WO2023029159A1 - 一种用于环形薄壁工件的双传感器测量系统以及测量方法 - Google Patents
一种用于环形薄壁工件的双传感器测量系统以及测量方法 Download PDFInfo
- Publication number
- WO2023029159A1 WO2023029159A1 PCT/CN2021/124899 CN2021124899W WO2023029159A1 WO 2023029159 A1 WO2023029159 A1 WO 2023029159A1 CN 2021124899 W CN2021124899 W CN 2021124899W WO 2023029159 A1 WO2023029159 A1 WO 2023029159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annular thin
- walled
- sensor
- workpiece
- platform
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 4
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims description 40
- 238000006073 displacement reaction Methods 0.000 claims description 18
- 239000006185 dispersion Substances 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0002—Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0002—Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
- G01B5/0004—Supports
Definitions
- the invention belongs to the technical field of high-precision measurement, in particular to a dual-sensor measurement system and a measurement method for annular thin-walled workpieces.
- Annular thin-walled workpieces are indispensable components in national defense, aviation, information electronics, and optical systems.
- the cylindricity, wall thickness difference, and shape error of annular thin-walled workpieces greatly affect the performance of the system. Realizing accurate and stable measurement of the wall surface of the annular thin-walled workpiece, thereby improving the machining accuracy of the annular thin-walled workpiece is an important means to improve the performance of the system.
- the positioning error of the rotary table is an important source of error.
- the positioning error of the rotary table directly leads to the splicing error of the measurement data of the inner and outer walls of the annular thin-walled workpiece, so that the measurement data cannot accurately reflect Wall thickness difference.
- the object of the present invention is to provide a dual-sensor measuring system and a measuring method with simple structure and high precision.
- a dual-sensor measurement system for annular thin-walled workpieces comprising:
- XY positioning platform with X-direction driving platform moving in X direction and Y-direction driving platform moving in Y direction;
- Rotary table set on the XY positioning platform, used for Z-direction rotation;
- the manual adjustment table is set on the rotary table and has a workpiece carrier for clamping the annular thin-walled workpiece, and is used for fine-tuning the position of the annular thin-walled workpiece;
- Two sensor adjustment devices mounted on the Z-direction drive platform, for adjusting the position of the distance sensor
- Two distance sensors are installed on the sensor adjustment device, and the optical paths of the distance sensors are aligned with each other, and are used for measuring the distance from the distance sensor to the inner and outer walls of the annular thin-walled workpiece.
- the distance sensor is a dispersion confocal sensor.
- a standard ball is also included, which can be installed on the hand-adjusting table for alignment of the optical paths of the two distance sensors.
- the manual adjustment table includes an X-direction translation fine-tuning assembly for moving in the X-direction, a Y-direction translation fine-tuning assembly for moving in the Y-direction, an X-direction inclination table for rotating around the X direction, and an X-direction tilting platform for Rotating Y-direction tilt table.
- the sensor adjustment device includes a Z-direction translation fine-tuning assembly for Z-direction movement, an X-direction translation fine-tuning assembly for X-direction movement, a Z-direction angle fine-adjustment assembly for rotation around the Z direction, and a Z-direction angle fine-tuning assembly for rotation around the Y direction. Nudge the component towards the Y angle of the rotation.
- a dual-sensor measurement method for annular thin-walled workpieces based on the above-mentioned dual-sensor measurement system for annular thin-walled workpieces, comprising the following steps:
- the first step install the annular thin-walled workpiece to the workpiece carrier;
- Step 2 Move the XY positioning platform to move the annular thin-walled workpiece to the bottom of the two distance sensors; move the Z-direction drive platform to move the two distance sensors to the thin wall where the horizontal section a of the annular thin-walled workpiece is located;
- Step 3 Measure the annular thin-walled workpiece by controlling the rotation of the rotary table and the translation of the X-direction driving platform, and record the readings of the distance sensor, and calculate the distance between the center of the circular thin-walled workpiece at the horizontal section a relative to the rotation axis of the rotary table according to the geometric relationship Eccentric coordinates O a (x a , y a , z a );
- Step 4 Move the Z-direction driving platform so that the two distance sensors move to the thin wall where the horizontal section b of the annular thin-walled workpiece is located;
- Step 5 Measure the circular thin-walled workpiece by controlling the rotation of the rotary table and the translation of the X-direction drive platform, and record the readings of the distance sensor, and calculate the rotation of the circular thin-walled workpiece at the horizontal section b relative to the rotary table according to the geometric relationship
- Step 6 According to the eccentric coordinates of the center of the horizontal section a and horizontal section b, calculate the inclination ⁇ of the central axis of the annular thin-walled workpiece on the YZ plane and the inclination ⁇ on the XZ plane, the formula is as follows:
- Step 7 According to the inclination angles ⁇ and ⁇ , respectively adjust the degrees of freedom of the hand-adjusting platform around the X-axis and Y-axis, so that the central axis of the annular thin-walled workpiece 106 is parallel to the rotation axis of the rotary table, and realize the measurement of the annular thin-walled workpiece. Inclination adjustment.
- Step 8 Control the rotation of the rotary table and the translation of the X-direction drive platform to measure the annular thin-walled workpiece, and record the readings of the dispersive confocal sensor, and calculate the eccentric coordinates of the circular thin-walled workpiece at the horizontal section b relative to the rotation axis according to the geometric relationship is (x b1 , y b1 , z b ); then adjusting the manual table according to x b1 and y b1 can eliminate the eccentric distance in the X and Y directions, and then make the central axis of the annular thin-walled workpiece and the rotation axis of the rotary table Overlap to achieve alignment.
- Step 9 It is necessary to control the translation of the Z positioning platform and the rotation of the rotary table to realize the helical scanning measurement of the circular thin-walled workpiece by the double displacement sensor.
- the optical path alignment operation of the two displacement sensors is firstly performed:
- the optical paths of the two displacement sensors are aligned with the center of the standard ball
- the present invention uses two distance sensors to measure the offset distance and offset angle between the center line of the annular thin-walled workpiece and the axis of the rotating shaft of the rotary table, and eliminates it through the manual adjustment table, thereby improving the measurement accuracy of the workpiece.
- the present invention uses a dual-dispersion confocal sensor to measure the inner and outer walls of the annular thin-walled workpiece, which can improve the measurement efficiency and overcome the splicing error of the inner and outer wall measurement data in the single-sensor measurement. It has very high measurement accuracy and is suitable for high precision Measurement of parts.
- the present invention can reduce the inclination angle between the centerline of the annular thin-walled workpiece and the axis of the rotary shaft of the rotary table to ⁇ 0.1° through the manual adjustment table, and can also reduce the inclination between the centerline of the circular thin-walled workpiece and the axis of the rotary shaft of the rotary table. Eccentricity down to sub-micron level.
- the present invention can reduce the deviation of the measurement optical path of the dual sensors to the order of microns, effectively improve the alignment accuracy of the detection optical path, and further improve the measurement accuracy of the displacement sensor.
- Fig. 1 is a schematic structural diagram of a dual-sensor measuring system of the present invention.
- Fig. 2 is a structural schematic diagram of the alignment of the optical paths of the dual sensors of the present invention.
- Fig. 3 is a schematic diagram of the centering principle of an annular thin-walled workpiece.
- Fig. 4 is a schematic diagram of the dual displacement sensor moving to the thin wall of the annular thin-walled workpiece.
- Fig. 5 is a schematic diagram of helical scanning measurement of an annular thin-walled workpiece by dual displacement sensors.
- a dual-sensor measurement system for annular thin-walled workpieces includes an XY positioning platform, a rotary table 103, a manual adjustment table 105, a Z-direction driving platform 109, two sensor adjustment devices, and two distance sensors 107.
- the XY positioning platform has an X-direction driving platform 102 that moves in the X direction and a Y-direction driving platform 101 that moves in the Y direction, and is mainly used for moving and positioning ring-shaped thin-walled workpieces.
- a rotary table 103 for Z-direction rotation is provided, and a manual installation position 104 is provided on the rotary table 103.
- the workpiece carrier that clamps the annular thin-walled workpiece 106, the manual adjustment table 105 is used to fine-tune the position of the annular thin-walled workpiece 106, in this embodiment, the manual adjustment table 105 is mainly used for the X/Y direction of the annular thin-walled workpiece Move and rotate adjustments.
- the manual adjustment platform 105 includes an X-direction translation fine-tuning assembly for X-direction movement, a Y-direction translation fine-adjustment assembly for Y-direction movement, an X-direction tilt platform 110 for rotation around the X direction, and a tilt table 110 for rotation around the Y direction.
- the offset in the Y direction can also eliminate the inclination angle of the space where the annular thin-walled workpiece 106 is located by the X-direction inclination table 110 and the Y-direction inclination table 111, which is suitable for the annular thin-walled workpiece 106 whose central axis and bottom surface are not vertical, ensuring The central axis of the annular thin-walled workpiece 106 before measurement is coincident with the rotation axis of the rotary table 103, so as to improve the measurement accuracy.
- the manual adjustment mounting position 104 is a mounting plate fixed on the bottom of the manual adjustment table 105 , and the mounting plate is fixed on the rotating table 103 by screws.
- the workpiece carrier is an annular seat, and the bottom of the annular thin-walled workpiece 106 is installed on the inner ring of the annular seat, and clamped by fasteners.
- the Z-direction driving platform 109 is used for moving and positioning the distance sensor 107 in the Z direction, and two sensor adjustment devices for adjusting the position of the distance sensor 107 are symmetrically arranged on it through the sensor mounting frame 108, and each sensor adjustment device Correspondingly, a distance sensor 107 is installed.
- the distance sensor 107 is a dispersion confocal sensor, which is vertically arranged on the sensor adjustment device, and has a light source with a 90° light output, and the optical paths of the distance sensor 107 are aligned with each other for measuring the distance between the distance sensor 107 and the distance sensor 107.
- the distance between the inner and outer walls of the annular thin-walled workpiece 106, and the surface shape, roundness, cylindricity, etc. of the annular thin-walled workpiece 106 are measured with an accuracy of nm level.
- the Z-direction driving platform 109 is symmetrically provided with a sensor adjustment device for adjusting the position of the distance sensor 107.
- the sensor adjustment device includes a Z-direction translation fine-tuning assembly 112 for Z-direction movement, an X-direction translation fine-tuning assembly 112 for X-direction movement, The moving fine-tuning assembly 113, the Z-direction angle fine-tuning assembly 114 for rotating around the Z-direction, and the Y-direction angle fine-tuning assembly 115 for rotating around the Y-direction.
- the sensor adjustment device can adjust the position of the distance sensor 107 in the Z/X direction and the angle of the Z/Y direction, so as to facilitate the adjustment of the optical path of the distance sensor 10.
- This embodiment is also provided with a standard ball 116 with a diameter of 8 mm and a machining accuracy of 30 nm, which can be detachably installed on the manual adjustment platform 105 .
- the standard ball 116 is installed on the hand-adjusting platform 105, and the position of the standard ball 116 is adjusted by adjusting the X-direction drive platform 102, the Y-direction drive platform 101, and the Z-direction drive platform 109, and the distance sensor 107 is adjusted by the sensor adjustment device.
- the position of the optical path when the optical path of the distance sensor 107 is aligned with the center of the standard sphere 116, the optical path is aligned. After the optical paths are aligned, the standard ball 116 can be removed.
- the X-direction drive platform 102, the Y-direction drive platform 101, and the Z-direction drive platform 109 all include a servo motor, a screw drive structure and a slide table, and the servo motor drives the slide table to perform linear motion through the screw drive structure.
- the stroke is within 1000mm, and the precision is at the ⁇ m level.
- the structure of the X-direction translational fine-tuning assembly, the Y-direction translational fine-tuning assembly, the Z-direction translational fine-tuning assembly 112, and the X-direction translational fine-tuning assembly 113 is similar to the structure of the drive platform.
- the manual control screw drive structure drives the slide table to do linear motion.
- the adjustment accuracy is at the ⁇ m level.
- the structures of the X-direction tilting platform 110, the Y-direction tilting platform 111, the Z-direction angle fine-tuning assembly 114, and the Y-direction angle fine-tuning assembly 115 are all similar, and all include a mounting seat provided with an arc-shaped groove, a rotating block provided with an arc-shaped bottom surface, and The fine adjustment assembly, the rotating block is rotated and arranged on the mounting seat through the fine adjustment assembly, so that the rotating block can rotate around the axis of the arc groove, thereby realizing angle adjustment.
- the angle adjustment range is ⁇ 10°, and the adjustment accuracy is 0.01°.
- a dual-sensor measurement method for annular thin-walled workpieces is based on the above-mentioned dual-sensor measurement system for annular thin-walled workpieces.
- the standard ball 116 is installed on the hand-adjusting table 105, and the standard ball 116 is moved between the two displacement sensors by moving the X-direction driving platform 102, the Y-direction driving platform (101) and the Z-direction driving platform 109.
- adjust the degree of freedom of the Y direction of the sensor adjustment device so that the standard ball 116 is within the range of the two displacement sensors; then adjust the degrees of freedom of the X and Z directions of the sensor adjustment device so that the optical paths of the two displacement sensors are aligned
- the ball center of standard ball 116 As shown in FIG. 2 , the optical paths of the two displacement sensors 107 are aligned, and the standard ball 116 is removed at this time.
- the first step install the annular thin-walled workpiece 106 to the workpiece carrier;
- Step 2 Move the XY positioning platform to move the annular thin-walled workpiece 106 to the bottom of the two distance sensors 107; then move the Z-direction driving platform 109 to move the two distance sensors 107 to the horizontal section of the bottom annular thin-walled workpiece 106
- the thin wall where a is located as shown in Figure 3;
- Step 3 measure the annular thin-walled workpiece 106 by controlling the rotation of the rotary table 103 and the translation of the X-direction drive platform 102, and record the readings of the distance sensor 107, and calculate the relative distance between the center of the circular thin-walled workpiece 106 at the horizontal section a according to the geometric relationship
- Step 4 move the Z-direction drive platform 109 to move the two distance sensors 107 to the thin wall where the horizontal section b of the top circular thin-walled workpiece 106 is located;
- Step 5 By controlling the rotation of the rotary table 103 and the translation of the X-direction drive platform 102, measure the annular thin-walled workpiece 106, and record the readings of the distance sensor 107, and calculate according to the geometric relationship that the circular thin-walled workpiece 106 is opposite to the center of the horizontal section b Eccentric coordinates O b (x b , y b , z b ) of the rotation axis of the turntable 103;
- Step 6 According to the eccentric coordinates of the circle center at the horizontal section a and the horizontal section b, calculate the inclination ⁇ of the central axis of the annular thin-walled workpiece 106 on the YZ plane and the inclination ⁇ on the XZ plane, the formula is as follows:
- Step 7 According to the inclination angles ⁇ and ⁇ , respectively adjust the degrees of freedom of the manual adjustment table 105 to rotate around the X-axis and Y-axis, so that the central axis of the annular thin-walled workpiece 106 is parallel to the rotation axis of the rotary table 103 to realize the measurement of the annular thin-walled workpiece The inclination of the workpiece 106 is adjusted.
- Step 8 Control the rotation of the rotary table 103 and the translation of the X-direction drive platform 102 to measure the annular thin-walled workpiece 106, and record the readings of the dispersive confocal sensor 108, and calculate the relative distance between the center of the annular thin-walled workpiece 106 at the horizontal section b according to the geometric relationship
- the eccentric coordinates of the rotation axis are (x b1 , y b1 , z b );
- the rotation axis of the rotary table 103 is the reference system of the X/Y origin, then adjusting the manual adjustment table 105 according to x b1 and y b1 can eliminate X, Y
- the eccentric distance in the direction, and then the central axis of the annular thin-walled workpiece 106 coincides with the rotation axis of the rotary table 103 to achieve centering.
- Step 9 As shown in Figure 4, move the dual displacement sensor to the thin-wall measurement starting point of the annular thin-walled workpiece 106; as shown in Figure 5, it is necessary to control the translation of the Z positioning platform 110 and the rotation of the rotary table 103 to realize the dual displacement sensor Helical scanning measurement of an annular thin-walled workpiece 106 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Machine Tool Sensing Apparatuses (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明属于高精度测量技术领域,特指一种用于环形薄壁工件的双传感器测量系统以及测量方法。包括:XY定位平台,具有X方向移动的X向驱动平台以及Y方向移动的Y向驱动平台;旋转台,设置在XY定位平台上,用于Z向旋转;手调台,设置在旋转台上,且具有装夹环形薄壁工件的工件载具,用于微调环形薄壁工件的位置;Z向驱动平台,用于Z方向移动;两个传感器调节装置,安装在Z向驱动平台上;以及两个距离传感器,安装在传感器调节装置上,且距离传感器的光路相互对齐。本发明通过两个距离传感器测量环形薄壁工件的中心线与旋转台转轴轴线之间的偏移距离以及偏移角度,并通过手调台消除,从而提高工件的测量精度。
Description
本发明属于高精度测量技术领域,特指一种用于环形薄壁工件的双传感器测量系统以及测量方法。
环形薄壁工件是国防、航空、信息电子、光学系统中不可或缺的组件,环形薄壁工件的圆柱度、壁厚差、形貌误差等极大地影响了系统的性能。实现对环形薄壁工件壁面精确、稳定的测量,从而提高环形薄壁工件的加工精度是提高系统性能的重要手段。
在环形薄壁工件的单传感器测量系统中,旋转台的定位误差是重要的误差来源,旋转台的定位误差直接导致了环形薄壁工件内外壁测量数据的拼接误差,使测量数据不能准确地反映壁厚差。
且在双传感器测量系统中,待测工件的偏心与倾角误差、以及双传感器的测量光路的偏离,都直接导致了环形薄壁工件的测量误差,这种误差在精密测量系统中更为显著与关键。如何通过使用双传感器测量有效的抑制与分解环形薄壁工件的偏心和倾角误差、以及双传感器的测量光路的偏离,对于环形薄壁工件的精密测量有着更为重要的意义。
发明内容
本发明的目的是提供一种结构简单、精度高的双传感器测量系统以及测量方法。
本发明的目的是这样实现的:
一种用于环形薄壁工件的双传感器测量系统,包括:
XY定位平台,具有X方向移动的X向驱动平台以及Y方向移动的Y向驱动平台;
旋转台,设置在XY定位平台上,用于Z向旋转;
手调台,设置在旋转台上,且具有装夹环形薄壁工件的工件载具,用于微调环形薄壁工件的位置;
Z向驱动平台,用于Z方向移动;
两个传感器调节装置,安装在Z向驱动平台上,用于调节距离传感器的位置;以及
两个距离传感器,安装在传感器调节装置上,且距离传感器的光路相互对齐,用于测量距离传感器到环形薄壁工件内外壁的距离。
优选地,所述距离传感器为色散共焦传感器。
优选地,还包括标准球,可安装在手调台上,用于两个距离传感器的光路对齐。
优选地,所述手调台包括用于X向移动的X向平移微调组件、用于Y向移动的Y向平移微调组件、用于绕X向旋转的X向倾角台以及用于绕Y向旋转的Y向倾角台。
优选地,所述传感器调节装置包括用于Z向移动的Z向平动微调组件、用于X向移动的X向平动微调组件、用于绕Z向旋转的Z向角度微调组件以及用于绕Y向旋转的Y向角度微调组件。
一种用于环形薄壁工件的双传感器测量方法,基于上述的用于环形薄壁工件的双传感器测量系统,其包括以下步骤:
第一步:安装环形薄壁工件至工件载具;
第二步:移动XY定位平台,使环形薄壁工件移动至两个距离传感器的下方;移动Z向驱动平台,使两个距离传感器移动至环形薄壁工件的水平截面a所在的薄壁处;
第三步:通过控制旋转台旋转和X向驱动平台平移测量环形薄壁工件,并记录距离传感器的读数,根据几何关系计算出环形薄壁工件在水平截面a处圆心相对于旋转台旋转轴线的偏心坐标O
a(x
a,y
a,z
a);
第四步:移动Z向驱动平台,使两个距离传感器移动至环形薄壁工件的水平截面b所在的薄壁处;
第五步:通过控制旋转台旋转和X向驱动平台平移,测量环形薄壁工件,并记录距离传感器的读数,根据几何关系计算出环形薄壁工件在水平截面b处圆心相对于旋转台的旋转轴线的偏心坐标O
b(x
b,y
b,z
b);
第六步:根据水平截面a和水平截面b处圆心的偏心坐标,计算环形薄壁工件的中心轴在YZ平面的倾角α以及在XZ平面上的倾角β,公式如下:
第七步:根据倾角α和β,分别调节手调台绕X轴、Y轴旋转的自由度,使得环形薄壁工件106的中心轴与旋转台的旋转轴线平行,实现测量环形薄壁工件的倾角调节。
第八步:控制旋转台旋转和X向驱动平台平移测量环形薄壁工件,并记录色散共焦传感器读数,根据几何关系计算出环形薄壁工件在水平截面b处圆心相对于旋转轴线的偏心坐标 为(x
b1,y
b1,z
b);那么根据x
b1和y
b1调节手调台,可以消除X、Y方向上的偏心距离,进而使环形薄壁工件的中心轴与旋转台的旋转轴线重合,实现对心。
第九步:需要控制Z定位平台平移和旋转台转动实现双位移传感器对环形薄壁工件的螺旋扫描测量。
优选地,在测量环形薄壁工件之前,首先进行两个位移传感器的光路对齐操作:
首先,将标准球安装在手调台上,通过移动X向驱动平台、Y向驱动平台以及Z向驱动平台,使标准球移动至两个位移传感器之间;
其次,再通过调节传感器调节装置,使两个位移传感器的光路对准标准球的球心;
最后,拆除标准球。
本发明相比现有技术突出且有益的技术效果是:
1、本发明通过两个距离传感器测量环形薄壁工件的中心线与旋转台转轴轴线之间的偏移距离以及偏移角度,并通过手调台消除,从而提高工件的测量精度。
2、本发明使用双色散共焦传感器对环形薄壁工件的内外壁进行测量,能提高测量效率,并克服单传感器测量中内外壁测量数据的拼接误差,具有非常高的测量精度,适合高精度零件的测量。
3、本发明通过手调台可以减小环形薄壁工件中心线与旋转台转轴轴线之间的倾角至±0.1°,同时也可以减小环形薄壁工件中心线与旋转台转轴轴线之间的偏心至亚微米量级。
4、本发明通过标准球以及传感器调节装置,可以减小双传感器测量光路的偏离至微米量级,有效提高了检测光路的对齐精度,进而提升了位移传感器的测量精度。
图1是本发明双传感器测量系统的结构示意图。
图2是本发明双传感器光路对齐的结构示意图。
图3是环形薄壁工件对心的原理示意图。
图4是双位移传感器移动至环形薄壁工件的薄壁处的示意图。
图5是双位移传感器对环形薄壁工件进行螺旋扫描测量的示意图。
图中标号所表示的含义:
101-Y向驱动机构;102-X向驱动机构;103-旋转台;104-手调安装位;105-手调台;106-环形薄壁工件;107-距离传感器;108-传感器安装架;109-Z向驱动平台;110-X向倾角台;111-Y向倾角台;112-Z向平动微调组件;113-X向平动微调组件;114-Z向角度微调组件;115-Y向角度微调组件;116-标准球。
下面结合具体实施例对本发明作进一步描述:
如图1所示,一种用于环形薄壁工件的双传感器测量系统,包括XY定位平台、旋转台103、手调台105、Z向驱动平台109、两个传感器调节装置以及两个距离传感器107。
所述XY定位平台具有X方向移动的X向驱动平台102以及Y方向移动的Y向驱动平台101,主要用于环形薄壁工件的移动与定位。在XY定位平台上设置有用于Z向旋转的旋转台103,所述旋转台103上设置有手调安装位104,手调安装位104安装有手调台105,手调台105上设置有装夹环形薄壁工件106的工件载具,所述手调台105用于微调环形薄壁工件106的位置,本实施例中,手调台105主要用于环形薄壁工件在X/Y向的移动以及旋转调节。
所述手调台105包括用于X向移动的X向平移微调组件、用于Y向移动的Y向平移微调组件、用于绕X向旋转的X向倾角台110以及用于绕Y向旋转的Y向倾角台111。当距离传感器107测量出环形薄壁工件中心轴与旋转台103的转轴轴线的偏移量时,该结构不仅可以通过X向平移微调组件消除X向偏移量、通过Y向平移微调组件来消除Y向的偏移量,还可以通过X向倾角台110和Y向倾角台111来消除环形薄壁工件106所在的空间倾斜角度,适用于中心轴和底面不垂直的环形薄壁工件106,确保测量前环形薄壁工件106的中心轴是重合旋转台103的旋转轴线,以便于提高测量精度。
在本实施例,所述手调安装位104为一固定在手调台105底部的安装板,安装板通过螺钉固定在所述旋转台103上。所述工件载具为一环形座,环形薄壁工件106的底部安装在所述环形座的内圈,并通过紧固件实现装夹。
所述Z向驱动平台109用于距离传感器107在Z方向上移动与定位,其上通过传感器安装架108对称设置有两个用于调节距离传感器107位置的传感器调节装置,每个传感器调节装置上对应安装有一个距离传感器107。
本实施例中,所述距离传感器107为色散共焦传感器,竖直设置在所述传感器调节装置,并具有90°出光的光源,且距离传感器107的光路相互对齐,用于测量距离传感器107到环形薄壁工件106内外壁的距离、以及测量环形薄壁工件106的面形、圆度、圆柱度等,其精度为nm级。
具体地,所述Z向驱动平台109上对称设置有用于调节距离传感器107位置的传感器调节装置,传感器调节装置包括用于Z向移动的Z向平动微调组件112、用于X向移动的X向平动微调组件113、用于绕Z向旋转的Z向角度微调组件114以及用于绕Y向旋转的Y向角度微调组件115。所述传感器调节装置可以调节距离传感器107在Z/X向的位置以及Z/Y向 的角度,方便距离传感器10的光路调节。
本实施例还设置有标准球116,其直径8mm,加工精度为30nm,可拆卸安装在手调台105上。
测量前,标准球116安装在手调台105上,通过调节X向驱动平台102、Y向驱动平台101、Z向驱动平台109调整标准球116的位置,以及通过传感器调节装置调整距离传感器107的光路位置,当距离传感器107的光路对准标准球116的球心时,光路即为对齐。光路对齐后,拆除标准球116即可。
在本实施例中,X向驱动平台102、Y向驱动平台101以及Z向驱动平台109均包括伺服电机、丝杆传动结构以及滑台,伺服电机通过丝杆传动结构带动滑台做直线运动,一般其行程在1000mm以内,精度在μm级。
X向平移微调组件、Y向平移微调组件、Z向平动微调组件112以及X向平动微调组件113的结构均与驱动平台结构类似,一般手动控制丝杆传动结构带动滑台做直线运动,其行程在mm级别,调节精度在μm级别。
X向倾角台110、Y向倾角台111、Z向角度微调组件114以及Y向角度微调组件115的结构均类似,均包括开设有弧形槽的安装座、设置有弧形底面的转动块以及微调组件,转动块通过微调组件转动设置在安装座上,使转动块可以绕着弧形槽的轴线转动,从而实现角度调节。所述角度调节范围在±10°,调节精度在0.01°。
一种用于环形薄壁工件的双传感器测量方法,基于上述的用于环形薄壁工件的双传感器测量系统。
在测量环形薄壁工件106之前,首先进行两个位移传感器107的光路对齐操作:
首先,将标准球116安装在手调台105上,通过移动X向驱动平台102、Y向驱动平台(101)以及Z向驱动平台109,使标准球116移动至两个位移传感器之间。其次,调节传感器调节装置的Y方向的自由度,使标准球116位于两个位移传感器的量程范围以内;再调节传感器调节装置的X、Z方向的自由度,使两个位移传感器的光路对准标准球116的球心。如图2所示,实现两个位移传感器107的光路对齐,此时拆除标准球116。
然后开始环形薄壁工件的对心与检测,其包括以下步骤:
第一步:安装环形薄壁工件106至工件载具;
第二步:移动XY定位平台,使环形薄壁工件106移动至两个距离传感器107的下方;再移动Z向驱动平台109,使两个距离传感器107移动至底部环形薄壁工件106的水平截面a所在的薄壁处,如图3所示;
第三步:通过控制旋转台103旋转和X向驱动平台102平移测量环形薄壁工件106,并记录距离传感器107的读数,根据几何关系计算出环形薄壁工件106在水平截面a处圆心相对于旋转台103旋转轴线的偏心坐标O
a(x
a,y
a,z
a);
第四步:移动Z向驱动平台109,使两个距离传感器107移动至顶部环形薄壁工件106的水平截面b所在的薄壁处;
第五步:通过控制旋转台103旋转和X向驱动平台102平移,测量环形薄壁工件106,并记录距离传感器107的读数,根据几何关系计算出环形薄壁工件106在水平截面b处圆心相对于旋转台103的旋转轴线的偏心坐标O
b(x
b,y
b,z
b);
第六步:根据水平截面a和水平截面b处圆心的偏心坐标,计算环形薄壁工件106的中心轴在YZ平面的倾角α以及在XZ平面上的倾角β,公式如下:
第七步:根据倾角α和β,分别调节手调台105绕X轴、Y轴旋转的自由度,使得环形薄壁工件106的中心轴与旋转台103的旋转轴线平行,实现测量环形薄壁工件106的倾角调节。
第八步:控制旋转台103旋转和X向驱动平台102平移测量环形薄壁工件106,并记录色散共焦传感器108读数,根据几何关系计算出环形薄壁工件106在水平截面b处圆心相对于旋转轴线的偏心坐标为(x
b1,y
b1,z
b);旋转台103的旋转轴线为X/Y原点的参考系,那么根据x
b1和y
b1调节手调台105,可以消除X、Y方向上的偏心距离,进而使环形薄壁工件106的中心轴与旋转台103的旋转轴线重合,实现对心。
第九步:如图4所示,使双位移传感器移动至环形薄壁工件106的薄壁测量起始点;如图5所示,需要控制Z定位平台110平移和旋转台103转动实现双位移传感器对环形薄壁工件106的螺旋扫描测量。
上述实施例仅为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。
Claims (8)
- 一种用于环形薄壁工件的双传感器测量系统,其特征在于,包括:XY定位平台,具有X方向移动的X向驱动平台(102)以及Y方向移动的Y向驱动平台(101);旋转台(103),设置在XY定位平台上,用于Z向旋转;手调台(105),设置在旋转台(103)上,且具有装夹环形薄壁工件(106)的工件载具,用于微调环形薄壁工件(106)的位置;Z向驱动平台(109),用于Z方向移动;两个传感器调节装置,安装在Z向驱动平台(109)上,用于调节距离传感器(107)的位置;以及两个距离传感器(107),安装在传感器调节装置上,且距离传感器(107)的光路相互对齐,用于测量距离传感器(107)到环形薄壁工件(106)内外壁的距离。
- 根据权利要求1所述的一种用于环形薄壁工件的双传感器测量系统,其特征在于:所述距离传感器(107)为色散共焦传感器。
- 根据权利要求1所述的一种用于环形薄壁工件的双传感器测量系统,其特征在于:还包括标准球(116),可安装在手调台(105)上,用于两个距离传感器(107)的光路对齐。
- 根据权利要求1所述的一种用于环形薄壁工件的双传感器测量系统,其特征在于:所述手调台(105)包括用于X向移动的X向平移微调组件、用于Y向移动的Y向平移微调组件、用于绕X向旋转的X向倾角台(110)以及用于绕Y向旋转的Y向倾角台(111)。
- 根据权利要求1所述的一种用于环形薄壁工件的双传感器测量系统,其特征在于:所述传感器调节装置包括用于Z向移动的Z向平动微调组件(112)、用于X向移动的X向平动微调组件(113)、用于绕Z向旋转的Z向角度微调组件(114)以及用于绕Y向旋转的Y向角度微调组件(115)。
- 一种用于环形薄壁工件的双传感器测量方法,其特征在于,基于权利要求1-5任一项所述的用于环形薄壁工件的双传感器测量系统,其包括以下步骤:第一步:安装环形薄壁工件(106)至工件载具;第二步:移动XY定位平台,使环形薄壁工件(106)移动至两个距离传感器(107)的下方;移动Z向驱动平台(109),使两个距离传感器(107)移动至环形薄壁工件(106)的水平截面a所在的薄壁处;第三步:通过控制旋转台(103)旋转和X向驱动平台(102)平移测量环形薄壁工件(106),并记录距离传感器(107)的读数,根据几何关系计算出环形薄壁工件(106)在水平截面a 处圆心相对于旋转台(103)旋转轴线的偏心坐标O a(x a,y a,z a);第四步:移动Z向驱动平台(109),使两个距离传感器(107)移动至环形薄壁工件(106)的水平截面b所在的薄壁处;第五步:通过控制旋转台(103)旋转和X向驱动平台(102)平移,测量环形薄壁工件(106),并记录距离传感器(107)的读数,根据几何关系计算出环形薄壁工件(106)在水平截面b处圆心相对于旋转台(103)的旋转轴线的偏心坐标O b(x b,y b,z b);第六步:根据水平截面a和水平截面b处圆心的偏心坐标,计算环形薄壁工件(106)的中心轴在YZ平面的倾角α以及在XZ平面上的倾角β,公式如下:第七步:根据倾角α和β,分别调节手调台(105)绕X轴、Y轴旋转的自由度,使得环形薄壁工件(106)的中心轴与旋转台(103)的旋转轴线平行,实现测量环形薄壁工件(106)的倾角调节。第八步:控制旋转台(103)旋转和X向驱动平台(102)平移测量环形薄壁工件(106),并记录色散共焦传感器(108)读数,根据几何关系计算出环形薄壁工件(106)在水平截面b处圆心相对于旋转轴线的偏心坐标为(x b1,y b1,z b);那么根据x b1和y b1调节手调台(105),可以消除X、Y方向上的偏心距离,进而使环形薄壁工件(106)的中心轴与旋转台(103)的旋转轴线重合,实现对心。
- 根据权利要求6所述的一种用于环形薄壁工件的双传感器测量系统,其特征在于,还包括第九步:需要控制Z定位平台(110)平移和旋转台(103)转动实现双位移传感器对环形薄壁工件(106)的螺旋扫描测量。
- 根据权利要求6所述的一种用于环形薄壁工件的双传感器测量系统,其特征在于,在测量环形薄壁工件(106)之前,首先进行两个位移传感器(107)的光路对齐操作:首先,将标准球(116)安装在手调台(105)上,通过移动X向驱动平台(102)、Y向驱动平台(101)以及Z向驱动平台(109),使标准球(116)移动至两个位移传感器之间;其次,再通过调节传感器调节装置,使两个位移传感器的光路对准标准球(116)的球心;最后,拆除标准球(116)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111010369.7A CN113686252A (zh) | 2021-08-31 | 2021-08-31 | 一种用于环形薄壁工件的双传感器测量系统以及测量方法 |
CN202111010369.7 | 2021-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023029159A1 true WO2023029159A1 (zh) | 2023-03-09 |
Family
ID=78584279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/124899 WO2023029159A1 (zh) | 2021-08-31 | 2021-10-20 | 一种用于环形薄壁工件的双传感器测量系统以及测量方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113686252A (zh) |
WO (1) | WO2023029159A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116558420A (zh) * | 2023-07-12 | 2023-08-08 | 天津汇众轻量化科技有限公司 | 一种汽车钣金件折弯质量检测装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114234890B (zh) * | 2021-12-09 | 2024-05-14 | 北京航天新立科技有限公司 | 一种薄壁零件短轴线孔的轴线与平面的角度测量方法 |
CN114279301A (zh) * | 2021-12-27 | 2022-04-05 | 浙江大学 | 基于深矢高工件的内壁测量系统以及测量方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088504A (ja) * | 1998-09-14 | 2000-03-31 | Canon Inc | 薄肉部品の測定装置及び測定方法 |
CN104180763A (zh) * | 2013-05-24 | 2014-12-03 | 南开大学 | 大直径圆环类零件内外径非接触式测量装置 |
CN207751454U (zh) * | 2018-01-15 | 2018-08-21 | 西安工业大学 | 一种薄壁厚度检测仪 |
CN109870125A (zh) * | 2019-03-18 | 2019-06-11 | 华中科技大学 | 一种空心轴的孔轴同轴度测量装置及方法 |
CN111043948A (zh) * | 2019-11-29 | 2020-04-21 | 洛阳轴承研究所有限公司 | 一种用于薄壁轴承套圈的内外径测量装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215725727U (zh) * | 2021-08-31 | 2022-02-01 | 浙江大学 | 一种环形薄壁工件内外壁测量系统 |
-
2021
- 2021-08-31 CN CN202111010369.7A patent/CN113686252A/zh active Pending
- 2021-10-20 WO PCT/CN2021/124899 patent/WO2023029159A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088504A (ja) * | 1998-09-14 | 2000-03-31 | Canon Inc | 薄肉部品の測定装置及び測定方法 |
CN104180763A (zh) * | 2013-05-24 | 2014-12-03 | 南开大学 | 大直径圆环类零件内外径非接触式测量装置 |
CN207751454U (zh) * | 2018-01-15 | 2018-08-21 | 西安工业大学 | 一种薄壁厚度检测仪 |
CN109870125A (zh) * | 2019-03-18 | 2019-06-11 | 华中科技大学 | 一种空心轴的孔轴同轴度测量装置及方法 |
CN111043948A (zh) * | 2019-11-29 | 2020-04-21 | 洛阳轴承研究所有限公司 | 一种用于薄壁轴承套圈的内外径测量装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116558420A (zh) * | 2023-07-12 | 2023-08-08 | 天津汇众轻量化科技有限公司 | 一种汽车钣金件折弯质量检测装置 |
CN116558420B (zh) * | 2023-07-12 | 2023-09-05 | 天津汇众轻量化科技有限公司 | 一种汽车钣金件折弯质量检测装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113686252A (zh) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023029159A1 (zh) | 一种用于环形薄壁工件的双传感器测量系统以及测量方法 | |
CN109000571B (zh) | 一种厚度一致性检测装置 | |
WO2020077908A1 (zh) | 一种视觉检测系统的调节装置 | |
CN107957626B (zh) | 一种面向光学镜片的六自由度并联自动调偏系统及方法 | |
WO2018119730A1 (zh) | 光学集成检测平台 | |
CN114719752B (zh) | 基于万能工具显微镜、测头测量精密零件几何参数的方法 | |
CN111644878B (zh) | 一种回转类零件在机精确快速找正装置及方法 | |
US9316476B2 (en) | Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method | |
CN215725727U (zh) | 一种环形薄壁工件内外壁测量系统 | |
CN113375559B (zh) | 基于多源传感的在线测量定心装置、系统及方法 | |
TWI393603B (zh) | Cutting device | |
CN110000606B (zh) | 一种针对加工太赫兹慢波结构件的对刀方法 | |
CN109108596A (zh) | 精密轴孔配合零件自动装配装置与方法 | |
CN109877446A (zh) | 一种激光光束的指向精度检测调节方法及装置 | |
CN105403127A (zh) | 一种测角设备分度误差的调修方法 | |
CN117470070A (zh) | 一种高精度反射镜角度的测量设备以及测量方法 | |
CN111272095B (zh) | 一种高精度二维位置传感器对心检测装置和方法 | |
CN102484046A (zh) | 支承装置以及曝光装置 | |
CN110561540B (zh) | 一种用于光学定心仪的调整装置 | |
CN111251072B (zh) | 一种数控机床精度检测用反射镜组夹具 | |
CN114460974A (zh) | 一种大尺寸平面显示屏幕自动调平装置及调平方法 | |
CN105698682A (zh) | 一种基于激光跟踪仪的机床空间精度全方位测量方法 | |
JP2012112894A (ja) | プローブの芯出し方法 | |
CN113720272A (zh) | 一种环形工件的测量系统及对心方法 | |
CN216746702U (zh) | 偏心测量设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955688 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21955688 Country of ref document: EP Kind code of ref document: A1 |