WO2023011036A1 - 一种波长选择开关的通道衰减调整方法、装置及电子设备 - Google Patents

一种波长选择开关的通道衰减调整方法、装置及电子设备 Download PDF

Info

Publication number
WO2023011036A1
WO2023011036A1 PCT/CN2022/100902 CN2022100902W WO2023011036A1 WO 2023011036 A1 WO2023011036 A1 WO 2023011036A1 CN 2022100902 W CN2022100902 W CN 2022100902W WO 2023011036 A1 WO2023011036 A1 WO 2023011036A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
attenuation
parameter
additional
wavelength selective
Prior art date
Application number
PCT/CN2022/100902
Other languages
English (en)
French (fr)
Inventor
陈欢
施鹄
尚文东
冯振华
贾殷秋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023011036A1 publication Critical patent/WO2023011036A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present application relates to the field of communication technology, and in particular to a channel attenuation adjustment method, device and electronic equipment of a wavelength selective switch.
  • WDM Density Division Multiplexing
  • ROADM Reconfigurable Optical Add/Drop Multiplexer
  • the existing adjacent channel control actions may cause the characteristics of the channel under test to be distorted, resulting in bilateral asymmetric filtering of the channel under test.
  • the bilateral asymmetric filtering cannot be compensated only by the attenuation of the wavelength selective switch slices within the bandwidth of the channel. Therefore, it is necessary to provide a channel attenuation adjustment method of a wavelength selective switch, which can overcome the failure of the clock synchronization algorithm of the coherent receiver caused by bilateral asymmetric filtering after the cascading of adjacent channel multi-stage WSS filters, thereby ensuring the optical transceiver Reliable reception after multi-level WSS cascading.
  • Embodiments of the present application provide a channel attenuation adjustment method and device for a wavelength selective switch, an electronic device, and a computer-readable storage medium.
  • an embodiment of the present application provides a channel attenuation adjustment method of a wavelength selective switch, which is applied to a channel attenuation adjustment device, including: providing a first channel of a wavelength selective switch module and a second channel adjacent to the first channel The channels input white noise respectively; the output spectrum of the white noise is adjusted according to the additional attenuation parameters, so that the first channel and the second channel respectively output symmetrical spectra, and the additional attenuation parameters include the first channel Additional attenuation parameters respectively corresponding to adjacent slices and next-adjacent slices in the second channel.
  • the embodiment of the present application provides a channel signal attenuation optimization method of a wavelength selective switch, the method comprising: when the first channel of the wavelength selective switch module and the second channel adjacent to the first channel pass through For the incoming service signal, the attenuation adjustment is performed according to the corresponding additional attenuation parameters respectively for the adjacent slices and the second adjacent slices in the first channel and the second channel; wherein, the additional attenuation parameters are passed as above The channel attenuation adjustment method of the wavelength selective switch is obtained.
  • an embodiment of the present application provides a channel attenuation adjustment device for a wavelength selective switch, including: an input module configured to input white noise into the first channel of the wavelength selective switch module and adjacent to the first channel The second channel; the acquisition module is set to acquire the additional attenuation parameters corresponding to the adjacent slices and the second adjacent slices in the first channel and the second channel; the adjustment module is set to according to the The additional attenuation parameter is used to adjust the output spectrum of the white noise, so that the first channel and the second channel respectively output symmetrical spectra.
  • the acquisition module further includes: a fourth acquisition unit, configured to acquire the relative attenuation between the first channel and the second channel;
  • the second acquisition unit calculates a first weight parameter according to the relative attenuation, and determines the second additional attenuation parameter; the third acquisition unit calculates a second weight parameter according to the relative attenuation, and determines the A third additional decay parameter.
  • an embodiment of the present application provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the application is implemented.
  • the channel attenuation adjustment method of the wavelength selective switch provided in the embodiment.
  • the embodiment of the present application provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, implements the channel attenuation adjustment method of the wavelength selective switch provided in the embodiment of the present application.
  • Fig. 1 is a schematic diagram of adjacent channel asymmetric filtering
  • FIG. 2 is a schematic flowchart of a method for adjusting channel attenuation of a wavelength selective switch provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a specific implementation process of step S3000 in FIG. 2;
  • FIG. 4 is a schematic diagram of a specific implementation process of step S3200 in FIG. 3;
  • FIG. 5 is a schematic diagram of a specific implementation process of step S3210 in FIG. 4;
  • FIG. 6 is a schematic diagram of another specific implementation process of step S2000 in FIG. 2;
  • FIG. 7 is a schematic structural diagram of a channel attenuation adjustment device for a wavelength selective switch provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a channel attenuation adjustment device for a wavelength selective switch provided in another embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a fourth acquisition unit in Fig. 8.
  • FIG. 10 is a schematic structural diagram of a channel attenuation adjustment device for a wavelength selective switch provided in another embodiment of the present application.
  • FIG. 11 is a schematic diagram of the channel attenuation adjustment process of the wavelength selective switch provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • At least one of the following and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, or Can be multiple.
  • the wavelength selective switch involved in the embodiment of the present application can realize flexible grid and support mixed transmission functions of various rate services, and is a mainstream device in ROADM networking, and is widely used in WDM transmission networks of major communication operators.
  • Figure 1 in the actual network environment, when the service signal passes through the adjacent channels of the WSS site at the same time, the characteristics of the channel to be tested will be distorted, causing bilateral asymmetric filtering of the channel to be tested, and the existing optical channel services will be affected.
  • the control actions of adjacent channels generate passive additional performance costs and increase ROADM filter damage.
  • the channel attenuation adjustment method of the wavelength selective switch is aimed at problems such as performance degradation when a single-channel service passes through a multi-level WSS.
  • This solution has many shortcomings: it can only be adjusted by adjusting the attenuation parameters of all slices of a single channel, and the attenuation parameters of the corresponding slices of adjacent channels cannot be adjusted jointly, and the generation of asymmetric filtering cannot be avoided, and there is no guarantee The optical transceiver can receive reliably after multi-stage WSS cascading.
  • embodiments of the present application provide a channel attenuation adjustment method, device, electronic equipment, and computer-readable storage medium of a wavelength selective switch.
  • slices respectively determine the corresponding additional attenuation parameters, and adjust the output spectrum of the white noise according to the additional attenuation parameters, so that the first channel and the second channel output symmetrical spectra respectively, so as to achieve the additional attenuation of the slices between adjacent channels.
  • the purpose of linkage adjustment is a channel attenuation adjustment method, device, electronic equipment, and computer-readable storage medium of a wavelength selective switch.
  • FIG. 2 shows a flow of a method for adjusting channel attenuation of a wavelength selective switch provided in an embodiment of the present application.
  • the method for adjusting channel attenuation of a wavelength selective switch according to the embodiment of the present application includes the following steps S1000 , S2000 and S3000 .
  • the first channel and the second channel can be divided into a corresponding number of wavelength selective switch slices (WSS Slices) according to their channel bandwidths.
  • WSS Slices wavelength selective switch slices
  • the adjacent slices in the first channel and the second channel are adjacent slices, that is, the sixth slice (Slice1_6) of the first channel and the first slice (Slice2_1) of the second channel are adjacent slices ;
  • the fifth slice (Slice1_5) of the first channel and the second slice (Slice2_2) of the second channel are sub-adjacent slices, and the first slice (Slice1_1) of the first channel and the second slice of the second channel
  • the sixth slice (Slice2_6) is an edge slice
  • the second slice (Slice1_2) of the first channel and the fifth slice (Slice2_5) of the second channel are secondary edge
  • the center frequency of the first channel obtained by the service transceiver module is f1
  • the center frequency of the second channel is f2
  • the baud rate of the service signal is B.
  • adjust the two horizontal frequency calibration lines of the spectrometer to be set at f1-B/2 and f2+B/2 frequencies respectively.
  • the frequencies f1 ⁇ B/2 ⁇ f1 are the first interval
  • f2 ⁇ f2+B/2 are the second interval.
  • the attenuation a of the edge slices of the first channel and the second channel is set to 0; adjust the attenuation of the second edge slices of the first channel and the second channel
  • the size of the quantity b makes the spectral height of the lowest frequency point in the first interval consistent with the spectral height at f1-B/2, and at the same time, makes the spectral height of the lowest frequency point in the second interval consistent with the spectral height at f2+B/2 Highly consistent;
  • the basic attenuation parameters corresponding to the first channel and the second channel are [a b c c b a, a b c c b a].
  • the attenuation parameters of the adjacent slices and sub-adjacent slices in the first channel and the second channel are calculated. Linkage adjustment, so that the first channel and the second channel can output symmetrical spectra respectively. Therefore, it is necessary to adjust the output spectrum of the adjacent slice and the sub-adjacent slice according to the additional attenuation parameters, so as to jointly shape the attenuation parameters of the adjacent regions of the first channel and the second channel.
  • step S3000 can be implemented through the following steps S3100 and S3200.
  • the additional attenuation parameters corresponding to the second adjacent slices in the first channel and the second channel are first additional attenuation parameters.
  • the additional attenuation parameter corresponding to adjacent slices of the first channel is a second additional attenuation parameter
  • the additional attenuation parameter corresponding to adjacent slices of the second channel is a third additional attenuation parameter.
  • the additional attenuation parameters corresponding to the adjacent slices in the first channel and the second channel as the first additional attenuation parameters, so as to ensure that the spectral height of the adjacent slices of the first channel is the same as that of the slices at the symmetrical positions bounded by f1
  • the spectral heights are consistent, and the spectral heights of the adjacent slices of the second channel are consistent with the spectral heights of the slices at symmetrical positions bounded by f2.
  • the additional attenuation parameter of Slice1_6 and Slice2_1 is d2, that is, the values of the second additional attenuation parameter and the third additional attenuation parameter are both d2.
  • step S3200 may be implemented through the following steps S3210, S3211 and S3212.
  • step S3210 may be implemented through the following steps S3211 and S3212.
  • the first spectral height h1 corresponding to the central frequency of the first channel is the central spectral height of the first channel
  • the second spectral height h2 corresponding to the central frequency of the second channel is the central spectral height of the second channel.
  • the relative attenuation between the first channel and the second channel is calculated by calculating the absolute value of h1-h2. For example, when h1-h2>0, that is, the second channel has a negative relative attenuation compared with the first channel, the first channel is a relatively high channel, and the second channel is a relatively low channel; when h1-h2 ⁇ 0, that is, the first channel One channel has a negative relative attenuation compared to the second channel, the second channel is a relatively high channel, and the first channel is a relatively low channel; the relative attenuation between the first channel and the second channel is the absolute value of h1-h2 Denoted as ⁇ Att.
  • the additional attenuation parameters of the adjacent slices of the relatively high channel In order to reduce the amount of distortion between the first channel and the second channel, it is necessary to reduce the additional attenuation parameters of the adjacent slices of the relatively high channel, and to increase the additional attenuation parameters of the adjacent slices of the relatively low channel. , to achieve the effect of adjusting the attenuation parameters of adjacent channels between the first channel and the second channel. That is, for the channels with negative relative attenuation in the first channel and the second channel, the additional attenuation parameters of the adjacent slices are adjusted for gain; for the channels with positive relative attenuation in the first channel and the second channel, the The additional attenuation parameters of its adjacent slices are adjusted for impairment.
  • the first weight parameter is the product of the relative attenuation and the first weight coefficient.
  • the second additional attenuation parameter is d2+m* ⁇ Att.
  • the second weight parameter is the product of the relative attenuation amount and the second weight coefficient.
  • the third additional attenuation parameter is d2+n* ⁇ Att.
  • step S2000 can be implemented through the following steps S2100 to S2400.
  • the basic attenuation parameters corresponding to the first channel and the second channel are [a b c c b a, a b c c b a].
  • the flatness threshold is 0.4dB.
  • the basic attenuation parameters corresponding to the first channel and the second channel are [a+ ⁇ Att b+ ⁇ Att c+ ⁇ Att c+ ⁇ Att b+ ⁇ Att a+ ⁇ Att,a b c c b a].
  • the channel attenuation adjustment method of the wavelength selective switch is further described below with reference to examples, but it is not used to limit the technical solutions of the embodiments of the present application.
  • the example of this application takes the method and system for improving long-distance transmission performance of 100G/B100G quasi-Nyquist WDM in the multi-level Flex ROADM system as an example.
  • this long-distance transmission system it is characterized in that: the frequency interval between the system channels and The business optical baud rate is close, that is, quasi-Nyquist WDM transmission, such as transmitting 100GPM-QPSK and 200GPM-16QAM business signals with a baud rate of about 34GHz in a 37.5GHz channel spacing, or in a 50GHz channel spacing It transmits 200G PM-8QAM service signals with a baud rate of about 45GHz.
  • the attenuation parameter adjustment steps of the switch slice (12 ⁇ 6.25GHz) include the following.
  • Input white noise into a single wavelength selective switch unit to obtain the center frequency f1 of the first channel and the center frequency f2 of the second channel.
  • baud rate B from the business transceiver module, adjust the two horizontal frequency calibration lines of the spectrometer, and set them at f1-B/2 and f2+B/2 frequencies respectively.
  • Adjust the attenuation of Slice1_1 in the first channel and Slice2_6 in the second channel to a 0, adjust the attenuation b of Slice1_2 in the first channel, so that the frequency at the lowest point in the frequency f1-B/2 ⁇ f1 interval
  • the spectral height is close to the spectral height at f1-B/2
  • similarly adjust the attenuation b of Slice2_5 in the second channel so that the spectral height at the lowest frequency point in the frequency f2 ⁇ f2+B/2 interval is close to f2+B /2 at the spectral height.
  • the basic attenuation parameters corresponding to the first channel and the second channel are [a b c c b a, a b c c b a].
  • the third additional attenuation parameter d2 corresponding to the adjacent slice Slice2_1 respectively makes the spectrum in the first channel symmetrical and the spectrum in the second channel symmetrical.
  • the attenuation values of 12 wavelength selective switch slices in adjacent channels are [a b c c b+d1 a+d2, a+d2 b+d1 c c b a] .
  • N wavelength selective switch modules are selected, and in one embodiment, N is not less than three. Repeat the above steps for the selected N modules, obtain the attenuation adjustment parameters of each slice of each wavelength selective switch module in turn, take the average of the N attenuation values of each slice, and finally use the average value as the channel bandwidth of the wavelength selective switch The decay parameter of the corresponding shard within.
  • the channel bandwidth is 37.5 GHz, and there is a relative attenuation of ⁇ Att in the first channel compared with the second channel.
  • the attenuation parameter adjustment steps of the wavelength selective switch slices (12 ⁇ 6.25 GHz) of the first channel and the second channel include the following steps.
  • the basic attenuation parameters and additional attenuation parameters of 12 wavelength selective switch slices obtained in adjacent channels are respectively [a b c c b+d1 a+d2, a+d2 b+d1 c c b a].
  • Attenuation ⁇ Att adjust the basic attenuation parameter, the second additional attenuation parameter and the third additional attenuation parameter of the wavelength selective switch slice, and obtain the attenuation parameters of the 12 wavelength selective switch slices as [a+ ⁇ Att b+ ⁇ Att c+ ⁇ Att c + ⁇ Att b+d1+ ⁇ Att a+d2+ ⁇ Att+0.1 ⁇ Att, a+d2t-0.06 ⁇ Att b+d1 c c b a].
  • the attenuation parameter adjustment steps of the wavelength selective switch slice (6 ⁇ 6.25 GHz) of the first channel and the wavelength selective switch slice (8 ⁇ 6.25 GHz) of the second channel include the following steps.
  • the basic attenuation parameters and additional attenuation parameters of the 14 wavelength selective switch slices obtained in adjacent channels are respectively [a b c c b+d1 a+d2, a+d2 b+d1 c c c c b a].
  • Attenuation ⁇ Att adjust the basic attenuation parameter, the second additional attenuation parameter and the third additional attenuation parameter of the wavelength selective switch slice, and obtain the attenuation parameters of the 14 wavelength selective switch slices as [a b c c b+d1 a+ d2-0.06 ⁇ Att, a+d2+0.1 ⁇ Att+ ⁇ Att b+d1+ ⁇ Att c+ ⁇ Att c+ ⁇ Att c+ ⁇ Att c+ ⁇ Att c+ ⁇ Att c+ ⁇ Att b+ ⁇ Att a+ ⁇ Att].
  • the channel shaping parameters of the wavelength selective switch unit can be obtained in different scenarios when service signals pass through the ROADM site.
  • the adjacent channel shaping parameters can be configured at the optical multiplexing, optical demultiplexing, and ROADM pass-through points in the transmission link according to the service type through the network management or Automatically Switched Optical Network (ASON).
  • ASON Automatically Switched Optical Network
  • the wavelength selective switch unit realizes the shaping of the service spectrum at each stage of the wavelength selective switch unit, so as to achieve the effect of improving the pass-through performance of the service signal.
  • the channel attenuation adjustment method of the wavelength selective switch provided in the embodiment of the present application is applicable to the joint adjustment of the slice additional attenuation between adjacent channels to reduce the filter channel damage of the wavelength selective switch, so that the adjacent channels tend to be symmetry.
  • the flow of a method for optimizing channel signal attenuation of a wavelength selective switch provided in an embodiment of the present application. Specifically, the method for optimizing channel signal attenuation of a wavelength selective switch in the embodiment of the present application includes the following steps.
  • the first channel of the wavelength selective switch module and the second channel adjacent to the first channel are respectively connected with service signals, for the adjacent slices and sub-adjacent slices in the first channel and the second channel, according to the corresponding Additional attenuation parameters to adjust the attenuation.
  • the additional attenuation parameter is obtained through the channel attenuation adjustment method of the wavelength selective switch as described above.
  • the channel signal attenuation optimization method of the wavelength selective switch provided in the embodiment of the present application is applicable to the joint adjustment of the slice additional attenuation between adjacent channels, and effectively improves the pass-through performance of the service signal.
  • FIG. 7 is a schematic structural diagram of a channel attenuation adjustment device for a wavelength selective switch provided in an embodiment of the present application.
  • the following modules in the adjustment device are: an input module 100 , an acquisition module 200 and an adjustment module 300 .
  • the input module 100 is configured to input white noise to the first channel and the second channel adjacent to the first channel of the wavelength selective switch module.
  • the acquiring module 200 is configured to acquire additional attenuation parameters corresponding to adjacent slices and sub-adjacent slices in the first channel and the second channel.
  • the adjustment module 300 is configured to adjust the output spectrum of the white noise according to the additional attenuation parameter, so that the first channel and the second channel respectively output symmetrical spectra.
  • FIG. 8 is a schematic structural diagram of a channel attenuation adjustment device for a wavelength selective switch provided in another embodiment of the present application, wherein the acquisition module 200 includes the following first acquisition unit 210 , second acquisition unit 220 , and second acquisition unit 220 .
  • the first acquiring unit 210 is configured to acquire first additional attenuation parameters corresponding to sub-adjacent slices in the first channel and the second channel.
  • the second obtaining unit 220 is configured to obtain a second additional attenuation parameter corresponding to adjacent slices of the first channel.
  • the third obtaining unit 230 is configured to obtain a third additional attenuation parameter corresponding to adjacent slices of the second channel.
  • the fourth acquiring unit 240 is configured to acquire the relative attenuation between the first channel and the second channel.
  • the fifth acquiring unit 250 is configured to acquire the basic attenuation parameters corresponding to each slice in the first channel and the second channel.
  • the second obtaining unit 220 calculates the first weight parameter according to the relative attenuation amount, and determines the second additional attenuation parameter; the third obtaining unit 230 calculates the second weight parameter according to the relative attenuation amount, and determines the third additional attenuation parameter.
  • FIG. 9 is a schematic structural diagram of the fourth acquisition unit 240 in FIG. 8 , and the fourth acquisition unit 240 includes the following first acquisition subunit 241 and second acquisition subunit 242 .
  • the first acquiring subunit 241 is configured to acquire a first spectrum height corresponding to the center frequency of the first channel and a second spectrum height corresponding to the center frequency of the second channel.
  • the second acquiring subunit 242 is configured to determine the relative attenuation between the first channel and the second channel according to the absolute value of the difference between the first spectral height and the second spectral height.
  • FIG. 10 is a schematic structural diagram of a channel attenuation adjustment device for a wavelength selective switch provided in another embodiment of the present application.
  • the adjustment module 300 includes the following first adjustment unit 310 , second adjustment unit 320 and third adjustment unit 310 . Unit 330.
  • the first adjustment unit 310 is configured to pre-adjust the output spectrum of the white noise according to the basic attenuation parameters, so that the flatness of the spectrum output by the first channel in the first interval is less than the flatness threshold, and the spectrum output by the second channel The flatness of the second interval is less than the flatness threshold.
  • the second adjustment unit 320 is configured to perform relative attenuation adjustment according to the relative attenuation for a channel having a negative relative attenuation among the first channel and the second channel.
  • the third adjustment unit 330 is configured to adjust the output spectrum of the white noise according to the first additional attenuation parameter, the second additional attenuation parameter and the third additional attenuation parameter, so that the first channel and the second channel respectively output symmetrical spectra.
  • FIG. 12 shows an electronic device 500 provided by an embodiment of the present application.
  • the electronic device 500 includes but not limited to a memory 501 and a processor 502 .
  • the memory 501 is configured to store programs.
  • the processor 502 is configured to execute the program stored in the memory 501.
  • the processor 502 executes the program stored in the memory 501, the processor 502 is configured to execute the above-mentioned channel attenuation adjustment method of the wavelength selective switch.
  • the processor 502 and the memory 501 may be connected through a bus or in other ways.
  • the memory 501 can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the channel attenuation adjustment method of a wavelength selective switch described in any embodiment of the present application.
  • the processor 502 executes the non-transitory software programs and instructions stored in the memory 501 to implement the above-mentioned method for adjusting the channel attenuation of the wavelength selective switch.
  • the memory 501 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store the channel attenuation adjustment method for executing the wavelength selective switch described above.
  • the memory 501 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 501 may include memory located remotely relative to the processor 502, and these remote memories may be connected to the processor 502 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transient software programs and instructions required to realize the channel attenuation adjustment method of the above-mentioned wavelength selective switch are stored in the memory 501, and when executed by one or more processors 502, the wavelength selective switch provided by any embodiment of the present application is executed. channel attenuation adjustment method.
  • An embodiment of the present application further provides a storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned channel attenuation adjustment method for a wavelength selective switch.
  • the storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 502, for example, executed by one of the processors 502 in the electronic device 500, so that the above-mentioned One or more processors 502 execute the method for adjusting channel attenuation of a wavelength selective switch provided in any embodiment of the present application.
  • the corresponding additional attenuation parameters are respectively determined, and according to the additional attenuation parameters to the white noise
  • the output spectrum is adjusted so that the first channel and the second channel respectively output symmetrical spectra.
  • the solution of the embodiment of the present application can effectively perform optical domain equalization processing on the adjacent channels of the wavelength selective switch, and adjust the additional attenuation of the slices between adjacent channels to improve the distortion between adjacent channels. This makes the respective adjacent channels tend to be symmetrical, reduces ROADM filter damage, and improves the pass-through performance of service signals.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种波长选择开关的通道衰减调整方法、装置及电子设备,方法包括:向波长选择开关模块的第一通道和与第一通道相邻的第二通道分别输入白噪声(S1000);根据附加衰减参数对白噪声的输出光谱进行调整,使第一通道和第二通道分别输出对称的光谱,附加衰减参数包括第一通道和第二通道中的相邻分片和次相邻分片分别对应的附加衰减参数(S3000)。

Description

一种波长选择开关的通道衰减调整方法、装置及电子设备
相关申请的交叉引用
本申请基于申请号为202110886775.3,申请日为2021年08月03日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,特别是涉及一种波长选择开关的通道衰减调整方法、装置及电子设备。
背景技术
现阶段国内外通信网络中,密集波分复用(Dense Wavelength Division Multiplexing,WDM)已大规模商用,其中可重构光分插复用器(Reconfigurable Optical Add/Drop Multiplexer,ROADM)架构以其灵活调度、交换容量大、时延低、功耗低等特点越来越受到运营商和企业客户的青睐,得到广泛的商业部署。其中,波长选择开关(Wavelength Selective Switch,WSS)能实现灵活栅格以及支持各种速率业务混传功能,是ROADM组网的主流器件。
当业务信号穿通ROADM站点时,且WSS站点存在相邻通道,现有的相邻通道控制动作都可能会导致待测通道特性畸变,使得待测通道产生双边不对称性滤波。如图1所示,此时仅依靠改通道带宽内波长选择开关分片的衰减量无法补偿双边不对称滤波。因此,需要提供一种波长选择开关的通道衰减调整方法,能够克服相邻通道多级WSS滤波级联后,产生双边不对称性滤波引起相干接收机时钟同步算法的失效问题,从而保证光收发机经过多级WSS级联后的可靠接收性。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种波长选择开关的通道衰减调整方法、装置、电子设备及计算机可读存储介质。
第一方面,本申请实施例提供一种波长选择开关的通道衰减调整方法,应用于通道衰减调整装置,包括:向波长选择开关模块的第一通道和与所述第一通道相邻的第二通道分别输入白噪声;根据附加衰减参数对所述白噪声的输出光谱进行调整,使所述第一通道和所述第二通道分别输出对称的光谱,所述附加衰减参数包括所述第一通道和所述第二通道中的相邻分片和次相邻分片分别对应的附加衰减参数。
第二方面,本申请实施例提供一种波长选择开关的通道信号衰减优化方法,所述方法包括:当波长选择开关模块的第一通道和与所述第一通道相邻的第二通道分别通入业务信号,针对所述第一通道和所述第二通道中的相邻分片和次相邻分片,分别根据对应的附加衰减参数进行衰减量调整;其中,所述附加衰减参数通过如上所述的波长选择开关的通道衰减调整方法方法获得。
第三方面,本申请实施例提供一种波长选择开关的通道衰减调整装置,包括:输入模块,被设置为将白噪声输入到波长选择开关模块的第一通道和与所述第一通道相邻的第二通道;获取模块,被设置为获取所述第一通道和所述第二通道中的相邻分片和次相邻分片所对应的附加衰减参数;调整模块,被设置为根据所述附加衰减参数对所述白噪声的输出光谱进行调整,使所述第一通道和所述第二通道分别输出对称的光谱。
本发明实施例,所述获取模块还包括:第四获取单元,用于获取所述第一通道和所述第二通道之间的相对衰减量;
所述第二获取单元根据所述相对衰减量,计算第一权重参数,确定所述第二附加衰减参数;所述第三获取单元根据所述相对衰减量,计算第二权重参数,确定所述第三附加衰减参数。
第四方面,本申请实施例提供一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现本申请实施例提供的波长选择开关的通道衰减调整方法。
第五方面,本申请实施例提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,实现本申请实施例提供的波长选择开关的通道衰减调整方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和得到。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是相邻通道不对称滤波的示意图;
图2是本申请实施例提供的一种波长选择开关的通道衰减调整方法的流程示意图;
图3是图2中步骤S3000的一种具体实现过程示意图;
图4是图3中步骤S3200的一种具体实现过程示意图;
图5是图4中步骤S3210的一种具体实现过程示意图;
图6是图2中步骤S2000的另一种具体实现过程示意图;
图7是本申请实施例提供的一种波长选择开关的通道衰减调整装置的结构示意图;
图8是本申请另一实施例提供的一种波长选择开关的通道衰减调整装置的结构示意图;
图9是图8中第四获取单元的结构示意图;
图10是本申请另一实施例提供的一种波长选择开关的通道衰减调整装置的结构示意图;
图11是本申请实施例提供的波长选择开关的通道衰减调整过程示意图;
图12是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请实施例涉及的波长选择开关能实现灵活栅格以及支持各种速率业务混传功能,是ROADM组网的主流器件,其广泛应用于各大通信运营商的WDM传输网络中。如图1所示,在实际网络环境中,当业务信号同时经过WSS站点的相邻通道时,会导致待测通道特性畸变,使得待测通道产生双边不对称性滤波,已有光通道业务会受到相邻通道的控制动作,产生被动型的附加性能代价,增加ROADM滤波损伤。
一些情形中,波长选择开关的通道衰减调整的方法为针对单通道的业务穿通多级WSS时,产生的性能劣化等问题。这种方案存在诸多不足:只能通过对单通道的所有分片的衰减参数进行调整,无法对相邻通道的对应分片的衰减参数进行联动调整,无法避免不对称性滤波的产生,无法保证光收发机经过多级WSS级联后能进行可靠的接收。
基于以上,本申请实施例提供一种波长选择开关的通道衰减调整方法、装置、电子设备及计算机可读存储介质,通过对第一通道和第二通道中的相邻分片和次相邻分片,分别确定对应的附加衰减参数,根据附加衰减参数对白噪声的输出光谱进行调整,使第一通道和第二通道分别输出对称的光谱,以达到对相邻通道间的分片附加衰减量进行联动调节的目的。
请参见图2,图2示出了本申请实施例提供的一种波长选择开关的通道衰减调整方法的流程。如图2所示,本申请实施例的波长选择开关的通道衰减调整方法包括以下的步骤S1000、S2000和S3000。
S1000,向波长选择开关模块的第一通道和与第一通道相邻的第二通道分别输入白噪声。
应理解,第一通道和第二通道根据其通道带宽,均可划分为对应数量的波长选择开关的分片(WSS Slice)。举例说明,如图11(a)所示,当第一通道和第二通道的通道带宽都为37.5GHz时,该两个相邻通道的分片数量均为六个(6×6.25GHz);其中,第一通道和第二通道中相邻的分片为相邻分片,即第一通道的第六分片(Slice1_6)与第二通道的第一分片(Slice2_1)为相邻分片;同理,第一通道的第五分片(Slice1_5)与第二通道的第二分片(Slice2_2)为次相邻分片,第一通道的第一分片(Slice1_1)与第二通道的第六分片(Slice2_6)为边缘分片,第一通道的第二分片(Slice1_2)与第二通道的第五分片(Slice2_5)为次边缘分片,其余的第一通道的分片(Slice1_3和Slice1_4)和第二通道的分片(Slice2_3和Slice2_4)为中心分片。
S2000,对于第一通道和第二通道中的每个分片,分别确定对应的基础衰减参数,根据基础衰减参数对白噪声的输出光谱进行预调整,以使第一通道输出的光谱在第一区间的平坦度小于平坦度阈值、第二通道输出的光谱在第二区间的平坦度小于平坦度阈值。
应理解,通过业务收发机模块获取第一通道的中心频率为f1,第二通道的中心频率为f2,业务信号的波特率为B。举例说明,调整光谱仪的两条横向频率定标线,分别设在f1-B/2,f2+B/2频率处。此时频率f1-B/2~f1为第一区间,f2~f2+B/2为第二区间。在一实施例中,如图11(b)所示,第一通道和第二通道的边 缘分片的衰减量a取值为0;调节第一通道和第二通道的次边缘分片的衰减量b的大小,使第一区间内频率最低点的光谱高度与f1-B/2处的光谱高度一致,同时,使第二区间内频率最低点的光谱高度与f2+B/2处的光谱高度一致;如图11(c)所示,调节第一通道和第二通道的中心分片的衰减量c的大小,使第一通道输出的光谱在第一区间内光谱趋于平坦,第二通道输出的光谱在第二区间内光谱趋于平坦,并保证第一区间和第二区间内的通道平坦度小于平坦度阈值;在一实施例中,平坦度阈值取值为0.4dB。
接着,以第一通道的中心频率f1为界对称调节第一通道带宽内Slice1_4、Slice1_5和Slice1_6的衰减量,即设置Slice1_4、Slice1_5和Slice1_6衰减量分别与Slice1_3、Slice1_2和Slice1_1相同;以第二通道的中心频率f2为界对称调节第二通道带宽内Slice2_3、Slice2_2和Slice2_1衰减量,即设置Slice2_3、Slice2_2和Slice2_1衰减量分别与Slice2_4、Slice2_5和Slice2_6相同。如图11(d)所示,第一通道和第二通道所对应的基础衰减参数为[a b c c b a,a b c c b a]。
S3000,根据附加衰减参数对白噪声的输出光谱进行调整,使第一通道和第二通道分别输出对称的光谱,附加衰减参数包括第一通道和第二通道中的相邻分片和次相邻分片分别对应的附加衰减参数。
为了避免第一通道和第二通道产生双边不对称性滤波,改善相邻通道之间的畸变量,对第一通道和第二通道中的相邻分片和次相邻分片的衰减参数进行联动调整,使第一通道和第二通道能分别输出对称的光谱。因此,需要对相邻分片和次相邻分片根据附加衰减参数进行输出光谱调整,以对第一通道和第二通道相邻区域的衰减参数进行联动整形。
请参见图3,步骤S3000可以通过以下的步骤S3100和S3200实现。
S3100,第一通道和第二通道中的次相邻分片对应的附加衰减参数为第一附加衰减参数。
确定第一通道和第二通道中的次相邻分片对应的附加衰减参数为第一附加衰减参数,以保证第一通道的次相邻分片的频谱高度跟以f1为界对称位置的分片的频谱高度一致,第二通道的次相邻分片的频谱高度跟以f2为界对称位置的分片的频谱高度一致。如图11(e)所示,Slice1_5与Slice2_2的附加衰减参数为d1。
S3200,第一通道的相邻分片对应的附加衰减参数为第二附加衰减参数,第二通道的相邻分片对应的附加衰减参数为第三附加衰减参数。
确定第一通道和第二通道中的相邻分片对应的附加衰减参数为第一附加衰减参数,以保证第一通道的相邻分片的频谱高度跟以f1为界对称位置的分片的频谱高度一致,第二通道的相邻分片的频谱高度跟以f2为界对称位置的分片的频谱高度一致。如图11(e)所示,Slice1_6与Slice2_1的附加衰减参数为d2,即此时第二附加衰减参数和第三附加衰减参数的值均为d2。
请参见图4,步骤S3200可以通过以下的步骤S3210、S3211和S3212实现。
S3210,获取第一通道和第二通道之间的相对衰减量。
应理解,当第一通道和第二通道存在相对衰减量时,为改善第一通道和第二通道之间的畸变量,避免相对衰减量造成波长选择开关的相邻通道双边不对称性滤波的情况,需要对相邻通道的相邻分片的附加衰减参数进行联动调整。因此需要获取第一通道和第二通道之间的相对衰减量,并根据相对衰减量对第三附加衰减参数进行调整。
请参见图5,步骤S3210可以通过以下的步骤S3211和S3212实现。
S3211,获取第一通道的中心频率对应的第一频谱高度、第二通道的中心频率对应的第二频谱高度。
应理解,第一通道的中心频率对应的第一频谱高度h1为第一通道的中心频谱高度,第二通道的中心频率对应的第二频谱高度h2为第二通道的中心频谱高度,通过获取h1和h2就能确定第一通道与第二通道之间的相对衰减量。
S3212,根据第一频谱高度和第二频谱高度的差值绝对值,确定第一通道和第二通道之间的相对衰减量。
获取第一频谱高度h1和第二频谱高度的h2后,通过计算h1-h2的绝对值,计算出第一通道和第二通道之间的相对衰减量。举例说明,当h1-h2>0,即第二通道相比第一通道存在负相对衰减量,第一通道为相对高通道,第二通道为相对低通道;当h1-h2<0,即第一通道相比第二通道存在负相对衰减量,第二通道为相对高通道,第一通道为相对低通道;把第一通道和第二通道之间的相对衰减量即h1-h2的绝对值记为ΔAtt。
S3220,根据相对衰减量,确定第一权重参数和第二权重参数。
为了降低第一通道和第二通道之间的畸变量,需要对相对高通道的相邻分片的附加衰减参数进行联动减小,对相对低通道的相邻分片的附加衰减参数进行联动增加,以达到第一通道和第二通道之间的相邻通道衰减参数调整效果。即对第一通道和第二通道中存在负相对衰减量的通道,对其相邻分片的附加衰减参数进行增益调整;对第一通道和第二通道中存在正相对衰减量的通道,对其相邻分片的附加衰减参数进行减损调整。举例说明,当第一通道相比第二通道存在负相对衰减量,且相对衰减量ΔAtt=3dB,第一权重系数即为相对低通道权重系数m=0.1,第二权重系数即为相对高通道权重系数n=-0.06。可以理解的是,第一权重参数和第二权重参数仅与第一通道和第二通道的相对衰减量有关,不随相邻两通道的通道间隔改变而改变。
S3230,根据第一权重参数,确定第二附加衰减参数。
具体的,第一权重参数为相对衰减量与第一权重系数的积。举例说明,当第一通道相比第二通道存在负相对衰减量,第二附加衰减参数为d2+m*ΔAtt。
S3240,根据第二权重参数,确定第三附加衰减参数。
具体的,第二权重参数为相对衰减量与第二权重系数的积。举例说明,当第一通道相比第二通道存在负相对衰减量,第三附加衰减参数为d2+n*ΔAtt。
请参见图6,步骤S2000可以通过以下的步骤S2100至S2400实现。
S2100,对于第一通道和第二通道中的每个分片,分别确定对应的基础衰减参数。
确定第一通道和第二通道的边缘分片的衰减量a,次边缘分片的衰减量b,中心分片的衰减量c。如图11(d)所示,第一通道和第二通道所对应的基础衰减参数为[a b c c b a,a b c c b a]。
S2200,根据基础衰减参数对白噪声的输出光谱进行预调整。
根据基础衰减参数对白噪声的输出光谱进行预调整,以使第一通道输出的光谱在第一区间的平坦度小于平坦度阈值、第二通道输出的光谱在第二区间的平坦度小于平坦度阈值。举例说明,平坦度阈值取值为0.4dB。
S2300,获取第一通道和第二通道之间的相对衰减量。
当第一通道和第二通道之间存在相对衰减量,对相邻通道造成的滤波损伤,这样会增大白噪声的输出光谱发生的畸变,影响业务的穿通性能。因此,需要获取第一通道和第二通道之间的相对衰减。可以理解的是,此处获取相对衰减量ΔAtt与步骤S3210过程一致,其具体实现方式可参见前面步骤S3210的相关描述,此处不再赘述。
S2400,对于第一通道和第二通道中存在负相对衰减量的通道,根据相对衰减量进行相对衰减调整。
为了避免相对衰减量对相邻通道造成的滤波损伤,减少白噪声的输出光谱发生的畸变,需要对存在负相对衰减量的通道进行基础衰减参数的增益调整。进行相对衰减调整后,第一通道和第二通道所对应的基础衰减参数为[a+ΔAtt b+ΔAtt c+ΔAtt c+ΔAtt b+ΔAtt a+ΔAtt,a b c c b a]。
以下结合示例对上述波长选择开关的通道衰减调整方法进一步的说明,但不用于限定本申请实施例的技术方案。
本申请示例以多级Flex ROADM系统中100G/B100G准奈奎斯特WDM长距离传输性能改进的方法和系统为例,针对该长距离传输系统,其特征在于:系统波道间的频率间隔与业务光波特率相接近,即准奈奎斯特WDM传输,如在37.5GHz波道间隔中传输波特率约为34GHz的100GPM-QPSK与200GPM-16QAM业务信号,或50GHz的波道间隔中传输波特率约为45GHz的200G PM-8QAM业务信号。
实施例一
当第一通道和第二通道的带宽相同,通道带宽为37.5GHz,且第一通道和第二通道不存在相对衰减量(ΔAtt=0),此时,第一通道和第二通道的波长选择开关分片(12×6.25GHz)的衰减参数调整步骤包括如下。
将白噪声输入到单个波长选择开关单元中,获取第一通道的中心频率f1和第二通道的中心频率f2。将波长选择开关单元的输出端接入到光谱分析仪,其中波长选择开关通道带宽为设置为37.5GHz,每个通道对应的6个6.25GHz分片,相邻两通道总共12个6.25GHz分片。
从业务收发机模块获取波特率B,调整光谱仪的两条横向频率定标线,分别设在f1-B/2,f2+B/2频率处。
调节第一通道内的Slice1_1与第二通道内的Slice2_6衰减为a=0,调节第一通道内的Slice1_2的衰减量b,使得在频率f1-B/2~f1区间中的频率最低点处的频谱高度接近f1-B/2处频谱高度,同理调节第二通道内的Slice2_5的衰减量b,使得在频率f2~f2+B/2区间中的频率最低点处的频谱高度接近f2+B/2处的频谱高度。
调节第一通道的中心分片Slice1_3的衰减量c,使得在频率f1-B/2~f1区间中的光谱趋于平坦,同理调第二通道的中心分片Slice2_4的衰减量c,使得在频率f2~f2+B/2区间中的光谱趋于平坦,保证该区间的通道平坦度不超过0.4dB。
以第一通道的中心频率f1为界对称调节第一通道带宽内Slice1_4、Slice1_5和Slice1_6的衰减量,即设置Slice1_4、Slice1_5和Slice1_6衰减量分别与Slice1_3、Slice1_2和Slice1_1相同;以第二通道的中心频率f2为界对称调节第二通道带宽内Slice2_3、Slice2_2和Slice2_1衰减量,即设置Slice2_3、Slice2_2和Slice2_1衰减量分别与Slice2_4、Slice2_5和Slice2_6相同。此时,得到第一通道和第二通道所对应的基础衰减参数为[a b c c b a,a b c c b a]。
确定附加衰减参数。调节第一通道和第二通道中的次相邻分片(Slice1_5、Slice2_2)对应的第一附加衰减参数d1,第一通道的相邻分片Slice1_6对应的第二附加衰减参数d2,第二通道的相邻分片Slice2_1对应的第三附加衰减参数d2,分别使第一通道内的光谱对称,使第二通道内的光谱对称。如图11(e)所示,此时相邻通道共12个波长选择开关分片的衰减量分别为[a b c c b+d1 a+d2,a+d2 b+d1 c c b a]。
在一实施例中,由于波长选择开关器件个体间存在较小差异,选取N个波长选择开关模块,在一实施例中,N不小于3。对所选的N个模块重复上述步骤,依次获取每个波长选择开关模块各分片的衰减调节参数,分别每个分片的N个衰减值取平均,最终以该均值作为波长选择开关通道带宽内相应分片的衰减参数。
实施例二
当第一通道和第二通道的带宽相同,通道带宽为37.5GHz,且第一通道相比第二通道存在ΔAtt的相对衰减。此时,第一通道和第二通道的波长选择开关分片(12×6.25GHz)的衰减参数调整步骤包括如下。
与实施例一的步骤一致,获取相邻通道共12个波长选择开关分片的基础衰减参数和附加衰减参数分别为[a b c c b+d1 a+d2,a+d2 b+d1 c c b a]。
调整光谱仪的两条横向频率定标线,分别与第一通道和第二通道的中心频率所在的频谱线对齐,然后读出两条横向定标线的相对差,即为相邻两通道的相对衰减量ΔAtt;调整波长选择开关分片的基础衰减参数、第二附加衰减参数和第三附加衰减参数,得到12个波长选择开关分片的衰减参数为[a+ΔAtt b+ΔAtt c+ΔAtt c+ΔAtt b+d1+ΔAtt a+d2+ΔAtt+0.1ΔAtt,a+d2t-0.06ΔAtt b+d1 c c b a]。
实施例三
当第一通道和第二通道的带宽不同,其中第一通道的带宽为37.5GHz时,第二通道带宽为50GHz,且第二通道相比第一通道存在ΔAtt的相对衰减。此时,第一通道的波长选择开关分片(6×6.25GHz)和第二通道的波长选择开关分片(8×6.25GHz)的衰减参数调整步骤包括如下。
与实施例一的步骤一致,获取相邻通道共14个波长选择开关分片的基础衰减参数和附加衰减参数分别为[a b c c b+d1 a+d2,a+d2 b+d1 c c c c b a]。
调整光谱仪的两条横向频率定标线,分别与第一通道和第二通道的中心频率所在的频谱线对齐,然后读出两条横向定标线的相对差,即为相邻两通道的相对衰减量ΔAtt;调整波长选择开关分片的基础衰减参数、第二附加衰减参数和第三附加衰减参数,得到得到14个波长选择开关分片的衰减参数为[a b c c b+d1 a+d2-0.06ΔAtt,a+d2+0.1ΔAtt+ΔAtt b+d1+ΔAtt c+ΔAtt c+ΔAtt c+ΔAtt c+ΔAtt b+ΔAtt a+ΔAtt]。
可以理解的是,由此可获取不同场景下,业务信号穿通ROADM站点时,波长选择开关单元的通道整形参数。系统在建立业务时,可通过网管或自动交换光网络(Automatically Switched Optical Network,ASON)根据业务类型将该相邻通道整形参数配置于传输链路中光合波、光分波、ROADM穿通点处的波长选择开关单元,在每级波长选择开关单元处实现对业务光谱的整形,以达到提升业务信号穿通性能的效果。
本申请实施例提供的波长选择开关的通道衰减调整方法适用于对相邻通道间的分片附加衰减量进行联动调节,减小波长选择开关的滤波通道损伤,使得相邻的各自通道内趋于对称。
本申请实施例提供的一种波长选择开关的通道信号衰减优化方法的流程。具体地,本申请实施例的波长选择开关的通道信号衰减优化方法包括以下步骤。
当波长选择开关模块的第一通道和与第一通道相邻的第二通道分别通入业务信号,针对第一通道和第二通道中的相邻分片和次相邻分片,分别根据对应的附加衰减参数进行衰减量调整。
其中,附加衰减参数通过如上所述的波长选择开关的通道衰减调整方法获得。
本申请实施例提供的波长选择开关的通道信号衰减优化方法适用于对相邻通道间的分片附加衰减量进行联动调节,有效提高业务信号的穿通性能。
参见图7,图7是本申请实施例提供的波长选择开关的通道衰减调整装置的结构示意图,本申请实施例提供的波长选择开关的通道衰减调整方法的整个流程中涉及波长选择开关的通道衰减调整装置中的以下模块:输入模块100、获取模块200和调整模块300。
其中,输入模块100,被设置为将白噪声输入到波长选择开关模块的第一通道和与第一通道相邻的第二通道。
获取模块200,被设置为获取第一通道和第二通道中的相邻分片和次相邻分片所对应的附加衰减参数。
调整模块300,被设置为根据附加衰减参数对白噪声的输出光谱进行调整,使第一通道和第二通道分别输出对称的光谱。
参见图8,图8是本申请另一实施例提供的一种波长选择开关的通道衰减调整装置的结构示意图,其中,获取模块200包括以下的第一获取单元210、第二获取单元220、第三获取单元230、第四获取单元240和第五获取单元250。
第一获取单元210,被设置为获取第一通道和第二通道中的次相邻分片对应的第一附加衰减参数。
第二获取单元220,被设置为获取第一通道的相邻分片对应的第二附加衰减参数。
第三获取单元230,被设置为获取第二通道的相邻分片对应的第三附加衰减参数。
第四获取单元240,被设置为获取第一通道和第二通道之间的相对衰减量。
第五获取单元250,被设置为获取第一通道和第二通道中的每个分片所对应的基础衰减参数。
第二获取单元220根据相对衰减量,计算第一权重参数,确定第二附加衰减参数;第三获取单元230根据相对衰减量,计算第二权重参数,确定第三附加衰减参数。
参见图9,图9是图8中第四获取单元240的结构示意图,第四获取单元240包括以下的第一获取子单元241和第二获取子单元242。
第一获取子单元241,被设置为获取第一通道的中心频率对应的第一频谱高度、第二通道的中心频率对应的第二频谱高度。
第二获取子单元242,被设置为根据第一频谱高度和第二频谱高度的差值绝对值,确定第一通道和第二通道之间的相对衰减量。
参见图10,图10是本申请另一实施例提供的一种波长选择开关的通道衰减调整装置的结构示意图,调整模块300包括以下的第一调整单元310、第二调整单元320和第三调整单元330。
第一调整单元310,被设置为根据基础衰减参数对白噪声的输出光谱进行预调整,以使第一通道输出的光谱在第一区间的平坦度小于平坦度阈值、第二通道输出的光谱在第二区间的平坦度小于平坦度阈值。
第二调整单元320,被设置为对于第一通道和第二通道中存在负相对衰减量的通道,根据相对衰减量进行相对衰减调整。
第三调整单元330,被设置为根据第一附加衰减参数、第二附加衰减参数和第三附加衰减参数对白噪声的输出光谱进行调整,使第一通道和第二通道分别输出对称的光谱。
需要说明的是,上述装置的模块、单元和子单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
图12示出了本申请实施例提供的电子设备500。该电子设备500包括但不限于存储器501和处理器502。
存储器501,被设置为存储程序。
处理器502,被设置为执行存储器501存储的程序,当处理器502执行存储器501存储的程序时,处理器502被设置为执行上述的波长选择开关的通道衰减调整方法。
处理器502和存储器501可以通过总线或者其他方式连接。
存储器501作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请任意实施例描述的波长选择开关的通道衰减调整方法。处理器502通过运行存储在存储器501中的非暂态软件程序以及指令,从而实现上述的波长选择开关的通道衰减调整方法。
存储器501可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的波长选择开关的通道衰减调整方法。此外,存储器501可以包括高速随机存取存储器,还可以包括非暂态存储器,比如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器501可包括相对于处理器502远程设置的存储器,这些远程存储器可以通过网络连接至该处理器502。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的波长选择开关的通道衰减调整方法所需的非暂态软件程序以及指令存储在存储器501中,当被一个或者多个处理器502执行时,执行本申请任意实施例提供的波长选择开关的通道衰减调整方法。
本申请实施例还提供了一种存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的波长选择开关的通道衰减调整方法。
在一实施例中,该存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器502执行,比如,被上述电子设备500中的一个处理器502执行,可使得上述一个或多个处理器502执行本申请任意实施例提供的波长选择开关的通道衰减调整方法。
本申请实施例,对于所述第一通道和所述第二通道中的相邻分片和次相邻分片,分别确定对应的附加衰减参数,根据所述附加衰减参数对所述白噪声的输出光谱进行调整,使所述第一通道和所述第二通道分别输出对称的光谱。本申请实施例的方案能够有效地对波长选择开关的相邻通道进行光域均衡处理,通过对相邻通道间的分片附加衰减量进行联动调节,以改善相邻通道之间的畸变量,使得相邻的各自通道内趋于对称,降低ROADM滤波损伤,提高业务信号的穿通性能。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施方式进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的。共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (16)

  1. 一种波长选择开关的通道衰减调整方法,应用于通道衰减调整装置,其中,所述方法包括:
    向波长选择开关模块的第一通道和与所述第一通道相邻的第二通道分别输入白噪声;
    根据附加衰减参数对所述白噪声的输出光谱进行调整,使所述第一通道和所述第二通道分别输出对称的光谱,所述附加衰减参数包括所述第一通道和所述第二通道中的相邻分片和次相邻分片分别对应的附加衰减参数。
  2. 根据权利要求1所述的方法,其中,所述第一通道和所述第二通道中的次相邻分片对应的附加衰减参数为第一附加衰减参数;所述第一通道的相邻分片对应的附加衰减参数为第二附加衰减参数,所述第二通道的相邻分片对应的附加衰减参数为第三附加衰减参数。
  3. 根据权利要求2所述的方法,其中,所述第二附加衰减参数和所述第三附加衰减参数通过如下过程获取:
    获取所述第一通道和所述第二通道之间的相对衰减量;
    根据所述相对衰减量,确定第一权重参数和第二权重参数;
    根据所述第一权重参数,确定所述第二附加衰减参数;
    根据所述第二权重参数,确定所述第三附加衰减参数。
  4. 根据权利要求3所述的方法,其中,所述第一权重参数为所述相对衰减量与第一权重系数的积,所述第二权重参数为所述相对衰减量与第二权重系数的积。
  5. 根据权利要求3所述的方法,其中,所述获取所述第一通道和所述第二通道之间的相对衰减量,包括:
    获取所述第一通道的中心频率对应的第一频谱高度、所述第二通道的中心频率对应的第二频谱高度;
    根据所述第一频谱高度和所述第二频谱高度的差值绝对值,确定所述第一通道和所述第二通道之间的相对衰减量。
  6. 根据权利要求1所述的方法,其中,在所述根据附加衰减参数对所述白噪声的输出光谱进行调整之前,还包括:
    对于所述第一通道和所述第二通道中的每个分片,分别确定对应的基础衰减参数,根据所述基础衰减参数对所述白噪声的输出光谱进行预调整,以使所述第一通道输出的光谱在第一区间的平坦度小于平坦度阈值、所述第二通道输出的光谱在第二区间的平坦度小于平坦度阈值。
  7. 根据权利要求6所述的方法,其中,在根据所述基础衰减参数对所述白噪声的输出光谱进行预调整之后,还包括:
    获取所述第一通道和所述第二通道之间的相对衰减量;
    对于所述第一通道和所述第二通道中存在负相对衰减量的通道,根据所述相对衰减量进行相对衰减调整。
  8. 一种波长选择开关的通道信号衰减优化方法,包括,
    当波长选择开关模块的第一通道和与所述第一通道相邻的第二通道分别通入业务信号,
    针对所述第一通道和所述第二通道中的相邻分片和次相邻分片,分别根据对应的附加衰减参数进行衰减量调整;
    其中,所述附加衰减参数通过权利要求1至7任一项所述的方法获得。
  9. 一种波长选择开关的通道衰减调整装置,包括:
    输入模块,被设置为将白噪声输入到波长选择开关模块的第一通道和与所述第一通道相邻的第二通道;
    获取模块,被设置为获取所述第一通道和所述第二通道中的相邻分片和次相邻分片所对应的附加衰减参数;
    调整模块,被设置为根据所述附加衰减参数对所述白噪声的输出光谱进行调整,使所述第一通道和所述第二通道分别输出对称的光谱。
  10. 根据权利要求9所述的装置,其中,所述获取模块包括:
    第一获取单元,被设置为获取所述第一通道和所述第二通道中的次相邻分片对应的第一附加衰减参数;
    第二获取单元,被设置为获取所述第一通道的相邻分片对应的第二附加衰减参数;
    第三获取单元,被设置为获取所述第二通道的相邻分片对应的第三附加衰减参数。
  11. 根据权利要求10所述的装置,其中,所述获取模块还包括:第四获取单元,被设置为获取所述第一通道和所述第二通道之间的相对衰减量;
    所述第二获取单元根据所述相对衰减量,计算第一权重参数,确定所述第二附加衰减参数;所述第三获取单元根据所述相对衰减量,计算第二权重参数,确定所述第三附加衰减参数。
  12. 根据权利要求11所述的装置,其中,所述第四获取单元还包括:
    第一获取子单元,被设置为获取所述第一通道的中心频率对应的第一频谱高度、所述第二通道的中心频率对应的第二频谱高度;
    第二获取子单元,被设置为根据所述第一频谱高度和所述第二频谱高度的差值绝对值,确定所述第一通 道和所述第二通道之间的相对衰减量。
  13. 根据权利要求9所述的装置,其中,所述获取模块还包括:第五获取单元,被设置为获取所述第一通道和所述第二通道中的每个分片所对应的基础衰减参数。
  14. 根据权利要求13所述的装置,其中,所述调整模块还包括:
    第一调整单元,被设置为根据所述基础衰减参数对所述白噪声的输出光谱进行预调整,以使所述第一通道输出的光谱在第一区间的平坦度小于平坦度阈值、所述第二通道输出的光谱在第二区间的平坦度小于平坦度阈值;
    第二调整单元,被设置为对于所述第一通道和所述第二通道中存在负相对衰减量的通道,根据所述相对衰减量进行相对衰减调整;
    第三调整单元,被设置为根据所述第一附加衰减参数、所述第二附加衰减参数和所述第三附加衰减参数对所述白噪声的输出光谱进行调整,使所述第一通道和所述第二通道分别输出对称的光谱。
  15. 一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时,实现如权利要求1至7任意一项所述的波长选择开关的通道衰减调整方法。
  16. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时,实现如权利要求1至7任意一项所述的波长选择开关的通道衰减调整方法。
PCT/CN2022/100902 2021-08-03 2022-06-23 一种波长选择开关的通道衰减调整方法、装置及电子设备 WO2023011036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110886775.3 2021-08-03
CN202110886775.3A CN115704956A (zh) 2021-08-03 2021-08-03 一种波长选择开关的通道衰减调整方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023011036A1 true WO2023011036A1 (zh) 2023-02-09

Family

ID=85154249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100902 WO2023011036A1 (zh) 2021-08-03 2022-06-23 一种波长选择开关的通道衰减调整方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115704956A (zh)
WO (1) WO2023011036A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113246A (zh) * 2008-07-28 2011-06-29 爱立信电话股份有限公司 光网络节点中的信道功率控制
CN102281110A (zh) * 2011-07-29 2011-12-14 华为技术有限公司 光功率调节方法和装置
US20120230681A1 (en) * 2010-09-14 2012-09-13 Fujitsu Limited Optical transmission apparatus and optical attenuation amount control method
CN102763350A (zh) * 2012-05-02 2012-10-31 华为技术有限公司 一种波长通道光性能监测的方法、系统和节点设备
US20120328291A1 (en) * 2011-06-27 2012-12-27 Finisar Corporation Optical Wavelength Selective Switch Calibration System
CN110120839A (zh) * 2018-02-07 2019-08-13 中兴通讯股份有限公司 Wss通道衰减量的控制方法及装置、存储介质、处理器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113246A (zh) * 2008-07-28 2011-06-29 爱立信电话股份有限公司 光网络节点中的信道功率控制
US20120230681A1 (en) * 2010-09-14 2012-09-13 Fujitsu Limited Optical transmission apparatus and optical attenuation amount control method
US20120328291A1 (en) * 2011-06-27 2012-12-27 Finisar Corporation Optical Wavelength Selective Switch Calibration System
CN102281110A (zh) * 2011-07-29 2011-12-14 华为技术有限公司 光功率调节方法和装置
CN102763350A (zh) * 2012-05-02 2012-10-31 华为技术有限公司 一种波长通道光性能监测的方法、系统和节点设备
CN110120839A (zh) * 2018-02-07 2019-08-13 中兴通讯股份有限公司 Wss通道衰减量的控制方法及装置、存储介质、处理器

Also Published As

Publication number Publication date
CN115704956A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
KR101449977B1 (ko) 광 통신 네트워크들의 용량을 최적화하기 위한 방법
JP2018530182A (ja) 全二重ケーブルネットワーク環境内の干渉関係の特性評価
JP2018527789A (ja) 全二重ケーブルネットワーク環境内の干渉抑制
JP2018529246A (ja) 全二重ケーブルネットワーク環境内のスケジューリング機構
CN104782051B (zh) 用于管理多信道通信系统中的干扰的技术
JP2018524937A (ja) ケーブルネットワーク環境内の全二重ネットワークアーキテクチャ
US9813160B2 (en) Method of equalizing an optical transmission signal
US20190296851A1 (en) Method and system for controlling channel replacement and spectral occupancy
US20140334814A1 (en) Adaptive Optical Amplifier for WDM Systems
WO2017149668A1 (ja) 通信装置およびサブキャリア信号配置方法
WO2019154308A1 (zh) Wss通道衰减量的控制方法及装置、存储介质、处理器
CN115296732B (zh) 光传输系统和光传输系统的配置参数优化方法
EP2989736A1 (en) System and method for applying system policies in an optical communication system having user-allocated bandwidth
WO2023011036A1 (zh) 一种波长选择开关的通道衰减调整方法、装置及电子设备
JP2013531909A (ja) トランスポンダアグリゲータシステムおよび動作方法
CN103733547B (zh) 光线路终端、光网络系统及信号处理方法
US9654212B2 (en) Communications controller and method for wavelength control
CN106972885B (zh) 一种基于bbu和rru的双通道光传输网信道优化系统
WO2022199277A1 (zh) 功率补偿方法、装置及通信系统
Loureiro et al. On the mitigation of WSS filtering penalties: single-vs multi-carrier modulation
US11153024B2 (en) Optical transmission apparatus, optical communication system and optical communication method
Rossi et al. Does ageing of margins become more attractive in WDM networks with 64 GBaud transponders and regenerators?
WO2018072750A1 (en) Spectral extension in a cable network
WO2020195123A1 (en) Method for transmitting data and for optical transceiver
JP2014225800A (ja) 管理装置、管理システム、および管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE