WO2023035808A1 - 集中空调系统pm10指标检测系统及方法 - Google Patents

集中空调系统pm10指标检测系统及方法 Download PDF

Info

Publication number
WO2023035808A1
WO2023035808A1 PCT/CN2022/109413 CN2022109413W WO2023035808A1 WO 2023035808 A1 WO2023035808 A1 WO 2023035808A1 CN 2022109413 W CN2022109413 W CN 2022109413W WO 2023035808 A1 WO2023035808 A1 WO 2023035808A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
dust
duct
conditioning
average value
Prior art date
Application number
PCT/CN2022/109413
Other languages
English (en)
French (fr)
Inventor
尹奎
隋英博
Original Assignee
中建三局第一建设工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建三局第一建设工程有限责任公司 filed Critical 中建三局第一建设工程有限责任公司
Publication of WO2023035808A1 publication Critical patent/WO2023035808A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/526Indication arrangements, e.g. displays giving audible indications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air-conditioning systems, in particular to a PM 10 index detection system and method for a centralized air-conditioning system.
  • Air conditioning is an important technical means to meet and maintain suitable indoor temperature and humidity, especially in public buildings, the centralized primary air return air conditioning system is the most widely used.
  • the hygienic condition of the air supply of the air conditioner greatly affects the air cleanliness of the air conditioner. Unsanitary air supply will promote the growth of Legionella and pollute the entire indoor air. Therefore, when the quality of the air supply is not up to standard, it is necessary to clean and disinfect the relevant parts.
  • the problem with this detection method is that it is an after-the-fact detection, and it cannot provide instantaneous information on whether the air-conditioning air supply is up to standard in time. It is difficult to be representative when determining the decoration situation, and the data is easy to be distorted.
  • the existing manual detection method cannot determine the specific reason why the PM 10 does not meet the standard, that is, it is impossible to judge whether the PM 10 is the dust accumulated inside the central air-conditioning system or comes from the fresh air outlet outside. In practice, most of the inhalable particulate matter PM 10 comes from outdoor fresh air outlets. When the inhalable particulate matter PM 10 does not meet the standard, cleaning and disinfection of the relevant parts of the central air-conditioning system can only remove the inhalable particulate matter PM 10 in the central air-conditioning system.
  • the purpose of the present invention is to solve the problem that the detection effect of inhalable particulate matter PM 10 is poor in the existing air conditioning system, and the air supply hygiene of the air conditioning system is not easy to control. It provides a PM 10 index detection system for a centralized air conditioning system, including:
  • a dust detection device which is used to detect the dust concentration value in the air-conditioning duct where at least two measuring points of the air conditioner to be tested are located, and calculate the first average value of the dust concentration values of all measuring points according to the dust concentration value of each measuring point ;
  • Dust accumulation flushing device which is used to provide swirling flow and flush the inner wall surface of the air-conditioning duct, so that the dust accumulated on the inner wall surface of the air-conditioning duct flows through the at least two measuring points under the swirling flow, so that The dust detection device detects the dust concentration value of each measuring point that the swirling flow passes through, and calculates the second average value of the dust concentration values of all measuring points passing through the swirling flow;
  • control unit communicatively connected with the dust detection device and the dust flushing device
  • control unit compares the first average value with the PM 10 warning critical value and the clearing critical value respectively, and performs an audible and visual alarm according to the comparison result; the control unit also compares the first average value and the second average value The difference is compared with the preset PM 10 concentration change limit difference, and an audible and visual alarm is given according to the comparison result.
  • the dust washing device includes a swirling air duct
  • the air-conditioning duct is provided with an air-conditioning duct air volume regulating valve for adjusting the flow of air flowing through the air-conditioning duct;
  • the air inlet end of the swirling air duct communicates with the air conditioning air duct at the air inlet end of the air conditioning duct air volume regulating valve, and the air outlet end of the swirling air duct communicates with the air conditioning air duct at the air outlet end of the air conditioning air duct air volume regulating valve. connected.
  • the beneficial effect of the above further scheme is: the air flow rate flowing through the air-conditioning duct is adjusted through the air-conditioning duct air volume regulating valve, so that the air flow can flow out after passing through the swirl duct, and the effect of the swirling flow on the inner wall surface of the air-conditioning duct is improved .
  • the swirl air duct is a spiral duct.
  • the dust accumulation flushing device further includes a swirl air duct air volume regulating valve for adjusting the flow rate of the air flowing through the swirl air duct.
  • the beneficial effect of the above further scheme is: the flow rate of the air flow passing through the swirl air duct is adjusted by the swirl air duct air volume regulating valve, not only the generation of swirl flow can be controlled, but also the swirl flow that scours the inner wall of the air conditioner air duct can be adjusted in different forms. flow rate.
  • the air-conditioning duct has at least two sections, and the air volume regulating valve of the air-conditioning duct is arranged between the two sections of the air-conditioning duct.
  • the detection system also includes a dust removal device; the dust removal device is connected to the control unit in communication, and the dust removal device is used to perform dust reduction treatment on the airflow flowing through the air-conditioning duct; the The control unit turns on or off the dust removal device according to the comparison result of the difference between the first average value and the second average value and the PM 10 concentration change limit difference.
  • the airflow passing through the air-conditioning duct is dust-reduced by the dust-removing device, which can prevent the inhalable particulate matter PM 10 carried in the fresh air or return air of the air-conditioning system from entering the air-conditioning duct, and ensure the hygiene of the air supply quality.
  • the clearing and dust-reducing device includes a clearing and dust-reducing air duct and a dust-reducing component, the clearing and dust-reducing duct is connected with the air-conditioning duct, and the dust-reducing component is arranged in the clearing and dust-reducing duct for dust-reducing treatment on the airflow flowing through the clearing and dust-reducing duct .
  • the beneficial effect of the above further solution is: by setting the dust-removing assembly in the air-conditioning air duct, and the air-conditioning air duct is connected with the air-conditioning air duct, the dedusting and dust-reducing device can be installed in any section of the air-conditioning air duct of the air-conditioning system. Axial end, flexible and convenient installation and disassembly.
  • the cleaning and dust-reducing air pipe is arranged at the connection section of the fresh air outlet or the return air outlet of the air-conditioning air pipe, or the connection section of the mixing box between the fresh air and the return air.
  • the beneficial effect of the above further solution is: by limiting the position of the clearing and dust-reducing air duct, the inhalable particulate matter PM 10 entering into the air-conditioning air duct through the fresh air outlet or the return air outlet can be quickly removed to ensure hygienic air supply.
  • the present invention also proposes a method for detecting the PM 10 index of the central air-conditioning system by using the detection system,
  • the control unit is also used to set the PM 10 early warning critical value, the clearing critical value and the PM 10 concentration change limit difference;
  • the dust detection device detects the dust concentration value in the air-conditioning duct where each measuring point of the air-conditioning system to be detected is located, and calculates the first average value of the dust concentration values of all measuring points according to the dust concentration value of each measuring point;
  • the control unit compares the first average value with the PM10 warning threshold and the clearance threshold respectively:
  • control unit If the first average value is greater than the clearance critical value, the control unit performs an audible and visual alarm
  • the control unit will give an audible and visual alarm, and the control unit will activate the dust washing device to flow through the cyclone
  • the air flow in the flow duct forms a swirling flow and scours the inner wall surface of the air conditioning duct, so that the accumulated dust on the inner wall surface of the air conditioning duct flows through the dust detection device under the swirling flow, and the dust detection device detects The dust concentration value of each measuring point that the swirl flows through, and calculates the second average value of the dust concentration values of all the measuring points that the swirl flows through; the control unit combines the first average value and the second average value The difference is compared with the PM 10 concentration change limit difference:
  • the control unit will issue an audible and visual alarm.
  • the detection system also includes a dust removal device; the control unit is also used to set the cleaning time t; if the difference between the first average value and the second average value is less than the PM10 concentration change limit difference, Then the control unit turns on the clearing and dust-reducing device, and performs dust-reducing treatment on the airflow flowing through the air-conditioning duct. Describe the cleaning and dust suppression device.
  • the beneficial effect of the above-mentioned further scheme is: when the first average value is greater than the PM 10 warning critical value and less than or equal to the clearance critical value, and the difference between the first average value and the second average value is less than the PM 10 concentration change limit difference , the dust in the air-conditioning duct mainly comes from the outside of the air-conditioning duct.
  • the airflow passing through the air-conditioning duct is dust-reduced through the dust removal device, which can prevent the inhalable particulate matter PM 10 carried in the fresh air or return air of the air-conditioning system from entering the air-conditioning duct. In the pipe, ensure the hygienic quality of the air supply.
  • the running time of the cleaning and dust reduction device can be adjusted and controlled, and it can be adjusted according to the different operating environments of the air conditioning system, so as to ensure the air supply is hygienic and reduce energy consumption at the same time.
  • the dust detection device to detect the dust concentration value in the air-conditioning duct where each measuring point of the air-conditioning system to be tested is located, the online detection of the dust concentration in the air-conditioning duct can be realized; through the control unit, the sound and light alarm is given according to different comparison results, The test result can be obtained conveniently, quickly and accurately.
  • the airflow through the air-conditioning duct spins sideways to scour the inner wall of the air-conditioning duct, so that the dust accumulated on the inner wall of the air-conditioning duct flows through the dust detection device under the swirling airflow, which can effectively detect the dust concentration in the air-conditioning duct, so that Accurately judge that the inhalable particulate matter PM 10 comes from the dust accumulated outside or in the air-conditioning duct, provide decision-making for cleaning and disinfection of related parts of the air-conditioning system, and avoid unnecessary cleaning and disinfection costs.
  • the system is simple, the dust detection device is small in size, and the distribution of measuring points is more professional, which ensures the authenticity of the data and the accuracy of the detection results. It is easy to install, does not affect the building decoration, and can also realize the detection of multiple air-conditioning systems.
  • Fig. 1 is a schematic flow chart of the method for detecting the PM 10 index of the central air-conditioning system of the present invention.
  • Fig. 2 is a structural schematic diagram of the installation position of the dust detection device of the PM 10 index detection system of the central air-conditioning system of the present invention.
  • Fig. 3 is the system block diagram of the dust detection device and the control unit of the PM10 index detection system of the central air-conditioning system of the present invention
  • Fig. 4 is a structural schematic diagram of the installation positions of the dust washing device and the dust detection device of the PM 10 index detection system of the central air-conditioning system of the present invention.
  • Fig. 5 is a front structural schematic diagram of the swirling air duct, the air-conditioning air duct and the air volume regulating valve of the air-conditioning air duct in Fig. 4 .
  • FIG. 6 is a structural schematic view of the radial cross-section airflow direction of the swirling air duct and the air-conditioning air duct in FIG. 5 .
  • Fig. 7 is a structural schematic diagram of the cleaning and dust reduction device of the PM 10 index detection system of the central air-conditioning system of the present invention.
  • 1-dust detection device 1.1-measuring electrode; 1.2-detection integrated unit; 1.2.1-integrated operational amplifier; 1.2.2-AD converter; 1.2.3-microprocessor; 2-dust washing device ;2.1-Swirl air duct; 2.2-Swirl air duct air volume regulating valve; 3-Cleaning and dust reduction device; 3.1-Cleaning and dust reduction air duct; 3.2-Atomizing nozzle; 3.5-drainage pipeline; 3.6-water storage tray; 4-control unit; 4.1-control processing and statistical display unit; 4.2-alarm sound and light unit; 5-air conditioning duct; 6-air outlet; 7-air conditioning air Pipe air volume regulating valve.
  • the existing air-conditioning dust detection system After the existing air-conditioning dust detection system detects that the inhalable particulate matter PM10 in the air-conditioning system does not meet the standard, it sends out an audible and visual alarm to remind the air-conditioning owner to clean the air-conditioning system. But in fact, the existing air-conditioning dust detection system cannot determine the specific reason why the inhalable particulate matter PM10 in the air-conditioning system does not meet the standard, that is, it cannot judge that the inhalable particulate matter PM10 comes from the dust inside the central air-conditioning system or from the outdoor fresh air outlet (or Indoor return air outlet). Therefore, it is impossible to provide decision-making basis for the owner of the air conditioner, and the owner of the air conditioner cannot judge whether the relevant parts of the air conditioner system need to be professionally cleaned and disinfected.
  • the present invention proposes a PM 10 index detection system for a central air-conditioning system. It can effectively detect the dust concentration in the air-conditioning duct, so that it can accurately judge that the inhalable particulate matter PM 10 comes from the dust accumulated outside or in the air-conditioning duct, and provide decision-making for the cleaning and disinfection of related parts of the air-conditioning system, eliminating unnecessary cleaning and disinfection cost.
  • the dust detection device 1 is at least partially arranged in the air-conditioning duct 5 where the measuring points of the air-conditioning system to be tested are located, and there are at least two measuring points in this embodiment.
  • the dust concentration value detected by the dust detection device 1 mainly refers to the concentration value of the inhalable particulate matter PM 10 , of course, it may also be other inhalable particulate matter concentration values.
  • the dust detection device 1 is used to detect the dust concentration value in the air-conditioning air duct 5 where each measuring point is located, and calculates the first average (or called arithmetic) value of the dust concentration value of all measuring points according to the dust concentration value of each measuring point. mean B1).
  • the dust detection device 1 is also used to detect the dust concentration value of each measuring point that the swirling flow flows through, and calculates the second average (or arithmetic mean B2) of the dust concentration values of all measuring points passing through the swirling flow.
  • the dust washing device 2 is used to provide swirling flow and wash the inner wall surface of the air conditioning duct 5, so that the dust accumulated on the inner wall surface of the air conditioning duct 5 flows through at least two measuring points under the swirling flow.
  • the dust detection device 1 includes a communication-connected measuring electrode 1.1 and a detection integration unit 1.2.
  • the measuring electrode 1.1 is set at the throat position of the air supply port 6 in the air-conditioning duct 5, and the throat position is the position of the measuring point.
  • the detection integration unit 1.2 is riveted on the outer surface of the air-conditioning duct 5 .
  • the detection integrated unit 1.2 includes an integrated operational amplifier 1.2.1, an AD converter 1.2.2 and a microprocessor 1.2.3.
  • the detection system includes at least two dust detection devices 1, and one dust detection device 1 is provided for each measuring point.
  • the dust detection device 1 should include at least two measuring electrodes 1.1, and one measuring electrode 1.1 is provided for each measuring point.
  • Measuring electrode 1.1 as the detection element of dust detection device 1, has the characteristics of small size and easy distribution of measuring points.
  • the dust particles Due to the collision and friction between the dust particles in the air-conditioning duct 5 and the dust particles, and between the dust particles and the inner wall of the air-conditioning duct 5, the dust particles will be charged to form an electrostatic field.
  • the measuring electrode 1.1 induces positive and negative charges, and the charges form a current signal during the transfer movement; the magnitude of the alternating current signal is proportional to the dust mass content.
  • the electric signal is amplified by the integrated operational amplifier 1.2.1, the electric signal is converted into a digital signal by the AD converter 1.2.2, and the dust concentration value statistics and arithmetic mean value of each measuring point are carried out by the microprocessor 1.2.3
  • the calculation of B1 transmits the calculation and statistical results to the control unit 4 for display in a wireless or wired manner.
  • the integrated operational amplifier 1.2.1 communicates with the measuring electrode 1.1 to receive the electrical signal output by the measuring electrode 1.1 and amplify the received electrical signal.
  • the AD converter 1.2.2 communicates with the integrated operational amplifier 1.2.1 to receive the amplified electrical signal output by the integrated operational amplifier 1.2.1, and convert the received electrical signal into a digital signal;
  • the microprocessor 1.2.3 Communicate with the AD converter 1.2.2 and the control unit 4 respectively to receive the digital signal output by the AD converter 1.2.2, and calculate the dust concentration in the air-conditioning duct 5 where each measuring point is located according to the received digital signal value, and calculate the arithmetic mean value of the dust concentration value of all measuring points according to the dust concentration value of each measuring point (the arithmetic mean value includes the arithmetic mean value B1 and the arithmetic mean value B2), and the calculation and statistical results can be wirelessly or wired
  • the mode is transmitted to the control unit 4 for display.
  • the dust washing device 2 includes a swirl air duct 2.1 and a swirl air duct air volume regulating valve 2.2.
  • the swirl air duct air volume regulating valve 2.2 is arranged on the swirl air duct 2.1.
  • the measuring electrodes 1.1 of the swirl air duct 2.1 and the dust detection device 1 are arranged along the airflow direction flowing through the air-conditioning duct 5 in sequence.
  • the air-conditioning duct 5 has at least two sections, and a connected air-conditioning duct air volume regulating valve 7 is arranged between the two sections of the air-conditioning duct 5 .
  • the swirl air duct 2.1 is a spiral tube, and the air inlet end of the swirl air duct 2.1 communicates with the air conditioning air duct 5 at the air inlet end of the air conditioning duct air volume regulating valve 7, and the air outlet end of the swirl air duct 2.1 is connected with the air conditioning air duct.
  • the air conditioning duct 5 at the air outlet end of the air volume regulating valve 7 is connected.
  • the swirl air duct 2.1 in this embodiment is wound on the outer wall of the air volume regulating valve 7 of the air conditioning duct. It should be noted that the swirl air duct 2.1 does not have to be wound on the outer wall of the air volume regulating valve 7 of the air conditioning duct.
  • the swirl air duct 2.1 can also be composed of an arc bend and a device connected to the arc bend that can make the gas flowing through the arc bend generate swirl flow.
  • the clearing and dust-reducing device 3 includes a clearing and dust-reducing air duct 3.1, an atomizing nozzle 3.2, and a water supply and drainage system.
  • One end of the dust-removing air duct 3.1 can be arranged on the fresh air outlet connection section or the return air outlet connection section of the air-conditioning duct 5 or the mixing box connection section of fresh air and return air, and the other end of the dust-removal air duct 3.1 is connected to the air-conditioning processing unit.
  • the cleaning, disinfection and dust reduction treatment performed by the cleaning and dust reduction device 3 in this embodiment is different from the cleaning and disinfection treatment performed by professionals on the air-conditioning system.
  • the cleaning and dust-reducing device 3 of this embodiment is used to perform dust-reducing treatment on the airflow flowing through or about to flow through the air-conditioning duct 5 . That is, it is used for cleaning, disinfecting and dust-reducing treatment of the fresh air and return air flowing through the air-conditioning air duct 5 , so as to prevent dust particles in the fresh air and return air from entering the air-conditioning air duct 5 .
  • the water supply and drainage system includes a water storage tray 3.6, a water storage outlet 3.3, a water supply pipeline 3.4 and a drainage pipeline 3.5.
  • the water accumulation tray 3.6 and the accumulation water drainage outlet 3.3 are arranged at the bottom of the dust removal air duct 3.1, and the accumulation water drainage outlet 3.3 is arranged at the bottom of the accumulation water tray 3.6, the drainage pipeline 3.5 is connected with the accumulation water outlet 3.3, and the water supply pipe
  • the road 3.4 is connected to the atomizing nozzle 3.2, and the atomizing nozzle 3.2 is communicated with the control unit 4.
  • the control unit 4 controls the atomization nozzle 3.2 to be energized, and the energization time is the pre-set cleaning time t, that is, 1 hour.
  • the airflow passing through the dust-removing air duct 3.1 can be quickly and efficiently treated for dust reduction; the accumulated water at the bottom of the dust-removing air duct 3.1 can be discharged in time through the accumulated water outlet 3.3, which can not only clean the air-conditioning air duct 5
  • the dust in the air-conditioning duct 5 is discharged, and the inside of the air-conditioning duct 5 can also be kept dry to prevent bacteria from growing.
  • the airflow flowing through the cleaning and dust reduction air duct 3.1 can be continuously subjected to dust reduction treatment, and the dust reduction water can be recycled, which is energy-saving and environment-friendly.
  • the control unit 4 includes a control processing and statistical display unit 4.1 and an alarm sound and light unit 4.2.
  • the control processing and statistical display unit 4.1 displays the dust concentration values, arithmetic mean B1 and arithmetic mean B2 of multiple measuring points in the air-conditioning system detected by the dust detection device 1 .
  • the alarm sound and light unit 4.2 includes a first sound and light alarm element and a second sound and light alarm element.
  • the first sound and light alarm element includes a red light for receiving the first alarm instruction and executing the first alarm instruction.
  • the second sound and light alarm element includes an alarm bell for receiving the second alarm instruction and executing the second alarm instruction.
  • the control processing and statistical display unit 4.1 compares the arithmetic mean value B1 with the PM 10 warning critical value A1 and the clearing critical value A2 respectively, and sends the first or second alarm command to the alarm sound and light unit 4.2 according to the comparison result.
  • the control processing and statistical display unit 4.1 compares the difference between the arithmetic mean B1 and the arithmetic mean B2 with the PM 10 concentration change limit difference ⁇ A, and sends a second alarm command to the alarm sound and light unit 4.2 according to the comparison result.
  • the control processing and statistical display unit 4.1 sends a second alarm instruction to the alarm sound and light unit 4.2.
  • the sound and light unit 4.2 receives and executes the second alarm instruction, and the alarm bell sounds.
  • the control processing and statistical display unit 4.1 sends a first alarm command to the alarm sound and light unit 4.2.
  • the acousto-optic unit 4.2 receives and executes the first alarm instruction, and the red light is on.
  • the control processing and statistical display unit 4.1 sends a second alarm command to the alarm sound and light unit 4.2.
  • the sound and light unit 4.2 receives and executes the second alarm instruction, and the alarm bell sounds.
  • the alarm bell When the alarm bell rings, it reminds the owner of the air conditioner that it is necessary to carry out professional cleaning and disinfection of the relevant parts of the air conditioner system.
  • the PM 10 index detection system of the centralized air-conditioning system also includes a temperature sensor and a carbon dioxide concentration sensor communicated with the control unit 4; temperature and carbon dioxide concentration.
  • the method for detecting the PM10 index of the central air-conditioning system by using the above-mentioned detection system includes the following steps:
  • the control unit 4 sets the PM 10 warning threshold A1, the elimination threshold A2, the PM 10 concentration change limit difference ⁇ A, the sampling time period T, and the elimination time t.
  • PM 10 warning critical value A1 0.12mg/m 3
  • clearing critical value A2 0.15mg/m 3
  • PM 10 concentration change limit difference ⁇ A 0.02mg/m 3
  • sampling time period T 2h
  • the sampling period T and the clearing period t may also be other set values.
  • the sampling time period may be multiple fixed time periods, for example, 6-8 o'clock, 10-12 o'clock, 14-16 o'clock, 18-20 o'clock every day.
  • the sampling time period may also be a free time period, for example, the sampling time period is within 2 hours from the set sampling time.
  • the PM 10 index detection system of the central air-conditioning system is in a resting state, and the second sampling of 2 hours begins after the sampling interval reaches 2 hours. , in turn.
  • the PM 10 index detection system of the central air-conditioning system is in the running state, and the following steps S2 to S5 are performed.
  • Multiple dust detection devices 1 detect the dust concentration values of multiple measuring points in the air-conditioning system, and perform statistics on the dust concentration values of each measuring point, and calculate the dust concentration values of all measuring points according to the dust concentration value of each measuring point Arithmetic mean value B1, and then the statistical and calculated results are transmitted to the control unit 4 in a wireless or wired manner, and the control processing and statistical display unit 4.1 of the control unit 4 displays the dust concentration value and the arithmetic mean value B1, so that relevant personnel (such as air conditioner owners) understand the dust concentration in the air conditioning system.
  • the control unit 4 does not send an alarm command to the alarm sound and light unit 4.2. In this state, the PM 10 index of the air conditioning system meets the requirements.
  • the control unit 4 sends the first alarm command to the alarm sound and light unit 4.2,
  • the alarm sound and light unit 4.2 receives and executes the first alarm instruction.
  • the red light is on; go to step S3. Since in this state, it is still impossible to determine that the excessive inhalable particulate matter PM 10 comes from the dust inside the air-conditioning system or from the outside, so only the red light is on for warning and proceeds to step S3 for further judgment.
  • the air supply of the air-conditioning system is not up to standard, and the air-conditioning system is cleaned and disinfected professionally, which may waste unnecessary cleaning and disinfection costs.
  • the control unit 4 opens and closes the corresponding valve to make the air flow flush the inner wall of the air conditioning duct 5, that is, the control unit 4 closes the air volume regulating valve 7 of the air conditioning duct, and the control unit 4 opens the air volume regulating valve 2.2 of the swirling air duct, and the air conditioning duct 5 original flow
  • the air flow through the air volume regulating valve 7 of the air conditioning duct enters the swirling air duct 2.1, and under the action of the swirling air duct 2.1, it spins and scours the inner wall of the air conditioning duct 5 sideways, so that the dust accumulated on the inner wall of the air conditioning duct 5 is swirling.
  • the airflow flows through the dust detection device 1 under the coercion.
  • the air-conditioning air duct air volume regulating valve 7 is connected in parallel with the swirling air duct 2.1, and communicated with the air-conditioning duct 5 respectively, the swirling air duct air volume regulating valve 2.2 is arranged on the swirling air duct 2.1, the dust detection device 1 and the cyclone
  • the air flow pipes 2.1 are sequentially arranged along the air flow direction flowing through the air conditioning air pipe 5 .
  • the dust detection device 1 performs the calculation of the dust concentration value statistics and the arithmetic mean B2 at this time, so as to detect the concentration of the inhalable particulate matter PM 10 in the air-conditioning duct 5 that is not affected by the fresh air and return air, so as to determine the exceeding standard
  • the inhalable particulate matter PM 10 comes from the dust inside the air-conditioning system or from outside.
  • the control unit 4 turns on the cleaning and dust suppression device 3, and turns off the cleaning and dust suppression device 3 after 1 hour, and returns to step S2.
  • the dust detection device 1 again detects the dust concentration values at multiple measuring points in the air conditioning system.
  • the control unit 4 sends a second alarm command to the alarm sound and light unit 4.2, and the alarm sound and light unit 4.2 receives and executes the second alarm command. For example, alarm bells go off. Air-conditioning owners are reminded to ask professionals to clean and disinfect the air-conditioning system.
  • the effect of this method is that it can effectively detect the dust concentration in the air-conditioning duct 5, so that it can be accurately judged that the inhalable particulate matter PM 10 comes from the outdoors or the dust accumulation in the air-conditioning duct 5, which is useful for cleaning and disinfecting the relevant parts of the air-conditioning system. Provides decision-making and eliminates unnecessary cleaning and disinfection costs.
  • the above are only preferred implementations of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种集中空调系统PM 10指标检测系统及方法,检测系统包括粉尘检测装置(1),用于检测每个测点所在的空调风管(5)内的粉尘浓度值;积尘冲刷装置(2),使空调风管(5)的内壁面上的积尘在旋流裹挟下流经粉尘检测装置(1);及控制单元(4),将第一平均值分别与PM 10预警临界值和清消临界值比较,将第一平均值和第二平均值的差值与PM 10浓度变化极限差值比较,根据比较结果进行声光报警。该检测系统及方法可有效检测出空调风管(5)内积尘浓度,从而可准确的判断可吸入颗粒物PM 10来自于室外或空调风管(5)内的积尘,为空调系统相关部位的清洗消毒提供决策。

Description

集中空调系统PM 10指标检测系统及方法 技术领域
本发明涉及空调系统技术领域,具体地指一种集中空调系统PM 10指标检测系统及方法。
背景技术
空调是满足并保持室内适宜的温度和湿度的重要技术手段,特别在公共建筑中集中式一次回风空调系统应用最为广泛。空调送风的卫生状况很大程度影响空调的空气清洁度,不卫生的送风会促成军团菌等的滋生,污染整个室内的空气。因此当送风质量不达标时,需要对相关部位进行清洗消毒。
在现行的规范中,关于空调送风卫生的检测与清洗消毒虽然有一定的规定与操作要求:《公共场所集中空调通风系统卫生规范》(WS394-2012)规定送风卫生指标包括可吸入颗粒物PM 10、细菌总数、真菌总数等5项指标,其中,影响空调送风卫生的主要因素为可吸入颗粒物PM 10,对于可吸入颗粒物PM 10的检测及其指标控制而言,检测采用人工定点检测;每套空调系统选择3到5个送风口进行检测,若送风口面积小于0.1m 2则设置1个检测点,若送风口面积大于0.1m 2则设置3个检测点;若风管内表面多个采样点可吸入颗粒物PM 10检测结果的平均值不符合要求,则判断该套集中空调系统不符合送风质量要求,需要对相关部位进行清洗消毒。但这种检测方式存在的问题是:其属于事后检测,无法及时提供空调送风卫生达标与否的瞬时信息,步骤繁琐,无法实现连续检测;同时采样点布置多在现场根据测试孔的位置以及装修情况进行确定,很难做到代表性,数据容易失真。
另外,现有人工检测的方式无法判定可吸入颗粒物PM 10不达标的具体原因,即无法判断可吸入颗粒物PM 10为集中空调系统内部的积尘还是来自于室外的新风口。而实际中,可吸入颗粒物PM 10多数来自于室外的新风口,当可吸入颗粒物PM 10不达标时,通过对集中空调系统相关部位进行清洗消毒仅仅能够清除集中空调系统内的可吸入颗粒物PM 10,不仅不能从根本上消除这个问题,而且还增加了不必要清洗消毒的费用,也无法为空调所有者提供决策依据,比如,空调系统相关部位是否要进行清洗消毒,清洗消毒后是否达到要求等。
因此如何方便准确的检测并控制空调系统中PM 10的指标以保证送风卫生是目前需要解决的问题。
发明内容
本发明的目的在于解决现有空调系统中可吸入颗粒物PM 10的检测效果差,空调系统的送 风卫生不便于控制的问题,提供一种集中空调系统PM 10指标检测系统,包括:
粉尘检测装置,其用于检测待检测空调的至少两个测点所在的空调风管内的粉尘浓度值,并根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的第一平均值;
积尘冲刷装置,其用于提供旋流并冲刷所述空调风管的内壁面,使所述空调风管的内壁面上的积尘在旋流裹挟下流经所述至少两个测点,所述粉尘检测装置检测所述旋流流经的每个测点的粉尘浓度值,并计算旋流流经的所有测点的粉尘浓度值的第二平均值;及
控制单元,与所述粉尘检测装置和所述积尘冲刷装置通信连接;
其中,所述控制单元将第一平均值分别与PM 10预警临界值和清消临界值比较,且根据比较结果进行声光报警;所述控制单元还将第一平均值和第二平均值的差值与预设的PM 10浓度变化极限差值比较,且根据比较结果进行声光报警。
进一步,所述积尘冲刷装置包括旋流风管;
所述空调风管上设置有用于调节流经所述空调风管的气流流量的空调风管风量调节阀;
所述旋流风管的进风口端与所述空调风管风量调节阀的进风口端的空调风管连通,旋流风管的出风口端与空调风管风量调节阀的出风口端的空调风管连通。
上述进一步方案的有益效果是:通过空调风管风量调节阀调节流经空调风管的气流流量,使气流可全部经过旋流风管后流出,提高了旋流冲刷空调风管的内壁面的效果。
进一步,所述旋流风管为螺旋管。
进一步,所述积尘冲刷装置还包括用于调节流经所述旋流风管的气流流量的旋流风管风量调节阀。
上述进一步方案的有益效果是:通过旋流风管风量调节阀调节流经旋流风管的气流的流量,不仅可控制旋流的产生,还可变相的调节冲刷空调风管内壁面的旋流的流速。
进一步,所述空调风管至少有两段,所述空调风管风量调节阀设置在两段所述空调风管之间。
进一步,所述检测系统还包括清消降尘装置;所述清消降尘装置与所述控制单元通信连接,所述清消降尘装置用于对流经所述空调风管的气流进行降尘处理;所述控制单元根据第一平均值和第二平均值的差值与PM 10浓度变化极限差值的比较结果,开启或关闭所述清消降 尘装置。
上述进一步方案的有益效果是:通过清消降尘装置对流经空调风管的气流进行降尘处理,可避免空调系统的新风或回风中携带的可吸入颗粒物PM 10进入空调风管内,保证送风卫生质量。
进一步,清消降尘装置包括清消降尘风管和降尘组件,清消降尘风管与空调风管连通,降尘组件设置在清消降尘风管内用于对流经清消降尘风管的气流进行降尘处理。
上述进一步方案的有益效果是:通过将降尘组件设置在清消降尘风管内,且清消降尘风管与空调风管连通,使清消降尘装置可安装在空调系统的任意段的空调风管的轴向端,安装拆卸灵活方便。
进一步,清消降尘风管设置在空调风管的新风口连接段或回风口连接段或新风与回风的混合箱连接段。
上述进一步方案的有益效果是:通过对清消降尘风管的位置限定,可快速清除通过新风口或回风口进入空调风管内部的可吸入颗粒物PM 10,保证送风卫生。
本发明还提出一种利用检测系统进行集中空调系统PM 10指标检测的方法,
所述控制单元还用于设置PM 10预警临界值、清消临界值和PM 10浓度变化极限差值;
所述粉尘检测装置检测待检测空调系统的每个测点所在的空调风管内的粉尘浓度值,并根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的第一平均值;
所述控制单元将所述第一平均值分别与PM 10预警临界值和清消临界值比较:
若所述第一平均值大于所述清消临界值,则所述控制单元进行声光报警;
若所述第一平均值大于PM 10预警临界值且小于或等于清消临界值,则所述控制单元进行声光报警,且所述控制单元启动所述积尘冲刷装置,流经所述旋流风管的气流形成旋流并冲刷所述空调风管的内壁面,使所述空调风管的内壁面上的积尘在旋流裹挟下流经所述粉尘检测装置,所述粉尘检测装置检测旋流流经的每个测点的粉尘浓度值,并计算旋流流经的所有测点的粉尘浓度值的第二平均值;所述控制单元将所述第一平均值和第二平均值的差值与所述PM 10浓度变化极限差值比较:
若所述第一平均值和第二平均值的差值大于或等于所述PM 10浓度变化极限差值,则所述 控制单元进行声光报警。
进一步,检测系统还包括清消降尘装置;所述控制单元还用于设置清消时长t;若所述第一平均值和第二平均值的差值小于所述PM 10浓度变化极限差值,则所述控制单元开启所述清消降尘装置,对流经所述空调风管的气流进行降尘处理,所述清消降尘装置的开启时长达到所述清消时长t后,所述控制单元关闭所述清消降尘装置。
上述进一步方案的有益效果是:当第一平均值大于PM 10预警临界值且小于或等于清消临界值,且第一平均值和第二平均值的差值小于PM 10浓度变化极限差值时,空调风管内的粉尘主要来自于空调风管外,通过清消降尘装置对流经空调风管的气流进行降尘处理,可避免空调系统的新风或回风中携带的可吸入颗粒物PM 10进入空调风管内,保证送风卫生质量。通过提前设置清消时长t,使清消降尘装置的运行时间可调可控,可根据空调系统使用环境的不同做针对性调整,保证送风卫生的同时降低能耗。
本发明的有益效果是:
1.通过粉尘检测装置检测待检测空调系统的每个测点所在的空调风管内的粉尘浓度值,可实现空调风管内粉尘浓度的在线检测;通过控制单元根据不同的比较结果进行声光报警,可方便快捷且准确的得到检测结果。
2.通过空调风管的气流侧向起旋冲刷空调风管内壁面,使空调风管内壁面的积尘在旋动气流裹挟下流经粉尘检测装置,可有效检测出空调风管内积尘浓度,从而可准确的判断可吸入颗粒物PM 10来自于室外或空调风管内的积尘,为空调系统相关部位的清洗消毒提供决策,免除了不必要的清洗消毒费用。
3.系统简单,粉尘检测装置体积小,测点分布更专业,保障数据的真实性和检测结果的准确性,便于安装,不影响建筑装修,也可实现多空调系统的检测。
附图说明
图1为本发明集中空调系统PM 10指标检测方法的流程结构示意图。
图2为本发明集中空调系统PM 10指标检测系统的粉尘检测装置设置位置的结构示意图。
图3为本发明集中空调系统PM 10指标检测系统的粉尘检测装置与控制单元的系统框图;
图4为本发明集中空调系统PM 10指标检测系统的积尘冲刷装置与粉尘检测装置设置位置 的结构示意图。
图5为图4中旋流风管、空调风管和空调风管风量调节阀的主视结构示意图。
图6为图5中旋流风管和空调风管的径向横截面气流方向的结构示意图。
图7为本发明集中空调系统PM 10指标检测系统的清消降尘装置的结构示意图。
图中;1-粉尘检测装置;1.1-测量电极;1.2-检测集成单元;1.2.1-集成运算放大器;1.2.2-AD转换器;1.2.3-微处理器;2-积尘冲刷装置;2.1-旋流风管;2.2-旋流风管风量调节阀;3-清消降尘装置;3.1-清消降尘风管;3.2-雾化喷头;3.3-积水排水口;3.4-供水管路;3.5-排水管路;3.6-积水盘;4-控制单元;4.1-控制处理及统计显示单元;4.2-报警声光单元;5-空调风管;6-送风口;7-空调风管风量调节阀。
具体实施方式
以下结合附图1至附图7和具体实施例对本发明作进一步的详细描述。
现有空调粉尘检测系统检测出空调系统内的可吸入颗粒物PM10不达标后,发出声光报警以提醒空调所有者清洗空调系统。但实际上,现有空调粉尘检测系统无法判定空调系统内可吸入颗粒物PM10不达标的具体原因,即无法判断可吸入颗粒物PM10来自于集中空调系统内部的积尘或来自于室外的新风口(或室内的回风口)。从而无法为空调所有者提供决策依据,空调所有者无法判断空调系统相关部位是否要进行专业的清洗消毒处理。
为了解决上述问题,本发明提出一种集中空调系统PM 10指标检测系统。可有效检测出空调风管内积尘浓度,从而可准确的判断可吸入颗粒物PM 10来自于室外或空调风管内的积尘,为空调系统相关部位的清洗消毒提供决策,免除了不必要的清洗消毒费用。
结合图2至图7所示的集中空调系统PM 10指标检测系统,包括粉尘检测装置1、积尘冲刷装置2、清消降尘装置3及控制单元4。需要说明的是,粉尘检测装置1至少部分设置在待检测空调系统的测点所在的空调风管5内,而本实施例的测点至少有两个。粉尘检测装置1检测的粉尘浓度值主要指可吸入颗粒物PM 10的浓度值,当然,也可以是其他可吸入颗粒物浓度值。粉尘检测装置1用于检测每个测点所在的空调风管5内的粉尘浓度值,并根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的第一平均值(或称算术平均值B1)。
粉尘检测装置1还用于检测旋流流经的每个测点的粉尘浓度值,并计算旋流流经的所有 测点的粉尘浓度值的第二平均值(或称算术平均值B2)。其中,积尘冲刷装置2用于提供旋流并冲刷空调风管5的内壁面,使空调风管5的内壁面上的积尘在旋流裹挟下流经至少两个测点。
具体的,粉尘检测装置1包括通信连接的测量电极1.1和检测集成单元1.2。测量电极1.1设置在空调风管5内的送风口6的喉部位置,该喉部位置即测点所在位置。检测集成单元1.2铆接于空调风管5的外表面。检测集成单元1.2包括集成运算放大器1.2.1、AD转换器1.2.2和微处理器1.2.3。当每个粉尘检测装置1包括一个测量电极1.1时,检测系统包括至少两个粉尘检测装置1,每个测点设置一个粉尘检测装置1。当检测系统包括一个粉尘检测装置1时,粉尘检测装置1应包括至少两个测量电极1.1,每个测点设置一个测量电极1.1。测量电极1.1作为粉尘检测装置1的检测元件,具有体积小,测点易分布的特点。
由于空调风管5中的粉尘颗粒与粉尘颗粒、粉尘颗粒与空调风管5内壁的碰撞和摩擦,将使粉尘颗粒带上电荷,形成静电场。当带电粉尘颗粒通过测量电极1.1时,测量电极1.1感应出正负电荷,电荷在转移运动中形成电流信号;此交流电信号的大小和粉尘质量含量成正比。通过对此电信号经集成运算放大器1.2.1放大后,经AD转换器1.2.2将电信号转化为数字信号、经微处理器1.2.3进行各测点的粉尘浓度值统计和算术平均值B1的计算,将计算与统计结果以无线或者有线的方式传输至控制单元4显示。
具体的,集成运算放大器1.2.1与测量电极1.1通信连接,以接收测量电极1.1输出的电信号,并对接收到的电信号进行放大处理。AD转换器1.2.2与集成运算放大器1.2.1通信连接,以接收集成运算放大器1.2.1输出的放大后的电信号,并将接收到的电信号转换为数字信号;微处理器1.2.3分别与AD转换器1.2.2和控制单元4通信连接,以接收AD转换器1.2.2输出的数字信号,并根据接收到的数字信号计算每个测点所在的空调风管5内的粉尘浓度值,且根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的算术平均值(该算术平均值包括算术平均值B1和算术平均值B2),将计算与统计结果以无线或者有线的方式传输至控制单元4显示。
积尘冲刷装置2包括旋流风管2.1和旋流风管风量调节阀2.2。旋流风管风量调节阀2.2设置在旋流风管2.1上。旋流风管2.1和粉尘检测装置1的测量电极1.1依次沿流经空调风管 5的气流方向设置。本实施例中,如图5所示,空调风管5至少有两段,两段空调风管5之间设置有相连通的空调风管风量调节阀7。旋流风管2.1为螺旋管,且旋流风管2.1的进风口端与空调风管风量调节阀7的进风口端的空调风管5连通,旋流风管2.1的出风口端与空调风管风量调节阀7的出风口端的空调风管5连通。
本实施例中的旋流风管2.1缠绕在空调风管风量调节阀7的外壁。需要说明的是,旋流风管2.1并非必须缠绕在空调风管风量调节阀7的外壁。旋流风管2.1还可以由圆弧弯管及与该圆弧弯管连通的可使流经该圆弧弯管的气体产生旋流的装置组成。
如图6所示,当空调风管风量调节阀7关闭,旋流风管风量调节阀2.2开启时,空调风管5内的气流通过旋流风管2.1的进风口端进入旋流风管2.1内,在旋流风管2.1的作用下产生旋流,从旋流风管2.1的出风口端吹出的气流侧向起旋冲刷空调风管5的内壁面,使空调风管5内壁面的积尘在旋动气流裹挟下流经粉尘检测装置1的测量电极1.1。
清消降尘装置3包括清消降尘风管3.1、雾化喷头3.2和供排水系统,清消降尘风管3.1与空调风管5连通,雾化喷头3.2设置在清消降尘风管3.1内;清消降尘风管3.1的一端可以设置在空调风管5的新风口连接段或回风口连接段或新风与回风的混合箱连接段,清消降尘风管3.1的另一端接至空调处理机组。需要说明的是,本实施例的清消降尘装置3所进行的清洗消毒降尘处理不同于请专业人员对空调系统进行的清洗消毒处理。本实施例的清消降尘装置3用于对流经或将要流经空调风管5的气流进行降尘处理。即用于对流经空调风管5的新风和回风进行清洗消毒降尘处理,避免新风和回风中的粉尘颗粒进入空调风管5。供排水系统包括积水盘3.6、积水排水口3.3、供水管路3.4和排水管路3.5。积水盘3.6和积水排水口3.3设置在清消降尘风管3.1的底部,且积水排水口3.3设置在积水盘3.6的底部,排水管路3.5与积水排水口3.3连通,供水管路3.4与雾化喷头3.2连通,雾化喷头3.2与控制单元4通信连接,当算术平均值B2与算术平均值B1的差值小于预设的PM 10浓度变化极限差值△A=0.02mg/m 3时,验证出可吸入颗粒物PM 10来源于新风和回风,控制单元4控制雾化喷头3.2通电,通电时长为提前设定的清消时长t,即1小时。
通过雾化喷头3.2可快速且高效的对流经清消降尘风管3.1的气流进行降尘处理;通过积水排水口3.3及时排出清消降尘风管3.1底部的积水,不仅可以将空调风管5内的灰尘排 出,也能保证空调风管5内部的干燥,避免细菌滋生。通过供排水系统的作用,可持续对流经清消降尘风管3.1的气流进行降尘处理,且降尘用水可循环使用,节能环保。
控制单元4,包括控制处理及统计显示单元4.1和报警声光单元4.2。其中,控制处理及统计显示单元4.1显示粉尘检测装置1检测的空调系统中多个测点的粉尘浓度值、算术平均值B1和算术平均值B2。报警声光单元4.2包括第一声光报警元件和第二声光报警元件。第一声光报警元件包括接收第一报警指令并执行该第一报警指令的红灯。第二声光报警元件包括接收第二报警指令并执行该第二报警指令的警铃。
控制处理及统计显示单元4.1将算术平均值B1分别与PM 10预警临界值A1和清消临界值A2比较,且根据比较结果向报警声光单元4.2发出第一报警指令或第二报警指令。控制处理及统计显示单元4.1将算术平均值B1和算术平均值B2的差值与PM 10浓度变化极限差值△A比较,且根据比较结果向报警声光单元4.2发出第二报警指令。
具体的,当算术平均值B1大于清消临界值A2时,控制处理及统计显示单元4.1向报警声光单元4.2发出第二报警指令。声光单元4.2接收并执行第二报警指令,警铃响。
当算术平均值B1大于PM 10预警临界值A1且小于或等于清消临界值A2时,控制处理及统计显示单元4.1向报警声光单元4.2发出第一报警指令。声光单元4.2接收并执行第一报警指令,红灯亮。
当算术平均值B1和算术平均值B2的差值大于或等于PM 10浓度变化极限差值△A时,控制处理及统计显示单元4.1向报警声光单元4.2发出第二报警指令。声光单元4.2接收并执行第二报警指令,警铃响。
当警铃响时,提醒空调所有者需要对空调系统的相关部位进行专业的清洗消毒处理。
集中空调系统PM 10指标检测系统还包括与控制单元4通信连接的温度传感器及二氧化碳浓度传感器;温度传感器及二氧化碳浓度传感器设置在空调风管5内,控制处理及统计显示单元4.1显示空调风管5内的温度和二氧化碳浓度。
如图1所示,利用上述检测系统进行集中空调系统PM 10指标检测的方法,包括以下步骤:
S1、控制单元4设置PM 10预警临界值A1、清消临界值A2、PM 10浓度变化极限差值△A、采样时间段T、清消时长t。其中,PM 10预警临界值A1=0.12mg/m 3,清消临界值A2=0.15mg/m 3, PM 10浓度变化极限差值△A=0.02mg/m 3,采样时间段T=2h,清消时长t=1h。采样时间段T和清消时长t还可以是设定的其他值。采样时间段可以是多个固定的时间段,比如,每天的6-8点、10-12点、14-16点、18-20点。采样时间段也可以是自由的时间段,比如,从设定采样时间起的2小时内为采样时间段。除设置采样时间段外,还可以设置采样间隔时间,比如,设定的采样时间段和采样间隔时间均为2小时,则从初次设定采样时间段开始的2小时内为第一次采样时间,该第一次采样结束后的2小时为采样间隔时间,此采样间隔时间段内集中空调系统PM 10指标检测系统处于休息状态,采样间隔时间达到2小时后开始为期2小时的第二次采样,依次进行。在采样时间段T的范围内集中空调系统PM 10指标检测系统处于运行状态,运行以下步骤S2至步骤S5。
S2、多个粉尘检测装置1检测空调系统中多个测点的粉尘浓度值,并进行各个测点的粉尘浓度值统计,并根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的算术平均值B1,再将统计与计算的结果以无线或有线的方式传输至控制单元4,控制单元4的控制处理及统计显示单元4.1显示粉尘浓度值和算术平均值B1,以便于相关人员(比如空调所有者)了解空调系统内的粉尘浓度。
若算术平均值B1小于或等于PM 10预警临界值A1=0.12mg/m 3,控制单元4不向报警声光单元4.2发出报警指令。此状态时,空调系统的PM 10指标符合要求。
若算术平均值B1大于PM 10预警临界值A1=0.12mg/m 3,且小于或等于清消临界值A2=0.15mg/m 3,控制单元4向报警声光单元4.2发出第一报警指令,报警声光单元4.2接收并执行第一报警指令。比如,红灯亮;进入步骤S3。由于此状态下,还无法确定超标的可吸入颗粒物PM 10来自于空调系统内部积尘或来自于室外,因此仅亮红灯警示并进入步骤S3进一步判断。而现有技术中,通常仅在这一状态时即认为空调系统的送风卫生不达标,并对空调系统进行专业的清洗消毒,可能会浪费不必要的清洗消毒费用。
若算术平均值B1大于清消临界值A2=0.15mg/m 3,进入步骤S5。此状态下,可以确定的是空调系统的送风卫生已经不达标,需要对空调系统进行专业的清洗消毒处理。
S3、控制单元4开闭相应阀门使气流冲刷空调风管5内壁,即控制单元4关闭空调风管风量调节阀7,控制单元4开启旋流风管风量调节阀2.2,空调风管5原流经空调风管风量调 节阀7的气流进入旋流风管2.1,并在旋流风管2.1的作用下侧向起旋冲刷空调风管5内壁,使空调风管5内壁的积尘在旋动气流裹挟下流经粉尘检测装置1。其中,空调风管风量调节阀7与旋流风管2.1相并联,并分别与空调风管5连通,旋流风管风量调节阀2.2设置在旋流风管2.1上,粉尘检测装置1和旋流风管2.1依次沿流经空调风管5的气流方向设置。粉尘检测装置1进行此时的粉尘浓度值统计和算术平均值B2的计算,从而可检测出不受新风和回风影响的空调风管5内的可吸入颗粒物PM 10的浓度,以便于确定超标的可吸入颗粒物PM 10来自于空调系统内部积尘或来自于室外。
具体的,若B2与B1的差值小于△A=0.02mg/m 3,验证出空调风管5内积尘不多,可吸入颗粒物PM 10来源于新风和回风,则进入步骤S4对新风和回风进行清洗消毒降尘。
若B2与B1的差值大于或等于△A=0.02mg/m 3,验证出空调风管5内积尘过多,则进入步骤S5。
S4、控制单元4开启清消降尘装置3,1小时后关闭清消降尘装置3,返回步骤S2。粉尘检测装置1再次检测空调系统中多个测点的粉尘浓度值。
S5、当验证出空调风管5内积尘过多时,控制单元4向报警声光单元4.2发出第二报警指令,报警声光单元4.2接收并执行第二报警指令。比如,警铃响。提醒空调所有者请专业人员对空调系统进行清洗消毒处理。
本方法的效果在于,可有效检测出空调风管5内积尘浓度,从而可准确的判断可吸入颗粒物PM 10来自于室外或空调风管5内的积尘,为空调系统相关部位的清洗消毒提供决策,免除了不必要的清洗消毒费用。以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,同样也应视为本发明的保护范围。

Claims (10)

  1. 一种集中空调系统PM 10指标检测系统,其特征在于,包括:
    粉尘检测装置,其用于检测待检测空调的至少两个测点所在的空调风管内的粉尘浓度值,并根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的第一平均值;
    积尘冲刷装置,其用于提供旋流并冲刷所述空调风管的内壁面,使所述空调风管的内壁面上的积尘在旋流裹挟下流经所述至少两个测点,所述粉尘检测装置检测所述旋流流经的每个测点的粉尘浓度值,并计算旋流流经的所有测点的粉尘浓度值的第二平均值;及
    控制单元,与所述粉尘检测装置和所述积尘冲刷装置通信连接;
    其中,所述控制单元将第一平均值分别与PM 10预警临界值和清消临界值比较,且根据比较结果进行声光报警;所述控制单元还将第一平均值和第二平均值的差值与预设的PM 10浓度变化极限差值比较,且根据比较结果进行声光报警。
  2. 根据权利要求1所述的集中空调系统PM 10指标检测系统,其特征在于,所述积尘冲刷装置包括旋流风管;
    所述空调风管上设置有用于调节流经所述空调风管的气流流量的空调风管风量调节阀;
    所述旋流风管的进风口端与所述空调风管风量调节阀的进风口端的空调风管连通,旋流风管的出风口端与空调风管风量调节阀的出风口端的空调风管连通。
  3. 根据权利要求2所述的集中空调系统PM 10指标检测系统,其特征在于,所述旋流风管为螺旋管。
  4. 根据权利要求2所述的集中空调系统PM 10指标检测系统,其特征在于,所述积尘冲刷装置还包括用于调节流经所述旋流风管的气流流量的旋流风管风量调节阀。
  5. 根据权利要求2所述的集中空调系统PM 10指标检测系统,其特征在于,所述空调风管至少有两段,所述空调风管风量调节阀设置在两段所述空调风管之间。
  6. 根据权利要求1至5中任一项所述的集中空调系统PM 10指标检测系统,其特征在于,所述检测系统还包括清消降尘装置;所述清消降尘装置与所述控制单元通信连接,所述清消降尘装置用于对流经所述空调风管的气流进行降尘处理;所述控制单元根据第一平均值和第二平均值的差值与PM 10浓度变化极限差值的比较结果,开启或关闭所述清消降尘装置。
  7. 根据权利要求6所述的集中空调系统PM 10指标检测系统,其特征在于,所述清消降尘装置包括清消降尘风管和降尘组件,所述清消降尘风管与所述空调风管连通,所述降尘组件设置在所述清消降尘风管内用于对流经所述清消降尘风管的气流进行降尘处理。
  8. 根据权利要求7所述的集中空调系统PM 10指标检测系统,其特征在于,所述清消降尘风管设置在所述空调风管的新风口连接段或回风口连接段或新风与回风的混合箱连接段。
  9. 一种利用如权利要求1所述的检测系统进行集中空调系统PM 10指标检测的方法,其特征在 于,
    所述控制单元还用于设置PM 10预警临界值、清消临界值和PM 10浓度变化极限差值;
    所述粉尘检测装置检测待检测空调系统的每个测点所在的空调风管内的粉尘浓度值,并根据每个测点的粉尘浓度值计算所有测点的粉尘浓度值的第一平均值;
    所述控制单元将所述第一平均值分别与PM 10预警临界值和清消临界值比较:
    若所述第一平均值大于所述清消临界值,则所述控制单元进行声光报警;
    若所述第一平均值大于PM 10预警临界值且小于或等于清消临界值,则所述控制单元进行声光报警,且所述控制单元启动所述积尘冲刷装置,流经所述旋流风管的气流形成旋流并冲刷所述空调风管的内壁面,使所述空调风管的内壁面上的积尘在旋流裹挟下流经所述粉尘检测装置,所述粉尘检测装置检测旋流流经的每个测点的粉尘浓度值,并计算旋流流经的所有测点的粉尘浓度值的第二平均值;所述控制单元将所述第一平均值和第二平均值的差值与所述PM 10浓度变化极限差值比较:
    若所述第一平均值和第二平均值的差值大于或等于所述PM 10浓度变化极限差值,则所述控制单元进行声光报警。
  10. 根据权利要求9所述的集中空调系统PM 10指标检测方法,其特征在于,所述检测系统还包括清消降尘装置;所述控制单元还用于设置清消时长t;若所述第一平均值和第二平均值的差值小于所述PM 10浓度变化极限差值,则所述控制单元开启所述清消降尘装置,对流经所述空调风管的气流进行降尘处理,所述清消降尘装置的开启时长达到所述清消时长t后,所述控制单元关闭所述清消降尘装置。
PCT/CN2022/109413 2021-09-07 2022-08-01 集中空调系统pm10指标检测系统及方法 WO2023035808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111045988.X 2021-09-07
CN202111045988.XA CN113883704B (zh) 2021-09-07 2021-09-07 集中空调系统pm10指标检测系统及方法

Publications (1)

Publication Number Publication Date
WO2023035808A1 true WO2023035808A1 (zh) 2023-03-16

Family

ID=79008418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109413 WO2023035808A1 (zh) 2021-09-07 2022-08-01 集中空调系统pm10指标检测系统及方法

Country Status (2)

Country Link
CN (1) CN113883704B (zh)
WO (1) WO2023035808A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113883704B (zh) * 2021-09-07 2022-10-11 中建三局第一建设工程有限责任公司 集中空调系统pm10指标检测系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074788A (ja) * 2007-08-28 2009-04-09 Toshiba Carrier Corp 空気調和機
CN107816774A (zh) * 2017-11-15 2018-03-20 珠海格力电器股份有限公司 新风系统及其控制方法、新风空调系统
CN107940559A (zh) * 2017-11-14 2018-04-20 珠海格力电器股份有限公司 一种主动式组合集尘设备及除霾式空调机组
US20200124303A1 (en) * 2017-04-11 2020-04-23 Sharp Kabushiki Kaisha Air conditioning apparatus, control method for same, and control program
CN112783988A (zh) * 2020-12-29 2021-05-11 同济大学 一种空调通风系统内部环境参数的监测反馈及分析方法
CN113294881A (zh) * 2021-05-25 2021-08-24 中建三局集团(深圳)有限公司 一种具有预警功能的空调风管积尘量监控系统及方法
CN113883704A (zh) * 2021-09-07 2022-01-04 中建三局第一建设工程有限责任公司 集中空调系统pm10指标检测系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677794B (zh) * 2015-01-30 2017-03-15 常州大学 测量人体行走下室内地面pm10瞬态再悬浮率的装置及方法
CN206223610U (zh) * 2016-11-29 2017-06-06 福州大学 作业场所粉尘监控系统
CN206320873U (zh) * 2016-11-30 2017-07-11 广州市赛特检测有限公司 集中空调通风系统的积尘去除净化装置和系统
CN107560107B (zh) * 2017-09-26 2020-04-21 深圳达实智能股份有限公司 一种医院病房空调换气次数分析方法及其装置
CN108644926A (zh) * 2018-05-31 2018-10-12 成都君硕睿智信息科技有限公司 一种基于排风口除尘菌的中央空调系统
JP6739013B2 (ja) * 2019-01-16 2020-08-12 パナソニックIpマネジメント株式会社 ホコリ検知器付き機器
CN112113294B (zh) * 2020-10-15 2024-07-23 安徽建筑大学 一种可有效减少污染物的通风净化循环装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074788A (ja) * 2007-08-28 2009-04-09 Toshiba Carrier Corp 空気調和機
US20200124303A1 (en) * 2017-04-11 2020-04-23 Sharp Kabushiki Kaisha Air conditioning apparatus, control method for same, and control program
CN107940559A (zh) * 2017-11-14 2018-04-20 珠海格力电器股份有限公司 一种主动式组合集尘设备及除霾式空调机组
CN107816774A (zh) * 2017-11-15 2018-03-20 珠海格力电器股份有限公司 新风系统及其控制方法、新风空调系统
CN112783988A (zh) * 2020-12-29 2021-05-11 同济大学 一种空调通风系统内部环境参数的监测反馈及分析方法
CN113294881A (zh) * 2021-05-25 2021-08-24 中建三局集团(深圳)有限公司 一种具有预警功能的空调风管积尘量监控系统及方法
CN113883704A (zh) * 2021-09-07 2022-01-04 中建三局第一建设工程有限责任公司 集中空调系统pm10指标检测系统及方法

Also Published As

Publication number Publication date
CN113883704A (zh) 2022-01-04
CN113883704B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
RU2733796C2 (ru) Устройство очистки воздуха
WO2023035808A1 (zh) 集中空调系统pm10指标检测系统及方法
Wallace et al. Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse
CN111111342B (zh) 过滤组件及过滤网脏堵检测方法
CN108043163B (zh) 一种脱除细颗粒物的控制系统及其智能控制方法
CN110376992B (zh) 一种厕所管理系统
CN109373549A (zh) 基于人员定位室内空气质量控制系统以及通风计算方法
CN103216920A (zh) 用于空调清洁的提醒装置及其控制方法
KR20200126470A (ko) 미세먼지 관리 시스템
CN110332629A (zh) 空调过滤网除尘及检测系统
CN208124472U (zh) 一种智能空气壁挂式新风机
CN206859351U (zh) 一种卫生间空气净化系统
CN209282177U (zh) 湿法刻蚀烘干设备
CN113294881B (zh) 一种具有预警功能的空调风管积尘量监控系统及方法
CN203385094U (zh) 家用立式加湿空调
JPH0552972U (ja) 水中土石粒子検出装置
CN109316846A (zh) 一种空气净化装置的滤材效率和寿命的监控装置
KR20230076090A (ko) 환경센서를 이용한 축사 관제 시스템
CN113883695A (zh) 一种基于动态响应的高铁站卫生间自适应通风系统
CN107354982A (zh) 一种卫生间空气净化系统
CN203163164U (zh) 用于空调清洁的提醒装置
CN109283876B (zh) 一种油烟在线监控监测仪
JP2003259753A (ja) ペット用トイレ清浄装置
JP2001034863A (ja) エアブロー式火災報知システム
CN210861567U (zh) 空气调节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE