔的长度沿底板10的宽度方向延伸,以便从底板10的边侧穿出。当然,在气流通道15分布是为不产生干涉,也可相应的弯折。其中,关于气流通道15具体如何设置为现有成熟技术,且并不属于本申请的改进点,故而不再赘述。
如图1和图2所示,在一些实施例中,检测载台100还包括气接头40,每个气流通道15的贯穿端分别连接头气接头40,气接头40用于与抽气装置的气管连接。具体而言,气接头40的设置便于抽气装置的气管相对底板10的连接。气接头40上可以安装电磁阀,通过电磁阀控制气接头40的打开和关闭,从而控制每个气接头40对应的气流通道15是否具有负压气流。其中,电磁阀通过检测装置1000的控制中心控制。在一个具体的实施例中,上述多个气流通道15的输入端均延伸至底板10的同侧一长边上,这样的设置以便于将每个气流通道15对应的气接头40集中安装在底板10的相同侧,从而便于对底板10相对检测装置1000装配的规划。
如图2所示,在一些实施例中,检测载台100还包括多个调平件50,且多个调平件50环绕底板10的周向间隔布置。检测载台100还包括多个缓冲件60,且多个缓冲件60环绕底板10的周向间隔布置。具体的,调平件50的设置便于对底板10的高度进行微调,从而保持搭载板20的水平度。同时缓冲件60的设置,对底板10提供支撑的同时,对底 板10承受向下的作用力进行缓冲,从而提高对底板10、中间板30和搭载板20的防护性。在一个具体的实施例中,调平件50的数量为六个。其中四个设置在底板10的顶角处,另外两个分别设置在长边的中部。缓冲件60的数量为四个,分别设置在底板10的四个顶角处。缓冲件60为缓冲弹簧。其中调平件50为现有成熟技术,故而不再赘述。
如图4和图5所示,本申请一实施例提供的一种激光切割检测方法,包括以下步骤:从检测载台100的下发由下往上打光,而后在检测载台100的两个相对的边之间沿曲折轨迹移动检测相机400,扫描物料200切割边缘与切割标记的图像,并得出二者之间的间距。
具体而言,将光源300放置在上述的检测载台100的底部,从而实现由下往上打光,以照亮检测载台100和物料200。接着移动检测相机400,以物料200的其中一个顶点为起始点,在该点所在的一条边与其相对的边之间使得检测相机400沿曲折轨迹运动,利用检测相机400扫描物料200切割边缘以及切割标记,并将扫描信息传递至控制单元,经过控制单元计算得出切割边缘与切割标记之间的间距大小。实际上,检测相机400可以是自身带有刻度CCD(charge coupled device,电荷耦合器件)相机。需要说明的是,关于检测相机400如何通过拍摄画面即可得到间距大小的原理是现有成熟技术,故而不再赘述。也就是说,本实施例提供的激光切割检测方法,通过在检测载台100的两个相对的边之间沿曲折轨迹的移动,使得在扫描物料200时始终具有部分是无需检测相机400移动到的区域,即无需检测相机400移动并扫描至物料200的每一处边缘,从而缩短扫描耗时,提高扫描效率,进而提高检测效率。
如图4和图5所示,在一些实施例中,以物料200其中一个宽边为移动轨迹的起始轨迹,以物料200的另一宽边为移动轨迹的终止轨迹。沿起始轨迹移动至物料200的其中一个长边,并在物料200的两个相对的长边之间经过至少一个轨迹弯折后,移动至终止轨迹。
首先需要明确的是,在本实施例中进行检测的物料200为显示面板,其形状大多为长方形。以两个宽边分别为第一宽边、第二宽边,一两个长边分别为第一长边、第二长边。检测相机400停留在第一宽边的一端作为起始点,沿第一宽边的长度(即物料200的宽度方向)移动至另一端,也就是第一宽边与第一长边的相接处。然后转动检测相机400沿第一长边的长度(即物料200的长度方向)移动一定距离后,进行第一次轨迹弯折,即转动检测相机400沿物料200的宽度方向移动至物料200的第二长边。再次转动检测相机400沿第二长边的长度移动一定距离后进行第二次轨迹弯折,沿物料200宽度方向移动至物料200的第一长边。如此,在第一长边和第二长边之间往复循环,直至移动至任意长边与第二宽边的相接处,然后使得检测相机400沿该第二宽边的长度方向移动至其终点处。即,轨迹呈“弓”字形折线形。如此,即可实现扫描。通过以长边为基准进行轨迹弯折,从而 确保沿物料200最长长度上尽可能的保证有较充足的扫描范围。
需要说明的是,一般的物料200宽度上通常会存在异型切割边缘,故而需要确保物料200的两个宽边都处于扫描范围内。例如,物料200为手机屏幕面板,故而该面板的两个宽边往往为了适配安装及设计,存在异型边缘部分。
如图5所示,在一些实施例中,根据物料200的长边尺寸得出轨迹弯折次数。正如上述所言,以物料200最长长度设定轨迹弯折次数,从而确保检测相机400能够相对物料200,在物料200的最长长度上具有较为充足的扫描范围,从而提高检测精度。而且正是因为折线的轨迹设置,也无需检测相机400移动至物料200的每一处切割边缘,从而提高检测效率。在一个具体的实施例中,当物料200宽度与物料200长度的一半基本相同时,轨迹弯折次数为两次。这样的设置,在满足提高效率的基础上,还能够使得两个长边至少一半处于扫描范围中。具体的,以图5中所示,检测相机400从A点沿宽度方向移动至B点,转动检测相机400移动角度至长边方向,从B点移动至C点,转动移动角度进行第一次轨迹弯折,从C点沿宽度方向移动至D点,转动移动角度沿长度方向从D点移动至E点,再次转动移动角度进行第二次轨迹弯折,从E点沿宽度方向移动至F点。如此,即可完成扫描。其中,图5中带有异性边的切割边缘,切割边缘外侧的为产品边缘。
如图6所示,本申请一实施例还提供一种检测装置1000,包括上述的检测载台100,还包括光源300和检测相机400。光源300设置在检测载台100的下方,检测相机400设置在检测载台100的上方。光源300用于相对检测载台100投射照明光,检测相机400能够相对检测载台100沿X轴和Y轴移动,检测相机400用于扫描物料200的切割边缘和切割标记。也可以理解为,以该检测装置1000为基准,采用上述的激光切割检测方法,从而对放置在检测载台100的搭载板20上的物料200进行切割边缘的检测,从而判断切割边缘的精度。当切割边缘与切割标记之间的差值越小,则切割精度越大;当二者差值越大,则切割精度较低。具体的检测方式已经进行详细说明,故而不再赘述。具体而言,在检测时,光源300从下方由上罩设在检测载台100上,在乳白色漫反射板(也就是中间板30)和透明亚克力板(也就是搭载板20)共同作用下,使得检测载台100呈现出浅色且便于光线穿过照亮物料200。同时,利用底板10上的载物分区101以及与搭载板20的对应作用,确保物料200可以吸附在对应的区域,改善物料200边缘悬在检测载台100外的情况,在提高物料200固定作用的基础上,提高检测相机400的检测精度。
需要说明的是,这里的X轴和Y轴的移动,主要基于直线模组实现,即沿水平面的横向和纵向移动检测相机400。关于如何实现平移的直线模组为现有成熟技术,故而不再赘述。
如图6所示,在一些实施例中,检测载台100的数量为至少两个,至少两个检测载台100间隔布置。每个检测载台100对应设置有一组光源300和检测相机400,且每组中的检测相机400同步移动。具体而言,多个检测载台100的设置,相当于设置有多个检测工位,以便同时实现多种型号的物料200切割精度检测,从而提高作业效率。多个检测相机400的同步移动,便于多个检测工位的检测工作同时进行,也就可通过一控制单元同时控制。在一个具体的实施例中,检测载台100的数量为两个,形成双工位检测方式。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种检测载台,其特征在于,所述检测载台(100)包括:
    底板(10),具有多个载物分区(101),且每个所述载物分区(101)均构造有吸附孔一(12);
    搭载板(20),设置于所述底板(10),且所述搭载板(20)构造有多个吸附孔二(21),每个所述载物分区(101)中的所述吸附孔一(12)能够与部分对应的所述吸附孔二(21)连通;
    中间板(30),夹设于所述底板(10)与所述搭载板(20)之间,所述中间板(30)构造有与多个所述吸附孔二(21)对应的多个吸附孔三(31),所述吸附孔一(12)通过所述吸附孔三(31)与所述吸附孔二(21)连通。
  2. 根据权利要求1所述的检测载台,其特征在于,所述底板(10)具有开槽区(102),所述开槽区(102)开设有多个凹槽(11),且至少一个所述凹槽(11)的尺寸与其余所述凹槽(11)的尺寸不同;每个所述凹槽(11)对应一个所述载物分区(101),所述吸附孔一(12)的孔口延伸至所述凹槽(11)的槽底。
  3. 根据权利要求2所述的检测载台,其特征在于,每个所述载物分区(101)对应的多个所述吸附孔二(21)和/或多个所述吸附孔三(31)均按照所述凹槽(11)的形状分布。
  4. 根据权利要求2所述的检测载台,其特征在于,每个所述载物分区(101)中对应的所述吸附孔一(12)至少设置于所述凹槽(11)的中部。
  5. 根据权利要求2所述的检测载台,其特征在于,任意相邻的所述凹槽(11)之间具有间隔凸起(13)。
  6. 根据权利要求5所述的检测载台,其特征在于,所述底板(10)具有与所述开槽区(102)邻接的补平区(103),所述补平区(103)凸设有多个补平凸起(14);多个所述补平凸起(14)和多个所述间隔凸起(13)共同形成压载面,所述中间板(30)压设于所述压载面。
  7. 根据权利要求6所述的检测载台,其特征在于,所述底板(10)与所述开槽区(102)邻接的一侧沿厚度方向凹陷分隔出所述补平区(103)。
  8. 根据权利要求1所述的检测载台,其特征在于,所述中间板(30)与所述搭载板(20)之间粘附有透明胶脂。
  9. 根据权利要求1所述的检测载台,其特征在于,所述中间板(30)采用漫反射板, 且所述中间板(30)的颜色为乳白色;
    所述搭载板(20)采用透明亚克力材料制成。
  10. 根据权利要求1所述的检测载台,其特征在于,所述底板(10)内构造有多个彼此独立的气流通道(15);每个气流通道(15)的一端贯穿所述底板(10),另一端对应一个所述载物分区(101)内的所述吸附孔一(12);每个所述气流通道(15)均用于连接抽气装置。
  11. 根据权利要求10所述的检测载台,其特征在于,所述检测载台(100)还包括气接头(40),每个所述气流通道(15)的贯穿端分别连接有所述气接头(40),所述气接头(40)用于与所述抽气装置的气管连接。
  12. 根据权利要求1所述的检测载台,其特征在于,所述检测载台(100)还包括多个调平件(50),且多个所述调平件(50)环绕所述底板(10)的周向间隔布置;
    所述检测载台(100)还包括多个缓冲件(60),且多个所述缓冲件(60)环绕所述底板(10)的周向间隔布置。
  13. 一种激光切割检测方法,其特征在于,包括以下步骤:
    从检测载台(100)的下方由下往上打光;在检测载台(100)的两个相对的边之间沿曲折轨迹移动检测相机(400),扫描物料(200)切割边缘与切割标记的图像,以得出二者之间的间距。
  14. 根据权利要求13所述的激光切割检测方法,其特征在于,以物料(200)其中一个宽边为移动轨迹的起始轨迹,以物料(200)的另一个宽边为移动轨迹的终止轨迹;
    沿所述起始轨迹移动至物料(200)的其中一个长边,并在物料(200)的两个相对的长边之间经过至少一个轨迹弯折后,移动至所述终止轨迹。
  15. 根据权利要求14所述的激光切割检测方法,其特征在于,根据物料(200)的长边尺寸得出轨迹弯折次数。
  16. 根据权利要求14所述的激光切割检测方法,其特征在于,当物料(200)宽度与物料(200)长度的一半基本相同时,所述轨迹弯折次数为两次。
  17. 一种检测装置,其特征在于,包括检测载台(100)、光源(300)和检测相机(400);
    所述光源(300)设置于所述检测载台(100)的下方,所述检测相机(400)设置于所述检测载台(100)的上方;所述光源(300)用于相对检测载台(100)投射照明光,所述检测相机(400)能够相对所述检测载台(100)沿X轴和Y轴移动,所述检测相机(400)用于扫描物料(200)的切割边缘和切割标记。
  18. 根据权利要求17所述的检测装置,其特征在于,所述检测载台(100)的数量为 至少两个,至少两个所述检测载台(100)间隔布置;每个所述检测载台(100)对应设置有一组所述光源(300)和所述检测相机(400),且每组中的所述检测相机(400)同步移动。
PCT/CN2021/118091 2021-09-14 2021-09-14 检测载台、检测装置及激光切割检测方法 WO2023039692A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100851.1A CN118302647A (zh) 2021-09-14 2021-09-14 检测载台、检测装置及激光切割检测方法
PCT/CN2021/118091 WO2023039692A1 (zh) 2021-09-14 2021-09-14 检测载台、检测装置及激光切割检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118091 WO2023039692A1 (zh) 2021-09-14 2021-09-14 检测载台、检测装置及激光切割检测方法

Publications (1)

Publication Number Publication Date
WO2023039692A1 true WO2023039692A1 (zh) 2023-03-23

Family

ID=85602078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118091 WO2023039692A1 (zh) 2021-09-14 2021-09-14 检测载台、检测装置及激光切割检测方法

Country Status (2)

Country Link
CN (1) CN118302647A (zh)
WO (1) WO2023039692A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106183580A (zh) * 2016-07-08 2016-12-07 青岛理工大学 一种分区域可控的双面真空吸附装置、系统及方法
CN110420864A (zh) * 2019-07-15 2019-11-08 中导光电设备股份有限公司 一种uled屏幕基板检测/测量设备及其使用方法
CN209722183U (zh) * 2019-01-28 2019-12-03 温州永裕智能科技有限公司 一种用于切割机的真空吸附工作台
CN111435072A (zh) * 2019-01-11 2020-07-21 迪芬巴赫机械工程有限公司 用于检查材料板的至少一个切割边缘的方法、边缘检查装置和定长切割循环的板条的设备
CN112859546A (zh) * 2021-02-26 2021-05-28 无锡影速半导体科技有限公司 一种等压式分区吸附工作台
CN214043693U (zh) * 2020-12-10 2021-08-24 大族激光科技产业集团股份有限公司 治具、检测装置及激光掺杂设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106183580A (zh) * 2016-07-08 2016-12-07 青岛理工大学 一种分区域可控的双面真空吸附装置、系统及方法
CN111435072A (zh) * 2019-01-11 2020-07-21 迪芬巴赫机械工程有限公司 用于检查材料板的至少一个切割边缘的方法、边缘检查装置和定长切割循环的板条的设备
CN209722183U (zh) * 2019-01-28 2019-12-03 温州永裕智能科技有限公司 一种用于切割机的真空吸附工作台
CN110420864A (zh) * 2019-07-15 2019-11-08 中导光电设备股份有限公司 一种uled屏幕基板检测/测量设备及其使用方法
CN214043693U (zh) * 2020-12-10 2021-08-24 大族激光科技产业集团股份有限公司 治具、检测装置及激光掺杂设备
CN112859546A (zh) * 2021-02-26 2021-05-28 无锡影速半导体科技有限公司 一种等压式分区吸附工作台

Also Published As

Publication number Publication date
CN118302647A (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
CN104785928B (zh) 一种基板装夹机构
CN111167739A (zh) 一种六面视觉检测及出料分拣机构
WO2023039692A1 (zh) 检测载台、检测装置及激光切割检测方法
CN106647029A (zh) 一种背光模组及其背光源、胶框
CN208060924U (zh) 投影机及其照明系统
WO2014166188A1 (zh) 组装机
CN203254126U (zh) 一种组装机
CN108364904A (zh) 真空分立式吸附平台
CN111141732B (zh) 一种多方位视觉检测装置
CN219142622U (zh) 一种光学载台
CN210527842U (zh) 一种显示屏自动化上料定位平台
CN216977784U (zh) 一种大尺寸面板偏贴后精度检测机
CN109360518B (zh) 一种显示面板自动对位微调载具
JP7383341B2 (ja) ダイレクト露光装置および基板の露光方法
CN1655019A (zh) 液晶显示模块组装装置
CN115223497A (zh) 一种微显示芯片的图像显示方法及显示装置
CN113311604B (zh) 一种液晶模组组装机专用定位装置
CN221572962U (zh) 一种aoi载台自动切换装置
CN218412232U (zh) 柔性面板检测设备
CN221020641U (zh) 一种背光源的全自动检测装置
CN215640821U (zh) 镜筒组件、检测装置及检测设备
KR20200103314A (ko) 고정 위치 조절 구조의 레일 조명 장치
CN220533249U (zh) 镭射打标设备
CN216926029U (zh) cell点灯检测治具
CN208506495U (zh) 一种基于可生产大型基板的半自动曝光机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100851.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE