WO2023015505A1 - 一种车辆驾驶方法、装置及系统 - Google Patents

一种车辆驾驶方法、装置及系统 Download PDF

Info

Publication number
WO2023015505A1
WO2023015505A1 PCT/CN2021/112151 CN2021112151W WO2023015505A1 WO 2023015505 A1 WO2023015505 A1 WO 2023015505A1 CN 2021112151 W CN2021112151 W CN 2021112151W WO 2023015505 A1 WO2023015505 A1 WO 2023015505A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
area
target
lane
driving
Prior art date
Application number
PCT/CN2021/112151
Other languages
English (en)
French (fr)
Inventor
金鑫垚
张桂成
姜锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/112151 priority Critical patent/WO2023015505A1/zh
Priority to EP21953127.4A priority patent/EP4382384A1/en
Priority to CN202180100876.1A priority patent/CN117715809A/zh
Publication of WO2023015505A1 publication Critical patent/WO2023015505A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres

Definitions

  • the embodiments of the present application relate to the technical field of vehicle intelligent control, and in particular to a vehicle driving method, device and system.
  • the target gear can be selected among the multiple following distance adjustment gears, and the distance between the own vehicle and the vehicle in front can be controlled based on the target gear.
  • Driving distance to ensure safe driving of vehicles.
  • the multiple following distance adjustment gears of the vehicle have been increased from 3 gears to 7 gears, and the average following distance of multiple following distance adjustment gears has been reduced to reduce the jamming of other cars Behavior.
  • the present application provides a vehicle driving method, device and system, which help to reduce the jamming behavior of other vehicles and take into account the driving experience.
  • the embodiment of the present application provides a vehicle driving method, which can be applied to a vehicle driving device.
  • the vehicle driving device can be an application program, which can be installed or run in a chip or component of the vehicle, or a mobile phone on the vehicle. , tablets and other smart devices.
  • the vehicle driving device may be a software module, which may be deployed in each of the aforementioned electronic control units (electronic control unit, ECU) of the vehicle.
  • the vehicle driving device can be a newly added hardware module in the vehicle, and the hardware module can be configured with relevant judgment logic or algorithms, and can be used as an ECU in the vehicle to transmit information with other ECUs through the vehicle bus to realize the control of the vehicle.
  • the driving control of the vehicle, the embodiment of the present application does not limit the product form or deployment method of the vehicle driving device.
  • the method may include: determining a first area associated with a first vehicle, the first vehicle is located in a first lane, the first area is located in the first lane and in front of the first vehicle; acquiring a target vehicle The state information of the target vehicle is located in the adjacent lane of the first lane, and the state information of the target vehicle satisfies the preset condition for driving into the first area; according to the state information of the target vehicle, control the The driving distance between the first vehicle and a second vehicle, the second vehicle is an adjacent vehicle that is located in the first lane and travels before the first vehicle.
  • the vehicle driving device can flexibly control the driving of the first vehicle according to the state information of the target vehicles around the first vehicle, so that by controlling the traffic between the first vehicle and the second vehicle in front of the first vehicle, The driving distance is used to reduce the jamming behavior of other cars. Since this method can flexibly adjust the driving distance between the first vehicle and the second vehicle in front, the driving distance can no longer be limited to the fixed following distance adjustment gear in the automatic driving mode, which improves the flexibility of vehicle driving control . At the same time, when reducing the jamming behavior of other cars, it can reduce driving frustration and improve driving comfort, so as to take into account the driving experience.
  • the state information of the target vehicle includes one or more of the following information of the target vehicle: absolute position, relative position to the first vehicle, speed, acceleration, and heading angle.
  • the preset conditions include one or more of the following: the head of the target vehicle is ahead of the head of the first vehicle; the speed of the target vehicle is less than or equal to the speed of the first vehicle; The vehicle length of the target vehicle is less than or equal to the first length threshold; the lateral distance between the target vehicle and the first vehicle is less than or equal to the first safety distance threshold; the heading angle of the target vehicle and the heading of the first vehicle The included angle of the corner is less than or equal to the first angle threshold.
  • the method further includes: outputting the first area on the HMI of the first vehicle, where the first boundary of the first area is associated with On the two side lane lines of the first lane, the second boundary of the first area is associated with the front of the first vehicle and the rear of the second vehicle.
  • the vehicle driving device can output the first area on the HMI of the first vehicle, so that the driver of the first vehicle can know the first area to be protected and related dynamics of the first area in real time.
  • the target vehicle is the only vehicle in the second area, or a plurality of third vehicles located in the second area, or a plurality of third vehicles Among the vehicles, the vehicle with the highest jamming probability, wherein the first area is included in the second area.
  • the vehicle driving device can comprehensively monitor and analyze according to the state information of at least one target vehicle, so as to reduce the blocking behavior of all possible blocking vehicles around the first vehicle as much as possible, and improve the driving experience.
  • the controlling the distance between the first vehicle and the second vehicle according to the status information of the target vehicle includes: The state information is used to determine the driving route of the target vehicle; and to control the driving distance between the first vehicle and the second vehicle according to the positional relationship between the driving route of the target vehicle and the first area.
  • the vehicle driving device can predict the driving route of the target vehicle in real time or periodically according to the state information of the target vehicle, so as to determine whether the target vehicle has the intention of driving into the first area according to the driving route , so that the distance between the first vehicle and the second vehicle is controlled according to the blocking intention of the target vehicle.
  • the controlling the distance between the first vehicle and the second vehicle according to the status information of the target vehicle includes: State information and the state information of the first vehicle, determine the probability that the first vehicle enters the first area before the target vehicle; according to the probability, control the first vehicle and the second The distance between vehicles.
  • the state information of the first vehicle includes one or more of the following information of the first vehicle: absolute position, relative position to the target vehicle, speed, acceleration, and heading angle.
  • the vehicle driving device can decide how to drive and control the first vehicle according to the probability that the first vehicle enters the first area before the target vehicle, thereby flexibly adjusting the first vehicle and the second vehicle in front The driving distance between vehicles, reducing the jamming behavior of other vehicles, and taking into account the driving experience.
  • controlling the distance between the first vehicle and the second vehicle includes: adjusting the distance between the first vehicle and the second vehicle by controlling the acceleration of the first vehicle. The traffic distance between the second vehicles.
  • the vehicle driving device can reduce the driving distance between the first vehicle and the second vehicle by controlling the speed of the first vehicle. Since the driving distance between the first vehicle and the second vehicle is reduced, it can increase The probability of the large target vehicle giving up the blocking behavior increases the probability that the first vehicle successfully prevents the blocking behavior of the target vehicle.
  • the vehicle driver's license can also increase the distance between the first vehicle and the vehicle in front by controlling the first vehicle to slow down, so as to timely avoid the target vehicle and reduce the risk of traffic accidents.
  • the controlling the acceleration of the first vehicle includes: determining the target acceleration information of the first vehicle according to the state information of the target vehicle; Acceleration information, controlling the first vehicle to accelerate.
  • the vehicle driving device can determine the target acceleration information according to the state information of the target vehicle, so as to successfully prevent the jamming behavior of the target vehicle through acceleration.
  • the driving distance between the first vehicle and the first vehicle is greater than or equal to a first safety distance threshold.
  • the method further includes: according to the status information of the target vehicle, controlling the first vehicle to drive in the center of the first lane, or to approach the first vehicle. driving on the left lane marking of the first lane, or near the right lane marking of the first lane.
  • the embodiment of the present application provides a vehicle driving method, including: outputting a first picture on the human-computer interaction interface HMI of the first vehicle, wherein the first vehicle is located in the first lane, and the first picture contains a third area and a target vehicle, the third area includes at least a first area associated with the first vehicle, the first area is located in the first lane and in front of the first vehicle, the The target vehicle is located in an adjacent lane of the first lane, and the state information of the target vehicle satisfies a preset condition for driving into the third area; receiving control information from a driver of the first vehicle, the The control information is used to control the driving distance between the first vehicle and the second vehicle, and the control information is associated with the first screen.
  • the first boundary of the first area is associated with lane lines on both sides of the first lane
  • the second boundary of the first area is associated with the first A front of a vehicle and a rear of a second vehicle, the second vehicle being an adjacent vehicle located in the first lane and traveling ahead of the first vehicle.
  • the preset conditions include one or more of the following: the head of the target vehicle is in front of the head of the first vehicle; the speed of the target vehicle is less than or equal to The speed of the first vehicle; the vehicle length of the target vehicle is less than or equal to a first length threshold; the lateral distance between the target vehicle and the first vehicle is less than or equal to a first safety distance threshold; the target vehicle's The included angle between the heading angle and the heading angle of the first vehicle is smaller than or equal to a first angle threshold.
  • an embodiment of the present application provides a vehicle driving device, including: a determination unit configured to determine a first area associated with a first vehicle, the first vehicle is located in the first lane, and the first area is located in the The first lane and is located in front of the first vehicle; the acquisition unit is configured to acquire the state information of the target vehicle, the target vehicle is located in an adjacent lane of the first lane, and the state information of the target vehicle satisfies A preset condition for entering the first area; a control unit, configured to control the distance between the first vehicle and the second vehicle according to the status information of the target vehicle, and the second vehicle is located in the an adjacent vehicle traveling in front of the first vehicle in the first lane.
  • the device further includes: an output unit, configured to output the first area on the human-machine interface HMI of the first vehicle, where the first area The first boundary of the first area is associated with the lane lines on both sides of the first lane, and the second boundary of the first area is associated with the front of the first vehicle and the rear of the second vehicle.
  • the target vehicle is the only vehicle in the second area, or a plurality of third vehicles located in the second area, or a plurality of third vehicles Among the vehicles, the vehicle with the highest jamming probability, wherein the first area is included in the second area.
  • control unit is configured to: determine the driving route of the target vehicle according to the status information of the target vehicle; A positional relationship of an area controls the distance between the first vehicle and the second vehicle.
  • control unit is configured to: determine that the first vehicle is ahead of the target vehicle according to the state information of the target vehicle and the state information of the first vehicle The probability of entering the first area; according to the probability, the distance between the first vehicle and the second vehicle is controlled.
  • control unit is configured to: adjust the driving distance between the first vehicle and the second vehicle by controlling the first vehicle to accelerate.
  • control unit is configured to: determine the target acceleration information of the first vehicle according to the state information of the target vehicle; The first vehicle accelerates.
  • the preset conditions include one or more of the following: the head of the target vehicle is ahead of the head of the first vehicle; the speed of the target vehicle is less than or equal to The speed of the first vehicle; the vehicle length of the target vehicle is less than or equal to a first length threshold; the lateral distance between the target vehicle and the first vehicle is less than or equal to a first safety distance threshold; the target vehicle's The included angle between the heading angle and the heading angle of the first vehicle is smaller than or equal to a first angle threshold.
  • the driving distance between the first vehicle and the first vehicle is greater than or equal to a first safety distance threshold.
  • an embodiment of the present application provides a vehicle driving device, including: an output unit configured to output a first picture on a human-computer interaction interface HMI of a first vehicle, wherein the first vehicle is located in the first lane, The first picture includes a third area and the target vehicle, the third area includes at least a first area associated with the first vehicle shown, the first area is located in the first lane and in the first In front of the vehicle, the target vehicle is located in an adjacent lane of the first lane, and the state information of the target vehicle satisfies the preset condition for driving into the third area; the receiving unit is configured to receive information from the first lane. Control information of the driver of the vehicle, the control information is used to control the distance between the first vehicle and the second vehicle, and the control information is associated with the first screen.
  • HMI human-computer interaction interface
  • the first boundary of the first area is associated with lane lines on both sides of the first lane
  • the second boundary of the first area is associated with the first A front of a vehicle and a rear of a second vehicle, the second vehicle being an adjacent vehicle located in the first lane and traveling ahead of the first vehicle.
  • the preset conditions include one or more of the following: the head of the target vehicle is ahead of the head of the first vehicle; the speed of the target vehicle is less than or equal to The speed of the first vehicle; the vehicle length of the target vehicle is less than or equal to a first length threshold; the lateral distance between the target vehicle and the first vehicle is less than or equal to a first safety distance threshold; the target vehicle's The included angle between the heading angle and the heading angle of the first vehicle is smaller than or equal to a first angle threshold.
  • the embodiment of the present application provides a vehicle driving device, including: a processor and a memory; the memory is used to store programs; the processor is used to execute the programs stored in the memory, so that the device Realize the method described in the above first aspect and any possible design of the first aspect, or the method described in the above second aspect and any possible design of the second aspect.
  • the embodiment of the present application provides a vehicle driving system, including: the vehicle driving device described in the above third aspect and any possible design of the third aspect, and, the above fourth aspect and any possible design of the fourth aspect Design the described vehicle driving device.
  • the embodiment of the present application provides a computer-readable storage medium, where program code is stored in the computer-readable storage medium, and when the program code is run on a computer, the computer is made to perform the above-mentioned first aspect and The method described in the possible design of the first aspect, or, when the program code is run on the computer, causes the computer to execute the above-mentioned second aspect and the method described in the possible design of the second aspect.
  • the embodiment of the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method described in the above-mentioned first aspect and the possible design of the first aspect, or Execute the method described in the above second aspect and possible designs of the second aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, configured to call a computer program or a computer instruction stored in a memory, so that the processor performs the above-mentioned first aspect and the possibility of the first aspect The method described in the design, or implement the method described in the second aspect and the possible design of the second aspect.
  • the processor may be coupled to the memory through an interface.
  • the chip system may further include a memory, where computer programs or computer instructions are stored in the memory.
  • the embodiment of the present application provides a processor, the processor is used to call the computer program or computer instruction stored in the memory, so that the processor executes the above-mentioned first aspect and the possible design of the first aspect. method, or execute the method described in the above-mentioned second aspect and possible designs of the second aspect.
  • FIG. 1 shows a schematic diagram of an application scenario applicable to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a vehicle perception system according to an embodiment of the present application
  • Fig. 3 shows the schematic diagram of the vehicle system of the embodiment of the present application
  • Fig. 4-Fig. 5 shows the schematic diagram of the vehicle driving scene of the embodiment of the present application
  • FIG. 6 shows a schematic flow chart of a vehicle driving method according to an embodiment of the present application
  • Figure 7a- Figure 7b, Figure 8, Figure 9a- Figure 9b, Figure 10a- Figure 10b show a schematic flow chart of the vehicle driving method of the embodiment of the present application;
  • FIG. 11 shows a schematic diagram of a vehicle driving device according to an embodiment of the present application.
  • Fig. 12 shows a schematic diagram of a vehicle driving device according to an embodiment of the present application.
  • Fig. 13 shows a schematic diagram of a vehicle driving device according to an embodiment of the present application.
  • the applicable travel scenarios of the vehicle can be expressway scenes, urban road scenes, etc.
  • the expressway scene due to the fast speed and many lanes, other cars are less likely to be blocked, but in the urban road scene, the traffic jams
  • the vehicle can adjust the gear according to the following distance set in the automatic driving mode, and control the following distance between the vehicle and the vehicle in front to reduce the blocking behavior of other vehicles.
  • the embodiment of the present application provides a vehicle driving method, device and system, which protects the area associated with the vehicle by combining the status information of other vehicles around the vehicle, so as to suppress the blocking behavior of other vehicles as much as possible and improve the driving experience.
  • the method and the device are based on the same technical conception. Since the principle of solving the problem of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the vehicle driving scheme in the embodiment of the present application can be applied to the Internet of Vehicles, such as vehicle-to-everything (V2X), long-term evolution-vehicle (LTE-V), vehicle - Vehicles (vehicle to vehicle, V2V), etc.
  • V2X vehicle-to-everything
  • LTE-V long-term evolution-vehicle
  • V2V vehicle - Vehicles
  • the other devices include but are not limited to: vehicle-mounted terminals, vehicle-mounted controllers, vehicle-mounted modules, vehicle-mounted modules, vehicle-mounted components, vehicle-mounted chips, vehicle-mounted units, vehicle-mounted radars, or vehicle-mounted cameras.
  • a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, a vehicle-mounted unit, a vehicle-mounted radar, or a vehicle-mounted camera implement the vehicle driving method provided in the embodiment of the present application.
  • the control scheme in the embodiment of the present application can also be used in other intelligent terminals with mobile control functions other than vehicles, or be set in other intelligent terminals with mobile control functions other than vehicles, or set in the Among the components of the smart terminal.
  • the smart terminal may be a smart transportation device, a smart home device, a robot, and the like.
  • it includes but is not limited to smart terminals or controllers, chips, radars or cameras and other sensors in the smart terminals, and other components.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the priority or importance of multiple objects.
  • first area and the second area are only for distinguishing different areas, rather than indicating the difference in priority or importance of these two areas.
  • FIG. 1 shows a schematic diagram of an application scenario to which this embodiment of the present application applies.
  • the application scenario may include a vehicle and a server, the server may be a cloud, and the cloud may include a cloud server and/or a cloud virtual machine.
  • the server can communicate with the vehicle to provide various services for the vehicle, such as over the air (OTA) service, high-precision map service, automatic driving or assisted driving service, etc.
  • OTA over the air
  • high-precision map service high-precision map service
  • automatic driving or assisted driving service etc.
  • the software manager can upload the software to the cloud, and the vehicle can automatically or by the user choose to download the software from the cloud to update the local software, so as to realize the function upgrade of the local vehicle system or Feature updates.
  • the infotainment (infotainment) system of the vehicle can be upgraded through OTA
  • the electronic control unit (ECU) of the vehicle can be upgraded through OTA, and the performance of the vehicle can be upgraded through the upgrade of the ECU ;
  • the vehicle suspension system can be adjusted through OTA upgrades to provide users with a more comfortable driving or riding experience.
  • Vehicles can download high-precision map data from the cloud to obtain high-precision maps, providing users with more accurate navigation services.
  • Road information updates are very frequent.
  • This service can not only update road information to the map in a more timely manner, but also reduce the local storage space requirements of the vehicle. For example, for a large city or region, the entire set of high-precision maps has a large amount of data.
  • the high-precision map service provided by the cloud allows the vehicle to obtain a high-precision map of a small area of the current location in real time while driving, and the high-precision map of the area The fine map can be released from the vehicle when not needed.
  • Vehicles can interact with the cloud to improve automatic driving or assisted driving functions, thereby improving vehicle safety and travel efficiency.
  • the vehicle can collect road surface information and surrounding vehicle information through the sensor device installed on the vehicle body, and upload the collected information to the cloud.
  • the update continuously optimizes the driving algorithm and updates it to the vehicle, so that the vehicle's automatic driving ability to cope with various scenarios is continuously improved.
  • the training of the image processing algorithm can be completed in the cloud and updated as the training data is updated; correspondingly, the vehicle can obtain updated images from the cloud Processing algorithm, so as to improve the image processing capability of the sensing device.
  • vehicles can obtain weather information and road traffic accident information through the cloud, so as to assist vehicles in planning, improve travel efficiency, and reduce the risk of vehicle accidents.
  • the cloud can send real-time road information to the vehicle, such as traffic light information.
  • the vehicle can receive the traffic light change interval time at the intersection ahead, and calculate the time it takes for the vehicle to pass according to the current speed, so as to judge the appropriate and safe road.
  • timing and planning the driving speed of the vehicle it can not only reduce the energy consumption of the vehicle, but also increase the safety of driving.
  • the vehicle can obtain third-party services through the cloud.
  • the courier can open the trunk of the vehicle through a one-time digital authorization and place items in the vehicle, so as to realize the situation where the driver is not present. Next to receive courier.
  • the vehicle can exchange information with the cloud through wireless communication.
  • the wireless communication can follow the wireless protocol of the network connected to the vehicle, such as the V2X (C-V2X) communication of the cellular network.
  • the cellular network is, for example, a long term evolution (long term evolution, LTE) wireless network or fifth generation (5th generation, 5G) wireless network, etc.
  • This application scenario can also include a roadside unit (RSU), which can be installed on the roadside and can communicate with the cloud and the vehicle.
  • the roadside unit communicating with the cloud can be regarded as a terminal device similar to the vehicle.
  • the roadside unit that communicates with the vehicle can be regarded as a terminal device similar to the vehicle, and can also be regarded as the service end device of the vehicle.
  • the roadside unit can use wireless communication to interact with the vehicle or the cloud, and the communication with the vehicle can use dedicated short range communication (DSRC) technology, or V2X (C-V2X) communication based on cellular network. For example, based on LTE communication protocol or based on 5G communication protocol.
  • DSRC dedicated short range communication
  • C-V2X V2X
  • the communication with the cloud may use cellular network-based V2X (C-V2X) communication, for example, based on an LTE communication protocol or a 5G communication protocol.
  • Roadside units can provide services for vehicles, such as vehicle identification, electronic toll collection, and electronic point deduction.
  • Roadside units can be equipped with sensing devices to collect road information and provide vehicle-road coordination services.
  • the roadside unit can be connected to roadside traffic signs (for example, electronic traffic lights, or electronic speed limit signs, etc.) to realize real-time control of traffic lights or speed limit signs, or can provide road information to vehicles through the cloud or directly to Improve automatic driving or assisted driving functions.
  • the application scenario may include at least one vehicle, and the at least one vehicle may be located in the same or different lanes, for example, vehicle 1 and vehicle 2 are located in the same lane, and vehicle 3 is located in the lane where vehicle 1 and vehicle 2 are located In the adjacent lane of , vehicle 2 is behind vehicle 1.
  • vehicle 1 is slow enough that vehicle 2 behind vehicle 1 cannot accelerate fast, so vehicle 2 may wish to change lanes in front of vehicle 3 in order to accelerate away.
  • the blocking behavior of vehicle 2 driving in front of vehicle 3 will reduce the driving experience of vehicle 3 and potentially cause the risk of traffic accidents.
  • vehicle 3 realizes the automatic driving function or assisted driving function, it needs to combine
  • the status information of the vehicle (such as vehicle 1, vehicle 2, etc.) is used to control the driving of the vehicle itself, so as to suppress the jamming behavior of the vehicle 2 as much as possible and improve the driving experience.
  • various sensors can be installed on vehicles (including vehicle 1, vehicle 2, or vehicle 3 in Figure 1), such as camera devices, laser radars, millimeter wave radars, ultrasonic sensors, etc. , to obtain the environmental information around the vehicle through the sensor, and analyze and process the acquired information to realize functions such as obstacle perception, target recognition, vehicle positioning, path planning, driver monitoring/reminder, etc., thereby improving the safety of vehicle driving performance, automation and comfort.
  • vehicles including vehicle 1, vehicle 2, or vehicle 3 in Figure 1
  • sensors such as camera devices, laser radars, millimeter wave radars, ultrasonic sensors, etc.
  • the vehicle conducts a comprehensive analysis based on the perception information obtained by various sensors, and can also determine the position of the own vehicle in the current lane line, perceive the position of other vehicles around the own vehicle, and perceive the relative positional relationship between the own vehicle and other vehicles, etc., so as to pass Combined with the status information of other vehicles, the driving control of the self-vehicle is realized, thereby effectively suppressing the jamming behavior of other vehicles and improving the driving experience.
  • LiDAR is the abbreviation of LightLaser Detection and Ranging (LiDAR) system, which mainly includes a transmitter, a receiver and a signal processing unit.
  • the transmitter is the laser emitting mechanism in the LiDAR; After arriving at the target object, reflected by the target object, the reflected light will converge to the receiver through the lens group.
  • the signal processing unit is responsible for controlling the emission of the transmitter, processing the signal received by the receiver, and calculating information such as the position, speed, distance, and/or size of the target object.
  • Millimeter-wave radar uses millimeter-wave as the detection medium, which can measure the distance, angle and relative speed between the millimeter-wave radar and the measured object.
  • Millimeter wave radar can be divided into long-range radar (LRR), mid-range radar (MRR) and short-range radar (Short Range Radar, SRR) according to its detection distance.
  • LRR long-range radar
  • MRR mid-range radar
  • SRR Short Range Radar
  • the main application scenarios for LRR include active cruise and brake assist, etc.
  • LRR does not have high requirements for the angular width of the detection, and the reflection on the antenna is that the 3dB beamwidth of the antenna is relatively low.
  • the main application scenarios for MRR/SRR include automatic parking, lane merging assistance, and blind spot detection, etc.
  • MRR/SRR has high requirements for the angular width of the detection, and the antenna has a high requirement for the 3dB beam width of the antenna, and Antennas with low sidelobe levels are required.
  • the beam width is used to ensure the detectable angular range, and the low sidelobe is used to reduce the clutter energy reflected by the ground, reduce the probability of false alarms, and ensure driving safety.
  • LRR can be installed in front of the vehicle body, and MRR/SRR can be installed in the four corners of the vehicle. Together, they can achieve 360-degree coverage around the vehicle body.
  • the millimeter-wave radar can include a housing, and at least one printed circuit board (PCB) is built in the housing, for example, it can include a power supply PCB and a radar PCB, wherein the power supply PCB can provide the internal voltage of the radar, and can also provide a The interface and safety function of device communication; the radar PCB can provide the transmission and reception and processing of millimeter wave signals, on which are integrated components for millimeter wave signal processing and antennas for millimeter wave signal transmission and reception (transmitting antenna Tx and receiving antenna Rx) .
  • the antenna can be formed on the back of the radar PCB in the form of a microstrip array for transmitting and receiving millimeter waves.
  • Ultrasonic sensor also known as ultrasonic radar, is a sensing device that uses ultrasonic detection. Its working principle is to emit ultrasonic waves through the ultrasonic transmitting device, and receive the ultrasonic waves reflected by obstacles through the receiving device. According to the time difference of ultrasonic reflection and reception to measure the distance. At present, the distance measured by the ultrasonic sensor can be used to prompt the distance from the car body to obstacles, assist parking or reduce unnecessary collisions. It should be understood that the above-mentioned sensors are only examples of sensors that may be configured on the vehicle in the embodiment of the present application without any limitation. In other embodiments, the sensors may include but are not limited to the above-mentioned examples.
  • the vehicle may also include a vehicle-mounted box (telematics BOX, T-Box), a central gateway (gateway), a vehicle-mounted computing unit, a power transmission Unit, chassis management system, body control module (BCM), car machine (or called car terminal, center console, car audio-visual entertainment device) and other ECUs
  • each ECU is based on the corresponding automotive bus (automotive bus) (including body bus, power bus, chassis bus, etc.) to transmit information to form a local area network inside the vehicle, and each ECU can also be called a network element of the local area network inside the vehicle.
  • the dashed box in Fig. 3 indicates that the laser radar is an optional device.
  • T-Box can realize the communication with the cloud, or RSU, or other vehicles.
  • the central gateway can obtain the real-time status information of the vehicle, such as speed, position, heading angle, etc.
  • the on-board computing unit can synthesize the perception information obtained by various sensors to determine the relative position data of the vehicle, including the position of the vehicle in the current lane, the positions of other vehicles around the vehicle, and the relative positional relationship between the vehicle and other vehicles, etc.
  • the power transmission unit can transmit the calculated control information (such as vehicle speed, acceleration, steering, etc.) to the chassis management system through the electric motor.
  • the chassis management system can convert the control information into the driving data required by the electric motor.
  • the body control module will cooperate and coordinate through the vehicle bus to realize intelligent driving and manual driving when the automatic driving function is performed.
  • the car machine can store the cooperation and data of each network element, and selectively display some information or prompt information on the central control display screen of the car machine for users to view or remind users.
  • Automotive buses can include, for example, a controller area network (CAN) bus, a Local Interconnect Network (LIN) bus, a high-speed fault-tolerant network protocol (FlexRay) bus, a media guidance system for automotive multimedia and navigation Transmission (Media Oriented System Transport, MOST) bus and Bluetooth, wireless LAN, etc. compatible with computer networks.
  • CAN controller area network
  • LIN Local Interconnect Network
  • FlexRay fault-tolerant network protocol
  • MOST Media Oriented System Transport
  • Bluetooth wireless LAN, etc. compatible with computer networks.
  • the body bus and power bus can be CAN bus
  • the chassis bus can be CAN bus or FlexRay bus.
  • the vehicle driving device may be an application program, which may be installed or run on a chip or component of the vehicle, or on smart devices such as mobile phones and tablet computers on the vehicle.
  • the vehicle driving device may be a software module, which may be deployed in each of the aforementioned ECUs of the vehicle.
  • the vehicle driving device can be a newly added hardware module in the vehicle, and the hardware module can be configured with relevant judgment logic or algorithms, and can be used as an ECU in the vehicle to transmit information with other ECUs through the vehicle bus to realize the control of the vehicle.
  • the driving control of the vehicle, the embodiment of the present application does not limit the product form or deployment method of the vehicle driving device.
  • the vehicle driving device may determine the first area associated with the first vehicle, obtain state information of the target vehicle, and control the driving distance between the first vehicle and the second vehicle according to the state information of the target vehicle .
  • the first vehicle can also be called the own vehicle or the own vehicle, and is a vehicle that needs to monitor other vehicles to realize its own driving control, such as the vehicle 3 in FIG. 1 .
  • the lane where the first vehicle is currently located may be referred to as a first lane, and the first area is an area to be protected of the first vehicle, which may be located in the first lane and in front of the first vehicle.
  • the target vehicle is a potential blocker of the first vehicle, located in an adjacent lane of the first lane, the state information of the target vehicle satisfies the preset condition of entering the first area, and may change lanes And drive into this first area, thus stop and drive in front of the first vehicle.
  • the second vehicle is an adjacent vehicle located in the first lane and driving ahead of the first vehicle, and the second vehicle may also be referred to as the vehicle in front of the first vehicle.
  • the vehicle driving device may, according to the state information of the target vehicle, determine the possibility that the target vehicle has a blocking intention and the first vehicle itself may drive to the first area before the target vehicle, by controlling The first vehicle accelerates to reduce the distance between the first vehicle and the vehicle in front, thereby reducing the possibility that the target vehicle will jam into the front of the first vehicle.
  • the vehicle driving device may determine, according to the state information of the target vehicle, that the target vehicle has the intention of blocking the road, and that the first vehicle itself has no or less possibility of arriving at the first area before the target vehicle. Under such circumstances, the driving distance between the first vehicle and the vehicle in front is increased by controlling the first vehicle to slow down, so as to timely avoid the target vehicle and reduce the risk of traffic accidents.
  • the second vehicle is optional, that is, there may be no vehicles within the preset distance in front of the first vehicle.
  • the first area can be within the predetermined distance in front of the vehicle.
  • the vehicle driving device may control the speed of the first vehicle according to the state information of the target vehicle, so as to reduce the possibility that the target vehicle travels to the first area before the first vehicle as much as possible.
  • the road may include at least two parallel lanes: for example, a first lane, a second lane adjacent to the left of the first lane, and a third lane adjacent to the right of the first lane.
  • Vehicle 1 and Vehicle 6 are driving on the first lane
  • Vehicle 4 and Vehicle 5 are driving on the second lane
  • Vehicle 2 and Vehicle 3 are driving on the third lane
  • vehicles on the first lane, the second lane, or the third lane The vehicle can change lanes to the adjacent lane of its current lane.
  • the vehicle can drive in front of a vehicle on the adjacent lane when changing lanes, for example, in the first lane.
  • vehicle 4 on the second lane, vehicle 2, vehicle 3, and vehicle 7 on the third lane can all change lanes and enter vehicle 1 In the front, this scene is the congestion scene in the embodiment of this application.
  • a certain distance between vehicles including human-driven vehicles and self-driving vehicles
  • Traffic jamming The target vehicle has a jamming event during driving.
  • the target vehicle when there is enough jamming space left between the self-vehicle and the vehicle in front, the target vehicle can choose an opportunity to add a stopper and drive into the front of the self-vehicle.
  • the probability of the target vehicle giving up blocking increases.
  • the target vehicle is close to the self-vehicle to reduce the lateral distance between the two vehicles, the blocking intention of the target vehicle is more obvious.
  • the front of the target vehicle is located at the front left or front right of the vehicle, which is a better timing for blocking.
  • Step-by-step the first step: the target vehicle travels to a parallel position with the stopper position between the own vehicle and the preceding vehicle; the second step: the target vehicle enters between the own vehicle and the preceding vehicle.
  • the intention of stoppering is not obvious.
  • the vehicle 7 first travels to a position parallel to the area 30 between the vehicle 1 and the vehicle 6 , and then can drive into the area 30 from the current position.
  • the congestion scene may include the scene of a curved road (that is, the road has a certain The bending arc, the degree of bending is not limited).
  • special vehicles such as ultra-wide or ultra-long vehicles, they are not treated as potential jamming target vehicles in adjacent lanes.
  • the area to be protected of the first vehicle (that is, the first area associated with the first vehicle):
  • the area to be protected of the vehicle i.e. the first vehicle
  • area to be protected means that the area is not expected to be protected by other vehicles (i.e.
  • the target vehicle such as vehicle 2, vehicle 3, vehicle 4, vehicle 7, etc.
  • the position of the area to be protected changes dynamically with the state information of the vehicle itself, including but not limited to the area Changes in location, changes in area size, etc.
  • An area such as the area where the dotted box 30 shown in FIG. 4 is located.
  • the area to be protected can be determined according to the front of vehicle 1, the lane lines on both sides of the lane where vehicle 1 is currently located, and the rear of vehicle 6 in front, that is, the first boundary of the area to be protected (or called the lateral boundary) can be associated with the lane lines on both sides of the current lane (ie the first lane), and the second boundary (or called the longitudinal boundary) can be associated with the front of the vehicle 1 and the front vehicle (ie the vehicle 6) rear.
  • the first boundary of the area to be protected can be the position of the lane lines on both sides of the current lane
  • the second boundary can be the front of the vehicle 1 and the position of the parking space of the vehicle 6. Based on the position of the area to be protected determined in this way
  • the size may be greater than, equal to or smaller than the size of the area where the dotted box 30 is shown in FIG. 4 .
  • the above two examples are only possible ways of determining the area to be protected of the vehicle and are not limiting. In other embodiments, the area to be protected may also be determined in other ways, which is not limited in this embodiment of the present application.
  • the above two methods can be configured on the vehicle driving device, so that the vehicle driving device can determine the area to be protected according to the actual scene of the vehicle. For example, if there is no vehicle in front of the vehicle 1, it can be determined based on the above method 1 For the area to be protected, if there is a vehicle in front of the vehicle 1, the area to be protected can be determined based on the above method 2.
  • the analysis range of the first vehicle that is, the second area associated with the first vehicle:
  • the analysis range may be determined according to the position of the vehicle on the road, and the analysis range may be used to determine a potential blocking vehicle (or called a target vehicle) of the vehicle.
  • the analysis range may include several road segments in front of the vehicle.
  • the analysis range of the vehicle 1 is the range shown by the dotted box 40, including a part of the first lane where the vehicle 1 is currently located, and the second road adjacent to the left side of the first lane.
  • Vehicle 4, Vehicle 5, and Vehicle 7 within this range are potential jamming vehicles of Vehicle 1, and Vehicle 1 needs to pass the monitoring and analysis of this range.
  • the status information of each vehicle in the vehicle is used to control the driving of the own vehicle, so as to suppress the jamming behavior of other vehicles and improve the driving experience.
  • FIG. 4 is only an example of the analysis range, and does not limit the graph, position, etc. of the analysis range.
  • the analysis range can also be defined in other ways, for example, it can be a fan-shaped area with the own vehicle as the center, or it can be a trapezoid, an irregular polygon, etc., which is not limited in this embodiment of the present application.
  • the area to be protected (not limited to a rectangular area) of the vehicle needs to be included in the analysis range at least, and the part of the adjacent lane included in the analysis range needs to be determined according to the road conditions of the lane where the vehicle is currently located. For example, in Fig.
  • the current lane has only one adjacent lane, so the analysis range of vehicle 4 can include part of the second lane in front of it, and the adjacent right side of the second lane.
  • the analysis range of the vehicle 2 may include a part of the third lane in front of it, and the third lane is a part of the first lane adjacent to the left.
  • relative traffic efficiency can be defined as a measurement index, by analyzing and calculating the average speed of each lane of at least two parallel lanes, and calculating the relative traffic efficiency of other lanes relative to the vehicle to be analyzed , to determine whether the triggering condition of the vehicle is satisfied, that is, to determine whether the vehicle is in the congestion scene.
  • the self-vehicle can start the filling game program, so as to control the vehicle driving of the own vehicle through the filling game program, so as to suppress other vehicles from running in the jam as much as possible. If not satisfied, the stopper game program may not be started.
  • vehicles such as vehicles 4 and 5 entering the second area on the second lane can be used as samples to calculate the relative passage of the second lane (relative to vehicle 1)
  • the relative traffic efficiency of the third lane is calculated by taking the vehicle (for example, vehicle 7) entering the second area on the third lane as a sample. The calculation process is as follows:
  • K 2 weighted average of ⁇ k(4), k(5)... ⁇ ;
  • K 3 weighted average of ⁇ k(7)... ⁇ ;
  • v(1) represents the speed of vehicle 1
  • v(4), v(5), and v(7) represent the speeds of vehicle 4, vehicle 5, and vehicle 7 respectively
  • K2 represents the relative traffic efficiency of the second lane
  • K 3 represents the relative traffic efficiency of the third lane.
  • the triggering condition of the vehicle may include: the relative traffic efficiency of the adjacent lane of the lane where the first vehicle is currently located is less than or equal to the first threshold.
  • the first threshold can be 1, if K 2 or K 3 is less than or equal to 1, it indicates that the traffic efficiency of the second lane or the third lane is less than or equal to the traffic efficiency of the first lane, and there are vehicles in the second lane or the third lane Change lanes to the first lane to increase the possibility of vehicle traffic.
  • K 2 or K 3 is greater than 1, it indicates that the traffic efficiency of the second lane or the third lane is better than that of the first lane, and the vehicles in the second lane or the third lane change lanes to the first lane, which does not give the self-vehicle Traffic brings better gains, and vehicles in the second or third lanes are less likely to change lanes to drive in the first lane.
  • the first vehicle can determine the relative position of vehicles in other lanes relative to the first vehicle by monitoring and analyzing the state of vehicles in adjacent lanes of the first lane where it is currently located. Traffic efficiency, so as to determine whether the first vehicle is in a congestion scene, so as to decide whether to start the congestion game program to control the driving of the first vehicle. If the two adjacent lanes of the first vehicle both meet the above triggering conditions for blocking, the first vehicle can also determine the lane and the vehicle with a higher blocking intention by comparing the relative traffic efficiency of the two adjacent lanes. For example, if K 2 ⁇ K 3 , then the traffic efficiency of the second lane is lower, and the vehicles on the second lane may have a higher blocking intention, and the vehicles on the second lane may be monitored and analyzed preferentially.
  • the longitudinal distance between the first vehicle and the second vehicle is d1
  • the distance between the first vehicle and the target vehicle is The horizontal spacing between them.
  • d1 is generally related to the speed of the vehicle. The faster the speed of the vehicle, the greater the required braking distance, and the greater d1 is.
  • the stopper income will be lower.
  • the plug payoff is expressed as follows:
  • ⁇ (2) represents the congestion benefit of vehicle 2
  • v(2) represents the speed of vehicle 2 respectively
  • K is the relative traffic efficiency of the lane where the target vehicle is located. That is, the faster the speed of the vehicle, the lower the income of other vehicles.
  • ⁇ (2) represents the congestion benefit of vehicle 2
  • v(2) represents the speed of vehicle 2 respectively
  • K is the relative traffic efficiency of the lane where the target vehicle is located. That is, the faster the speed of the vehicle, the lower the income of other vehicles.
  • other cars can benefit more from overcharging.
  • the first vehicle can monitor and analyze the state of the vehicles on the adjacent lanes of the first lane where it is currently located, and determine the congestion benefits of vehicles in other lanes, thereby determining the congestion A target vehicle with a higher intention, so that the first vehicle monitors and analyzes the target vehicle preferentially.
  • the definition of the vehicle’s congestion benefit according to the vehicle speed is only an example and not limiting.
  • the vehicle’s congestion benefit can also be determined according to parameters such as acceleration and lateral distance between vehicles. The embodiment of the application does not limit this.
  • the longitudinal distance between the first vehicle and the second vehicle is d1
  • the distance between the first vehicle and the target vehicle is The horizontal distance between vehicles.
  • the smaller d1 is, the better the effect of restraining other cars from jamming.
  • the smaller d1 is, the higher the risk of a rear-end collision between the first vehicle and the vehicle in front (that is, the second vehicle), so it is also necessary to control the longitudinal minimum safety distance between the first vehicle and the vehicle in front (or called the first safety distance). distance threshold).
  • the first safe distance threshold between the first vehicle and the second vehicle can be used as an algorithm input parameter, and when the driving control of the first vehicle is realized according to the state information of the target vehicle, the first The minimum distance between the vehicle and the second vehicle is met to reduce the risk of traffic accidents.
  • the first vehicle can also control the lateral distance d2 between the own vehicle and the target vehicle, so that the lateral distance d2 between the first vehicle and the target vehicle.
  • the minimum safe distance (or called the second safe distance threshold) is used as an input parameter of the algorithm to ensure that the minimum distance between the first vehicle and the target vehicle is met, so as to reduce the risk of traffic accidents.
  • Fig. 6 shows a schematic flowchart of a vehicle driving method according to an embodiment of the present application.
  • the method can be implemented by the aforementioned vehicle driving device, and the vehicle driving device can be deployed in the first vehicle.
  • the method may include the following steps:
  • the vehicle driving device determines a first area associated with the first vehicle.
  • the first vehicle is represented by vehicle A
  • the lane where the first vehicle is currently located is called the first lane
  • the first area may be located in the first lane and in front of the first vehicle, It can be represented by a dotted box 30 .
  • the area within For example, the area where the dotted frame 30 is shown in FIG. 7a, in this case
  • the first area can be based on the first vehicle's The front of the vehicle, the lane lines on both sides of the first lane where the first vehicle is currently located, and the rear of the second vehicle in front are determined, that is, the first boundary (or lateral boundary) of the first area can be associated with both sides of the first lane
  • the lane line, the second boundary (or called the longitudinal boundary) may be associated with the front of the first vehicle and the rear of the second vehicle.
  • the first boundary of the first area can be the detected position of the lane lines on both sides of the first lane
  • the second boundary can be the detected position of the head of the first vehicle and the detected position of the second vehicle.
  • the location of the rear of the car For example, the area where the dotted frame 30 is shown in FIG. 7 a takes the lane lines on both sides of the first lane as the first boundary of the first area, and takes the front of vehicle A and the rear of vehicle C as the second boundary of the first area.
  • Fig. 7a only the dotted line box 30 schematically indicates the position of the first area, and the shape, size, etc. of the dotted line box 30 do not represent the shape, size, etc. of the first area, which are determined based on the above two methods
  • the shape of the first area is not limited to a rectangle.
  • the first area may be an irregular polygon.
  • the determined size of the first region may be greater than, equal to or smaller than the size of the dotted box 30 shown in FIG. 7a.
  • the first area is a dynamic area based on the continuous displacement of the first vehicle, including but not limited to the dynamic change of the position of the first area, the first The shape of the region changes dynamically, and the size of the first region changes dynamically.
  • the vehicle driving device determines the first area
  • the center position P(x1, y1) of the first area (shown by a solid circle in Figure 7a) can be used as the reference position of the first area
  • the vehicle driving device may use the reference position to represent the first area to monitor and analyze other vehicles other than the own vehicle, so as to realize the driving control of the first vehicle.
  • S620 The vehicle driving device acquires state information of the target vehicle.
  • the first vehicle may have its analysis range, which is called a second area, and the first area may be included in the second area.
  • the vehicle driving device may determine a second area associated with the first vehicle, so as to determine the target vehicle, for example, the area indicated by the dashed box 40 shown in FIG. 7a.
  • the target vehicle may be the only vehicle in the second area, or a plurality of third vehicles located in the second area, or a vehicle with the highest congestion probability among the plurality of third vehicles.
  • the second area of the first vehicle (such as vehicle A) is represented by a dotted line box 40, and the third vehicle (such as vehicle A) on the adjacent lanes (including the second lane and the third lane) of the first lane
  • the front line of B) is parallel to the front line of the first vehicle, and the third vehicle may enter the second area and become a potential blocker of the first vehicle, which is a monitoring object of the first vehicle.
  • the vehicle driving device can The third vehicle is used as a candidate vehicle of the first vehicle, and the state information of the third vehicle is acquired.
  • the first vehicle can have at least one candidate vehicle (such as vehicle 4, vehicle 5, and vehicle 7 in Figure 4), and the vehicle driving device can meet the preset condition of entering the first area when the state information of any candidate vehicle
  • the candidate vehicle is determined as a target vehicle of the first vehicle, and the state information of the target vehicle is acquired.
  • the state information of the candidate vehicle may include one or more of the following information: absolute position, relative position to the first vehicle, speed, acceleration, and heading angle, and the vehicle driving device may Various sensors obtain various state information of each candidate vehicle.
  • the preset conditions may include, but are not limited to, one or more of the following: the head of the vehicle is in front of the head of the first vehicle (or in other words, only part or all of the body of the candidate vehicle is within the second area). as the target vehicle); the speed is less than or equal to the speed of the first vehicle; the vehicle length is less than or equal to the first length threshold; the lateral distance from the first vehicle is less than or equal to the first safety distance threshold; The included angle of the heading angle of a vehicle is less than or equal to the first angle threshold; the relative traffic efficiency of the lane where it is located is less than or equal to the first threshold; the determined driving route overlaps with the first area. For example, as shown in FIG.
  • the first length threshold may be the distance L between the second boundary of the first area; the included angle is the included angle between the heading of vehicle B and the heading of vehicle A; the driving route and the second boundary
  • An overlapping of an area may be that the driving route overlaps with the first area, or the reference position of the first area is on the driving route (or within an allowable error range).
  • the first threshold may be 1, and the first angle threshold may be 5°.
  • the vehicle driving device may perform calculation and judgment according to the state information of the at least one candidate vehicle to determine whether the at least one candidate vehicle satisfies one or more of the aforementioned preset conditions. If a candidate vehicle does not meet any of the above preset conditions, it can be determined that the candidate vehicle has no intention of blocking traffic, and the vehicle driving device can exclude the candidate vehicle as the target vehicle. When a candidate vehicle satisfies at least one of the above preset conditions, it is determined that the candidate vehicle has a blocking intention. In this case, the vehicle driving device can determine the candidate vehicle as a target vehicle of the first vehicle, and can start the first The game program of blocking the vehicle, so that the driving device of the vehicle can prevent the blocking behavior of the target vehicle.
  • the state information of the target vehicle may include one or more of the following information: absolute position, relative position to the first vehicle, speed, acceleration, and heading angle.
  • the vehicle driving device can continuously monitor and analyze the state information of the candidate vehicle and determine the driving route of the candidate vehicle from the moment when the vehicle on the adjacent lane enters the second area of the first vehicle, and pass the candidate vehicle Subtle state changes or changes in driving routes, etc., to determine whether the candidate vehicle has the intention of blocking and whether it can be the target vehicle of the first vehicle.
  • the vehicle driving device determines the driving route of the candidate vehicle, which may include the vehicle driving device obtaining the planned driving route of the candidate vehicle, or performing calculations based on the state information of the candidate vehicle to predict the driving route of the candidate vehicle
  • the route is not limited in the embodiment of this application.
  • the predicted driving route of the candidate vehicle is taken as an example for illustration, which should not be construed as a limitation to the embodiment of the present application.
  • the vehicle driving device may use various methods to predict the driving route of the vehicle, which is not limited in the embodiment of the present application.
  • the vehicle driving device can use the dotted curve algorithm to predict the driving route of the vehicle according to the state information of the vehicle.
  • the aforementioned preset conditions are only examples of conditions that need to be met for judging the blocking intention of the candidate vehicles, and are not limiting to the conditions. Let me repeat.
  • the vehicle driving device determines the target vehicle according to the state information of at least one candidate vehicle, it can collect the state information of the at least one candidate vehicle in real time, and according to a set period (for example, 100 Milliseconds (ms)), periodically calculate to determine the blocking intention of each candidate vehicle, and the results of at least two intention judgments of the candidate vehicle are all true (that is, the candidate vehicle meets the preset conditions for entering the first area) , the candidate vehicle is determined to be the target vehicle. If there is at least one target vehicle in the first vehicle, the stop game program of the first vehicle can be started, so that the driving control of the first vehicle can be realized according to the state information of the target vehicle through the stop game program.
  • a set period for example, 100 Milliseconds (ms)
  • the target vehicle of the first vehicle may not be limited to one, as shown in FIG. 4 , all of Vehicle 4 , Vehicle 5 , and Vehicle 7 may be the target vehicles of Vehicle 1 .
  • the vehicle driving device can perform calculations through its own configured relevant logic or algorithm to determine the target vehicle.
  • the vehicle driving device may also perform calculations through an on-board computing unit (such as an Advanced Driving Assistance System (ADAS)) in the first vehicle to determine the target vehicle, which is not limited in this embodiment of the present application.
  • ADAS Advanced Driving Assistance System
  • the vehicle driving device may use the at least one target vehicle as the target vehicle in S620, or the vehicle driving device may also select the congestion probability from the at least one target vehicle The largest vehicle is used as the target vehicle in S620, which is not limited in this embodiment of the present application.
  • the congestion probability of at least one target vehicle may be determined through comprehensive judgment based on the aforementioned relative traffic efficiency of the lane, vehicle congestion gain, safety distance, and the like. For example, the vehicle with the highest probability of being blocked may be the vehicle located in the lane with the lowest relative traffic efficiency, has the greatest benefit from blocking, and satisfies the safety distance requirement.
  • the vehicle driving device controls the driving distance between the first vehicle and the second vehicle according to the state information of the target vehicle.
  • S640 The driving distance between the first vehicle and the second vehicle is dynamically changed according to the driving control of the first vehicle by the vehicle driving device.
  • the vehicle driving device may control the driving distance between the first vehicle and the second vehicle according to the state information of the target vehicle.
  • the vehicle driving device may have the ability to simultaneously monitor and analyze the state information of at least one target vehicle, and perform vehicle driving control of the own vehicle, and may perform the vehicle driving control in S630 based on the The state information of at least one target vehicle is comprehensively analyzed to control the driving distance between the first vehicle and the second vehicle.
  • the vehicle driving device may predict the driving route of the target vehicle according to the state information of the target vehicle, and The positional relationship between the driving route of the vehicle and the first area controls the driving distance between the first vehicle and the second vehicle.
  • the vehicle driving device may predict that the first vehicle enters the first vehicle ahead of the target vehicle according to the state information of the target vehicle and the state information of the first vehicle. The second probability of the area, and according to the second probability, the distance between the first vehicle and the second vehicle is controlled.
  • the vehicle driving device may synthesize the state information of the at least two target vehicles, and according to the driving routes of the at least two target vehicles, or the first A third probability that the vehicle enters the first area prior to the at least two target vehicles controls the distance between the first vehicle and the at least two target vehicles.
  • the controlling the driving distance between the first vehicle and the second vehicle may include: the vehicle driving device controls the first vehicle to accelerate, so as to reduce the distance between the first vehicle and the second vehicle. or, the vehicle driving device controls the first vehicle to maintain the current speed to maintain the current driving distance between the first vehicle and the second vehicle; or, the vehicle driving device controls the first vehicle Traveling at a reduced speed to increase the traveling distance between the first vehicle and the second vehicle.
  • the vehicle driving device controls the acceleration of the first vehicle it may include: the vehicle driving device determines the target acceleration information of the first vehicle according to the state information of the target vehicle, and according to the target acceleration information , controlling the first vehicle to accelerate.
  • the vehicle driving device can flexibly control the driving of the first vehicle according to the state information of at least one target vehicle around the first vehicle, so that by controlling the distance between the first vehicle and the second vehicle in front of the first vehicle, to reduce the jamming behavior of other cars. Since this method can flexibly adjust the driving distance between the first vehicle and the second vehicle in front, the driving distance can no longer be limited to the fixed following distance adjustment gear in the automatic driving mode, which improves the flexibility of vehicle driving control . At the same time, when reducing the jamming behavior of other cars, it can reduce driving frustration and improve driving comfort, so as to take into account the driving experience.
  • the monitoring and analysis algorithms for each target vehicle are the same or similar.
  • the following uses a single target vehicle as an example to reduce the number of the first vehicle and the second vehicle in S630. The specific implementation of the distance between vehicles will be explained.
  • the vehicle driving device may predict the driving route of the target vehicle according to the state information of the target vehicle, and according to the positional relationship between the driving route of the target vehicle and the first area, A headway distance between the first vehicle and the second vehicle is controlled.
  • the first area is represented by the reference position P(x1, y1) in the first area, and this P(x1, y1) can be used as the vehicle A (ie the first vehicle) and vehicle B (ie the target vehicle ) for the target point of the game of filling, the intention of the target vehicle is to first occupy the target point with vehicle A, and the purpose of starting the filling game program of vehicle A is to prevent vehicle B from occupying the target point first.
  • the vehicle driving device can predict the driving route of the vehicle B according to the state information of the vehicle B in real time, as shown in FIG.
  • the vehicle driving device can use the reference position P(x1, y1) as the target of vehicle A’s acceleration, and control vehicle A Accelerate to reduce the distance between vehicles A and C.
  • the vehicle driving device when the vehicle driving device controls the vehicle A to accelerate, the vehicle driving device can predict the new driving route of the vehicle B in real time or periodically according to the status information of the vehicle B, so as to detect whether the vehicle B meets the requirement of entering the first area. preset conditions. Wherein, if the vehicle B is not speeding up, the vehicle driving device can predict the driving route of the vehicle B based on the real-time state information of the vehicle B. If the vehicle B accelerates, the vehicle driving device can predict the driving route of the vehicle B based on the acceleration of the vehicle B.
  • vehicle B may have given up the blocking behavior, that is, it has no intention to block , the vehicle driving device can determine that the vehicle A has successfully prevented the jamming behavior of the vehicle B, so far, the vehicle driving device can stop the accelerating behavior of the vehicle A in real time, for example, the vehicle A can maintain the current speed and run at a constant speed. Otherwise, the vehicle driving device may continue to control the vehicle A to accelerate until the vehicle B has no possibility of successful stoppage.
  • the vehicle driving device may continue to control the vehicle A to accelerate until the vehicle B has no possibility of successful stoppage.
  • the vehicle driving device can control the vehicle A to accelerate at the maximum angular velocity a1 (which can be preset by the factory of the vehicle A, or adjusted by the user according to his own driving needs), and control the vehicle A During the acceleration of A, whether to stop the acceleration is controlled according to the change of the stoppering intention of the vehicle B. It should be understood that, considering traffic safety issues, when the vehicle driving device controls the acceleration of vehicle A, it may also stop the acceleration behavior of vehicle A based on other factors, such as whether the driving distance between vehicle A and vehicle C reaches the vehicle distance threshold, the distance between vehicles A and Whether the speed reaches the speed threshold, etc., will not be repeated here.
  • the reference position P(x1, y1) can be the middle position of the first area, or one-third of the first area (closer to the front vehicle) position, the specific selection method of the reference position is not limited in this embodiment of the present application.
  • the vehicle driving device may predict that the first vehicle enters the first area before the target vehicle according to the state information of the target vehicle and the state information of the first vehicle and controlling the distance between the first vehicle and the second vehicle according to the probability.
  • the first area is represented by the reference position P(x1, y1) in the first area, and this P(x1, y1) can be used as the vehicle A (ie the first vehicle) and vehicle B (ie the target vehicle ) for the target point of the game of filling, the intention of the target vehicle is to first occupy the target point with vehicle A, and the purpose of starting the filling game program of vehicle A is to prevent vehicle B from occupying the target point first.
  • the vehicle driving device may assume that both vehicle A and vehicle B use the maximum acceleration allowed by themselves to accelerate, and determine which vehicle will occupy the target point first, so as to obtain the result that vehicle A enters the first area before vehicle B probability.
  • the maximum acceleration of the vehicle B is represented by a0, and the value of a0 can be determined according to the model of the vehicle B.
  • the allowable maximum acceleration of different vehicles may be a fixed empirical value, or may be pre-determined by big data modeling based on different vehicle types, which is not limited in this embodiment of the present application.
  • Let a1 represent the maximum acceleration of vehicle A (which may be preset by the factory of vehicle A, or adjusted by the user according to his own driving needs).
  • the vehicle driving device can assume that vehicle A and vehicle B are traveling from their respective current positions with their respective accelerations a1 and a0, and calculate the time required for vehicle A and vehicle B to travel from their respective current positions to the target point , if the time t A required by vehicle A is less than or equal to the time t B required by vehicle B , then vehicle A has the probability of preventing vehicle B from occupying the target point before vehicle A (that is, a non-zero value). In this situation, the vehicle driving device can control the vehicle A to accelerate, so that the vehicle A can reach the target point before the vehicle B, thereby suppressing the jamming behavior of the vehicle B.
  • the vehicle driving device may take the front of vehicle A ahead of the front of vehicle B by a predetermined distance, for example, in the L (-2 meters, 2 meters) interval, as the target of the acceleration of vehicle A, and according to The target calculates the target acceleration information required for vehicle A to accelerate, for example, including the target acceleration of vehicle A, target acceleration travel time, etc., and controls vehicle A to accelerate based on the target acceleration information, so as to reduce the distance between vehicle A and vehicle C. the driving distance.
  • a predetermined distance for example, in the L (-2 meters, 2 meters) interval
  • the target calculates the target acceleration information required for vehicle A to accelerate, for example, including the target acceleration of vehicle A, target acceleration travel time, etc., and controls vehicle A to accelerate based on the target acceleration information, so as to reduce the distance between vehicle A and vehicle C. the driving distance.
  • the vehicle driving device can The speed v0 and acceleration a0 of B are used as a reference, and the speed or acceleration of vehicle A is designed to be slightly higher than that of vehicle B.
  • the target acceleration is z2*a0
  • z1 and z2 are greater than 1, based on The following expression calculates the target acceleration time t of vehicle A:
  • R is a random number, which can be used to randomly generate the distance between the front of vehicle A and vehicle B, so as to reduce the conflict between vehicle A and vehicle B.
  • the vehicle driving device can control the acceleration of vehicle A based on the above target acceleration information, and resume the following speed of vehicle A when the above target acceleration time is reached, such as maintaining the current speed (such as the speed when the above target acceleration time is reached) to drive at a constant speed.
  • the vehicle driving device can also predict the new driving of vehicle B in real time or periodically according to the state information of vehicle B. route. If the vehicle B is not accelerating, the vehicle driving device can predict the driving route of the vehicle B based on the real-time state information of the vehicle B. If the vehicle B accelerates, the vehicle driving device can predict the driving route of the vehicle B based on the acceleration of the vehicle B.
  • vehicle B may have given up the traffic jam behavior, that is, there is no intention to jam, and the vehicle driving device can It is determined that vehicle A has successfully prevented the jamming behavior of vehicle B, so far, the vehicle driving device can stop the acceleration behavior of vehicle A in real time, for example, vehicle A can maintain the current speed and drive at a constant speed. Otherwise, the vehicle driving device may control the vehicle A to continue to accelerate based on the above target acceleration information until the target acceleration travel time is reached.
  • the vehicle driving device can ensure that vehicle A can always be in a state where it can reach the target point P(x1, y1) before vehicle B in the process of accelerating travel based on the above target acceleration information, vehicle B does not reach the target point P(x1, y1) before vehicle A
  • the possibility (that is, the probability is 0) of the target point P(x1, y1), for example, the driving distance between vehicle A and vehicle C is not enough to accommodate vehicle B to drive safely.
  • the vehicle driving device can stop the accelerating behavior of the vehicle A in real time, for example, the vehicle A can keep the current speed and drive at a constant speed.
  • the vehicle driving device may control the vehicle A to continue to accelerate based on the above target acceleration information until the vehicle B's jamming behavior is successfully prevented. Similar to example 1, in example 2, considering traffic safety issues, when the vehicle driving device controls vehicle A to accelerate, it can also stop the acceleration behavior of vehicle A based on other factors, such as whether the driving distance between vehicle A and vehicle C has reached The vehicle distance threshold, whether the speed of vehicle A reaches the speed threshold, etc. will not be repeated here.
  • the vehicle driving device can generally control the first vehicle (eg, vehicle A) to drive in the middle of its current lane (eg, the first lane).
  • the reference position P(x1, y1) can always be defined as the center position of the first area, as shown in Figure 9a and Figure 9b
  • the vehicle driving device can also control the first vehicle (such as vehicle A) to move in the current lane (such as the first One lane) (not limited to driving in the middle) to compensate the speed of the first vehicle itself, thereby increasing the probability that the first vehicle successfully prevents the blocking behavior of the target vehicle.
  • the vehicle driving device can control vehicle A to drive in the first lane close to the left lane line, that is, vehicle A is far away from vehicle B, Increase the lateral distance d2 between the two vehicles, control the acceleration of vehicle A, and predict the driving route of vehicle B, so as to control the driving distance between vehicle A and vehicle B.
  • d2 the vehicle driving device controls the vehicle A to accelerate, a larger maneuvering space can be provided for the vehicle A, and the possibility of the vehicle A occupying the target point in the first area before the vehicle B is improved.
  • the vehicle driving device can control vehicle A to drive close to the right lane line in the first lane, that is, vehicle A approaches vehicle B, reducing The lateral distance d2 between vehicles, while controlling the acceleration of vehicle A and predicting the driving route of vehicle B, so as to control the driving distance between vehicle A and vehicle B.
  • d2 decreases, the probability that the vehicle B will give up the stoppage behavior increases.
  • Fig. 9a-Fig. 9b is only a possible design for the vehicle driving device to control the vehicle A to prevent the jamming behavior of the target vehicle, and there may be other implementations in other embodiments, which are not discussed in this embodiment of the present application. Do limited.
  • traffic safety also needs to be considered, for example, the first vehicle cannot exceed the lane lines on both sides of the first lane;
  • the vehicle driving device can combine the state information of other vehicles around the first vehicle and analyze the blocking intention of other vehicles to dynamically adjust the traffic between the first vehicle itself and the second vehicle in the same lane ahead of it.
  • this method can flexibly adjust the driving distance between the first vehicle and the second vehicle in front, the driving distance can no longer be limited to the fixed following distance adjustment gear in the automatic driving mode, which improves the flexibility of vehicle driving control .
  • it can reduce driving frustration and improve driving comfort, so as to take into account the driving experience.
  • the vehicle driving device can also output relevant information on the human-machine interaction interface (Human-Machine Interaction, HMI) of the first vehicle, so that the second A driver on the side of a vehicle can conveniently realize the driving control of the first vehicle according to the relevant information output by the HMI, or understand the driving control process of the first vehicle.
  • HMI Human-Machine Interaction
  • Fig. 10a shows a schematic structural diagram of a vehicle interior.
  • the HMI can be the screen of the vehicle (or called the central control display screen or the central control screen), and the HMI can output the first picture in real time, and the first picture can include the third area and the target vehicle.
  • the third area includes at least a first area associated with the first vehicle, the first area is located in the first lane and in front of the first vehicle, and the target vehicle is located in the opposite direction of the first lane In an adjacent lane, the state information of the target vehicle satisfies a preset condition for driving into the third area.
  • other display devices may also be provided inside the vehicle for displaying a digital instrument panel; or other display screens may be provided to provide more vehicle entertainment needs.
  • multiple display screens are provided in the vehicle, such as a digital instrument display screen 101, a central control screen 102, a display screen 103 in front of a passenger (also known as a front row passenger) on the co-pilot seat, and a rear panel on the left side.
  • the display screen 104 in front of the passenger in the row and the display screen 105 in front of the passenger in the right rear row.
  • Fig. 10b shows a schematic diagram of a head up display (head up display, HUD) scene applicable to the embodiment of the present application.
  • HUD head up display
  • the HUD technology also known as head-up display technology
  • the image projection device in the HUD device projects the important information of the vehicle driving onto the windshield, and through the reflection of the windshield, a virtual image is formed directly in front of the driver's line of sight, so that the driver can see the information without looking down.
  • the HUD reduces the driver's inability to take into account the road conditions when looking down, and the driving risks that may be caused by changes in the pupils of the eyes caused by changes in the driver's line of sight. , which is a safer vehicle-mounted display method applicable to the embodiment of the present application.
  • the embodiment of the present application is also applicable to augmented reality (augmented reality, AR) HUD (AR-HUD), so that the digital image is superimposed on the real environment outside the car, so that the driver can obtain the visual effect of augmented reality , can be used for AR navigation, adaptive cruise, lane departure warning, etc., which is not limited in this embodiment of the present application.
  • AR augmented reality
  • AR-HUD augmented reality HUD
  • the embodiment of the present application also provides a vehicle driving device, which is used to execute the method executed by the vehicle driving device in the above-mentioned embodiments.
  • a vehicle driving device which is used to execute the method executed by the vehicle driving device in the above-mentioned embodiments.
  • the apparatus 1100 may include: a determining unit 1101 configured to determine a first area associated with a first vehicle, the first vehicle is located in a first lane, and the first area is located in the first lane, and is located in front of the first vehicle; the acquiring unit 1102 is configured to acquire state information of a target vehicle, the target vehicle is located in an adjacent lane of the first lane, and the state information of the target vehicle satisfies driving into the The preset condition of the first area; the control unit 1103 is configured to control the driving distance between the first vehicle and the second vehicle according to the state information of the target vehicle, and the second vehicle is located in the first lane, and an adjacent vehicle traveling in front of the first vehicle.
  • a determining unit 1101 configured to determine a first area associated with a first vehicle, the first vehicle is located in a first lane, and the first area is located in the first lane, and is located in front of the first vehicle
  • the acquiring unit 1102 is configured to acquire state information of a target vehicle, the target vehicle
  • the embodiment of the present application also provides a vehicle driving device, which is used to execute the method executed by the vehicle driving device in the above method embodiment.
  • a vehicle driving device which is used to execute the method executed by the vehicle driving device in the above method embodiment.
  • the device 1200 may include: an output unit 1201, configured to output a first picture on the human-machine interface HMI of the first vehicle, wherein the first vehicle is located in the first lane, and the first picture contains a third area and the target vehicle, the third area includes at least the first area associated with the first vehicle shown, the first area is located in the first lane and in front of the first vehicle, the The target vehicle is located in an adjacent lane of the first lane, and the state information of the target vehicle satisfies the preset condition for driving into the third area; the receiving unit 1202 is configured to receive information from the driver of the first vehicle control information, the control information is used to control the distance between the first vehicle and the second vehicle, and the control information is associated with the first screen.
  • an output unit 1201 configured to output a first picture on the human-machine interface HMI of the first vehicle, wherein the first vehicle is located in the first lane, and the first picture contains a third area and the target vehicle, the third area includes at least the first area associated with the first vehicle shown
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the essence of the technical solution of this application or the part that contributes to some solutions or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the apparatus 1300 shown in FIG. 13 includes at least one processor 1310 , a memory 1320 , and optionally, a communication interface 1330 .
  • a specific connection medium between the processor 1310 and the memory 1320 is not limited.
  • a communication interface 1330 is also included.
  • the processor 1310 communicates with other devices, data transmission can be performed through the communication interface 1330 .
  • the processor 1310 in FIG. 13 can call the computer stored in the memory 1320 to execute instructions, so that the device 1300 can execute the method performed by the remote diagnostic device in any of the above method embodiments. .
  • the processor 1310 in FIG. 13 can call the computer stored in the memory 1320 to execute instructions, so that the device 1300 can execute the diagnostic proxy device in any of the above method embodiments. method of execution.
  • the embodiment of the present application also relates to a system-on-a-chip, where the system-on-a-chip includes a processor, configured to call a computer program or a computer instruction stored in a memory, so that the processor executes the method in any one of the above method embodiments.
  • the processor is coupled to the memory through an interface.
  • the chip system further includes a memory, where computer programs or computer instructions are stored.
  • the embodiments of the present application also relate to a processor, where the processor is configured to call a computer program or computer instruction stored in a memory, so that the processor executes the method in any one of the above method embodiments.
  • the processor mentioned in any of the above-mentioned places can be a general-purpose central processing unit, a microprocessor, a specific application-specific integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling any of the above-mentioned methods An integrated circuit for executing the program of the method in the embodiment.
  • the memory mentioned in any of the above can be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆驾驶方法,包括:确定第一车辆关联的第一区域,第一车辆位于第一车道,第一区域位于第一车道、且位于第一车辆的前方;获取目标车辆的状态信息,目标车辆位于第一车道的相邻车道,目标车辆的状态信息满足驶入第一区域的预设条件;根据目标车辆的状态信息,控制第一车辆与第二车辆之间的行车间距,第二车辆为位于第一车道、且在第一车辆之前行驶的相邻车辆。通过该方法,有助于减少他车的加塞行为并兼顾驾驶体验。还提供了一种实现该车辆驾驶方法的装置及系统。

Description

一种车辆驾驶方法、装置及系统 技术领域
本申请实施例涉及车辆智能控制技术领域,特别涉及一种车辆驾驶方法、装置及系统。
背景技术
随着车辆的自动驾驶功能的发展,车辆在实现自动驾驶功能时,可以在该多个跟车距离调节挡位中选择目标档位,并基于该目标档位控制自车与前方车辆之间的行车间距,以保障车辆安全驾驶。在一些设计中,已将车辆的多个跟车距离调节挡位已由3档位增加至7档位,通过降低多个跟车距离调节挡位的平均跟车距离,来减少他车的加塞行为。该方案虽可在一定程度上防止他车加塞,但与此同时容易带来行车顿挫感、降低行车舒适度,故而无法兼顾驾驶体验。
因此,如何控制车辆驾驶,以减少他车的加塞行为并兼顾驾驶体验,仍为亟需解决的重要问题。
发明内容
本申请提供一种车辆驾驶方法、装置及系统,有助于减少他车的加塞行为并兼顾驾驶体验。
第一方面,本申请实施例提供了一种车辆驾驶方法,该方法可应用于车辆驾驶装置,车辆驾驶装置可以是应用程序,可以安装或运行在车辆的芯片或部件中,或车辆上的手机、平板电脑等智能设备上。或者,该车辆驾驶装置可以是软件模块,可以部署在车辆的上述各个电子控制单元(electronic control unit,ECU)中。或者,该车辆驾驶装置可以是车辆中新增的硬件模块,该硬件模块中可以配置有相关判断逻辑或者算法,可以作为车辆中的一个ECU,通过汽车总线与其他ECU进行信息传递,实现对车辆的驾驶控制,本申请实施例对该车辆驾驶装置的产品形态或部署方式等不做限定。
该方法可以包括:确定第一车辆关联的第一区域,所述第一车辆位于第一车道,所述第一区域位于所述第一车道、且位于所述第一车辆的前方;获取目标车辆的状态信息,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第一区域的预设条件;根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
通过上述方法,车辆驾驶装置可以根据第一车辆周围的目标车辆的状态信息,灵活地对第一车辆进行驾驶控制,从而通过控制第一车辆与位于该第一车辆前方的第二车辆之间的行车间距,来减少他车的加塞行为。由于该方法可以灵活地调整第一车辆与前方第二车辆之间的行车间距,该行车间距可以不再局限于自动驾驶模式下固定设置的跟车距离调节挡位,提升车辆驾驶控制的灵活性。同时,可以在减少他车的加塞行为时,减少行车顿挫感,提升行车舒适度,从而兼顾驾驶体验。
示例的,所述目标车辆的状态信息包括所述目标车辆的以下一项或多项信息:绝对位置、与所述第一车辆的相对位置、速度、加速度、和航向角。示例的,所述预设条件包括以下一项或多项:所述目标车辆的车头在所述第一车辆的车头之前;所述目标车辆的速度 小于等于所述第一车辆的速度;所述目标车辆的车长小于等于第一长度阈值;所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
结合第一方面,在一种可能的设计中,所述方法还包括:在所述第一车辆的人机交互界面HMI输出所述第一区域,其中,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和所述第二车辆的车尾。
通过上述方法,车辆驾驶装置可以在第一车辆HMI输出该第一区域,以便第一车辆的驾驶员可以实时地知悉该待保护的第一区域,以及第一区域的相关动态。
结合第一方面,在一种可能的设计中,所述目标车辆为第二区域内的唯一车辆,或为位于所述第二区域内的多个第三车辆,或为所述多个第三车辆中加塞概率最大的车辆,其中,所述第一区域包含在所述第二区域内。
通过上述方法,车辆驾驶装置可以根据至少一个目标车辆的状态信息,综合进行监控和分析,以尽可能地减少第一车辆周围的全部可能加塞车辆的加塞行为,提升驾驶体验。
结合第一方面,在一种可能的设计中,所述根据所述目标车辆的状态信息,控制所述第一车辆与所述第二车辆之间的行车间距,包括:根据所述目标车辆的状态信息,确定所述目标车辆的行车路线;根据所述目标车辆的行车路线与所述第一区域的位置关系,控制所述第一车辆与所述第二车辆之间的行车间距。
通过上述方法,车辆驾驶装置可以根据目标车辆的状态信息,实时地或周期性地预测所述目标车辆的行车路线,以便根据该行车路线确定该目标车辆是否有驶入该第一区域的加塞意图,从而根据所述目标车辆的加塞意图控制第一车辆与第二车辆之间的行车间距。
结合第一方面,在一种可能的设计中,所述根据所述目标车辆的状态信息,控制所述第一车辆与所述第二车辆之间的行车间距,包括:根据所述目标车辆的状态信息和所述第一车辆的状态信息,确定所述第一车辆先于所述目标车辆驶入所述第一区域的概率;根据所述概率,控制所述第一车辆与所述第二车辆的行车间距。示例的,所述第一车辆的状态信息包括所述第一车辆的以下一项或多项信息:绝对位置、与所述目标车辆的相对位置、速度、加速度、和航向角。
通过上述方法,车辆驾驶装置可以根据第一车辆先于所述目标车辆驶入所述第一区域的概率决策如何对第一车辆进行驾驶控制,从而通过灵活地调整第一车辆与前方第二车辆之间的行车间距,减小他车的加塞行为,并兼顾驾驶体验。
结合第一方面,在一种可能的设计中,所述控制所述第一车辆与所述第二车辆的行车间距,包括:通过控制所述第一车辆加速行驶,调整所述第一车辆与所述第二车辆之间的行车间距。
通过上述方法,车辆驾驶装置可以通过控制第一车辆加速行驶,来减小第一车辆与第二车辆之间的行车间距,由于第一车辆与第二车辆之间的行车间距减小,可增大目标车辆放弃加塞行为的几率,提升第一车辆成功阻止目标车辆的加塞行为的概率。可选的,车辆驾驶执照还可以通过控制第一车辆减速行驶,来增大第一车辆与前车之间的行车间距,从而及时地对目标车辆进行避让,以降低发生交通事故的风险。
结合第一方面,在一种可能的设计中,所述控制所述第一车辆加速行驶,包括:根据所述目标车辆的状态信息,确定所述第一车辆的目标加速信息;根据所述目标加速信息,控制所述第一车辆加速行驶。
通过上述方法,车辆驾驶装置可以根据目标车辆的状态信息确定目标加速信息,以便通过加速成功阻止目标车辆的加塞行为。
结合第一方面,在一种可能的设计中,考虑到交通安全,所述第一车辆与所述第一车辆之间的行车间距大于等于第一安全距离阈值。
结合第一方面,在一种可能的设计中,所述方法还包括:根据所述目标车辆的状态信息,控制所述第一车辆在所述第一车道内居中行驶,或靠近所述第一车道的左车道线行驶,或靠近所述第一车道的右车道线行驶。
第二方面,本申请实施例提供了一种车辆驾驶方法,包括:在第一车辆的人机交互界面HMI输出第一画面,其中,所述第一车辆位于第一车道,所述第一画面中包含第三区域以及目标车辆,所述第三区域至少包括所述第一车辆关联的第一区域,所述第一区域位于所述第一车道、且位于所述第一车辆的前方,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第三区域的预设条件;接收来自所述第一车辆的驾驶员的控制信息,所述控制信息用于控制所述第一车辆与所述第二车辆的行车间距,所述控制信息关联所述第一画面。
结合第二方面,在一种可能的设计中,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和第二车辆的车尾,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
结合第二方面,在一种可能的设计中,所述预设条件包括以下一项或多项:所述目标车辆的车头在所述第一车辆的车头之前;所述目标车辆的速度小于等于所述第一车辆的速度;所述目标车辆的车长小于等于第一长度阈值;所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
第三方面,本申请实施例提供了一种车辆驾驶装置,包括:确定单元,用于确定第一车辆关联的第一区域,所述第一车辆位于第一车道,所述第一区域位于所述第一车道、且位于所述第一车辆的前方;获取单元,用于获取目标车辆的状态信息,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第一区域的预设条件;控制单元,用于根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
结合第三方面,在一种可能的设计中,所述装置还包括:输出单元,用于在所述第一车辆的人机交互界面HMI输出所述第一区域,其中,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和所述第二车辆的车尾。
结合第三方面,在一种可能的设计中,所述目标车辆为第二区域内的唯一车辆,或为位于所述第二区域内的多个第三车辆,或为所述多个第三车辆中加塞概率最大的车辆,其中,所述第一区域包含在所述第二区域内。
结合第三方面,在一种可能的设计中,所述控制单元用于:根据所述目标车辆的状态信息,确定所述目标车辆的行车路线;根据所述目标车辆的行车路线与所述第一区域的位置关系,控制所述第一车辆与所述第二车辆之间的行车间距。
结合第三方面,在一种可能的设计中,所述控制单元用于:根据所述目标车辆的状态信息和所述第一车辆的状态信息,确定所述第一车辆先于所述目标车辆驶入所述第一区域 的概率;根据所述概率,控制所述第一车辆与所述第二车辆的行车间距。
结合第三方面,在一种可能的设计中,所述控制单元用于:通过控制所述第一车辆加速行驶,调整所述第一车辆与所述第二车辆之间的行车间距。
结合第三方面,在一种可能的设计中,所述控制单元用于:根据所述目标车辆的状态信息,确定所述第一车辆的目标加速信息;根据所述目标加速信息,控制所述第一车辆加速行驶。
结合第三方面,在一种可能的设计中,所述预设条件包括以下一项或多项:所述目标车辆的车头在所述第一车辆的车头之前;所述目标车辆的速度小于等于所述第一车辆的速度;所述目标车辆的车长小于等于第一长度阈值;所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
结合第三方面,在一种可能的设计中,所述第一车辆与所述第一车辆之间的行车间距大于等于第一安全距离阈值。
第四方面,本申请实施例提供了一种车辆驾驶装置,包括:输出单元,用于在第一车辆的人机交互界面HMI输出第一画面,其中,所述第一车辆位于第一车道,所述第一画面中包含第三区域以及目标车辆,所述第三区域至少包括所示第一车辆关联的第一区域,所述第一区域位于所述第一车道、且位于所述第一车辆的前方,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第三区域的预设条件;接收单元,用于接收来自所述第一车辆的驾驶员的控制信息,所述控制信息用于控制所述第一车辆与所述第二车辆的行车间距,所述控制信息关联所述第一画面。
结合第四方面,在一种可能的设计中,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和第二车辆的车尾,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
结合第四方面,在一种可能的设计中,所述预设条件包括以下一项或多项:所述目标车辆的车头在所述第一车辆的车头之前;所述目标车辆的速度小于等于所述第一车辆的速度;所述目标车辆的车长小于等于第一长度阈值;所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
第五方面,本申请实施例提供了一种车辆驾驶装置,包括:处理器和存储器;所述存储器用于存储程序;所述处理器用于执行所述存储器所存储的程序,以使所述装置实现如上第一方面以及第一方面任一可能设计所述的方法、或如上第二方面以及第二方面任一可能设计所述的方法。
第六方面,本申请实施例提供了一种车辆驾驶系统,包括:如上第三方面以及第三方面任一可能设计所述的车辆驾驶装置,和,如上第四方面以及第四方面任一可能设计所述的车辆驾驶装置。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序代码,当所述程序代码在计算机上运行时,使得计算机执行上述第一方面以及第一方面可能的设计所述的方法,或者,当所述程序代码在计算机上运行时,使得计算机执行上述第二方面以及第二方面可能的设计所述的方法。
第八方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在计算 机上运行时,使得所述计算机执行上述第一方面以及第一方面可能的设计所述的方法,或执行上述第二方面以及第二方面可能的设计所述的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面以及第一方面可能的设计所述的方法,或执行上述第二方面以及第二方面可能的设计所述的方法。
结合第九方面,在一种可能的实现方式中,该处理器可以通过接口与存储器耦合。
结合第九方面,在一种可能的实现方式中,该芯片系统还可以包括存储器,该存储器中存储有计算机程序或计算机指令。
第十方面,本申请实施例提供了一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面以及第一方面可能的设计所述的方法,或执行上述第二方面以及第二方面可能的设计所述的方法。
本申请实施例在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
上述第二方面至第十方面中任一方面中的任一可能设计可以达到的技术效果,可以相应参照上述第一方面或第二方面中任一方面中的任一可能设计可以达到的技术效果描述,重复之处不予论述。
附图说明
图1示出了本申请实施例适用的应用场景的示意图;
图2示出了本申请实施例的车辆感知系统的示意图;
图3示出了本申请实施例的车辆系统的示意图;
图4-图5示出了本申请实施例的车辆驾驶场景的示意图;
图6示出了本申请实施例的车辆驾驶方法的流程示意图;
图7a-图7b、图8、图9a-图9b、图10a-图10b示出了本申请实施例的车辆驾驶方法的流程示意图;
图11示出了本申请实施例的车辆驾驶装置的示意图;
图12示出了本申请实施例的车辆驾驶装置的示意图;
图13示出了本申请实施例的车辆驾驶装置的示意图。
具体实施方式
随着科技的飞速发展和生活水平的日益提高,车辆逐渐成为人民大众的一种重要出行方式。车辆适用的出行场景可以是高速公路场景、城市道路场景等,其中,在高速公路场景中,由于车速较快且车道较多,他车加塞的情况较少,但在城市道路场景中,加塞的情况较为常见。其中,若车辆处于人工驾驶模式,可由驾驶员根据他车的行驶意图控制自车运行,以减少他车的加塞行为。若车辆处于自动驾驶模式,车辆可以根据自动驾驶模式下设置的跟车距离调节挡位,控制车辆与前车之间的跟车距离,来减少他车的加塞行为。
随着自动驾驶车辆的日益普及,用户可以选择购买高配置车辆,或者以订阅的方式购买更多自动驾驶的功能。在一些方案中,已通过在自动驾驶模式下固定设置较多的跟车距离调节挡位(例如,1-7档),将之前较少档位时(例如1-3档)跟车距离调节挡位时的平 均跟车距离13米的提升至平均跟车距离10米,来减少他车的加塞行为。
然而,在该场景中,要么由于跟车距离较大、无法防止他车加塞,要么可以在一定程度上防止他车加塞,但容易带来行车顿挫感、降低行车舒适度,故而无法兼顾驾驶体验。因此,如何控制车辆驾驶,以减少他车的加塞行为并兼顾驾驶体验,仍为亟需解决的重要问题。
本申请实施例提供了一种车辆驾驶方法、装置及系统,通过结合车辆周围其它车辆的状态信息,对车辆关联的区域进行保护,以尽可能地抑制他车的加塞行为,提升驾驶体验。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
需要说明的是,本申请实施例中的车辆驾驶方案可以应用于车联网,如车-万物(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆-车辆(vehicle to vehicle,V2V)等。例如可以应用于具有驾驶移动功能的车辆,或者车辆中具有驾驶移动功能的其它装置。该其它装置包括但不限于:车载终端、车载控制器、车载模块、车载模组、车载部件、车载芯片、车载单元、车载雷达或车载摄像头等其他传感器,车辆可通过该车载终端、车载控制器、车载模块、车载模组、车载部件、车载芯片、车载单元、车载雷达或车载摄像头,实施本申请实施例提供的车辆驾驶方法。当然,本申请实施例中的控制方案还可以用于除了车辆之外的其它具有移动控制功能的智能终端,或设置在除了车辆之外的其它具有移动控制功能的智能终端中,或设置于该智能终端的部件中。该智能终端可以为智能运输设备、智能家居设备、机器人等。例如包括但不限于智能终端或智能终端内的控制器、芯片、雷达或摄像头等其它传感器、以及其它部件等。
需要说明的是,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的优先级或者重要程度。例如,第一区域、第二区域,只是为了区分不同的区域,而不是表示这两个区域的优先级或者重要程度等的不同。
下面结合附图及实施例介绍本申请实施例适用的应用场景。
图1示出了本申请实施例适用的应用场景的示意图。参阅图1所示,该应用场景可以包括车辆和服务端,该服务端可以为云端,云端可以包括云端服务器和/或云端虚拟机。服务端可以与车辆进行通信,以为车辆提供多种服务,例如空中升级(over the air,OTA)服务、高精地图服务、自动驾驶或辅助驾驶服务等。
例如,在空中升级(OTA)服务中,软件管理者可以将软件上传到云端,车辆可以自动或由使用者选择从云端下载软件,以更新本地的软件,从而实现对本地车辆系统的功能升级或功能更新。例如,可以通过OTA升级车辆的信息娱乐(infotainment)系统,再如,可以通过OTA实现对车辆的电子控制单元(electronic control unit,ECU)的升级,通过对 于ECU的升级可以实现对于车辆性能的升级;再如,可以通过OTA升级调整车辆悬架系统,以为使用者提供更加舒服驾驶或乘坐体验。
车辆可以从云端下载高精地图数据来获得高精地图,为使用者提供更加准确的导航服务。道路信息更新是非常频繁的,该服务不仅可以更加及时的将道路信息更新到地图中,还可以降低车辆本地对存储空间的需求。例如,对于大型城市或者地区,整套高精地图的数据量大,通过云端提供的高精地图服务,可以让车辆在行驶时实时地获取当前位置小范围区域的高精地图,且该区域的高精地图可以在不需要时从车辆上释放。
车辆可以与云端进行交互,以提升自动驾驶或辅助驾驶功能,从而提升车辆的安全性和出行效率。例如,车辆可以通过车身上安装的传感装置收集路面信息和周围车辆信息,并将收集到的信息上传到云端,云端基于收集的信息进行不同场景下驾驶算法的训练,并随着训练数据的更新不断优化驾驶算法,并更新到车辆,使得车辆的应对各种场景的自动驾驶能力不断提升。再如,对于感知装置所使用的基于神经网络的图像处理算法,该图像处理算法的训练可以在云端完成,并且随着训练数据的更新而更新;相应地,车辆可以从云端获取更新后的图像处理算法,从而可以提升感知装置的图像处理能力。再如,在恶劣天气下,车辆可以通过云端获取天气信息以及道路交通事故信息,从而辅助车辆进行规划,提升出行效率,且降低车辆发生事故的风险。或者,云端可以向车辆发送实时的道路信息,比如红绿灯信息,如此,车辆可以提前接收到前方路口的红绿灯变化间隔时间,并根据当前的车速计算出车辆通过所用时间,从而判断出合适并且安全的通过时机,以及规划好车辆的行驶速度,如此,不仅可以降低车辆能耗,还可以增加行车的安全性。
此外,车辆可以通过云端获取第三方的服务,例如在驾驶员授权的情况下,快递员可以通过一次性数字授权开启车辆的后备箱,将物品放置在车内,从而实现驾驶员不在场的情况下接收快递。
车辆可以通过无线通信的方式与云端交互信息,该无线通信可以遵循车辆所接入网络的无线协议,例如蜂窝网的V2X(C-V2X)通信,该蜂窝网例如为长期演进(long term evolution,LTE)无线网络或第五代(5th generation,5G)无线网络等。
该应用场景还可以包括路侧单元(road side unit,RSU),路侧单元可以安装在路侧,可以与云端和车辆通信,与云端通信的路侧单元可以视为与车辆类似的终端装置,与车辆通信的路侧单元可以视为与车辆类似的终端装置,也可以视为车辆的服务端装置。路侧单元可以采用无线通信的方式与车辆或云端进行交互,与车辆通信可以采用专用短距离通讯(dedicated short range communication,DSRC)技术,也可以采用基于蜂窝网的V2X(C-V2X)通信,例如,基于LTE通信协议或基于5G通信协议。与云端的通信可以采用基于蜂窝网的V2X(C-V2X)通信,例如,基于LTE通信协议或基于5G通信协议。路侧单元可以为车辆提供服务,例如实现车辆身份识别,电子收费,电子扣分等。路侧单元可以安装传感装置,以实现对道路信息的采集,进而提供车路协同服务。路侧单元可以对接路侧交通牌(例如,电子红绿灯、或电子限速牌等),以实现对红绿灯、或限速牌的实时控制,或者可以通过云端或直接将道路信息提供给车辆,以提升自动驾驶或辅助驾驶功能。
参阅图1所示,该应用场景中可以包括至少一个车辆,所述至少一个车辆可以位于相同或不同的车道上,例如车辆1、车辆2位于同一车道,车辆3位于车辆1和车辆2所在车道的相邻车道,车辆2位于车辆1的后方。在一种可能的情形中,车辆1的速度较慢,导致位于车辆1之后的车辆2无法加速快速行驶,因此车辆2可能期望变道驶入车辆3前 方,以便加速驶离。然而车辆2驶入车辆3前方的这一加塞行为,会降低车辆3的驾驶体验,也潜在引起交通事故的风险,因此,车辆3在实现自动驾驶功能或辅助驾驶功能时,还需要结合周围其它车辆(例如车辆1、车辆2等)的状态信息,对自身进行车辆驾驶控制,以尽可能地抑制车辆2的加塞行为,提升驾驶体验。
本申请实施例中,如图2所示,车辆(包括图1中的车辆1、车辆2、或车辆3)上可以安装多种传感器,例如摄像装置、激光雷达、毫米波雷达、超声波传感器等,以通过传感器获取车辆周围的环境信息,并对获取的信息进行分析和处理,实现例如障碍物感知、目标识别、车辆定位、路径规划、驾驶员监控/提醒等功能,从而提升车辆驾驶的安全性、自动化程度和舒适度。其中,车辆根据多种传感器获得的感知信息进行综合分析,还可以确定自车在当前车道线的位置、感知自车周围其它车辆的位置、感知自车与其它车辆的相对位置关系等,从而通过结合其它车辆的状态信息,实现对自车的驾驶控制,从而有效抑制其它车辆的加塞行为,提升驾驶体验。
其中,摄像装置用于获取车辆所在环境的图像信息,目前车辆上可以安装多个摄像头以实现对更多角度的信息的获取。激光雷达是激光探测及测距(LightLaser Detection and Ranging,LiDAR)系统的简称,主要包括发射器,接收器和信号处理单元组成,发射器是激光雷达中的激光发射机构;发射器发射的激光照射到目标物体后,通过目标物体反射,反射光线会经由镜头组汇聚到接收器上。信号处理单元负责控制发射器的发射,以及处理接收器接收到的信号,并计算出目标物体的位置、速度、距离、和/或大小等信息。
毫米波雷达以毫米波作为探测介质,可以测量从毫米波雷达到被测物体之间的距离、角度和相对速度等。毫米波雷达根据其探测距离的远近可以分为长距雷达(Long Range Radar,LRR)、中距雷达(Mid-Range Radar,MRR)以及短距雷达(Short Range Radar,SRR)。LRR主要面向的应用场景包括主动巡航以及制动辅助等,LRR对探测的角域宽度要求不高,反应到天线上是对天线的3dB波束宽度要求较低。MRR/SRR主要面向的应用场景包括自动泊车,并道辅助以及盲点检测等,MRR/SRR对探测的角域宽度要求较高,反应到天线上是对天线的3dB波束宽度要求较高,且要求天线有较低的副瓣水平。波束宽度用于保证可探测角域范围,低副瓣用于减少地面反射的杂波能量,降低虚警概率,保证驾驶安全。LRR可以安装于车身前方,MRR/SRR可以安装于车的四角位置,共同使用可以实现对于车身四周360范围的覆盖。
毫米波雷达可以包括壳体,壳体内置有至少一片印制电路板(Printed circuit board,PCB),例如可以包括电源PCB和雷达PCB,其中电源PCB可以提供雷达内部使用电压,也可以提供与其它设备通信的接口和安全功能;雷达PCB可以提供毫米波信号的收发和处理,其上集成有用于毫米波信号处理的元器件以及用于毫米波信号收发的天线(发射天线Tx和接收天线Rx)。天线可以微带阵列的方式形成于雷达PCB的背面,用于发射和接收毫米波。
超声波传感器,又可以称为超声波雷达,是利用超声波探测的传感装置,其工作原理是通过超声波发射装置向外发射超声波,通过接收装置接收经障碍物反射回来的超声波,根据超声波反射接收的时间差来测算距离。目前利用超声波传感器测算的距离可以用于提示车体到障碍物距离,辅助停车或减少不必要碰撞。应理解的是,上述传感器仅是对本申请实施例中车辆上可能配置的传感器的示例说明而非任何限定,在其他实施例中,传感器可以包括但不限于上述举例。
如图3所示,车辆(包括图1中的车辆1、车辆2、或车辆3)上还可以包括车载盒子(telematics BOX,T-Box)、中央网关(gateway)、车载计算单元、动力传动单元、底盘管理系统、车身控制模块(body control module,BCM)、车机(或称为车载终端、中控台、车内影音娱乐装置)等ECU,各个ECU之间基于相应的汽车总线(automotive bus)(包括车身总线、动力总线、底盘总线等)进行信息传递,形成车辆内部的局域网络,各个ECU又可称为车辆内部局域网络的网元。其中,图3中虚线框表示该激光雷达为可选装置。
其中,T-Box可以实现与云端、或RSU、或其它车辆的通信。中央网关可以获取车辆的实时状态信息,例如速度、位置、航向角等。车载计算单元可以综合通过多种传感器获得的感知信息,确定车辆的相对位置数据,包括车辆在当前车道内的位置、车辆周围其它车辆的位置、车辆与他车的相对位置关系等。动力传动单元可以将计算得出的控制信息(例如车辆速度、加速度、转向等),通过电机传递至底盘管理系统。底盘管理系统可以将控制信息转化为电机所需的驱动数据。车身控制模块将通过汽车总线配合和协调实现自动驾驶功能时的智能驾驶和人工驾驶。车机可以存储各个网元的配合和数据,选择性将部分信息或提示信息显示在车机的中控显示屏幕上,以供用户查看或提醒用户。汽车总线例如可以包括:控制器局域网络(controller area network,CAN)总线、局域互联网(Local Interconnect Network,LIN)总线、高速容错网络协议(FlexRay)总线、用于汽车多媒体和导航的媒体导向系统传输(Media Oriented System Transport,MOST)总线以及与计算机网络兼容的蓝牙、无线局域网等。示例的,车身总线、动力总线可以为CAN总线,底盘总线可以为CAN总线或FlexRay总线。
本申请实施例中,车辆驾驶装置可以是应用程序,可以安装或运行在车辆的芯片或部件中,或车辆上的手机、平板电脑等智能设备上。或者,该车辆驾驶装置可以是软件模块,可以部署在车辆的上述各个ECU中。或者,该车辆驾驶装置可以是车辆中新增的硬件模块,该硬件模块中可以配置有相关判断逻辑或者算法,可以作为车辆中的一个ECU,通过汽车总线与其他ECU进行信息传递,实现对车辆的驾驶控制,本申请实施例对该车辆驾驶装置的产品形态或部署方式等不做限定。
实施时,该车辆驾驶装置可以确定第一车辆关联的第一区域,并获取目标车辆的状态信息,根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距。其中,该第一车辆又可称为本车或自车,是需要监控他车以实现自身驾驶控制的车辆,例如图1中的车辆3。所述第一车辆当前所在的车道可称为第一车道,所述第一区域为第一车辆的待保护区域,可位于所述第一车道、且位于所述第一车辆的前方。所述目标车辆为所述第一车辆的潜在加塞者,位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第一区域的预设条件,可能会变道并驶入该第一区域,从而加塞在第一车辆前方行驶。所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆,该第二车辆也可称为第一车辆的前车。
在一个示例中,车辆驾驶装置可以根据目标车辆的状态信息,在确定目标车辆具有加塞意图、而第一车辆自身可以先于该目标车辆行驶到达该第一区域的可能性的情况下,通过控制第一车辆加速行驶,来减小第一车辆与前车之间的行车间距,从而降低目标车辆加塞驶入该第一车辆前方的可能性。在另一个示例中,车辆驾驶装置可以根据目标车辆的状态信息,确定目标车辆具有加塞意图、而第一车辆自身无先于该目标车辆行驶到达该第一区域的可能性或者可能性较小的情况下,通过控制第一车辆减速行驶,来增大第一车辆与 前车之间的行车间距,从而及时地对目标车辆进行避让,以降低发生交通事故的风险。
需要说明的是,本申请实施例中,该第二车辆是可选的,即第一车辆前方预设距离内可能没有车辆,在该情形下,该第一区域可以为车辆前方预定距离内的区域,车辆驾驶装置可以根据目标车辆的状态信息,控制第一车辆的速度,以尽可能地降低目标车辆先于该第一车辆行驶到达该第一区域的可能性。
为了便于理解,下面结合附图及实施例进行详细介绍。其中,在介绍本申请的车辆驾驶方法之前,首先对本申请实施例预定义的加塞场景、车辆的待保护区域、分析范围以及相关评估参数进行解释说明。
1、加塞场景:
如图4所示,道路上可以包括并行的至少两条车道:例如第一车道、第一车道左侧相邻的第二车道、第一车道右侧相邻的第三车道。第一车道上行驶有车辆1和车辆6、第二车道上行驶有车辆4和车辆5,第三车道上行驶有车辆2和车辆3,第一车道、第二车道、或第三车道上的车辆可以向其当前所在车道的相邻车道变道行驶,在行驶空间较为充足的情况下,车辆在变道时可以驶入相邻车道上的某个车辆前方,例如,在第一车道上的车辆1和车辆6(可选)之间的行车间距充足的情况下,第二车道上的车辆4、第三车道上的车辆2、车辆3、车辆7均可以变道,加塞驶入车辆1前方,该场景即为本申请实施例的加塞场景。一般地,基于安全考虑,车辆(包括人工驾驶的车辆和自动驾驶车辆)之间需要保留一定的行车间距,行车间距越大,潜在加塞者的加塞概率越大。
该加塞场景中,可以包括以下加塞情形:
(1)行车加塞:目标车辆在行车过程中发生加塞事件。
其中,在本车与前车之间留有足够的加塞空间时,目标车辆可以择机加塞驶入本车前方。在本车与前车没有足够的加塞空间时,目标车辆放弃加塞的概率增大。目标车辆靠近本车、以减少两车之间的横向间距时,目标车辆的加塞意图较明显。目标车辆的车头位于本车的左前车头或右前车头,为较佳的加塞时机。
(2)排队加塞:目标车辆停车等待,并在合适的加塞时机发生加塞事件。
在上述两种加塞情形下,还可以包括以下加塞模式:
(1)一步到位式:本车与前车之间留有足够的加塞空间,目标车辆可以直接朝向本车与前车之间的加塞位置行驶。该情形中,目标车辆的加塞意图简单直接。如图4所示的车辆4,可以从当前位置直接加塞驶入车辆1前方。
(2)分步式:第一步:目标车辆先行驶至与本车和前车之间的加塞位置的并行位置;第二步:目标车辆驶入本车与前车之间。该情形中,目标车辆在执行第二步的加塞动作之前,加塞意图不明显。如图4所示的车辆7,是先行驶到达与车辆1和车辆6之间的区域30并行的位置,然后可从当前位置驶入区域30。
需要说明的是,图4中仅以直行道路为例对本申请实施例的加塞场景进行介绍,并非对加塞场景的限定,在其他实施例中,加塞场景可以包括弯曲道路的场景(即道路具有一定的弯曲弧度,弯曲程度不限定)。并且,对于特殊车辆,例如超宽或超长的车辆,在相邻车道上不作为潜在加塞的目标车辆处理。
2、第一车辆的待保护区域(即第一车辆关联的第一区域):
本申请实施例中,车辆(即第一车辆)的待保护区域为车辆前方的预定区域,“待保 护区域”意味着该区域是不期望被本车(例如车辆1)以外的其它车辆(即目标车辆,例如车辆2、车辆3、车辆4、车辆7等)先占领的,在车辆行车过程中,该待保护区域的位置随着车辆本车的状态信息而动态变化,包括但不限于区域位置的变化、区域尺寸的变化等。
以车辆1为例,在方式①中,该待保护区域可以根据车辆1行车前方的安全距离以及车辆1的速度确定。例如,若安全距离Dist=3秒(S),车辆1的速度V=60千米每小时(Km/h),则该车辆1前方的待保护区域应为其车头前方约50米距离内的区域,例如图4所示的虚线框30所在区域。
以车辆1为例,在方式②中,该待保护区域可以根据车辆1的车头、车辆1当前所在车道的两侧车道线以及前方车辆6的车尾确定,即该待保护区域的第一边界(或称为横向边界)可关联于当前车道(即第一车道)的两侧车道线,第二边界(或称为纵向边界)可关联于车辆1的车头以及前车(即车辆6)的车尾。具体实施时,该待保护区域的第一边界可为当前车道的两侧车道线的位置,第二边界可为车辆1的车头、车辆6的车位所在位置,基于该方式确定的待保护区域的尺寸可大于、等于或小于如图4所示的虚线框30所在区域的尺寸。
需要说明的是,上述两种示例仅为确定车辆的待保护区域的可能方式并非限定,在其它实施例中还可以根据其它方式确定该待保护区域,本申请实施例对此不做限定。实施时,上述两种方式均可以配置于车辆驾驶装置,使得车辆驾驶装置可以根据车辆实际所处的场景确定该待保护区域,例如,若车辆1本车前方无车辆,可基于上述方式①确定待保护区域,若车辆1前方有车辆,可基于上述方式②确定待保护区域。
3、第一车辆的分析范围(即第一车辆关联的第二区域):
本申请实施例中,分析范围可以根据车辆在道路上的位置确定,该分析范围可用于确定车辆的潜在加塞车辆(或称为目标车辆)。
一般地,该分析范围可以包括车辆前方的若干车道路段。如图4所示,以车辆1为例,该车辆1的分析范围为虚线框40所示出的范围,包括车辆1当前所在第一车道的部分路段、第一车道左侧相邻的第二车道的部分路段、第二车道右侧相邻的第三车道的部分路段,在该范围内的车辆4、车辆5、车辆7是车辆1的潜在加塞车辆,车辆1需要通过监控和分析该范围内的各个车辆的状态信息,来对自车进行驾驶控制,以便抑制他车的加塞行为,提升驾驶体验。
需要说明的是,图4中仅是对分析范围的一个示例,并不限定该分析范围的图形、位置等。在其他实施中,该分析范围还可以有其他定义方式,例如可以是可以本车为圆心的扇形区域,还可以是梯形、不规则多边形等,本申请实施例对此不做限定。一般地,在该分析范围内需要至少包括车辆的待保护区域(不限定为矩形区域),该分析范围内包含的相邻车道的部分路段需要根据车辆当前所在的车道的道路情况确定。例如图4中,对于车辆4、车辆2而言,其当前所在车道只有一侧相邻车道,因此,车辆4的分析范围可以包括其前方第二车道的部分路段、第二车道右侧相邻的第一车道的部分路段,相似地,车辆2的分析范围可以包括其前方第三车道的部分路段、第三车道是左侧相邻的第一车道的部分路段。
4、加塞相关的评估参数:
(1)相对通行效率
一般地,车辆加塞行驶的真实意图是期望能够快速通过当前路段,通常加塞车辆所在车道的通行效率低于其要加塞至的车道的通行效率时,会导致加塞行为的发生。因此,本申请实施例中,可以定义“相对通行效率”作为衡量指标,通过分析和计算并行的至少两个车道各自的车道平均速度,并计算其它车道相对于待分析的本车的相对通行效率,确定是否满足本车的加塞触发条件,即确定本车是否处于加塞场景。在满足的情况下,本车可以启动加塞博弈程序,以通过该加塞博弈程序,对本车进行车辆驾驶控制,以尽可能地抑制其它车辆加塞行驶。若不满足,则可以不启动加塞博弈程序。
示例的,以图4中车辆1作为第一车辆为例,可以第二车道上进入第二区域的车辆(例如车辆4、车辆5)作为样本计算第二车道(相对于车辆1)的相对通行效率,以第三车道上进入第二区域的车辆(例如车辆7)作为样本计算第三车道(相对于车辆1)的相对通行效率。计算过程如下:
Figure PCTCN2021112151-appb-000001
K 2={k(4)、k(5)……}的加权平均值;
Figure PCTCN2021112151-appb-000002
K 3={k(7)……}的加权平均值;
其中,v(1)表示车辆1的速度,v(4)、v(5)、v(7)分别表示车辆4、车辆5、车辆7的速度,K 2表示第二车道的相对通行效率,K 3表示第三车道的相对通行效率。
本申请实施例中,本车的加塞触发条件可以包括:第一车辆当前所在车道的相邻车道的相对通行效率小于等于第一阈值。例如,第一阈值可以为1,若K 2或K 3小于等于1,表明第二车道或第三车道的通行效率小于等于第一车道的通行效率,第二车道或第三车道上的车辆存在变道至第一车道行驶以增大自车通行率的可能性。若K 2或K 3大于1,表明第二车道或第三车道的通行效率是优于第一车道的,第二车道或第三车道上的车辆变道至第一车道行驶并不能给自车通行带来较好的增益,第二车道或第三车道上的车辆变道至第一车道行驶的可能性较低。
故而,在一种可能的实现中,第一车辆可以通过对自身当前所在的第一车道的相邻车道上的车辆的状态进行监控和分析,确定其它车道上的车辆相对于第一车辆的相对通行效率,从而确定第一车辆是否处于加塞场景中,从而决策是否启动加塞博弈程序来对第一车辆进行驾驶控制。若第一车辆的两相邻车道均满足上述加塞触发条件,第一车辆还可以通过比较两相邻车道的相对通行效率,确定加塞意图较高的车道和车辆。例如,若K 2<K 3,则第二车道的通行效率更低,第二车道上的车辆的加塞意图可能会更高,可以优先监控和分析第二车道上的车辆。
(2)速度
如图5所示,以车辆1为第一车辆、车辆6为第二车辆、车辆2为目标车辆,第一车辆与第二车辆之间的纵向行车间距为d1,第一车辆与目标车辆之间的横向间距为d2。
一般地,d1越大,则目标车辆加塞成功率越高。d1一般是与车辆的速度相关的,车辆的速度越快,需要的制动距离越大,d1越大,然而,该情形下,虽然目标车辆加塞的成功率较大,但是给目标车辆带来的加塞收益会较低。例如,加塞收益表示如下:
Figure PCTCN2021112151-appb-000003
其中,ρ(2)表示车辆2的加塞收益;v(2)分别表示车辆2的速度;K为目标车辆所在车道的相对通行效率。即车速越快,他车加塞收益越低。一般地,在城市拥堵路段或低速路段,他车加塞收益较高。
故而,在一种可能的实现中,第一车辆可以通过对自身当前所在的第一车道的相邻车道上的车辆的状态进行监控和分析,确定其它车道上的车辆的加塞收益,从而确定加塞意图较高的目标车辆,以便第一车辆优先监控和分析该目标车辆。
需要说明的是,本申请实施例中,根据车辆速度定义车辆的加塞收益仅是示例而非限定,在其它实施例中,例如还可以根据加速度、横向行车间距等参数确定车辆的加塞收益,本申请实施例对此不做限定。
(3)安全距离
如图5所示,以车辆1为第一车辆、车辆6为第二车辆、车辆2为目标车辆,第一车辆与第二车辆之间的纵向行车间距为d1,第一车辆与目标车辆之间的横向行车间距为d2。
一般地,通过控制d1可以在一定程度上达到抑制他车加塞的效果,d1越小,抑制他车加塞的效果越好。同时,d1越小,第一车辆与前车(即第二车辆)发生追尾事故的风险越高,因此还需要控制第一车辆与前车之间的纵向最小安全距离(或称为第一安全距离阈值)。
因此,本申请实施例中,可以以第一车辆与第二车辆之间的第一安全距离阈值作为算法输入参数,在根据目标车辆的状态信息实现对第一车辆的驾驶控制时,确保第一车辆与第二车辆之间满足最小车距要求,以降低发生交通事故的风险。
相似地,在根据目标车辆的状态信息实现对第一车辆的驾驶控制时,第一车辆还可以控制本车与目标车辆之间的横向行车间距d2,以第一车辆与目标车辆之间的横向最小安全距离(或称为第二安全距离阈值)作为算法输入参数,确保第一车辆与目标车辆之间满足最小车距要求,以降低发生交通事故的风险。
需要说明的是,上述相关参数仅是对本申请实施例的参数示例而非限定,在其他实施例中,还可以定义算法所需的其它参数,例如加速度、航向角、目标车辆与第一车辆的相对位置等,本申请实施例对此不做限定。
下面结合方法流程图介绍本申请实施例的车辆驾驶方法。
图6示出了本申请实施例的车辆驾驶方法的流程示意图。其中,该方法可由前述的车辆驾驶装置实现,该车辆驾驶装置可以部署在第一车辆中。参阅图6所示,该方法可以包括以下步骤:
S610:车辆驾驶装置确定第一车辆关联的第一区域。
如图7a所示,以车辆A表示第一车辆,第一车辆当前所在的车道称为第一车道,所述第一区域可位于所述第一车道、且位于所述第一车辆的前方,可以虚线框30表示。
在一个示例中,该第一车辆前方无第二车辆,该第一区域可以根据第一车辆行车前方至少需要保有的安全距离、以及第一车辆的速度确定。例如,若安全距离Dist≥3秒(S),第一车辆的速度V=60千米每小时(Km/h),则该第一车辆前方的第一区域应为其车头前方约50米距离内的区域。例如图7a所示的虚线框30所在区域,该情形中,可以第一车道的两侧车道线为第一区域的第一边界,以第一车辆的车头以及第一车辆前方安全边界线为第一区域第二边界。
在另一个示例中,该第一车辆前方有第二车辆(第二车辆为位于第一车道、且在所述第一车辆之前行驶的相邻车辆),该第一区域可以根据第一车辆的车头、第一车辆当前所在第一车道的两侧车道线以及前方第二车辆的车尾确定,即该第一区域的第一边界(或称 为横向边界)可关联于第一车道的两侧车道线,第二边界(或称为纵向边界)可关联于第一车辆的车头以及第二车辆的车尾。具体实施时,该第一区域的第一边界可为检测到的所述第一车道的两侧车道线的位置,第二边界可为检测到的第一车辆的车头所在位置、第二车辆的车尾所在位置。例如图7a所示的虚线框30所在区域,以第一车道的两侧车道线为第一区域的第一边界,以车辆A的车头以及车辆C车尾为第一区域的第二边界。
需要说明的是,图7a中仅是虚线框30示意性地表示第一区域所在位置,该虚线框30的形状、尺寸等并不代表第一区域的形状、尺寸等,基于上述两种方式确定的第一区域的形状不限于矩形,例如道路为弯道,该第一区域可以为不规则多边形。所确定的第一区域尺寸可大于、等于或小于图7a所示的虚线框30尺寸。并且,由于各个车辆在车道(包括直行车道、弯道等)上移动,因此,该第一区域是基于第一车辆不断位移的动态区域,包括但不限于第一区域的位置动态变化、第一区域的形状动态变化、第一区域的尺寸动态变化。
示例的,如图7a所示,车辆驾驶装置在确定第一区域后,可以该第一区域的中心位置P(x1,y1)(图7a中以实心圆表示)作为该第一区域的参考位置,在进行车辆驾驶控制时,车辆驾驶装置可以该参考位置代表该第一区域,来对本车以外的其它车辆进行监控与分析,以实现对第一车辆的驾驶控制。
S620:车辆驾驶装置获取目标车辆的状态信息。
本申请实施例中,第一车辆可以具有其分析范围,称为第二区域,所述第一区域可以包含在所述第二区域内。实施S620之前,车辆驾驶装置可以确定第一车辆关联的第二区域,以便确定目标车辆,例如图7a所示虚线框40表示的区域。确定第二区域的方式可以参见前文的相关描述,在此不再赘述。示例的,所述目标车辆可以为第二区域内的唯一车辆,或为位于所述第二区域内的多个第三车辆,或为所述多个第三车辆中加塞概率最大的车辆。
如图7a所示,以虚线框40表示第一车辆(例如车辆A)的第二区域,从第一车道的相邻车道(包括第二车道和第三车道)上的第三车辆(例如车辆B)的车头线与第一车辆的车头线并列开始,该第三车辆即可能进入第二区域,成为第一车辆的潜在加塞者,即为第一车辆的一个监控对象,车辆驾驶装置可以该第三车辆作为第一车辆的一个候选车辆,并获取该第三车辆的状态信息。
其中,第一车辆可以有至少一个候选车辆(例如图4中的车辆4、车辆5、车辆7),车辆驾驶装置可以在任一个候选车辆的状态信息满足驶入所述第一区域的预设条件时,将该候选车辆确定为第一车辆的一个目标车辆,并获取该目标车辆的状态信息。示例的,候选车辆的状态信息可以包括以下一项或多项信息:绝对位置、与所述第一车辆的相对位置、速度、加速度、和航向角,车辆驾驶装置可以根据第一车辆上的多种传感器获取各个候选车辆的各项状态信息。
示例的,所述预设条件可以包括但不限于以下一项或多项:车头在所述第一车辆的车头之前(或者说,候选车辆的部分或全部车身在所述第二区域内方可能作为目标车辆);速度小于等于所述第一车辆的速度;车长小于等于第一长度阈值;与所述第一车辆之间的横向间距小于等于第一安全距离阈值;航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值;所在车道的相对通行效率小于等于第一阈值;确定的行车路线与所述第一区域有重叠。示例的,如图7b所示,第一长度阈值可以为第一区域的第二边界的间距L;夹 角为车辆B的航向相比于车辆A的航向的夹角;行车路线与所述第一区域有重叠,可以是该行车路线与第一区域有重叠,或该第一区域的参考位置在该行车路线(或在允许的误差范围内)上。作为示例,该第一阈值可以为1,第一角度阈值可以为5°。
车辆驾驶装置可以根据所述至少一个候选车辆的状态信息进行计算和判断,确定所述至少一个候选车辆是否满足上述预设条件中的一项或多项。若某个候选车辆不满足上述任一预设条件,可以确定该候选车辆无加塞意图,车辆驾驶装置可以将该候选车辆排除,不作为目标车辆。在某个候选车辆满足上述至少一项预设条件时,确定该候选车辆具有加塞意图,该情形下,车辆驾驶装置可将该候选车辆确定为第一车辆的一个目标车辆,并可启动第一车辆的加塞博弈程序,以便车辆驾驶装置阻止目标车辆的加塞行为。在某个候选车辆满足上述预设条件的条数越多时,可以确定该候选车辆的加塞概率越大,越需要车辆驾驶装置重点监控和分析。示例的,所述目标车辆的状态信息可以包括以下一项或多项信息:绝对位置、与所述第一车辆的相对位置、速度、加速度、和航向角。
由此,车辆驾驶装置可以在相邻车道上的车辆行驶进入第一车辆的第二区域的时刻开始,不断地监控和分析候选车辆的状态信息、以及确定该候选车辆的行车路线,通过候选车辆的细微状态变化或行车路线变化等,确定候选车辆是否存在加塞意图、能否作为第一车辆的目标车辆。其中,本申请实施例中,车辆驾驶装置确定候选车辆的行车路线,可以包括车辆驾驶装置获取该候选车辆的规划的行车路线,或通过该候选车辆的状态信息进行计算以预测该候选车辆的行车路线,本申请实施例对此不做限定。下文中,为便于描述,以预测候选车辆的行车路线为例进行示例说明,不应理解为对本申请实施例的限定。
需要说明的是,本申请实施例中,车辆驾驶装置可以采用多种方式预测车辆的行车路线,本申请实施例对此不做限定。例如,车辆驾驶装置可以根据车辆的状态信息,采用打点曲线算法预测车辆的行车路线,图7a中的虚线箭头可表示预测的车辆B的行车路线,空心圆可表示预测的车辆B的行车路线中的位置点。并且,前述预设条件仅是用于判断候选车辆的加塞意图所需满足的条件示例,并非对该条件的限定,在其它实施例中还可以采用其它方式确定候选车辆的加塞意图,在此不再赘述。
在一个示例中,为了提高计算准确率,车辆驾驶装置在根据至少一个候选车辆的状态信息确定目标车辆时,可以实时地采集所述至少一个候选车辆的状态信息,并根据设定周期(例如100毫秒(ms)),周期性地进行计算以判断每个候选车辆的加塞意图,可以在候选车辆的至少2次意图判断结果均为真(即候选车辆满足驶入第一区域的预设条件)时,确定该候选车辆为目标车辆。在第一车辆存在至少一个目标车辆的情况下,则可以启动第一车辆的加塞博弈程序,以便通过该加塞博弈程序,根据目标车辆的状态信息实现对第一车辆的驾驶控制。
需要说明的是,本申请实施例中,第一车辆可以不存在目标车辆,即第二区域内无具有加塞意图的车辆。或者,第一车辆的目标车辆可以不限于一个,如图4所示,车辆4、车辆5、车辆7均可能是车辆1的目标车辆。车辆驾驶装置可以通过自身配置的相关逻辑或算法进行计算,以确定目标车辆。或者,车辆驾驶装置也可以通过第一车辆中的车载计算单元(例如高级驾驶辅助系统(Advanced Driving Assistance System,ADAS))进行计算,以确定目标车辆,本申请实施例对此不做限定。
应理解,在第一车辆存在至少一个目标车辆的情况下,该车辆驾驶装置可以该至少一个目标车辆作为S620中的目标车辆,或者,车辆驾驶装置也可以在该至少一个目标车辆 中选择加塞概率最大的车辆作为S620中目标车辆,本申请实施例对此不做限定。其中,至少一个目标车辆的加塞概率,可以通过基于前述的车道的相对通行效率、车辆的加塞增益、安全距离等综合判断确定。例如,加塞概率最大的车辆,可以是位于相对通行效率最低的车道、加塞收益最大、且满足安全距离要求的车辆。
S630:车辆驾驶装置根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距。
相应地,S640:所述第一车辆与第二车辆之间的行车间距随着所述车辆驾驶装置对所述第一车辆的驾驶控制动态变化。
本申请实施例中,基于在S620中锁定的目标车辆,车辆驾驶装置可以根据该目标车辆的状态信息,控制第一车辆与第二车辆之间的行车间距。其中,在S620中锁定的目标车辆可以是至少一个,车辆驾驶装置可以具备同时监控和分析至少一个目标车辆的状态信息、并进行本车的车辆驾驶控制的能力,并可在S630中基于所述至少一个目标车辆的状态信息综合进行分析,控制所述第一车辆与第二车辆之间的行车间距。
其中,以在S620中锁定单个目标车辆为例,在一个示例中,实施S630时,车辆驾驶装置可以根据所述目标车辆的状态信息,预测所述目标车辆的行车路线,并根据所述目标车辆的行车路线与所述第一区域的位置关系,控制所述第一车辆与所述第二车辆之间的行车间距。在另一个示例中,实施S630时,车辆驾驶装置可以根据所述目标车辆的状态信息和所述第一车辆的状态信息,预测所述第一车辆先于所述目标车辆驶入所述第一区域的第二概率,并根据所述第二概率,控制所述第一车辆与所述第二车辆的行车间距。以在S620中锁定至少两个目标车辆为例,实施S630时,车辆驾驶装置可以综合所述至少两个目标车辆的状态信息,根据所述至少两个目标车辆的行车路线、或所述第一车辆先于所述至少两个目标车辆驶入所述第一区域的第三概率,控制所述第一车辆与所述至少两个目标车辆的之间的行车间距。
示例的,所述控制所述第一车辆与所述第二车辆的行车间距可以包括:车辆驾驶装置控制所述第一车辆加速行驶,以减小所述第一车辆与所述第二车辆之间的行车间距;或者,车辆驾驶装置控制所述第一车辆保持当前速度行驶,以保持所述第一车辆与第二车辆之间的当前行车间距;或者,车辆驾驶装置控制所述第一车辆减速行驶,以增大所述第一车辆与所述第二车辆之间的行车间距。可选地,车辆驾驶装置在控制所述第一车辆加速行驶时,可以包括:车辆驾驶装置根据所述目标车辆的状态信息,确定所述第一车辆的目标加速信息,根据所述目标加速信息,控制所述第一车辆加速行驶。
由此,车辆驾驶装置可以根据第一车辆周围的至少一个目标车辆的状态信息,灵活地对第一车辆进行驾驶控制,从而通过控制第一车辆与位于该第一车辆前方的第二车辆之间的行车间距,来减少他车的加塞行为。由于该方法可以灵活地调整第一车辆与前方第二车辆之间的行车间距,该行车间距可以不再局限于自动驾驶模式下固定设置的跟车距离调节挡位,提升车辆驾驶控制的灵活性。同时,可以在减少他车的加塞行为时,减少行车顿挫感,提升行车舒适度,从而兼顾驾驶体验。
本申请实施例中,对于每个目标车辆的监控和分析算法相同或相似,为了便于描述和理解,下面以单个目标车辆为例,对S630中减小所述第一车辆与所述第二车辆之间的行车间距的具体实现方式进行解释说明。
示例一:
在该示例中,实施S630时,车辆驾驶装置可以根据所述目标车辆的状态信息,预测所述目标车辆的行车路线,并根据所述目标车辆的行车路线与所述第一区域的位置关系,控制所述第一车辆与所述第二车辆之间的行车间距。
如图7a所示,以第一区域中的参考位置P(x1,y1)代表该第一区域,该P(x1,y1)可作为车辆A(即第一车辆)和车辆B(即目标车辆)进行加塞博弈的目标点,目标车辆的加塞意图是先与车辆A占据所述目标点,而车辆A启动加塞博弈程序的目的则是阻止车辆B先占据所述目标点。车辆驾驶装置可以实时地根据所述车辆B的状态信息预测该车辆B的行车路线,如图7a中以虚线箭头连接的位置点表示该行车路线。若所述参考位置P(x1,y1)在该车辆B的预测的行车路线上(或者与该行车路线的相对位置关系在允许的距离误差范围内),表明该车辆B的加塞驶入该第一区域的意图仍在,在该情形中,为了阻止车辆B先于车辆A占据该目标点,车辆驾驶装置可以以参考位置P(x1,y1)作为车辆A的加速行驶的目标,控制车辆A加速行驶,以减小车辆A与车辆C之间的行车间距。
其中,车辆驾驶装置控制车辆A加速行驶时,车辆驾驶装置可以根据车辆B的状态信息,实时或周期性地预测所述车辆B的新的行车路线,以检测车辆B是否符合驶入第一区域的预设条件。其中,若车辆B未加速行驶,车辆驾驶装置可以基于车辆B的实时的状态信息预测车辆B的行车路线。若车辆B加速行驶,车辆驾驶装置可以结合车辆B的加速度预测车辆B的行车路线。若车辆B的实时或周期性(例如周期为50ms)更新后的行车路线与该目标点P(x1,y1)之间无关联的位置关系,车辆B可能已放弃加塞行为,即已无加塞意图,车辆驾驶装置可以确定车辆A已成功阻止车辆B的加塞行为,至此,车辆驾驶装置可以实时地停止车辆A的加速行驶行为,例如车辆A可以保持当前速度匀速行驶。否则,车辆驾驶装置可以继续控制车辆A加速行驶,直至车辆B没有加塞成功的可能性。
需要说明的是,在该示例一中,车辆驾驶装置可以控制车辆A以最大角速度a1(可以是车辆A出厂预设的,或是用户根据自身的驾驶需求调整的)加速行驶,并在控制车辆A加速行驶的过程中,根据车辆B的加塞意图的变化控制是否停止该加速行为。应理解,考虑到交通安全问题,车辆驾驶装置控制车辆A加速时,还可以基于其它因素停止车辆A的加速行为,例如车辆A与车辆C之间的行车间距是否达到车距阈值、车辆A的速度是否达到速度阈值等,在此不再赘述。
需要说明的是,在该示例一中,在保障交通安全的情况下,参考位置P(x1,y1)可以是第一区域的中部位置,或为第一区域的三分之一(较靠近前车)位置,本申请实施例对该参考位置的具体选择方式不做限定。
示例二:
在该示例中,实施S630时,车辆驾驶装置可以根据所述目标车辆的状态信息和所述第一车辆的状态信息,预测所述第一车辆先于所述目标车辆驶入所述第一区域的概率,并根据所述概率,控制所述第一车辆与所述第二车辆的行车间距。
如图7a所示,以第一区域中的参考位置P(x1,y1)代表该第一区域,该P(x1,y1)可作为车辆A(即第一车辆)和车辆B(即目标车辆)进行加塞博弈的目标点,目标车辆的加塞意图是先与车辆A占据所述目标点,而车辆A启动加塞博弈程序的目的则是阻止车辆B先占据所述目标点。实施时,车辆驾驶装置可以假设车辆A和车辆B均采用其自身允许的最大加速度来加速行驶,确定哪个车辆会先占据该目标点,从而得到车辆A先于车辆B驶入该第一区域的概率。
以a0表示车辆B的最大加速度,该a0的值可以根据所述车辆B的车型确定。不同车辆的允许的最大加速度可以是固定的经验值,也可以是预先根据不同车型进行大数据建模确定的,本申请实施例对此不做限定。以a1表示车辆A的最大加速度(可以是车辆A出厂预设的,或是用户根据自身的驾驶需求调整的)。计算时,车辆驾驶装置可以假设车辆A和车辆B从其各自的当前位置、采用其各自的加速度a1、a0行驶,计算车辆A和车辆B行驶从各自的当前位置行驶到达目标点所需的时间,若车辆A所需的时间t A小于等于车辆B所需的时间t B,则车辆A存在阻止车辆B先于车辆A占据该目标点的概率(即非0数值)。该情形中,车辆驾驶装置可以控制车辆A加速行驶,以便车辆A可以车辆B先于车辆A到达该目标点,从而抑制车辆B的加塞行为。
其中,如图8所示,车辆驾驶装置可以以车辆A的车头领先车辆B的车头预定距离,例如在L(-2米,2米)区间内,作为车辆A的加速行驶的目标,并根据该目标计算车辆A加速行驶所需的目标加速信息,例如包括车辆A的目标加速度、目标加速行驶时间等,并基于该目标加速信息控制车辆A加速行驶,以减小车辆A与车辆C之间的行车间距。
在一个示例中,以车辆A为参考系坐标原点,若车辆B与车辆A的当前速度相近(即两车的速度误差在预定范围内,两车相对静止),车辆驾驶装置可根据测量的车辆B的速度v0、加速度a0作为参考,设计车辆A的速度或加速度略高于车辆B,例如车辆A的目标速度为v1=z1*v0,目标加速度为z2*a0,z1、z2大于1,基于以下表达式计算车辆A的目标加速时间t:
Figure PCTCN2021112151-appb-000004
其中,R为随机数,可用于随机生成车辆A的车头领先车辆B的距离,减少车辆A与车辆B之间的冲突。
车辆驾驶装置可以基于上述目标加速信息,控制车辆A加速,并在达到上述目标加速时间时,恢复车辆A的跟车速度,例如保持当前速度(例如达到上述目标加速时间时的速度)匀速行驶。
需要说明的是,该示例中,车辆驾驶装置在基于上述目标加速信息控制车辆A加速行驶的过程中,还可以根据车辆B的状态信息,实时或周期性地预测所述车辆B的新的行车路线。若车辆B未加速行驶,车辆驾驶装置可以基于车辆B的实时的状态信息预测车辆B的行车路线。若车辆B加速行驶,车辆驾驶装置可以结合车辆B的加速度预测车辆B的行车路线。若车辆B的实时或周期性(例如周期为50ms)更新后的行车路线与该第一区域之间无关联的位置关系,车辆B可能已放弃加塞行为,即已无加塞意图,车辆驾驶装置可以确定车辆A已成功阻止车辆B的加塞行为,至此,车辆驾驶装置可以实时地停止车辆A的加速行驶行为,例如车辆A可以保持当前速度匀速行驶。否则,车辆驾驶装置可以控制车辆A仍基于上述目标加速信息加速行驶,直至达到该目标加速行驶时间。或者,若车辆驾驶装置在基于上述目标加速信息加速行驶的过程中,能够确保车辆A可以始终处于可先于车辆B达到目标点P(x1,y1)的状态,车辆B没有先于车辆A达到目标点P(x1,y1)的可能性(即概率为0),例如车辆A与车辆C之间的行车间距不足以容纳车辆B安全行驶。该车辆驾驶装置可以实时地停止车辆A的加速行驶行为,例如车辆A可以保持当前速度匀速行驶。否则,车辆驾驶装置可以控制车辆A仍基于上述目标加速信息加速行驶,直至成功阻止车辆B的加塞行为。同示例一相似,在示例二中,考虑到交通安全问题,车辆 驾驶装置控制车辆A加速时,还可以基于其它因素停止车辆A的加速行为,例如车辆A与车辆C之间的行车间距是否达到车距阈值、车辆A的速度是否达到速度阈值等,在此不再赘述。
需要说明的是,在上述示例中,车辆驾驶装置通常可以控制第一车辆(例如车辆A)在其当前所在车道(例如第一车道)内居中行驶。此外,参考位置P(x1,y1)可以始终定义为第一区域的中心位置,如图9a和图9b所示,车辆驾驶装置还可以控制第一车辆(例如车辆A)在当前车道(例如第一车道)内的位置(不限于居中行驶),来对第一车辆自身进行速度补偿,从而增大第一车辆成功阻止目标车辆的加塞行为的概率。
如图9a所示,若车辆B的车头位置已经先于车辆A,则车辆驾驶装置可以控制所述车辆A在所述第一车道内靠近左侧车道线行驶,即车辆A远离车辆B、增大两车之间的横向间距d2,同时控制车辆A加速行驶、以及预测车辆B的行车路线,以控制车辆A与车辆B之间的行车间距。由此,由于d2增大,当车辆驾驶装置控制车辆A加速行驶时,可以为车辆A提供较大的机动空间,提升车辆A先于车辆B占据第一区域中的目标点的可能性。如图9b所示,若车辆B的车头位置还未领先车辆A,则车辆驾驶装置可以控制车辆A在所述第一车道内靠近右侧车道线行驶,即车辆A靠近车辆B、减小两车之间的横向间距d2,同时控制车辆A加速行驶、以及预测车辆B的行车路线,以控制车辆A与车辆B之间的行车间距。由此,由于d2减小,增大车辆B放弃加塞行为的概率。
应理解,图9a-图9b中仅是对车辆驾驶装置控制车辆A阻止目标车辆的加塞行为的可能设计并非限定,在其它实施例中还可以有其它实现方式,本申请实施例中对此不做限定。另外需要说明的是,车辆驾驶装置在控制第一车辆在第一车道内的位置时,还需要考虑交通安全,例如第一车辆不可超出第一车道的两侧车道线;车辆驾驶装置控制第一车辆在第一车道内靠左行驶时还要注意避让左侧相邻车道(例如第二车道)上或右侧相邻车道(例如第三车道)上的其它车辆等,在此不再赘述。
由此,通过上述车辆驾驶方法,车辆驾驶装置可以结合第一车辆周围其它车辆的状态信息,通过分析其它车辆的加塞意图,动态地调整第一车辆本车与位于其前方同一车道的第二车辆之间的行车间距,以尽可能地降低第一车辆前方关联的第一区域被其它车辆抢先占据的概率,从而抑制他车的加塞行为。由于该方法可以灵活地调整第一车辆与前方第二车辆之间的行车间距,该行车间距可以不再局限于自动驾驶模式下固定设置的跟车距离调节挡位,提升车辆驾驶控制的灵活性。同时,可以在减少他车的加塞行为时,减少行车顿挫感,提升行车舒适度,从而兼顾驾驶体验。
此外,在实施上述S610-S640的车辆驾驶方法时,在第一车辆侧,车辆驾驶装置还可以在所述第一车辆的人机交互界面(Human–Machine Interaction,HMI)输出相关信息,以便第一车辆侧的驾驶员可以方便地根据HMI输出的相关信息,实现对所述第一车辆的驾驶控制,或了解该第一车辆的驾驶控制过程。
图10a示出了一种车辆内部的结构示意图。其中,HMI可以为车机的屏幕(或称为中控显示屏幕或中控屏),该HMI上可以实时地输出第一画面,该第一画面中可以包含第三区域以及目标车辆,所述第三区域至少包括所述第一车辆关联的第一区域,所述第一区域位于所述第一车道、且位于所述第一车辆的前方,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第三区域的预设条件。另外,车辆内部也可以设置有其它显示装置,用于显示数字仪表盘;或可以设置有其它显示屏,以提供更多位 置的车载娱乐需求。如图10a所示,车辆内设置有多块显示屏,如数字仪表显示屏101,中控屏102,副驾驶位上的乘客(也称为前排乘客)面前的显示屏103,左侧后排乘客面前的显示屏104以及右侧后排乘客面前的显示屏105。
图10b示出了本申请实施例适用的抬头显示(head up display,HUD)场景的示意图。其中,HUD技术又称平视显示技术,近年来逐步在汽车领域、航空航天领域以及航海领域获得了越来越广泛地应用。HUD装置中的图像投射装置把车辆驾驶中的重要信息投影到挡风玻璃上,经过挡风玻璃的反射,在驾驶员视线正前方形成虚像,使得驾驶员无需低头就可以看到这些信息。相比于图10a中仪表盘、中控屏等需要驾驶员低头观察的显示方式,HUD减少了驾驶员低头观察时无法顾及路况、以及驾驶员视线变化带来的眼睛瞳孔变化可能引发的驾驶风险,是本申请实施例适用的一种更安全的车载显示方式。此外,为了不干扰路况,本申请实施例还适用于增强现实(augmented reality,AR)HUD(AR-HUD),以将数字图像叠加在车外真实环境上,使得驾驶员获得增强现实的视觉效果,可用于AR导航、自适应巡航、车道偏离预警等,本申请实施例对此不做限定。
本申请实施例还提供了一种车辆驾驶装置,用于执行上述实施例中车辆驾驶装置所执行的方法,相关特征可参见上述方法实施例,在此不再赘述。
如图11所示,该装置1100可以包括:确定单元1101,用于确定第一车辆关联的第一区域,所述第一车辆位于第一车道,所述第一区域位于所述第一车道、且位于所述第一车辆的前方;获取单元1102,用于获取目标车辆的状态信息,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第一区域的预设条件;控制单元1103,用于根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。具体实现方式,请参考图1至图10b所示实施例中的详细描述,这里不再赘述。
本申请实施例还提供了一种车辆驾驶装置,用于执行上述方法实施例中车辆驾驶装置所执行的方法,相关特征可参见上述方法实施例,在此不再赘述。
如图12所示,该装置1200可以包括:输出单元1201,用于在第一车辆的人机交互界面HMI输出第一画面,其中,所述第一车辆位于第一车道,所述第一画面中包含第三区域以及目标车辆,所述第三区域至少包括所示第一车辆关联的第一区域,所述第一区域位于所述第一车道、且位于所述第一车辆的前方,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第三区域的预设条件;接收单元1202,用于接收来自所述第一车辆的驾驶员的控制信息,所述控制信息用于控制所述第一车辆与所述第二车辆的行车间距,所述控制信息关联所述第一画面。具体实现方式,请参考图1至图10b所示实施例中的详细描述,这里不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对一些方案做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现 出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在一个简单的实施例中,本领域的技术人员可以想到上述实施例中的远程诊断装置或车辆侧的诊断代理装置均可采用图13所示的形式。
如图13所示的装置1300,包括至少一个处理器1310、存储器1320,可选的,还可以包括通信接口1330。
本申请实施例中不限定上述处理器1310以及存储器1320之间的具体连接介质。
在如图13的装置中,还包括通信接口1330,处理器1310在与其他设备进行通信时,可以通过通信接口1330进行数据传输。
当远程诊断装置采用图13所示的形式时,图13中的处理器1310可以通过调用存储器1320中存储的计算机执行指令,使得设备1300可以执行上述任一方法实施例中远程诊断装置执行的方法。
当车辆侧的诊断代理装置采用图13所示的形式时,图13中的处理器1310可以通过调用存储器1320中存储的计算机执行指令,使得设备1300可以执行上述任一方法实施例中诊断代理装置执行的方法。
本申请实施例还涉及一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行如上述任一方法实施例中的方法。
在一种可能的实现方式中,该处理器通过接口与存储器耦合。
在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
本申请实施例还涉及一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行如上述任一方法实施例中的方法。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述任一方法实施例中的方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种车辆驾驶方法,其特征在于,包括:
    确定第一车辆关联的第一区域,所述第一车辆位于第一车道,所述第一区域位于所述第一车道、且位于所述第一车辆的前方;
    获取目标车辆的状态信息,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第一区域的预设条件;
    根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一车辆的人机交互界面HMI输出所述第一区域,其中,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和所述第二车辆的车尾。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标车辆为第二区域内的唯一车辆,或为位于所述第二区域内的多个第三车辆,或为所述多个第三车辆中加塞概率最大的车辆,其中,所述第一区域包含在所述第二区域内。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述目标车辆的状态信息,控制所述第一车辆与所述第二车辆之间的行车间距,包括:
    根据所述目标车辆的状态信息,确定所述目标车辆的行车路线;
    根据所述目标车辆的行车路线与所述第一区域的位置关系,控制所述第一车辆与所述第二车辆之间的行车间距。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述目标车辆的状态信息,控制所述第一车辆与所述第二车辆之间的行车间距,包括:
    根据所述目标车辆的状态信息和所述第一车辆的状态信息,确定所述第一车辆先于所述目标车辆驶入所述第一区域的概率;
    根据所述概率,控制所述第一车辆与所述第二车辆的行车间距。
  6. 根据权利要求4或5所述的方法,其特征在于,所述控制所述第一车辆与所述第二车辆的行车间距,包括:
    通过控制所述第一车辆加速行驶,调整所述第一车辆与所述第二车辆之间的行车间距。
  7. 根据权利要求6所述的方法,其特征在于,所述控制所述第一车辆加速行驶,包括:
    根据所述目标车辆的状态信息,确定所述第一车辆的目标加速信息;
    根据所述目标加速信息,控制所述第一车辆加速行驶。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述预设条件包括以下一项或多项:
    所述目标车辆的车头在所述第一车辆的车头之前;
    所述目标车辆的速度小于等于所述第一车辆的速度;
    所述目标车辆的车长小于等于第一长度阈值;
    所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;
    所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一车辆与所述第一车 辆之间的行车间距大于等于第一安全距离阈值。
  10. 一种车辆驾驶方法,其特征在于,包括:
    在第一车辆的人机交互界面HMI输出第一画面,其中,所述第一车辆位于第一车道,所述第一画面中包含第三区域以及目标车辆,所述第三区域至少包括所述第一车辆关联的第一区域,所述第一区域位于所述第一车道、且位于所述第一车辆的前方,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第三区域的预设条件;
    接收来自所述第一车辆的驾驶员的控制信息,所述控制信息用于控制所述第一车辆与所述第二车辆的行车间距,所述控制信息关联所述第一画面。
  11. 根据权利要求10所述的方法,其特征在于,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和第二车辆的车尾,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
  12. 根据权利要求10或11所述的方法,其特征在于,所述预设条件包括以下一项或多项:
    所述目标车辆的车头在所述第一车辆的车头之前;
    所述目标车辆的速度小于等于所述第一车辆的速度;
    所述目标车辆的车长小于等于第一长度阈值;
    所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;
    所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
  13. 一种车辆驾驶装置,其特征在于,包括:
    确定单元,用于确定第一车辆关联的第一区域,所述第一车辆位于第一车道,所述第一区域位于所述第一车道、且位于所述第一车辆的前方;
    获取单元,用于获取目标车辆的状态信息,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第一区域的预设条件;
    控制单元,用于根据所述目标车辆的状态信息,控制所述第一车辆与第二车辆之间的行车间距,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    输出单元,用于在所述第一车辆的人机交互界面HMI输出所述第一区域,其中,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和所述第二车辆的车尾。
  15. 根据权利要求13或14所述的装置,其特征在于,所述目标车辆为第二区域内的唯一车辆,或为位于所述第二区域内的多个第三车辆,或为所述多个第三车辆中加塞概率最大的车辆,其中,所述第一区域包含在所述第二区域内。
  16. 根据权利要求13-15中任一项所述的装置,其特征在于,所述控制单元用于:
    根据所述目标车辆的状态信息,确定所述目标车辆的行车路线;
    根据所述目标车辆的行车路线与所述第一区域的位置关系,控制所述第一车辆与所述第二车辆之间的行车间距。
  17. 根据权利要求13-15中任一项所述的装置,其特征在于,所述控制单元用于:
    根据所述目标车辆的状态信息和所述第一车辆的状态信息,确定所述第一车辆先于所述目标车辆驶入所述第一区域的概率;
    根据所述概率,控制所述第一车辆与所述第二车辆的行车间距。
  18. 根据权利要求16或17所述的装置,其特征在于,所述控制单元用于:
    通过控制所述第一车辆加速行驶,调整所述第一车辆与所述第二车辆之间的行车间距。
  19. 根据权利要求18所述的装置,其特征在于,所述控制单元控制所述第一车辆加速行驶包括:
    根据所述目标车辆的状态信息,确定所述第一车辆的目标加速信息;
    根据所述目标加速信息,控制所述第一车辆加速行驶。
  20. 根据权利要求13-19中任一项所述的装置,其特征在于,所述预设条件包括以下一项或多项:
    所述目标车辆的车头在所述第一车辆的车头之前;
    所述目标车辆的速度小于等于所述第一车辆的速度;
    所述目标车辆的车长小于等于第一长度阈值;
    所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;
    所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
  21. 根据权利要求13-20中任一项所述的装置,其特征在于,所述第一车辆与所述第一车辆之间的行车间距大于等于第一安全距离阈值。
  22. 一种车辆驾驶装置,其特征在于,包括:
    输出单元,用于在第一车辆的人机交互界面HMI输出第一画面,其中,所述第一车辆位于第一车道,所述第一画面中包含第三区域以及目标车辆,所述第三区域至少包括所示第一车辆关联的第一区域,所述第一区域位于所述第一车道、且位于所述第一车辆的前方,所述目标车辆位于所述第一车道的相邻车道,所述目标车辆的状态信息满足驶入所述第三区域的预设条件;
    接收单元,用于接收来自所述第一车辆的驾驶员的控制信息,所述控制信息用于控制所述第一车辆与所述第二车辆的行车间距,所述控制信息关联所述第一画面。
  23. 根据权利要求22所述的装置,其特征在于,所述第一区域的第一边界关联于所述第一车道的两侧车道线,所述第一区域的第二边界关联于所述第一车辆的车头和第二车辆的车尾,所述第二车辆为位于所述第一车道、且在所述第一车辆之前行驶的相邻车辆。
  24. 根据权利要求22或23所述的装置,其特征在于,所述预设条件包括以下一项或多项:
    所述目标车辆的车头在所述第一车辆的车头之前;
    所述目标车辆的速度小于等于所述第一车辆的速度;
    所述目标车辆的车长小于等于第一长度阈值;
    所述目标车辆与所述第一车辆之间的横向间距小于等于第一安全距离阈值;
    所述目标车辆的航向角与所述第一车辆的航向角的夹角小于等于第一角度阈值。
  25. 一种车辆驾驶装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器所存储的程序,以使所述装置实现如所述权利要求1-9任一项所述的方法。
  26. 一种车辆驾驶装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器所存储的程序,以使所述装置实现如所述权利要求10-12任一项所述的方法。
  27. 一种车辆驾驶系统,其特征在于,包括:
    如权利要求13-21任一项所述的车辆驾驶装置,和,
    如权利要求22-24任一项所述的车辆驾驶装置。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读介质存储有程序代码,当所述程序代码在计算机上运行时,使得计算机执行如权利要求1至9中任一项所述的方法;或者,当所述程序代码在计算机上运行时,使得计算机执行如权利要求10至12中任一项所述的方法。
PCT/CN2021/112151 2021-08-11 2021-08-11 一种车辆驾驶方法、装置及系统 WO2023015505A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/112151 WO2023015505A1 (zh) 2021-08-11 2021-08-11 一种车辆驾驶方法、装置及系统
EP21953127.4A EP4382384A1 (en) 2021-08-11 2021-08-11 Vehicle driving method, apparatus and system
CN202180100876.1A CN117715809A (zh) 2021-08-11 2021-08-11 一种车辆驾驶方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112151 WO2023015505A1 (zh) 2021-08-11 2021-08-11 一种车辆驾驶方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023015505A1 true WO2023015505A1 (zh) 2023-02-16

Family

ID=85200432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112151 WO2023015505A1 (zh) 2021-08-11 2021-08-11 一种车辆驾驶方法、装置及系统

Country Status (3)

Country Link
EP (1) EP4382384A1 (zh)
CN (1) CN117715809A (zh)
WO (1) WO2023015505A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180057000A1 (en) * 2016-08-30 2018-03-01 Hyundai Motor Company Vehicle and control method thereof
CN109466554A (zh) * 2018-11-22 2019-03-15 广州小鹏汽车科技有限公司 自适应巡航加塞预防控制方法、系统、装置和存储介质
CN110588647A (zh) * 2019-09-23 2019-12-20 广州小鹏汽车科技有限公司 一种车辆加塞的判断方法、系统及车辆
CN111547055A (zh) * 2020-04-29 2020-08-18 浙江吉利汽车研究院有限公司 一种车辆间距离的控制方法、装置、电子设备及存储介质
CN112061126A (zh) * 2020-08-27 2020-12-11 长城汽车股份有限公司 一种预防加塞的车辆控制方法、系统及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180057000A1 (en) * 2016-08-30 2018-03-01 Hyundai Motor Company Vehicle and control method thereof
CN107792072A (zh) * 2016-08-30 2018-03-13 现代自动车株式会社 车辆及控制车辆的方法
CN109466554A (zh) * 2018-11-22 2019-03-15 广州小鹏汽车科技有限公司 自适应巡航加塞预防控制方法、系统、装置和存储介质
CN110588647A (zh) * 2019-09-23 2019-12-20 广州小鹏汽车科技有限公司 一种车辆加塞的判断方法、系统及车辆
CN111547055A (zh) * 2020-04-29 2020-08-18 浙江吉利汽车研究院有限公司 一种车辆间距离的控制方法、装置、电子设备及存储介质
CN112061126A (zh) * 2020-08-27 2020-12-11 长城汽车股份有限公司 一种预防加塞的车辆控制方法、系统及车辆

Also Published As

Publication number Publication date
EP4382384A1 (en) 2024-06-12
CN117715809A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
TWI790260B (zh) 用於車輛之間協調式車道改變協商之系統及方法
KR102681062B1 (ko) 충돌 방지 장치, 시스템 및 방법
WO2021037087A1 (zh) 一种对本车的预警方法及装置
EP3018027B1 (en) Control arrangement arranged to control an autonomous vehicle, autonomous drive arrangement, vehicle and method
US9902399B2 (en) Vehicle travelling control device for controlling a vehicle in traffic
US11225249B2 (en) Vehicle control device, vehicle control method, and storage medium
US20190016338A1 (en) Vehicle control device, vehicle control method, and vehicle control program
CN108282512B (zh) 用于使用车辆通信进行车辆控制的系统和方法
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
US8977420B2 (en) Vehicle procession control through a traffic intersection
CN111055840A (zh) 车辆对基础设施(v2i)消息传递系统
CN108275149B (zh) 使用车辆通信进行合并辅助的系统和方法
CN108263360B (zh) 紧随场景下用于车辆控制的系统和方法
US20230159051A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7374098B2 (ja) 情報処理装置及び情報処理方法、コンピュータプログラム、情報処理システム、並びに移動体装置
CN108275152B (zh) 车辆系统、控制车辆系统的计算机实施的方法和存储介质
CN111731296A (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
WO2024022003A1 (zh) 车辆避让方法、装置、终端设备以及存储介质
US20230294682A1 (en) Driver assistance system and vehicle including the same
US11981255B2 (en) Vehicle control device, vehicle, operation method for vehicle control device, and storage medium
WO2023015505A1 (zh) 一种车辆驾驶方法、装置及系统
CN116890818A (zh) 高级驾驶员辅助系统及具有该系统的车辆
CN115246391A (zh) 增强型自适应巡航控制
US11444921B2 (en) Vehicular firewall providing device
KR20190070693A (ko) 자율주행장치 및 그의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100876.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021953127

Country of ref document: EP

Effective date: 20240306

NENP Non-entry into the national phase

Ref country code: DE