WO2023013384A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2023013384A1
WO2023013384A1 PCT/JP2022/027817 JP2022027817W WO2023013384A1 WO 2023013384 A1 WO2023013384 A1 WO 2023013384A1 JP 2022027817 W JP2022027817 W JP 2022027817W WO 2023013384 A1 WO2023013384 A1 WO 2023013384A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
sides
plasma processing
dielectric plate
processing apparatus
Prior art date
Application number
PCT/JP2022/027817
Other languages
English (en)
French (fr)
Inventor
大輔 松尾
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202280022235.3A priority Critical patent/CN117044405A/zh
Priority to KR1020237032214A priority patent/KR20230147692A/ko
Publication of WO2023013384A1 publication Critical patent/WO2023013384A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a plasma processing apparatus.
  • Patent Document 1 discloses a metal plate having slits formed thereon, a dielectric plate supported in contact with the metal plate and closing the slits, and a high-frequency magnetic field provided outside the processing chamber so as to face the metal plate.
  • a plasma processing apparatus is disclosed that includes an antenna that produces a .
  • the plasma processing apparatus disclosed in Patent Document 1 can efficiently supply a high-frequency magnetic field generated from an antenna to a processing chamber.
  • An object of one aspect of the present invention is to facilitate handling of the dielectric plate and reduce the possibility of damage to the dielectric plate due to thermal expansion of the dielectric plate.
  • a plasma processing apparatus includes a vacuum vessel that accommodates an object to be processed inside; an antenna that is provided outside the vacuum vessel and generates a high-frequency magnetic field; a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel, wherein the magnetic field introduction windows are provided in a plurality of and a metal plate having a bridging portion formed between the plurality of slits; and a plurality of rectangular dielectric plates arranged side by side so as to cover the plurality of slits.
  • the plurality of dielectric plates are arranged such that the sides of the adjacent dielectric plates facing each other are located on the bridging portion.
  • FIG. 2 is a plan view of the plasma processing apparatus shown in FIG. 1; 3 is an enlarged view enlarging a portion surrounded by a dotted line DL shown in FIG. 2; FIG. 4 is a cross-sectional view showing the vicinity of sides 51A and 52A of the dielectric plate shown in FIG. 3; FIG. It is a figure which shows the structure of the plasma processing apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present invention.
  • the direction in which the antenna 6 extends is the X-axis direction
  • the direction from the vacuum vessel 2 toward the antenna 6 is the Z-axis direction
  • the direction orthogonal to both the X-axis direction and the Z-axis direction is the Y-axis direction.
  • the X-axis direction, Y-axis direction, and Z-axis direction are directions orthogonal to each other.
  • FIG. 2 is a plan view of the plasma processing apparatus 1 shown in FIG. In FIG. 2, the antenna 6 and the high frequency power supply 7 are omitted.
  • the plasma processing apparatus 1 performs plasma processing on an object to be processed W1 such as a substrate using an inductively coupled plasma P1.
  • the substrate is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, or a flexible substrate for a flexible display.
  • the workpiece W1 may be a semiconductor substrate used for various purposes.
  • the object W1 to be processed is not limited to a substrate-like form, such as a tool.
  • the processing applied to the workpiece W1 is, for example, film formation by plasma CVD (Chemical Vapor Deposition) or sputtering, etching by plasma, ashing, coating film removal, and the like.
  • the plasma processing apparatus 1 includes a vacuum vessel 2 , a magnetic field introduction window 3 , an antenna 6 , a high frequency power supply 7 and a holding portion 8 .
  • a processing chamber 21 evacuated and into which gas is introduced is formed inside the vacuum container 2 .
  • the vacuum vessel 2 is, for example, a metal vessel.
  • a wall surface 22 of the vacuum container 2 is formed with an opening 23 penetrating in the thickness direction.
  • the vacuum vessel 2 is electrically grounded.
  • the magnetic field introduction window 3 has a metal plate 4 and a plurality of dielectric plates 5 .
  • the magnetic field introduction window 3 introduces a high frequency magnetic field generated from the antenna 6 into the processing chamber 21 in order to generate plasma in the processing chamber 21 .
  • a metal plate 4 and a dielectric plate 5 are arranged in order in the Z-axis direction.
  • a plurality of dielectric plates 5 are arranged side by side on the metal plate 4 so as to cover the plurality of slits 41, and the shape of each dielectric plate 5 is rectangular in plan view.
  • the plurality of dielectric plates 5 are arranged in the X-axis direction and are not arranged in the Y-axis direction. If a plurality of dielectric plates 5 are arranged in the Y-axis direction, the boundary between the dielectric plates 5 adjacent to each other in the Y-axis direction will be arranged on the slit 41, and the vacuum state of the processing chamber 21 can be maintained. becomes difficult.
  • the width WD1 of one dielectric plate 5 along the X-axis direction is equal to the width of one slit 41 along the X-axis direction so that one dielectric plate 5 can cover one or more slits 41. Larger than WD2.
  • the width WD1 of the dielectric plate 5 is, for example, 42.5 mm or more and 524.5 mm or less, and the width WD2 of the slit 41 is, for example, 5 mm or more and 30 mm or less.
  • the area of one dielectric plate 5 is smaller than the area of the region where the plurality of slits 41 are formed.
  • the dielectric plate 5 is provided in contact with the metal plate 4 from the outside of the vacuum vessel 2 and overlaps the metal plate 4 . Further, the dielectric plate 5 is provided on the surface of the metal plate 4 on the antenna 6 side so as to block the plurality of slits 41 from the outside of the vacuum vessel 2 .
  • the entire dielectric plate 5 is composed of a dielectric material, and the dielectric plate 5 has a flat plate shape.
  • Materials constituting the dielectric plate 5 are ceramics such as alumina, silicon carbide or silicon nitride, inorganic materials such as quartz glass and alkali-free glass, or resin materials such as fluorine resin such as Teflon (registered trademark).
  • FIG. 4 is a sectional view showing the vicinity of the sides 51A and 52A of the dielectric plate 5A shown in FIG.
  • Reference numeral 101 in FIG. 4 indicates the vicinity of side 51A
  • reference numeral 102 in FIG. 4 indicates the vicinity of side 52A.
  • a plurality of dielectric plates 5 are placed on the metal plate 4 such that the sides of the adjacent dielectric plates 5 facing each other are located on the bridging portions 42 . placed.
  • the sides of the dielectric plate 5 refer to the sides of the rectangular dielectric plate 5 .
  • FIG. 3 for example, consider a case where dielectric plates 5B, 5A, and 5C as the dielectric plate 5 are arranged in this order in the X-axis direction.
  • the dielectric plate 5A has four sides 51A, 52A, 53A and 54A. Of the four sides, sides 51A and 52A are a pair of short sides of the rectangle, and sides 53A and 54A of the four sides are a pair of long sides of the rectangle. Dielectric plate 5B has a rectangular short side 51B, and dielectric plate 5C has a rectangular short side 52C.
  • the sides 52A and 52C of the adjacent dielectric plates 5A and 5C are adjacent to each other so as to face each other, and are located on the bridging section 42. It is supported by the bridging portion 42 .
  • a gap SP is formed between the side 52A and the side 52C.
  • a gap SP is formed between one short side and the short side of the adjacent dielectric plate 5, and the other short side It touches the short side of the adjacent dielectric plate 5 different from the dielectric plate 5 .
  • the sides of the dielectric plates 5 adjacent to each other so as to face each other are the short sides of the dielectric plates 5 .
  • two of the four sides of the dielectric plate 5 that face each other are located on the bridge portion 42 .
  • the sides 52A and 52C of the adjacent dielectric plates 5A and 5C, which are sides adjacent to each other so as to face each other, are short sides and are located on the bridging portion 42 .
  • the gap SP when the gap SP is formed between the mutually opposing short sides of the adjacent dielectric plates 5A and 5C, the gap SP is formed on the bridge portion 42, so that the dielectric plate 5 closes the processing chamber 21. of vacuum can be maintained.
  • the dielectric plate 5 since the temperature of the dielectric plate 5 rises with the generation of plasma, the dielectric plate 5 thermally expands more in the longitudinal direction than in the lateral direction. can be substantially reduced.
  • the dielectric plate 5 is fixed to the metal plate 4 on the bridging portions 42 only in one short side region of the four sides of the dielectric plate 5 .
  • the short-side region indicates a region near the short side of the surface of the dielectric plate 5 on the side of the metal plate 4 .
  • only the short side region of the side 51A is fixed to the bridging portion 42 with an adhesive or a jig.
  • the areas of the sides of the dielectric plate 5 other than one short side are only supported without being fixed to the metal plate 4 .
  • the dielectric plate 5 thermally expands, the stress applied to the dielectric plate 5 in the longitudinal direction can be reduced, and the possibility of the dielectric plate 5 being damaged can be reduced.
  • the magnetic field introduction window 3 is also increased in size, so the area in which the plurality of slits 41 are formed is increased. . Therefore, when one dielectric plate 5 is fixed to the metal plate 4, the size of the dielectric plate 5 increases. On the other hand, when a plurality of dielectric plates 5 are arranged on the metal plate 4, the size of the dielectric plates 5 becomes smaller, so the above possibility can be effectively reduced.
  • the cost of the dielectric plates 5 can be reduced more when using a plurality of small-sized dielectric plates 5 than when using one large-sized dielectric plate 5 . Since the dielectric plate 5 having a small size is handled, handling of the dielectric plate 5 made of glass, ceramics, or the like, which is easily damaged, becomes easy.
  • adjacent dielectric plates 5 are fixed on one bridge portion 42 and the other dielectric plate 5 is supported without being fixed. This is because when a plurality of dielectric plates 5 are arranged on the metal plate 4 , there is a possibility that a positional deviation of the dielectric plates 5 may cause a problem. Therefore, as shown in FIG. 2, adjacent dielectric plates 5 are fixed together on one bridging portion 42, and adjacent dielectric plates 5 are fixed on another bridging portion 42. It is preferable that they are supported without being fixed together. Thereby, the structural reliability of the dielectric plate 5 is improved.
  • the antenna 6 has a linear shape, is provided outside the vacuum vessel 2 , and is arranged so as to face the magnetic field introduction window 3 .
  • the length of the antenna 6 along the X-axis direction is approximately 2000 mm.
  • the antenna 6 is arranged substantially parallel to the surface of the workpiece W1.
  • the antenna 6 generates a high frequency magnetic field when high frequency power is applied from the high frequency power supply 7 .
  • an induced electric field is generated in the space inside the processing chamber 21, and an inductively coupled plasma P1 is generated in that space.
  • the holding unit 8 is a stage that is accommodated in the processing chamber 21 and holds the workpiece W1.
  • a high-frequency magnetic field generated from the antenna 6 passes through the plurality of dielectric plates 5 and the plurality of slits 41 and is supplied to the processing chamber 21 .
  • the vacuum state of the processing chamber 21 is maintained by the metal plate 4 closing the opening 23 and the plurality of dielectric plates 5 closing the plurality of slits 41 .
  • FIG. 5 is a diagram showing the configuration of a plasma processing apparatus 1A according to Embodiment 2 of the present invention.
  • the antenna 6 and the high frequency power supply 7 are omitted.
  • the plasma processing apparatus 1A differs from the plasma processing apparatus 1 according to the first embodiment in that a buffer material 9 is provided.
  • a cushioning material 9 is provided between adjacent sides of the adjacent dielectric plates 5 fixed to the metal plate 4 on specific bridge portions 42 so as to face each other.
  • the buffer material 9 is provided between the sides 51A and 51B of the adjacent dielectric plates 5A and 5B.
  • the cushioning material 9 is, for example, a resin material such as Teflon (registered trademark).
  • a plasma processing apparatus comprises a vacuum vessel containing an object to be processed, an antenna provided outside the vacuum vessel for generating a high-frequency magnetic field, and plasma generated inside the vacuum vessel.
  • a magnetic field introduction window provided on a wall surface of the vacuum container for introducing the high-frequency magnetic field into the interior of the vacuum container, wherein the magnetic field introduction window is formed with a plurality of slits, and the plurality of a metal plate having a bridging portion formed between the slits; and a plurality of rectangular dielectric plates arranged side by side so as to cover the plurality of slits, and each of the adjacent dielectric plates. 2, the plurality of dielectric plates are arranged such that adjacent sides facing each other are positioned on the bridging portion.
  • a gap may be formed between the sides adjacent to each other so as to face each other.
  • a plasma processing apparatus may be configured such that, in aspect 1 or 2 above, the sides adjacent to each other so as to face each other are short sides of the dielectric plate.
  • Reference Signs List 1 1A plasma processing apparatus 2 vacuum vessel 3 magnetic field introduction window 4 metal plate 5, 5A, 5B, 5C dielectric plate 6 antenna 9 cushioning material 22 wall surface 41 slit 42 bridging portion P1 plasma SP gap W1 object to be processed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

誘電体板の取り扱いを容易にするとともに、誘電体板の熱膨張により誘電体板が破損する可能性を低減する。プラズマ処理装置(1)は、真空容器(2)と、アンテナ(6)と、磁場導入窓(3)と、を備え、磁場導入窓(3)は、複数のスリット(41)が形成され、架橋部(42)を有する金属板(4)と、複数のスリット(41)を覆う複数の長方形状の誘電体板(5)と、を有し、隣り合う誘電体板(5)それぞれの、互いに対向するように隣接する辺が架橋部(42)上に位置するように、複数の誘電体板(5)が配置される。

Description

プラズマ処理装置
 本発明は、プラズマ処理装置に関する。
 特許文献1には、スリットが形成されている金属板と、金属板に接触して支持され、スリットを塞ぐ誘電体板と、金属板に対向するように処理室の外部に設けられ、高周波磁場を生じさせるアンテナと、を備えるプラズマ処理装置が開示されている。特許文献1に開示のプラズマ処理装置は、アンテナから生じた高周波磁場を処理室に効率良く供給することができる。
日本国公開特許公報「特開2020-198282号公報」
 プラズマ処理を施す処理面積を拡大するためにプラズマ処理装置を大型化する場合、特許文献1に開示のプラズマ処理装置のように、1枚の誘電体板が金属板に接触して支持されているとき、誘電体板の取り扱いが困難になるという問題がある。
 本発明の一態様は、誘電体板の取り扱いを容易にするとともに、誘電体板の熱膨張により誘電体板が破損する可能性を低減することを目的とする。
 上記の課題を解決するために、本発明の一態様に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、前記磁場導入窓は、複数のスリットが形成され、前記複数のスリットの間に形成される架橋部を有する金属板と、前記複数のスリットを覆うように並べられて配置される複数の長方形状の誘電体板と、を有し、隣り合う前記誘電体板それぞれの、互いに対向するように隣接する辺が前記架橋部上に位置するように、複数の前記誘電体板が配置される。
 本発明の一態様によれば、誘電体板の取り扱いを容易にするとともに、誘電体板の熱膨張により誘電体板が破損する可能性を低減することができる。
本発明の実施形態1に係るプラズマ処理装置の断面構成を示す断面図である。 図1に示すプラズマ処理装置の平面図である。 図2に示す点線DLで囲まれた部分を拡大した拡大図である。 図3に示す誘電体板の辺51A付近及び辺52A付近を示す断面図である。 本発明の実施形態2に係るプラズマ処理装置の構成を示す図である。
 〔実施形態1〕
 <プラズマ処理装置1の構成>
 図1は、本発明の実施形態1に係るプラズマ処理装置1の断面構成を示す断面図である。図1において、アンテナ6が延伸する方向をX軸方向、真空容器2からアンテナ6に向かう方向をZ軸方向、X軸方向及びZ軸方向の両方の方向に直交する方向をY軸方向とする。X軸方向、Y軸方向及びZ軸方向は互いに直交する方向である。図2は、図1に示すプラズマ処理装置1の平面図である。図2では、アンテナ6及び高周波電源7を省略している。
 図1に示すように、プラズマ処理装置1は、誘導結合型のプラズマP1を用いて基板等の被処理物W1にプラズマ処理を施すものである。ここで基板は、例えば液晶ディスプレイもしくは有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、またはフレキシブルディスプレイ用のフレキシブル基板等である。また、被処理物W1は、各種用途に用いられる半導体基板であり得る。さらに被処理物W1は、例えば工具等のように、基板状の形態には限られない。被処理物W1に施す処理は、例えば、プラズマCVD(Chemical Vapor Deposition)法あるいはスパッタ法による膜形成、プラズマによるエッチング、アッシング、被覆膜除去等である。
 プラズマ処理装置1は、真空容器2と、磁場導入窓3と、アンテナ6と、高周波電源7と、保持部8と、を備える。真空容器2の内部には、真空排気され、かつ、ガスが導入される処理室21が形成される。真空容器2は例えば金属製の容器である。真空容器2の壁面22には、厚さ方向に貫通する開口部23が形成されている。真空容器2は電気的に接地されている。
 処理室21に導入されるガスは、処理室21に収容される被処理物W1に施す処理内容に応じたものにすればよい。例えば、プラズマCVD法によって被処理物W1に膜形成を行う場合には、ガスは、原料ガスまたはそれをH等の希釈ガスで希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ被処理物W1上に形成することができる。
 <磁場導入窓3の構成>
 磁場導入窓3は、金属板4及び複数の誘電体板5を有する。磁場導入窓3は、処理室21でプラズマを発生させるために、アンテナ6から生じた高周波磁場を処理室21に導入させる。Z軸方向に向かって、金属板4及び誘電体板5が順に配置される。
 金属板4は、開口部23を塞ぐように真空容器2の壁面22に設けられる。金属板4には、金属板4をZ軸方向に貫通する複数のスリット41が形成される。図2に示すように、複数のスリット41は、Y軸方向に延伸し、かつ、X軸方向に並ぶ。金属板4は、被処理物W1の表面と実質的に平行になるように配置されている。また、金属板4は複数の架橋部42を有する。金属板4に複数のスリット41が形成されることにより、複数のスリット41の間には架橋部42が形成される。
 複数の誘電体板5は、複数のスリット41を覆うように金属板4上に並べられて配置され、各誘電体板5の形状は、平面視において長方形状である。複数の誘電体板5は、X軸方向に並べられており、Y軸方向には並べられていない。仮に複数の誘電体板5がY軸方向に並べられる場合、Y軸方向に隣り合う誘電体板5の境界がスリット41上に配置されることになり、処理室21の真空状態を維持することが困難になる。
 1つの誘電体板5が1つ以上のスリット41を覆うことができるように、1つの誘電体板5のX軸方向に沿った幅WD1は、1つのスリット41のX軸方向に沿った幅WD2よりも大きい。誘電体板5の幅WD1は、例えば42.5mm以上524.5mm以下であり、スリット41の幅WD2は、例えば5mm以上30mm以下である。
 また、1つの誘電体板5が1つ以上のスリット41を覆うことができるように、1つの誘電体板5のY軸方向に沿った幅WD3は、1つのスリット41のY軸方向に沿った幅WD4よりも大きい。誘電体板5の幅WD3は、例えば40mm以上70mm以下であり、スリット41の幅WD4は、例えば30mm以上60mm以下である。この場合、幅WD3及び幅WD4は、幅WD3が幅WD4よりも大きくなるように決定される。幅WD1は幅WD3よりも大きく、幅WD2は幅WD4よりも小さい。
 さらに、プラズマ処理装置1をZ軸の負の方向に向かって見たとき、1つの誘電体板5の面積は、複数のスリット41が形成される領域の面積よりも小さい。誘電体板5は、真空容器2の外部側から金属板4に接して設けられるとともに、金属板4に重なる。また、誘電体板5は、複数のスリット41を真空容器2の外部側から塞ぐように、金属板4のアンテナ6側の表面に設けられる。
 誘電体板5の全体は、誘電体物質で構成されており、誘電体板5は、平板状を成すものである。誘電体板5を構成する材料は、アルミナ、炭化ケイ素もしくは窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、または、テフロン(登録商標)等のフッ素樹脂のような樹脂材料であってもよい。
 アンテナ6から生じた高周波磁場は、誘電体板5及び複数のスリット41を透過して処理室21に供給される。なお、開口部23を塞ぐ金属板4と、複数のスリット41を塞ぐ誘電体板5と、によって、処理室21の真空状態が維持される。
 <隣り合う誘電体板5の構成>
 図3は、図2に示す点線DLで囲まれた部分を拡大した拡大図であり、図4は、図3に示す誘電体板5Aの辺51A付近及び辺52A付近を示す断面図である。図4の符号101は、辺51A付近を示しており、図4の符号102は、辺52A付近を示している。
 図2及び図3に示すように、隣り合う誘電体板5それぞれの、互いに対向するように隣接する辺が架橋部42上に位置するように、複数の誘電体板5が金属板4上に配置される。誘電体板5の辺とは、長方形状の誘電体板5について、長方形の辺を示している。図3に示すように、例えば、誘電体板5としての誘電体板5B,5A,5Cがこの順にX軸方向に並んでいる場合を考える。
 誘電体板5Aは、四辺51A,52A,53A,54Aを有する。四辺のうち辺51A,52Aは長方形の一対の短辺であり、四辺のうち辺53A,54Aは長方形の一対の長辺である。誘電体板5Bは、長方形の短辺としての辺51Bを有し、誘電体板5Cは、長方形の短辺としての辺52Cを有する。
 辺51A,51B,52A,52Cは、Y軸方向に延伸する。辺53A,54Aは、X軸方向に延伸する。図3及び図4の符号101に示すように、辺51A,51Bは、架橋部42上に位置しており、架橋部42に支持されている。また、辺51Aと辺51Bとは、互いに対向するように隣接しており、架橋部42におけるX軸方向に沿った幅の中央付近に位置する。辺51Aと辺51Bとは、互いに接している。
 図3及び図4の符号102に示すように、隣り合う誘電体板5A,5Cについて、辺52Aと辺52Cとは、互いに対向するように隣接しており、架橋部42上に位置するとともに、架橋部42に支持されている。辺52Aと辺52Cとの間には、隙間SPが形成される。誘電体板5A,5Cに限らず、各誘電体板5について、一方の短辺と隣の誘電体板5の短辺との間に隙間SPが形成され、他方の短辺が、当該隣の誘電体板5とは別の隣の誘電体板5の短辺と接する。
 これにより、誘電体板5が膨張したとしても、隣接する辺同士が強く接触することを防ぐことができる。よって、誘電体板5に応力が強くかかることがなく、誘電体板5が破損する可能性を低減することができる。
 また、隣り合う誘電体板5それぞれの、互いに対向するように隣接する辺は、それぞれ誘電体板5の短辺である。この場合、誘電体板5の四辺のうち互いに対向する二辺は、架橋部42上に位置する。例えば、隣り合う誘電体板5A,5Cそれぞれの、互いに対向するように隣接する辺である辺52A,52Cは短辺であり、架橋部42上に位置する。
 これにより、隣り合う誘電体板5A,5Cそれぞれの互いに対向する短辺の間に隙間SPが形成される場合、隙間SPが架橋部42上に形成されるため、誘電体板5により処理室21の真空状態を維持することができる。また、プラズマの発生に伴い誘電体板5の温度が上昇することにより、誘電体板5は短手方向に比べて長手方向に大きく熱膨張するため、誘電体板5が破損する可能性を効果的に低減することができる。
 さらに、誘電体板5は、誘電体板5の四辺のうちの一の短辺領域のみが架橋部42上で金属板4に固定される。短辺領域とは、誘電体板5における金属板4側の表面のうち短辺近傍の領域を示している。また、例えば、誘電体板5Aの四辺のうち辺51Aの短辺領域のみが接着剤または治具により架橋部42に固定される。
 辺51Aの短辺領域が接着剤により架橋部42に固定される場合、辺51Aの短辺領域と架橋部42との間に接着剤が塗布される。また、誘電体板5Aにおける誘電体板5Bと接する端面E1と、誘電体板5Bにおける誘電体板5Aと接する端面E2と、の間に接着剤が塗布される。
 辺51Aの短辺領域が治具により架橋部42に固定される場合、辺51A,51B付近が治具により金属板4に押さえ付けられるように、治具が金属板4に固定される。辺52Aの短辺領域は、架橋部42に固定されずに支持されるとともに、辺53A,54Aの長辺領域は、金属板4に固定されずに支持される。長辺領域とは、誘電体板5における金属板4側の表面のうち長辺近傍の領域を示している。誘電体板5Bの辺51Bの短辺領域も接着剤または治具により架橋部42に固定される。
 このように、誘電体板5の一の短辺以外の辺の領域は、金属板4に固定されず支持されているだけである。これにより、誘電体板5が熱膨張した場合に、誘電体板5に対して長手方向にかかる応力を低減することができ、誘電体板5が破損する可能性を低減することができる。
 以上の通り、複数の誘電体板5が金属板4上に配置されており、金属板4上に配置される誘電体板が複数の誘電体板5に分割される。このため、1枚の誘電体板が金属板4に固定されている場合に比べて、誘電体板5のサイズを小さくすることができる。よって、誘電体板5の熱膨張により誘電体板5が金属板4から剥離する可能性を低減するとともに、誘電体板5が破損する可能性を低減することができる。
 また、プラズマ処理を施す被処理物W1の処理面積を拡大するためにプラズマ処理装置1を大型化する場合、磁場導入窓3も大型化するため、複数のスリット41が形成される領域が大きくなる。このため、1枚の誘電体板5が金属板4に固定されている場合、誘電体板5のサイズが大きくなる。これに対し、複数の誘電体板5が金属板4上に配置される場合、誘電体板5のサイズが小さくなるため、上述したような可能性を効果的に低減することができる。
 さらに、サイズが大きい1枚の誘電体板5を用いる場合よりも、サイズが小さい複数の誘電体板5を用いる場合の方が、誘電体板5にかかるコストを削減できる。サイズが小さい誘電体板5を扱うことになるため、破損しやすいガラスまたはセラミックス等の誘電体板5の取り扱いが容易となる。
 誘電体板5の熱膨張について、誘電体板5が例えば石英ガラスである場合を考える。石英ガラスの熱膨張係数は、0℃~500℃の間において0.57×10-6/Kである。誘電体板5の長手方向の長さが1000mmであり、誘電体板5の温度が500℃上昇した場合、誘電体板5の長手方向の長さは、0.285mm伸びる。
 なお、1つの架橋部42上において、隣り合う誘電体板5のうち一方の誘電体板5が固定され、他方の誘電体板5が固定されずに支持されることは好ましくない。複数の誘電体板5を金属板4上に配置するとき、誘電体板5の位置ずれにより不具合が生じる可能性があるためである。このため、図2に示すように、1つの架橋部42上においては、隣り合う誘電体板5がともに固定されるとともに、別の1つの架橋部42上においては、隣り合う誘電体板5がともに固定されずに支持されることが好ましい。これにより、誘電体板5の構造上の信頼性が向上する。
 アンテナ6は、直線状を成し、真空容器2の外部に設けられており、磁場導入窓3と対向するように配置されている。アンテナ6のX軸方向に沿った長さは、約2000mmである。アンテナ6は、被処理物W1の表面と実質的に平行になるように配置されている。アンテナ6は、高周波電源7から高周波電力が印加されると、高周波磁場を生じさせる。これにより、処理室21内の空間に誘導電界が発生し、その空間に誘導結合型のプラズマP1が生成される。保持部8は、処理室21内に収容され、被処理物W1を保持するステージである。
 アンテナ6から生じた高周波磁場は、複数の誘電体板5及び複数のスリット41を透過して処理室21に供給される。なお、開口部23を塞ぐ金属板4と、複数のスリット41を塞ぐ複数の誘電体板5と、によって、処理室21の真空状態が維持される。
 〔実施形態2〕
 本発明の実施形態2について、以下に説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図5は、本発明の実施形態2に係るプラズマ処理装置1Aの構成を示す図である。図5では、アンテナ6及び高周波電源7を省略している。図5に示すように、プラズマ処理装置1Aは、実施形態1に係るプラズマ処理装置1とは、緩衝材9が設けられている点が異なる。
 特定の架橋部42上で金属板4にそれぞれ固定された、隣り合う誘電体板5それぞれの、互いに対向するように隣接する辺の間には、緩衝材9が設けられる。例えば、隣り合う誘電体板5A,5Bについて、辺51Aと辺51Bとの間には、緩衝材9が設けられる。緩衝材9は、例えば、テフロン(登録商標)等の樹脂材料である。
 架橋部42上で金属板4に固定される辺の間に緩衝材9が設けられることにより、誘電体板5が長手方向に膨張したとしても、隣接する辺同士が強く接触することを防ぐことができる。よって、誘電体板5に応力が強くかかることがなく、誘電体板5が破損する可能性を低減することができる。
 〔まとめ〕
 本発明の態様1に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、前記磁場導入窓は、複数のスリットが形成され、前記複数のスリットの間に形成される架橋部を有する金属板と、前記複数のスリットを覆うように並べられて配置される複数の長方形状の誘電体板と、を有し、隣り合う前記誘電体板それぞれの、互いに対向するように隣接する辺が前記架橋部上に位置するように、複数の前記誘電体板が配置される構成である。
 本発明の態様2に係るプラズマ処理装置は、上記の態様1において、前記互いに対向するように隣接する辺の間には、隙間が形成される構成としてもよい。
 本発明の態様3に係るプラズマ処理装置は、上記の態様1または2において、前記互いに対向するように隣接する辺は、それぞれ前記誘電体板の短辺である構成としてもよい。
 本発明の態様4に係るプラズマ処理装置は、上記の態様3において、前記誘電体板は、前記誘電体板の四辺のうちの一の短辺領域のみが前記架橋部上で前記金属板に固定される構成としてもよい。
 本発明の態様5に係るプラズマ処理装置は、上記の態様4において、特定の前記架橋部上で前記金属板にそれぞれ固定された、隣り合う前記誘電体板それぞれの、互いに対向するように隣接する辺の間には、緩衝材が設けられる構成としてもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 1、1A プラズマ処理装置
 2 真空容器
 3 磁場導入窓
 4 金属板
 5、5A、5B、5C 誘電体板
 6 アンテナ
 9 緩衝材
 22 壁面
 41 スリット
 42 架橋部
 P1 プラズマ
 SP 隙間
 W1 被処理物

Claims (5)

  1.  被処理物を内部に収容する真空容器と、
     前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、
     前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、
     前記磁場導入窓は、
      複数のスリットが形成され、前記複数のスリットの間に形成される架橋部を有する金属板と、
      前記複数のスリットを覆うように並べられて配置される複数の長方形状の誘電体板と、を有し、
     隣り合う前記誘電体板それぞれの、互いに対向するように隣接する辺が前記架橋部上に位置するように、複数の前記誘電体板が配置されることを特徴とするプラズマ処理装置。
  2.  前記互いに対向するように隣接する辺の間には、隙間が形成されることを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記互いに対向するように隣接する辺は、それぞれ前記誘電体板の短辺であることを特徴とする請求項1または2に記載のプラズマ処理装置。
  4.  前記誘電体板は、前記誘電体板の四辺のうちの一の短辺領域のみが前記架橋部上で前記金属板に固定されることを特徴とする請求項3に記載のプラズマ処理装置。
  5.  特定の前記架橋部上で前記金属板にそれぞれ固定された、隣り合う前記誘電体板それぞれの、互いに対向するように隣接する辺の間には、緩衝材が設けられることを特徴とする請求項4に記載のプラズマ処理装置。
PCT/JP2022/027817 2021-08-02 2022-07-15 プラズマ処理装置 WO2023013384A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280022235.3A CN117044405A (zh) 2021-08-02 2022-07-15 等离子体处理装置
KR1020237032214A KR20230147692A (ko) 2021-08-02 2022-07-15 플라즈마 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126833 2021-08-02
JP2021126833A JP2023021764A (ja) 2021-08-02 2021-08-02 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2023013384A1 true WO2023013384A1 (ja) 2023-02-09

Family

ID=85155861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027817 WO2023013384A1 (ja) 2021-08-02 2022-07-15 プラズマ処理装置

Country Status (5)

Country Link
JP (1) JP2023021764A (ja)
KR (1) KR20230147692A (ja)
CN (1) CN117044405A (ja)
TW (1) TWI842027B (ja)
WO (1) WO2023013384A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289099A (ja) * 2003-01-30 2004-10-14 Shimadzu Corp プラズマ処理装置
JP2010177065A (ja) * 2009-01-30 2010-08-12 Tokyo Electron Ltd マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用のスロット板付き誘電体板及びその製造方法
JP2013149377A (ja) * 2012-01-17 2013-08-01 Tokyo Electron Ltd プラズマ処理装置
JP2021012861A (ja) * 2019-07-09 2021-02-04 日新電機株式会社 プラズマ処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169885B2 (ja) * 2019-01-10 2022-11-11 東京エレクトロン株式会社 誘導結合プラズマ処理装置
WO2020246523A1 (ja) * 2019-06-05 2020-12-10 日新電機株式会社 プラズマ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289099A (ja) * 2003-01-30 2004-10-14 Shimadzu Corp プラズマ処理装置
JP2010177065A (ja) * 2009-01-30 2010-08-12 Tokyo Electron Ltd マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用のスロット板付き誘電体板及びその製造方法
JP2013149377A (ja) * 2012-01-17 2013-08-01 Tokyo Electron Ltd プラズマ処理装置
JP2021012861A (ja) * 2019-07-09 2021-02-04 日新電機株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
TW202308462A (zh) 2023-02-16
CN117044405A (zh) 2023-11-10
KR20230147692A (ko) 2023-10-23
TWI842027B (zh) 2024-05-11
JP2023021764A (ja) 2023-02-14

Similar Documents

Publication Publication Date Title
JP5013393B2 (ja) プラズマ処理装置と方法
US6953908B2 (en) Plasma processing apparatus
KR100538863B1 (ko) 반도체 처리용 재치대 장치 및 플라즈마 처리 장치
US20080105650A1 (en) Plasma processing device and plasma processing method
JP3940095B2 (ja) 基板処理装置
KR101282554B1 (ko) 실드 부재, 그 구성 부품 및 실드 부재를 구비한 기판 탑재대
KR102529337B1 (ko) 포커스 링 및 센서 칩
WO2003041460A1 (fr) Dispositif de traitement au plasma et processeur associe
JP7469625B2 (ja) プラズマ源及びプラズマ処理装置
WO2023013384A1 (ja) プラズマ処理装置
JP7488464B2 (ja) プラズマ処理装置
KR20120136325A (ko) 실드 부재의 구성 부품 및 기판 탑재대
WO2023013438A1 (ja) プラズマ処理装置
JP2005044822A (ja) プラズマ処理装置
JP2020092034A (ja) プラズマ処理装置
JP2004165645A (ja) プラズマ処理装置
WO2010016423A1 (ja) 誘電体窓、誘電体窓の製造方法、およびプラズマ処理装置
WO2023013383A1 (ja) プラズマ処理装置
JP4632515B2 (ja) プラズマプロセス装置
TWI759470B (zh) 閘閥裝置及基板處理系統
TW407316B (en) Surface wave coupled plasma etching apparatus
JP3042347B2 (ja) プラズマ装置
JP3888120B2 (ja) プラズマ処理装置
JP4052735B2 (ja) プラズマ処理装置
JP2001015491A (ja) マイクロ波プラズマ処理装置及び封止部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022235.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032214

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032214

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852808

Country of ref document: EP

Kind code of ref document: A1