WO2023001160A1 - 自适应调制编码方法、装置、电子设备及存储介质 - Google Patents

自适应调制编码方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023001160A1
WO2023001160A1 PCT/CN2022/106594 CN2022106594W WO2023001160A1 WO 2023001160 A1 WO2023001160 A1 WO 2023001160A1 CN 2022106594 W CN2022106594 W CN 2022106594W WO 2023001160 A1 WO2023001160 A1 WO 2023001160A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
bler
time slots
amc
abnormal
Prior art date
Application number
PCT/CN2022/106594
Other languages
English (en)
French (fr)
Inventor
张帅
姚春峰
付瑞颖
张德坤
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023001160A1 publication Critical patent/WO2023001160A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of signal processing, and in particular to an adaptive modulation and coding method, device, electronic equipment, and storage medium.
  • Adaptive Modulation Control is a processing technology applied to communication transmission, including inner-loop (inner-loop) and outer-loop (outer-loop) processing.
  • inner-loop refers to the base station according to the terminal
  • MCS Modulation And Coding Scheme
  • the inner loop refers to the base station determining the MCS corresponding to the uplink signal of the terminal according to the measurement of the received signal; the outer loop The ring means that the base station updates the outer ring value according to the feedback result of the actual scheduling (correct ACK/error solution NACK) and the target block error rate (Block Error Ratio, BLER) value, and the inner ring + outer ring value finally determines the scheduling of the terminal MCS, the purpose of the outer loop is to maintain the actual BLER of signal transmission near the target BLER.
  • the main purpose of the embodiments of the present application is to provide a time slot (Slot) level adaptive modulation and coding method, device, electronic equipment and storage medium.
  • An embodiment of the present application provides an adaptive modulation and coding method, including: periodically counting the block error rate BLER corresponding to each time slot; filtering out abnormal time slots and normal time slots according to the statistical BLER, wherein the normal A time slot is a time slot in which the BLER is located within a preset threshold interval, and the abnormal time slot is a time slot in which the BLER is located outside the threshold interval; a separate set of time slots different from the normal time slot is maintained for the abnormal time slot AMC logic, wherein, the normal time slots share the same set of AMC logic, the AMC logic is used to obtain the MCS value of the outer ring modulation and coding mode of the time slot, and the MCS value of the outer ring modulation and coding mode is used to automatically perform the time slot Adaptive modulation and coding; at the end of the period, detect whether the BLER of the abnormal time slot converges to the threshold interval, and update the adjustment amount of the adaptive modulation and coding of the abnormal time slot where the BLER converges to the threshold interval
  • the embodiment of the present application also provides an adaptive modulation and encoding device, including: a statistics module, which is used to periodically count the block error rate BLER corresponding to each time slot; a screening module, which is used to filter out abnormal time slot and a normal time slot, wherein the normal time slot is a time slot in which the BLER is located within a preset threshold interval, and the abnormal time slot is a time slot in which the BLER is located outside the threshold interval; the adaptive modulation and encoding module uses A separate set of AMC logic different from the normal time slot is maintained for the abnormal time slot, wherein the normal time slot shares the same set of AMC logic, and the AMC logic is used to obtain the outer loop modulation and coding mode of the time slot MCS value, the MCS value of the outer ring modulation and coding method is used to adaptively modulate and code the time slot; the detection module is used to detect whether the BLER of the abnormal time slot converges to the threshold interval at the end of the period; An update module, configured to update the adjustment value of
  • the embodiment of the present application also provides an electronic device, including: at least one processor; and a memory connected in communication with the at least one processor; wherein, the memory stores information that can be executed by the at least one processor. Instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the above adaptive modulation and coding method.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program, and implementing the above-mentioned adaptive modulation and coding method when the computer program is executed by a processor.
  • FIG. 1 is a flowchart of an adaptive modulation and coding method provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of a window relationship provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a numerical indicator provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of data indicators before execution of a method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of data indicators after execution of a method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an adaptive modulation and encoding device provided in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • first and second in the embodiments of the present application are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion. For example, a system, product or equipment comprising a series of components or units is not limited to the listed components or units, but optionally also includes components or units not listed, or optionally also includes Other parts or units inherent in equipment.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • An embodiment of the present application relates to an adaptive modulation and coding method. The specific process is shown in Figure 1.
  • Step 101 periodically counting the block error rate BLER corresponding to each time slot
  • Step 102 screen out abnormal time slots and normal time slots according to the BLER of statistics, wherein, the normal time slots are the time slots in which BLER is located in the preset threshold interval, and the abnormal time slots are the time slots in which BLER is located outside the threshold interval;
  • Step 103 separately maintain a set of AMC logic different from normal time slots for abnormal time slots, wherein, normal time slots share the same set of AMC logic, AMC logic is used to obtain the MCS value of the outer ring modulation and coding mode of the time slot, the outer ring modulation
  • the encoding method MCS value is used for adaptive modulation and encoding of the time slot;
  • Step 104 at the end of the period, detect whether the BLER of the abnormal time slot converges to the threshold interval, and update the adjustment value of the adaptive modulation and coding of the abnormal time slot whose BLER converges to the threshold interval.
  • the abnormal time slots are periodically identified by online statistics of the BLER indicators corresponding to each time slot, and AMC logic learning is performed on the abnormal time slots. After the other AMC logic learning of the abnormal time slots converges, update The AMC corresponding to the abnormal time slot adjusts the value, and puts the abnormal time slot together with other normal time slots to maintain the common AMC logic.
  • the adjustment value of adaptive modulation and coding is used to ensure that its initial scheduling MCS in the common AMC mechanism is equal to the convergence MCS value in other AMC mechanisms, thereby ensuring the throughput of the entire system.
  • step 101 the block error rate BLER corresponding to each time slot is periodically counted; that is, the BLER of the time slot in the current actual situation is counted, so that an adaptive optimal adjustment can be made for the current time slot configuration.
  • the block error rate BLER corresponding to each time slot is periodically counted, for example: real-time statistics of the number of scheduling error corrections and the total number of scheduling errors corresponding to each time slot in the first window; The BLER corresponding to the total number of times of scheduling and the acquisition time slot.
  • real-time statistics of the BLER values corresponding to each time slot in the first window length (WindowTime-Thr1) and the second window length (WindowTime-Thr2) can be counted by means of truncated windows, and the BLER values corresponding to each time slot can be calculated at the end of the window length BLER value, when a new window arrives, the BLER should be cleared and the BLER value corresponding to the new window should be counted again.
  • each time slot may belong to different user terminals. Calculate the value corresponding to BLER within a window time, for example, through the following formula:
  • the preset threshold before obtaining the BLER corresponding to the time slot according to the number of times of scheduling error resolution and the total number of times of scheduling, it also includes: detecting whether the total number of times of scheduling is greater than the preset threshold; if the total number of times of scheduling is greater than the preset threshold, then Execute the number of times of scheduling error correction and the total number of times of scheduling according to the time slot, and obtain the BLER corresponding to the time slot. That is, for a BLER value whose denominator (total times of scheduling) is smaller than a preset threshold, it is considered as an unreliable BLER, and the time slot will be treated as a normal time slot.
  • the preset threshold supports custom configuration.
  • the BLER of the abnormal time slot converges to the threshold interval, for example: counting the number of scheduling error resolutions and the total number of scheduling errors corresponding to the abnormal time slot in the second window before the end of the first window The number of times; according to the number of scheduling errors corresponding to the abnormal time slot and the total number of times of scheduling, the BLER corresponding to the abnormal time slot is obtained; whether the BLER corresponding to the abnormal time slot obtained by detecting converges to the threshold interval; wherein, the second window The window length of is less than the window length of the first window. It can be known that the window length is the duration of the window, and the start and end times of the second window do not exceed the start and end times of the first window. The relationship between the first window and the second window is shown in FIG. 2 .
  • time slots under certain conditions are selected as a basis for adaptive optimization and adjustment to the current situation.
  • step 102 abnormal time slots and normal time slots are screened out according to the statistical BLER, wherein the normal time slots are the time slots in which the BLER is within the preset threshold interval, and the abnormal time slots are the time slots in which the BLER is outside the threshold interval;
  • the abnormal time slot corresponds to the high BLER threshold (BLER_H_Thr), and the abnormal time slot corresponds to the low BLER threshold (BLER_L_Thr).
  • BLER_H_Thr high BLER threshold
  • BLER_L_Thr low BLER threshold
  • the slot will be regarded as an abnormal slot. If the BLERs corresponding to all the time slots counted in the first window length are greater than the high threshold (BLER_H_Thr) or less than the low threshold (BLER_L_Thr), no abnormal time slot screening will be performed, that is, all time slots will be regarded as normal Gap is processed. If it is higher than the high threshold, it means that the block error rate is too high and needs to be adjusted; when it is lower than the low threshold, the transmission rate is conservative and needs to be adjusted.
  • step 103 a set of AMC logic different from normal time slots is separately maintained for abnormal time slots, wherein the normal time slots share the same set of AMC logic, and the AMC logic is used to obtain the MCS value of the outer ring modulation and coding mode of the time slot.
  • the MCS value of ring modulation and coding mode is used for adaptive modulation and coding of time slots.
  • a set of AMC logic different from normal time slots is independently maintained for each abnormal time slot, and the AMC logics corresponding to different abnormal time slots are different.
  • the system maintains n+1 sets of AMC logic in total, where n is the number of abnormal time slots, and 1 represents the AMC logic corresponding to non-abnormal time slots, that is, the public AMC logic corresponding to non-abnormal time slots.
  • it includes grouping abnormal time slots; maintaining the same set of AMC logic different from normal time slots for the same group of abnormal time slots, and the AMC logics corresponding to different groups of abnormal time slots are different. That is to say, when an abnormal time slot is detected, each abnormal time slot is grouped and each group adopts a different AMC logic, which can further guarantee the throughput of the system compared with some implementations, and compared with the above Embodiments can reduce AMC logic that needs to be maintained. For example, each abnormal time slot is divided into different abnormal levels according to the abnormal degree of the abnormal time slot, and each level is regarded as an abnormal time slot group, and there is a set of AMC logic that needs to be maintained. While reducing the AMC logic that needs to be maintained, it can also ensure the throughput of the system.
  • step 104 at the end of the period, it is detected whether the BLER of the abnormal time slot converges to the threshold interval, and the adjustment value of the adaptive modulation and coding of the abnormal time slot whose BLER converges to the threshold interval is updated.
  • the outer ring MCS value of the abnormal time slot at the end of the cycle is summed with the AMC adjustment value corresponding to the abnormal time slot at the end of the cycle to obtain a sum value, and the sum value is combined with the The outer loop MCS value of the normal time slot is subtracted to obtain the updated adaptive modulation and coding adjustment value of the abnormal time slot where the BLER converges to the threshold interval.
  • the first window length (WindowTime-Thr1) of this cycle ends, judge whether the abnormal time slot was screened out in the previous cycle, or whether there is another AMC logic maintained in this cycle, and if so, perform the following operations:
  • the relationship between the first window length and the second window length is shown in Figure 2.
  • AMC_Ajust4Slot_idnew outer ring MCS4Slot_id+AMC_Ajust4Slot_id-outer ring MCS4ComnSlot; wherein, outer ring MCS4Slot_id is the convergence outer ring value corresponding to the AMC corresponding to the abnormal time slot maintained in the current cycle at the end of the first window length (WindowTime-Thr1) of this cycle.
  • the outer ring MCS4CommnSlot represents: the outer ring value corresponding to the AMC jointly maintained by the non-abnormal time slot at the end of the first window length (WindowTime-Thr1) of this cycle.
  • AMC_Ajust4Slot_id represents: the old AMC adjustment value used by this abnormal time slot when maintaining the AMC logic alone.
  • put the abnormal time slot into the normal time slot queue maintain a set of AMC logic together with other normal time slots, and the ACK/NACK (scheduling solution) corresponding to all normal time slots /scheduling and troubleshooting) data jointly maintain a set of public outer ring (outer ring MCS4CommnSlot).
  • the abnormal time slot Slot_id being processed in the current cycle: within the first window length of the new cycle, the abnormal time slot continues to be reserved to maintain other AMC maintenance logic, and its corresponding AMC adjustment value is not updated ( AMC_Ajust4Slot_id), do not put it into the normal slot queue.
  • the first window length (WindowTime-Thr1) of the next period ends, the above-mentioned process is repeated.
  • Adopt T-NR system 5ms single-cycle configuration, time slot ratio is [D D D D D D D D D D U U D D D D D D D D D D D U U], downlink AMC logic, of course, this application is also applicable to uplink AMC logic. Among them, D stands for down, which means the downlink time slot, and U stands for up, which means the uplink time slot.
  • BLER4WindowTime1_1 [1%, 2%, 40%, 8%, 9%, 10%, 8%, 8%, 8%, 10%, 8%, 8%, 8%, 10%, 10% ];
  • BLER4WindowTime1_2 [5%, 10%, 10%, 8%, 9%, 10%, 8%, 8%, 8%, 10%, 8%, 8%, 8%, 10%, 50% ];
  • N1_1 [200, 40, 200, 200, 200, 200, 190, 192, 199, 200, 200, 200, 200, 200, 200, 200, 200];
  • N1_2 [200, 200, 200, 200, 200, 200, 190, 192, 199, 200, 200, 200, 200, 200, 200, 200, 200];
  • BLER4WindowTime1_1 represents the first period, the BLER value corresponding to each downlink time slot within the first window length (WindowTime-Thr1);
  • BLER4WindowTime1_2 represents the second period, within the first window length (WindowTime-Thr1), each The BLER value corresponding to the downlink time slot;
  • BLER4WindowTime2_2 represents the BLER value corresponding to the abnormal time slot (the abnormal time slot is determined by the statistic BLER4WindowTime1_1) within the second window length (WindowTime-Thr2) in the second cycle;
  • N1_1 represents the In one period, within the first window length (WindowTime-Thr1), the number of times of scheduling corresponding to each downlink time slot;
  • N1_2 represents the second period, within the first window
  • Step1 Periodically count the BLER corresponding to each time slot.
  • the BLER corresponding to each downlink time slot is [1%, 2%, 40%, 8%, 9%, 10%, 8%, 8%, 8%, 8%, 10%, 8%, 8%, 8%, 10%];
  • the number of scheduling corresponding to each downlink time slot is: [200, 40, 200, 200, 200, 200, 190, 192, 199, 200, 200, 200, 200, 200, 200, 200, 200, 200]; T-NR, under 5ms single-cycle configuration, there are 16 downlink time slots, and the corresponding Slot_ids are 0, 1, 2, 3, 4 respectively ,5,6,7,10,11,12,13,14,15,16,17.
  • Step2 Abnormal time slot screening. From the statistics of Step1, it can be seen that the BLER corresponding to Slot0, 1, and 2 is abnormal, but because the number of scheduling corresponding to Slot1 does not meet the threshold value N(50), the BLER statistics corresponding to Slot1 are considered unreliable, so the final abnormal time slot is time slot 0 and slot 2.
  • Step3 Perform AMC logic maintenance separately for abnormal time slots.
  • the system will maintain 2+1 sets of AMC logic in the first window length (WindowTime-Thr1), 2 sets of which maintain abnormal Slot0 and abnormal Slot2 respectively, and the other set maintains all non-abnormal time slots .
  • obtain the slot-level outer rings corresponding to Slot0 and Slot2 (outer ring MCS4Slot_0, outer ring MCS4Slot_2), and maintain a common set of common outer rings (outer ring MCS4ComnSlot) for all non-abnormal time slots.
  • Step5 Periodically count the BLER corresponding to each time slot.
  • the BLER corresponding to each downlink time slot is: [5%, 10%, 10%, 8%, 9%, 10%, 8%, 8% , 8%, 8%, 10%, 8%, 8%, 8%, 10%, 50%];
  • the number of scheduling corresponding to each downlink time slot is: [200, 200, 200, 200, 200, 200, 190 , 192, 199, 200, 200, 200, 200, 200, 200, 200, 200, 200];
  • T-NR under 5ms single-cycle configuration, there are 16 downlink time slots in total, and the corresponding Slot_ids are 0, 1, 2, 3, 4,5,6,7,10,11,12,13,14,15,16,17.
  • Step6 Abnormal time slot screening. According to the statistics of Step5, there is no abnormal time slot at this moment, so there is no need to maintain the AMC logic corresponding to the abnormal time slot in the third cycle, and there is no need to update the AMC adjustment amount at the end of the third cycle, only the normal time slot needs to be maintained The corresponding public AMC logic is enough.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • the abnormal time slots are periodically identified by online statistics of the BLER indicators corresponding to each time slot, and additional AMC logic learning is performed on the abnormal time slots. After the other AMC logic learning of the abnormal time slots converges, The AMC adjustment value corresponding to the abnormal time slot is updated, and the abnormal time slot is put together with other normal time slots for common AMC logic maintenance.
  • the adjustment value of adaptive modulation and coding is used to ensure that its initial scheduling MCS in the common AMC mechanism is equal to the convergence MCS value in other AMC mechanisms, thereby ensuring the throughput of the entire system. That is, it can solve the phenomenon that the BLER corresponding to some time slots is relatively low or relatively high, and ensure the overall throughput of the system.
  • An embodiment of the present application relates to an adaptive modulation and encoding device, as shown in FIG. 6 , including:
  • Statistical module 201 for periodically counting the block error rate BLER corresponding to each time slot
  • the screening module 202 is used to filter out abnormal time slots and normal time slots according to the statistical BLER, wherein the normal time slots are the time slots in which the BLER is within the preset threshold interval, and the abnormal time slots are the time slots in which the BLER is outside the threshold interval ;
  • the adaptive modulation and coding module 203 is used to separately maintain a set of AMC logic different from normal time slots for abnormal time slots, wherein the normal time slots share the same set of AMC logic, and the AMC logic is used to obtain the outer ring modulation and coding mode of the time slots MCS value, the outer ring modulation and coding mode
  • the MCS value is used for adaptive modulation and coding of the time slot;
  • Detection module 204 for when cycle ends, detects whether the BLER of abnormal time slot converges in the threshold interval
  • An update module 205 configured to update the adjustment value of the adaptive modulation and coding of the abnormal time slots where the BLER converges to the threshold interval.
  • the periodic statistics of the block error rate BLER corresponding to each time slot includes: real-time statistics of the times of scheduling error resolution and the total number of times of scheduling corresponding to each time slot in the first window; The times of scheduling error resolution and the total times of scheduling are used to obtain the BLER corresponding to the timeslot.
  • the BLER corresponding to the time slot before obtaining the BLER corresponding to the time slot according to the number of scheduling error corrections and the total number of scheduling times of the time slot, it further includes: detecting whether the total number of times of scheduling is greater than a preset threshold ; If the total number of times of scheduling is greater than a preset threshold, then execute the number of error-removing times of scheduling according to the time slot and the total number of times of scheduling to obtain the BLER corresponding to the time slot.
  • detecting whether the BLER of the abnormal time slot converges to the threshold interval includes: counting the abnormal time in the second window before the end of the first window The number of scheduling errors and the total number of times of scheduling corresponding to the slot; according to the number of times of scheduling errors corresponding to the abnormal time slot and the total number of times of scheduling, obtain the BLER corresponding to the abnormal time slot; detect the obtained abnormal time Whether the BLER corresponding to the gap converges to the threshold interval; wherein, the window length of the second window is smaller than the window length of the first window.
  • the separate maintenance of a set of AMC logic different from the normal time slot for the abnormal time slot includes: independently maintaining a set of AMC logic different from the normal time slot for each of the abnormal time slots.
  • the AMC logic of normal time slots, the AMC logics corresponding to different abnormal time slots are different.
  • the separate maintenance of a set of AMC logic different from the normal time slots for the abnormal time slots includes: grouping the abnormal time slots; maintaining the same set of AMC logic different from the normal time slots for the same group of abnormal time slots.
  • the AMC logic of the above-mentioned normal time slots, the AMC logics corresponding to the abnormal time slots of different groups are different.
  • the update BLER converges to the adjustment value of the adaptive modulation and coding corresponding to the abnormal time slot in the threshold interval, including: the outer loop MCS value of the abnormal time slot at the end of the period Summing the AMC adjustment value corresponding to the abnormal time slot at the end of the period to obtain a sum value; making a difference between the sum value and the outer ring MCS value of the normal time slot to obtain the updated
  • the BLER converges to the adjustment value of the adaptive modulation and coding of the abnormal time slot within the threshold interval.
  • the abnormal time slots are periodically identified by online statistics of the BLER indicators corresponding to each time slot, and additional AMC logic learning is performed on the abnormal time slots. After the other AMC logic learning of the abnormal time slots converges, The abnormal time slot is put together with other normal time slots for common AMC logic maintenance.
  • the adjustment value of adaptive modulation and coding is used to ensure that its initial scheduling MCS in the common AMC mechanism is equal to the convergence MCS value in other AMC mechanisms, thereby ensuring the throughput of the entire system.
  • this embodiment is a system embodiment corresponding to the above embodiment, and this embodiment can be implemented in cooperation with the above embodiment.
  • the relevant technical details mentioned in the foregoing implementation manners are still valid in this implementation manner, and will not be repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this implementation manner may also be applied in the foregoing implementation manners.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problems proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • One embodiment of the present application relates to an electronic device, as shown in FIG. 7 , including at least one processor 301; and,
  • a memory 302 connected in communication with the at least one processor; wherein, the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor so that the at least one The processor can execute the above adaptive modulation and coding method.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • One embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the program is stored in a storage medium, and includes several instructions to make a device ( It may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的实施例涉及信号处理领域,特别涉及一种自适应调制编码方法、装置、电子设备及存储介质。方法包括:周期性统计各时隙对应的误块率BLER;根据统计的BLER值筛选出异常时隙和正常时隙,其中,正常时隙为BLER位于预设门限区间内的时隙,异常时隙为BLER位于预设门限区间外的时隙;为异常时隙单独维护一套不同于正常时隙的AMC逻辑,其中,正常时隙共用同一套AMC逻辑,AMC逻辑用于获取时隙的外环调制编码方式MCS值,外环MCS值用于对时隙进行自适应调制编码;在周期结束时,检测各异常时隙的BLER是否收敛至门限区间内,并更新BLER收敛至门限区间内的异常时隙所对应的自适应调制编码调整量值。

Description

自适应调制编码方法、装置、电子设备及存储介质
交叉引用
本申请基于申请号为“202110837783.9”、申请日为2021年07月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及信号处理领域,特别涉及一种自适应调制编码方法、装置、电子设备及存储介质。
背景技术
自适应调制编码(Adaptive Modulation Control,AMC),是应用于通信传输的处理技术,包括内环(inner-loop)和外环(outer-loop)处理过程,对于下行AMC内环是指基站根据终端上报的信道状态信息确定该终端对应下行信号的调制编码方式(Modulation And Coding Scheme,MCS),对于上行AMC,内环是指基站根据对接收信号的测量来确定该终端对应上行信号的MCS;外环则是指基站根据真实调度的反馈结果(解对ACK/解错NACK)及目标误块率(Block Error Ratio,BLER)值来更新外环值,内环+外环值最终决定终端的调度MCS,外环的目的是将信号传输的实际BLER维持在目标BLER附近。
然而,目前无线通信中,由于基站硬件、终端、或者特定时隙Slot上存在干扰等问题,会存在不同时隙间的解调能力差异很大的现象,传统的AMC方案所有时隙共用一套AMC机制,这样对于某些解调能力较弱的时隙会出高BLER现象,而对于其它正常时隙而言,会出现BLER偏低的现象,最终影响系统整体的吞吐量。
发明内容
本申请实施例的主要目的在于提出一种时隙(Slot)级自适应调制编码方法、装置、电子设备及存储介质。
本申请实施例提供了一种自适应调制编码方法,包括:周期性统计各时隙对应的误块率BLER;根据统计的所述BLER筛选出异常时隙和正常时隙,其中,所述正常时隙为BLER位于预设的门限区间内的时隙,所述异常时隙为BLER位于所述门限区间外的时隙;为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,其中,所述正常时隙共用同一套AMC逻辑,所述AMC逻辑用于获取时隙的外环调制编码方式MCS值,所述外环调制编码方式MCS值用于对时隙进行自适应调制编码;在周期结束时,检测所述异常时隙的BLER是否收敛至所述门限区间内,并更新BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
本申请实施例还提供了一种自适应调制编码装置,包括:统计模块,用于周期性统计各时隙对应的误块率BLER;筛选模块,用于根据统计的所述BLER筛选出异常时隙和正常时隙,其中,所述正常时隙为BLER位于预设的门限区间内的时隙,所述异常时隙为BLER位于所述门限区间外的时隙;自适应调制编码模块,用于为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,其中,所述正常时隙共用同一套AMC逻辑,所述AMC逻辑用于获取时隙的外环调制编码方式MCS值,所述外环调制编码方式MCS值用于对时隙进行自适应调制编码;检测模块,用于在周期结束时,检测所述异常时隙的BLER是否收敛至所述门限区间内;更新模块,用于更新BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的自适应调制编码方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的自适应调制编码方法。
附图说明
图1是本申请一个实施方式提供的一种自适应调制编码方法的流程图;
图2是本申请一个实施方式提供的一种窗口关系的示意图;
图3是本申请一个实施方式提供的一种数值指标的示意图;
图4是本申请一个实施方式提供的一种方法执行前数据指标的示意图;
图5是本申请一个实施方式提供的一种方法执行后数据指标的示意图;
图6是本申请一个实施方式提供的一种自适应调制编码装置的示意图;
图7是本申请一个实施方式提供的一种电子设备的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列部件或单元的系统、产品或设备没有限定于已列出的部件或单元,而是可选地还包括没有列出的部件或单元,或可选地还包括对于这些产品或设备固有的其它部件或单元。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本申请的一个实施方式涉及一种自适应调制编码方法。具体流程如图1所示。
步骤101,周期性统计各时隙对应的误块率BLER;
步骤102,根据统计的BLER筛选出异常时隙和正常时隙,其中,正常时 隙为BLER位于预设的门限区间内的时隙,异常时隙为BLER位于门限区间外的时隙;
步骤103,为异常时隙单独维护一套不同于正常时隙的AMC逻辑,其中,正常时隙共用同一套AMC逻辑,AMC逻辑用于获取时隙的外环调制编码方式MCS值,外环调制编码方式MCS值用于对时隙进行自适应调制编码;
步骤104,在周期结束时,检测异常时隙的BLER是否收敛至门限区间内,并更新BLER收敛至门限区间内的异常时隙的自适应调制编码的调整量值。
本实施例中,通过在线统计各时隙对应的BLER指标,周期性的将异常时隙进行识别,并对异常时隙另外进行AMC逻辑学习,待异常时隙另外的AMC逻辑学习收敛后,更新异常时隙对应的AMC调整量值,并将该异常时隙与其它正常时隙放在一起进行公共AMC逻辑的维护。对于异常时隙通过自适应调制编码的调整量值来保障其在公共AMC机制中的初始调度MCS等于另外AMC机制中的收敛MCS值,从而保证整个系统的吞吐量。
下面对本实施方式的自适应调制编码方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,周期性统计各时隙对应的误块率BLER;即,统计当前实际情况中时隙的BLER,使得能够针对当前的时隙配置进行适应性的优化调整。
在一个例子中,周期性统计各时隙对应的误块率BLER,例如:实时统计第一窗口内的各时隙分别对应的调度解错次数以及调度总次数;根据时隙的调度解错次数与调度总次数,获取时隙对应的BLER。
例如,实时统计第一窗长(WindowTime-Thr1)及第二窗长(WindowTime-Thr2)内各时隙对应的BLER值,可以采用截窗方式统计,在窗长末端统计出各时隙对应的BLER值,当新的窗到来时要将BLER清空重新统计新窗对应的BLER值。其中,各时隙可以属于不同的用户终端。计算一个窗长时间内的BLER对应的值,例如通过以下公式:
Figure PCTCN2022106594-appb-000001
在一个例子中,根据时隙的调度解错次数与调度总次数,获取时隙对应的BLER之前,还包括:检测调度总次数是否大于预设阈值;若调度总次数大于 预设阈值,则再执行根据时隙的调度解错次数与调度总次数,获取时隙对应的BLER。即,对于分母(调度总次数)小于预设阈值的BLER值,认为是非可靠BLER,该时隙将被当做正常时隙对待。另外,预设阈值是支持自定义配置的。
在一个例子中,在周期结束时,检测异常时隙的BLER是否收敛至门限区间内,例如:统计在第一窗口结束之前的第二窗口内的异常时隙对应的调度解错次数以及调度总次数;根据异常时隙对应的调度解错次数与调度总次数,获取异常时隙对应的BLER;检测获取的所述异常时隙对应的BLER是否收敛至所述门限区间内;其中,第二窗口的窗长小于第一窗口的窗长。可以知道的是,窗长即为该窗口的时长,且第二窗口的起止时间均不超过第一窗口的起止时间,第一窗口与第二窗口的关系如图2所示。
本步骤中通过筛选一定条件下的时隙,作为对当前状况进行适应性优化调整的基础。
在步骤102中,根据统计的BLER筛选出异常时隙和正常时隙,其中,正常时隙为BLER位于预设的门限区间内的时隙,异常时隙为BLER位于门限区间外的时隙;
在一个例子中,定义异常时隙对应高BLER门限(BLER_H_Thr),异常时隙对应低BLER门限(BLER_L_Thr),当第一窗长内统计的时隙对应BLER大于高门限(BLER_H_Thr)或者小于低门限(BLER_L_Thr)时,将把该时隙当做异常时隙。若第一窗长内统计的所有时隙对应的BLER均大于高门限(BLER_H_Thr)或者均小于低门限(BLER_L_Thr)时,将不进行异常时隙的筛选,也就是把所有时隙都当做正常时隙进行处理。高于高门限则意味着误块率过高,需要进行调整;低于低门限时,传输速率偏保守,也需要进行调整。
在步骤103中,为异常时隙单独维护一套不同于正常时隙的AMC逻辑,其中,正常时隙共用同一套AMC逻辑,AMC逻辑用于获取时隙的外环调制编码方式MCS值,外环调制编码方式MCS值用于对时隙进行自适应调制编码。
在一个例子中,为各异常时隙分别独立维护一套不同于正常时隙的AMC逻辑,不同的异常时隙对应的AMC逻辑不相同。例如,系统共维护n+1套AMC逻辑,其中n为异常时隙个数,1代表非异常时隙对应的AMC逻辑,即非异常 的时隙对应的公共AMC逻辑。待本周期第一窗长(WindowTime-Thr1)结束时,若存在异常时隙,在接下来的另一个第一窗长(WindowTime-Thr1)内将对每个异常时隙各自维护一套AMC逻辑,进而得到各时隙对应的Slot级外环(外环MCS4Slot_id);同时对于所有非异常时隙维护一套公共外环(外环MCS4Comn时隙)。若不存在异常时隙,在接下来的另一个第一窗长(WindowTime-Thr1)内,只需对所有时隙维护一套公共外环(外环MCS4ComnSlot)。以达到对系统进行针对性维护的目的,保证系统的吞吐量。
在另一个例子中,包括,对异常时隙进行分组;为同一组的异常时隙维护同一套不同于正常时隙的AMC逻辑,不同组的异常时隙对应的AMC逻辑不相同。也就是说,在检测到异常时隙的时候,对各异常时隙进行分组处理,各组采用不同的AMC逻辑,相较于一些实施方式仍能够进一步保证系统的吞吐量,并且相较于上述实施例能够减少需要维护的AMC逻辑。例如,根据异常时隙的异常程度对各异常时隙划分不同的异常等级,每个等级作为一个异常时隙组,存在一套需要维护的AMC逻辑。减少需要维护的AMC逻辑的同时也能保证系统的吞吐量。
在步骤104中,在周期结束时,检测异常时隙的BLER是否收敛至门限区间内,并更新BLER收敛至门限区间内的异常时隙的自适应调制编码的调整量值。
在一个例子中,将周期结束时异常时隙的外环MCS值与所述周期结束时所述异常时隙所对应的AMC调整量值求和,得到和值,将所述和值与所述正常时隙的外环MCS值作差,得到更新后的所述BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
例如:系统初始化各时隙对应的AMC调整量(AMC_Ajust4Slot)为0,系统的调度MCS=内环MCS+外环MCS4Slot+AMC_Ajust4Slot。待本周期的第一窗长(WindowTime-Thr1)结束时,判断上一周期内是否筛选出异常时隙,或本周期内是否存在另外维护的AMC逻辑,若存在,则进行如下操作:
首先判断当前周期内另外维护的AMC逻辑,在本周期结束时是否收敛:统计第一窗长(WindowTime-Thr1)结束之前的第二窗长(WindowTime-Thr2)内该时隙对应的BLER是否趋于收敛BLER区间,其中收敛BLER区间为 [BLER_Thr1,BLER_Thr2],若第二窗长内该时隙对应的BLER趋于区间[BLER_Thr1,BLER_Thr2]内,即对应的BLER值位于区间[BLER_Thr1,BLER_Thr2]内,则该时隙对应的AMC已收敛;否则该时隙对应的BLER不收敛。其中第一窗长与第二窗长的关系见图2。
若收敛,则对当前周期正在处理的异常时隙Slot_id采取如下操作:更新该时隙对应的AMC调整量(AMC_Ajust4Slot_id):
AMC_Ajust4Slot_id新=外环MCS4Slot_id+AMC_Ajust4Slot_id-外环MCS4ComnSlot;其中,外环MCS4Slot_id为当前周期维护的异常时隙对应的AMC在本周期第一窗长(WindowTime-Thr1)结束时对应的收敛外环值。外环MCS4ComnSlot代表:非异常时隙共同维护的AMC在本周期第一窗长(WindowTime-Thr1)结束时对应的外环值。AMC_Ajust4Slot_id代表:该异常时隙在单独维护AMC逻辑时使用的旧AMC调整量值。在接下来的新周期的第一窗长内,将该异常时隙放入正常时隙队列,与其它正常时隙共同维护一套AMC逻辑,所有正常时隙对应的ACK/NACK(调度解对/调度解错)数据共同维护一套公共外环(外环MCS4ComnSlot)。
若不收敛,则对当前周期正在处理的异常时隙Slot_id采取如下操作:在新周期的第一窗长内,该异常时隙继续保留保持另外AMC维护逻辑,不更新其对应AMC调整量值(AMC_Ajust4Slot_id),不将其放入正常时隙队列。待下一个周期的第一窗长(WindowTime-Thr1)结束时,再重复上述流程。
使得各时隙能够调度与其性能相匹配的MCS,改善部分时隙对应BLER过高或过低的问题,进而使系统的吞吐量得到改善。
为了便于理解,以下以一个下行AMC过程中的示例性实施过程进行说明,可以理解的是,该实施方式也能够应用于上行AMC过程中,本申请不对其相关的应用过程进行限制:
首先,参数变量设置:第一窗长WindowTime-Thr1:2s;第二窗长WindowTime-Thr2:1s;高BLER门限:BLER_H_Thr:30%;低BLER门限:BLER_L_Thr:2%;收敛BLER区间为[BLER_Thr1,BLER_Thr2],BLER_Thr1:8%;BLER_Thr2:15%;总调度次数的预设阈值N:50。采用T-NR制式,5ms单周期配置,时隙配比为[D D D D D D D D U U D D D D D D D D U U],下行AMC 逻辑,当然该申请同样适用于上行AMC逻辑。其中D代表down,表示下行时隙,U代表up,表示上行时隙。
Step0:统计量。
BLER4WindowTime1_1=[1%,2%,40%,8%,9%,10%,8%,8%,8%,8%,10%,8%,8%,8%,10%,10%];
BLER4WindowTime1_2=[5%,10%,10%,8%,9%,10%,8%,8%,8%,8%,10%,8%,8%,8%,10%,50%];
BLER4WindowTime2_2=[3%,10%];
N1_1=[200,40,200,200,200,200,190,192,199,200,200,200,200,200,200,200];
N1_2=[200,200,200,200,200,200,190,192,199,200,200,200,200,200,200,200];
n1_2=[200,200];外环MCS4Slot_0_2=13;外环MCS4Slot_2_2=-3;外环MCS4ComnSlot_2=7。其中:BLER4WindowTime1_1:代表第一个周期,第一窗长(WindowTime-Thr1)内,各下行时隙对应的BLER值;BLER4WindowTime1_2:代表第二个周期,第一窗长(WindowTime-Thr1)内,各下行时隙对应的BLER值;BLER4WindowTime2_2:代表第二个周期,第二窗长(WindowTime-Thr2)内,异常时隙(该异常时隙由统计量BLER4WindowTime1_1确定)对应的BLER值;N1_1:代表第一个周期,第一窗长(WindowTime-Thr1)内,各下行时隙对应的调度次数;N1_2:代表第二个周期,第一窗长(WindowTime-Thr1)内,各下行时隙对应的调度次数;n1_2:代表第二个周期,第二窗长(WindowTime-Thr2)内,各异常时隙对应的调度次数;外环MCS4Slot_0_2:代表第二个周期,第一窗长(WindowTime-Thr1)结束时,异常Slot0维护的外环值;外环MCS4Slot_2_2:代表第二个周期,第一窗长(WindowTime-Thr1)结束时,异常Slot2维护的外环值;外环MCS4ComnSlot_2:代表第二个周期,第一窗长(WindowTime-Thr1)结束时,所有有正常时隙共同维护的外环值。
Step1:周期性统计各时隙对应的BLER。第一个周期,调度第一窗长(WindowTime-Thr1)内,各下行时隙对应的BLER为[1%,2%,40%,8%, 9%,10%,8%,8%,8%,8%,10%,8%,8%,8%,10%,10%];各下行时隙对应的调度次数为:[200,40,200,200,200,200,190,192,199,200,200,200,200,200,200,200];T-NR,5ms单周期配置下,下行时隙共16个,其对应Slot_id分别为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17。
Step2:异常时隙筛选。由Step1的统计可知;Slot0,1,2对应的BLER异常,但是由于Slot1对应的调度次数未满足门限值N(50),认为Slot1对应的BLER统计不可靠,所以最终的异常时隙为时隙0和时隙2。
Step3:对于异常时隙单独进行AMC逻辑维护。在接下来的第二个周期,第一窗长(WindowTime-Thr1)内系统将维护2+1套AMC逻辑,其中2套分别维护异常Slot0和异常Slot2,另外一套维护所有的非异常时隙。进而得到Slot0及Slot2对应的时隙级外环(外环MCS4Slot_0,外环MCS4Slot_2),及所有非异常时隙共同理维护一套公共外环(外环MCS4ComnSlot)。
Step4:更新异常时隙对应的AMC调整量。由于第一个周期内,未进行异常时隙的AMC逻辑维护,所以在第一个周期第一窗长结束时,未对异常时隙对应的AMC调整量进行更新。在第二个周期第一窗长结束时,更新异常时隙对应的AMC调整量;AMC_Ajust4Slot_id新=外环MCS4Slot_id+AMC_Ajust4Slot_id-外环MCS4ComnSlot;所以:AMC_Ajust4Slot_0新=13+0-7=6;AMC_Ajust4Slot_2新=-3+0-7=-10;系统内每个时隙对应的调度MCS为:MCS_Slot_id=内环MCS+外环MCS4Slot_id+AMC_Ajust4Slot_id。同时,在第二个周期第一窗长结束时,根据各时隙统计的BLER信息筛选新的异常时隙,重复上述操作。
Step5:周期性统计各时隙对应的BLER。第二个周期,调度第一窗长(WindowTime-Thr1)内,各下行时隙对应的BLER为:[5%,10%,10%,8%,9%,10%,8%,8%,8%,8%,10%,8%,8%,8%,10%,50%];各下行时隙对应的调度次数为:[200,200,200,200,200,200,190,192,199,200,200,200,200,200,200,200];T-NR,5ms单周期配置下,下行时隙共16个,其对应Slot_id分别为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17。
Step6:异常时隙筛选。由Step5的统计可知,此刻不存在异常时隙,所以在第三个周期内无需维护异常时隙对应的AMC逻辑,在第三个周期结束时也无需 更新AMC调整量,只需维护正常时隙对应的公共AMC逻辑即可。
如图3至图5所示,上述功能关闭时,Slot2对应的BLER较高,功能开启后,Slot2的BLER得到有效控制,并且整体流量提升4.6%,当然,流量增益的大小与异常时隙的个数及对应BLER的异常程度强相关。其中,图3为功能开关流量及其他指标对比,图4为功能关各时隙对应BLER,图5为功能开各时隙对应BLER。
在第三个周期结束时,需要根据各时隙新的BLER统计值,继续筛选异常时隙,并重复上述步骤。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
在本实施方式中,通过在线统计各时隙对应的BLER指标,周期性的将异常时隙进行识别,并对异常时隙另外进行AMC逻辑学习,待异常时隙另外的AMC逻辑学习收敛后,更新异常时隙对应的AMC调整量值,并将该异常时隙与其它正常时隙放在一起进行公共AMC逻辑的维护。对于异常时隙通过自适应调制编码的调整量值来保障其在公共AMC机制中的初始调度MCS等于另外AMC机制中的收敛MCS值,从而保证整个系统的吞吐量。即,能够解决部分时隙对应BLER偏低或偏高的现象,保证系统整体的吞吐量。
本申请一个实施方式涉及一种自适应调制编码装置,如图6所示,包括:
统计模块201,用于周期性统计各时隙对应的误块率BLER;
筛选模块202,用于根据统计的BLER筛选出异常时隙和正常时隙,其中,正常时隙为BLER位于预设的门限区间内的时隙,异常时隙为BLER位于门限区间外的时隙;
自适应调制编码模块203,用于为异常时隙单独维护一套不同于正常时隙的AMC逻辑,其中,正常时隙共用同一套AMC逻辑,AMC逻辑用于获取时隙的外环调制编码方式MCS值,外环调制编码方式MCS值用于对时隙进行自适应调制编码;
检测模块204,用于在周期结束时,检测异常时隙的BLER是否收敛至门 限区间内;
更新模块205,用于更新BLER收敛至门限区间内的异常时隙的自适应调制编码的调整量值。
在统计模块201中,所述周期性统计各时隙对应的误块率BLER,包括:实时统计第一窗口内的各时隙分别对应的调度解错次数以及调度总次数;根据所述时隙的所述调度解错次数与所述调度总次数,获取所述时隙对应的BLER。
在一个例子中,所述根据所述时隙的所述调度解错次数与所述调度总次数,获取所述时隙对应的BLER之前,还包括:检测所述调度总次数是否大于预设阈值;若所述调度总次数大于预设阈值,则再执行所述根据所述时隙的所述调度解错次数与所述调度总次数,获取所述时隙对应的BLER。
在一个例子中,所述在周期结束时,检测所述异常时隙的BLER是否收敛至所述门限区间内,包括:统计在所述第一窗口结束之前的第二窗口内的所述异常时隙对应的调度解错次数以及调度总次数;根据所述异常时隙对应的所述调度解错次数与所述调度总次数,获取所述异常时隙对应的BLER;检测获取的所述异常时隙对应的BLER是否收敛至所述门限区间内;其中,所述第二窗口的窗长小于所述第一窗口的窗长。
在自适应调制编码模块203中,所述为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,包括:为各所述异常时隙分别独立维护一套不同于所述正常时隙的AMC逻辑,不同的所述异常时隙对应的AMC逻辑不相同。
或者所述为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,包括:对所述异常时隙进行分组;为同一组的所述异常时隙维护同一套不同于所述正常时隙的AMC逻辑,不同组的所述异常时隙对应的AMC逻辑不相同。
在更新模块205中,所述更新BLER收敛至所述门限区间内的所述异常时隙对应的自适应调制编码的调整量值,包括:将周期结束时所述异常时隙的外环MCS值与所述周期结束时所述异常时隙所对应的AMC调整量值求和,得到和值;将所述和值与所述正常时隙的外环MCS值作差,得到更新后的所述BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
在本实施方式中,通过在线统计各时隙对应的BLER指标,周期性的将异常时隙进行识别,并对异常时隙另外进行AMC逻辑学习,待异常时隙另外的 AMC逻辑学习收敛后,将该异常时隙与其它正常时隙放在一起进行公共AMC逻辑的维护。对于异常时隙通过自适应调制编码的调整量值来保障其在公共AMC机制中的初始调度MCS等于另外AMC机制中的收敛MCS值,从而保证整个系统的吞吐量。
不难发现,本实施方式为与上述实施方式相对应的系统实施例,本实施方式可与上述实施方式互相配合实施。上述实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述实施方式中。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请一个实施方式涉及一种电子设备,如图7所示,包括至少一个处理器301;以及,
与所述至少一个处理器通信连接的存储器302;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的自适应调制编码方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请一个实施方式涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种自适应调制编码方法,包括:
    周期性统计各时隙对应的误块率BLER;
    根据统计的所述BLER筛选出异常时隙和正常时隙,其中,所述正常时隙为BLER位于预设的门限区间内的时隙,所述异常时隙为BLER位于所述门限区间外的时隙;
    为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,其中,所述正常时隙共用同一套AMC逻辑,所述AMC逻辑用于获取时隙的外环调制编码方式MCS值,所述外环调制编码方式MCS值用于对时隙进行自适应调制编码;
    在周期结束时,检测所述异常时隙的BLER是否收敛至所述门限区间内,并更新BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
  2. 根据权利要求1所述的自适应调制编码方法,其中,所述更新BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值,包括:
    将周期结束时所述异常时隙的外环MCS值与所述周期结束时所述异常时隙所对应的AMC调整量值求和,得到和值;
    将所述和值与所述正常时隙的外环MCS值作差,得到更新后的所述BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
  3. 根据权利要求1或2所述的自适应调制编码方法,其中,所述为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,包括:
    为各所述异常时隙分别独立维护一套不同于所述正常时隙的AMC逻辑,不同的所述异常时隙对应的AMC逻辑不相同。
  4. 根据权利要求1或2所述的自适应调制编码方法,其中,所述为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,包括:
    对所述异常时隙进行分组;
    为同一组的所述异常时隙维护同一套不同于所述正常时隙的AMC逻辑,不同组的所述异常时隙对应的AMC逻辑不相同。
  5. 根据权利要求1至4中任一项所述的自适应调制编码方法,其中,所述周期性统计各时隙对应的误块率BLER,包括:
    实时统计第一窗口内的各时隙分别对应的调度解错次数以及调度总次数;
    根据所述时隙的所述调度解错次数与所述调度总次数,获取所述时隙对应的BLER。
  6. 根据权利要求5所述的自适应调制编码方法,其中,所述根据所述时隙的所述调度解错次数与所述调度总次数,获取所述时隙对应的BLER之前,还包括:
    检测所述调度总次数是否大于预设阈值;
    若所述调度总次数大于预设阈值,则再执行所述根据所述时隙的所述调度解错次数与所述调度总次数,获取所述时隙对应的BLER。
  7. 根据权利要求5或6所述的自适应调制编码方法,其中,所述在周期结束时,检测所述异常时隙的BLER是否收敛至所述门限区间内,包括:
    统计在所述第一窗口结束之前的第二窗口内的所述异常时隙对应的调度解错次数以及调度总次数;
    根据所述异常时隙对应的所述调度解错次数与所述调度总次数,获取所述异常时隙对应的BLER;
    检测获取的所述异常时隙对应的BLER是否收敛至所述门限区间内;
    其中,所述第二窗口的窗长小于所述第一窗口的窗长。
  8. 一种自适应调制编码装置,包括:
    统计模块,用于周期性统计各时隙对应的误块率BLER;
    筛选模块,用于根据统计的所述BLER筛选出异常时隙和正常时隙,其中,所述正常时隙为BLER位于预设的门限区间内的时隙,所述异常时隙为BLER 位于所述门限区间外的时隙;
    自适应调制编码模块,用于为所述异常时隙单独维护一套不同于所述正常时隙的AMC逻辑,其中,所述正常时隙共用同一套AMC逻辑,所述AMC逻辑用于获取时隙的外环调制编码方式MCS值,所述外环调制编码方式MCS值用于对时隙进行自适应调制编码;
    检测模块,用于在周期结束时,检测所述异常时隙的BLER是否收敛至所述门限区间内;
    更新模块,用于更新BLER收敛至所述门限区间内的所述异常时隙的自适应调制编码的调整量值。
  9. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一项所述的自适应调制编码方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的自适应调制编码方法。
PCT/CN2022/106594 2021-07-23 2022-07-19 自适应调制编码方法、装置、电子设备及存储介质 WO2023001160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110837783.9 2021-07-23
CN202110837783.9A CN115694717A (zh) 2021-07-23 2021-07-23 自适应调制编码方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023001160A1 true WO2023001160A1 (zh) 2023-01-26

Family

ID=84980035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106594 WO2023001160A1 (zh) 2021-07-23 2022-07-19 自适应调制编码方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115694717A (zh)
WO (1) WO2023001160A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117997476A (zh) * 2024-03-29 2024-05-07 极芯通讯技术(安吉)有限公司 基于大步长的快速amc方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098147A (zh) * 2011-02-01 2011-06-15 上海华为技术有限公司 Cqi调整方法、用户设备、基站及系统
CN103546244A (zh) * 2013-11-01 2014-01-29 武汉邮电科学研究院 一种自适应调制编码方法及装置
US20140126467A1 (en) * 2012-11-07 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Multiple outer loop link adaptation
US20140198677A1 (en) * 2013-01-16 2014-07-17 Qualcomm Incorporated Channel state information and adaptive modulation and coding design for long-term evolution machine type communications
CN109644477A (zh) * 2016-09-13 2019-04-16 华为技术有限公司 自适应调制编码的方法和基站
WO2021043131A1 (zh) * 2019-09-02 2021-03-11 中兴通讯股份有限公司 一种自适应调制方式控制方法、装置、基站及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098147A (zh) * 2011-02-01 2011-06-15 上海华为技术有限公司 Cqi调整方法、用户设备、基站及系统
US20140126467A1 (en) * 2012-11-07 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Multiple outer loop link adaptation
US20140198677A1 (en) * 2013-01-16 2014-07-17 Qualcomm Incorporated Channel state information and adaptive modulation and coding design for long-term evolution machine type communications
CN103546244A (zh) * 2013-11-01 2014-01-29 武汉邮电科学研究院 一种自适应调制编码方法及装置
CN109644477A (zh) * 2016-09-13 2019-04-16 华为技术有限公司 自适应调制编码的方法和基站
WO2021043131A1 (zh) * 2019-09-02 2021-03-11 中兴通讯股份有限公司 一种自适应调制方式控制方法、装置、基站及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117997476A (zh) * 2024-03-29 2024-05-07 极芯通讯技术(安吉)有限公司 基于大步长的快速amc方法、装置及存储介质

Also Published As

Publication number Publication date
CN115694717A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN104350789B (zh) 功率调节装置及方法
CN102281119A (zh) 一种上行链路自适应编码调制方法及实现该方法的基站
WO2023001160A1 (zh) 自适应调制编码方法、装置、电子设备及存储介质
US7860509B2 (en) Methods and arrangements for adaptive thresholds in codec selection
CN102523074B (zh) 一种无线通信系统自适应编码调制方法与装置
CN112600648B (zh) 一种基于5g标准nr的下行自适应调制与编码方法及系统
CN113411904B (zh) 上行调度控制方法及装置、设备和存储介质
CN103546244A (zh) 一种自适应调制编码方法及装置
CN101674654A (zh) Pdcch信道编码率调整方法和演进基站
CN112636891A (zh) 资源调度参数的调整方法、装置、存储介质及电子装置
US10237831B2 (en) Outer loop power control method, apparatus, and device
CN102316568A (zh) 闭环功率控制处理方法及基站
US8457237B2 (en) Power control in a wireless communication system
US20160323899A1 (en) Method and Network Node For Sector Selection
WO2023241309A1 (zh) 自适应调制编码方法、装置、基站及存储介质
US20220210744A1 (en) Transmitting power determination method, apparatus and communication device
CN102368868A (zh) 一种优化物理上行链路控制信道功率控制的方法
CN108206729A (zh) 一种调整数据传输方式的方法及装置
WO2023273891A1 (zh) 外环初始值的调整方法、设备及计算机可读存储介质
CN101567750A (zh) Cqi修正的方法和基站
EP2368393B1 (en) Communications unit and method for use in a wireless communications network
WO2021047456A1 (zh) 一种链路自适应调整方法、装置、服务器及存储介质
CN101237263A (zh) 上行增强物理信道的外环功率控制方法及装置
CN117997476B (zh) 基于大步长的快速amc方法、装置及存储介质
CN116112124B (zh) 自适应调节编码中上行共享信道的配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE