WO2022270515A1 - Air-conditioning device with exhaust device - Google Patents

Air-conditioning device with exhaust device Download PDF

Info

Publication number
WO2022270515A1
WO2022270515A1 PCT/JP2022/024775 JP2022024775W WO2022270515A1 WO 2022270515 A1 WO2022270515 A1 WO 2022270515A1 JP 2022024775 W JP2022024775 W JP 2022024775W WO 2022270515 A1 WO2022270515 A1 WO 2022270515A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
air
outdoor
exhaust device
air conditioner
Prior art date
Application number
PCT/JP2022/024775
Other languages
French (fr)
Japanese (ja)
Inventor
裕記 藤岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280043373.XA priority Critical patent/CN117529629A/en
Publication of WO2022270515A1 publication Critical patent/WO2022270515A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0041Indoor units, e.g. fan coil units characterised by exhaustion of inside air from the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-032855
  • the air conditioner disclosed in Patent Document 1 includes an exhaust device.
  • the exhaust device is for discharging indoor odor components to the outdoors together with the air.
  • the operation of the exhaust system is determined by the odor level.
  • the air conditioner of the first aspect air-conditions the indoor space by performing an air-conditioning operation.
  • An air conditioner includes a compressor, a heat exchanger, a fan, an exhaust device, and a controller.
  • the heat exchanger exchanges heat with indoor air.
  • the fan supplies the heat-exchanged indoor air to the indoor space.
  • Exhaust devices move indoor air from an indoor space to an outdoor space.
  • the control unit operates the exhaust device according to the heat load of the indoor space at the start of the air conditioning operation.
  • part of the heat load that should be removed from the indoor air is removed not only by the air conditioning operation but also by the operation of the exhaust system. Therefore, the energy consumed by the air conditioner can be suppressed.
  • the air conditioner of the second aspect is the air conditioner of the first aspect, wherein the heat load is determined by at least one of the temperature of the indoor air and the humidity of the indoor air.
  • the heat load depends on the room temperature or room humidity. Therefore, room temperature or room humidity is taken into consideration as a condition for exhaust operation.
  • the air conditioner of the third aspect is the air conditioner of the first aspect or the second aspect, in which the heat load is determined by the temperature of the frame constituting the room in which the air conditioner is installed.
  • the heat load depends on the body temperature. Therefore, the building body temperature is considered as a condition for the exhaust operation.
  • An air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect, wherein the control unit operates the exhaust device according to a comparison result between the temperature of the indoor air and the temperature of the outdoor air. make it work.
  • the conditions for starting exhaust include not only the indoor temperature but also the outdoor temperature. Therefore, it is possible to set the exhaust start condition in consideration of the indoor temperature and the outdoor temperature.
  • An air conditioner according to a fifth aspect is the air conditioner according to any one of the first aspect to the third aspect, wherein the control unit operates the exhaust device according to the result of comparison between the humidity of the indoor air and the humidity of the outdoor air. make it work.
  • An air conditioner according to a sixth aspect is an air conditioner according to any one of the first aspect to the fifth aspect, at the start of air conditioning operation immediately after the compressor has stopped due to a decrease in the heat load in the indoor space, The controller does not operate the exhaust system.
  • the exhaust device does not operate when the air-conditioning operation starts immediately after the compressor stops, that is, when returning from thermo-off. Therefore, when the compressor requires a large amount of energy, the compressor can secure a sufficient amount of energy.
  • the air conditioner of the seventh aspect is any one of the air conditioners of the first to sixth aspects, further comprising a human detection device.
  • a human detection device detects a person inside a room in which an air conditioner is installed.
  • the control unit operates the exhaust device when the human detection device detects a person.
  • the exhaust device operates when the room is manned. Therefore, since the exhaust device does not operate in an unmanned state, the energy consumption of the air conditioner is further suppressed.
  • An air conditioner according to an eighth aspect is the air conditioner according to any one of the first aspect to the seventh aspect, wherein the controller operates the exhaust device when the heat load exceeds a first value, and the heat load exceeds the first value. Stopping the exhaust when falling below a second value that is less than the first value.
  • the hysteresis characteristic is applied to the exhaust control according to the heat load. Therefore, it is possible to suppress chattering in the control circuit of the exhaust system.
  • FIG. 1 is a schematic diagram showing an air conditioner 100 according to a basic embodiment
  • FIG. 4 is a schematic diagram for explaining a heat load L
  • FIG. 4 is a flow chart of control of the exhaust device 18.
  • FIG. 4 is a graph showing the relationship between the heat load L and the state of the exhaust device 18.
  • An air conditioner 100 shown in FIG. 1 has an outdoor unit 10, an indoor unit 20, a connecting pipe 30, and an exhaust hose 40.
  • the space in which the air conditioner 100 is installed extends over both the outdoor space SO and the indoor space SI separated by the wall W of the building B.
  • the outdoor unit 10 is installed in the outdoor space SO.
  • the indoor unit 20 is installed in the indoor space SI.
  • the wall W forms part of the room R in which the indoor unit 20 is installed.
  • Both the connecting pipe 30 and the exhaust hose 40 penetrate the wall W and connect the outdoor unit 10 and the indoor unit 20 .
  • the air conditioner 100 has a refrigerant circuit 90.
  • the refrigerant circuit 90 circulates the refrigerant in the direction of arrow C in the figure during cooling operation.
  • Refrigerant circuit 90 circulates the refrigerant in the direction of arrow H in the figure during heating operation.
  • Outdoor unit 10 functions as a heat source.
  • the outdoor unit 10 includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an outdoor expansion valve 15, a liquid shut-off valve 16, and a gas shut-off valve 17 as components that make up the refrigerant circuit 90.
  • the outdoor unit 10 has an outdoor casing 10 a , an exhaust device 18 , an outdoor controller 19 , an outdoor temperature sensor 53 and an outdoor humidity sensor 54 .
  • FIG. 1 merely shows the configuration of the outdoor unit 10 schematically, which components are arranged near the outdoor air inlet 51 and which other components are arranged near the outdoor outlet 52. It does not indicate whether
  • Compressor 11 produces high pressure gas refrigerant by compressing low pressure gas refrigerant.
  • Outdoor heat exchanger 13 The outdoor heat exchanger 13 exchanges heat between the refrigerant and the outdoor air AO.
  • the outdoor heat exchanger 13 functions as a condenser during cooling operation.
  • the outdoor heat exchanger 13 functions as an evaporator during heating operation.
  • Outdoor fan 14 facilitates heat exchange in the outdoor heat exchanger 13 .
  • the outdoor fan 14 takes in the outdoor air AO from the outdoor suction port 51 and supplies it to the outdoor heat exchanger 13 .
  • the outdoor fan 14 discharges the air after heat exchange by the outdoor heat exchanger 13 through the outdoor outlet 52 .
  • Outdoor expansion valve 15 The outdoor expansion valve 15 reduces the pressure of the refrigerant. The outdoor expansion valve 15 adjusts the circulation amount of the refrigerant.
  • liquid closing valve 16 and the gas shutoff valve 17 are for connecting or disconnecting the portion of the refrigerant circuit 90 outside the outdoor unit 10 and the portion inside the outdoor unit 10 .
  • the liquid shutoff valve 16 and the gas shutoff valve 17 can close the refrigerant circuit 90 .
  • Exhaust device 18 The exhaust device 18 extracts the indoor air AI from the indoor space SI and exhausts it to the outdoor space SO.
  • Outdoor control unit 19 is a computer that acquires sensor information, controls actuators, and performs various calculations.
  • Outdoor temperature sensor 53, outdoor humidity sensor 54 The outdoor temperature sensor 53 acquires the temperature of the outdoor air AO.
  • the outdoor humidity sensor 54 acquires the humidity of the outdoor air AO.
  • the indoor unit 20 provides conditioned indoor air AI to users staying in the indoor space SI.
  • the indoor unit 20 has an indoor heat exchanger 25 and an indoor fan 26 as components forming the refrigerant circuit 90 .
  • the indoor unit 20 has an indoor casing 20 a , an indoor controller 29 , an indoor temperature sensor 63 , an indoor humidity sensor 64 , a body temperature sensor 65 and a human detection device 66 .
  • the indoor casing 20 a accommodates the components of the indoor unit 20 .
  • the indoor casing 20 a has an indoor suction port 61 and an indoor air outlet 62 .
  • FIG. 1 only schematically shows the configuration of the indoor unit 20, which component is located near the indoor air inlet 61 and which other component is located near the indoor air outlet 62. It does not indicate whether
  • the indoor heat exchanger 25 exchanges heat between the refrigerant and the indoor air AI.
  • the indoor heat exchanger 25 functions as an evaporator during cooling operation.
  • the indoor heat exchanger 25 functions as a condenser during heating operation.
  • Indoor fan 26 promotes heat exchange in indoor heat exchanger 25 .
  • the indoor fan 26 takes in the indoor air AI from the indoor air inlet 61 and supplies it to the indoor heat exchanger 25 .
  • the indoor fan 26 discharges the air after heat exchange by the indoor heat exchanger 25 from the indoor outlet 62 .
  • the indoor control unit 29 is a computer that acquires sensor information, controls actuators, and performs various calculations. Further, the indoor control unit 29 communicates with the outdoor control unit 19 using a communication line (not shown) to exchange information with the outdoor control unit 19 .
  • Indoor temperature sensor 63 acquires the temperature of the indoor air AI.
  • the indoor humidity sensor 64 acquires the humidity of the indoor air AI.
  • the frame temperature sensor 65 acquires the temperature of the frame of the building B including the wall W.
  • Human detection device 66 A human detection device 66 detects a person in the indoor space SI.
  • the human detection device 66 may be, for example, a human sensor.
  • the connecting pipe 30 also constitutes a refrigerant circuit 90 .
  • the communication pipe 30 has a liquid refrigerant pipe 31 and a gas refrigerant pipe 32 .
  • the liquid refrigerant pipe 31 connects the liquid closing valve 16 and the indoor heat exchanger 25 .
  • a gas refrigerant pipe 32 connects the gas shutoff valve 17 and the indoor heat exchanger 25 .
  • the exhaust hose 40 communicates the outdoor space SO and the indoor space SI.
  • the indoor air AI in the indoor space SI is exhausted to the outdoor space SO as an exhaust flow V passing through the exhaust hose 40 .
  • FIG. 2 is a schematic diagram for explaining the heat load L.
  • FIG. 2 an indoor space SI to be air-conditioned defined by the room R is shown.
  • the indoor space SI has a heat load L.
  • the heat load L is the amount of heat that the air conditioner 100 needs to remove from the indoor air AI in order to bring the indoor temperature Ti to the target temperature Tt.
  • the heat load L includes an external load Lo and an internal load Li.
  • the external load Lo is caused by the outdoor temperature To.
  • the internal load Li is caused by a heat source 80 such as a home appliance, an electronic device, or a person present in the indoor space SI.
  • the air conditioner 100 produces an air conditioning capacity Q in order to reduce the heat load L of the indoor space SI.
  • the outdoor control unit 19 and the indoor control unit 29 calculate the heat load L of the indoor space SI in order to generate an appropriate air conditioning capacity Q.
  • the heat load L calculated here may not be the heat load in the strict sense, but may be an amount related to the heat load.
  • the heat load L to be calculated is determined by a function of the target temperature Tt, the indoor temperature Ti, and the outdoor temperature To.
  • FIG. 3 shows the control flow of the exhaust device 18.
  • a control system for the exhaust device 18 realized by a part of the outdoor control unit 19 and the indoor control unit 29 (hereinafter referred to as "air conditioning control unit") is the subject that performs control according to this control flow.
  • FIG. 4 shows the relationship between the heat load L of the indoor space SI and the state of the exhaust device 18. As shown in FIG. The heat load L to be calculated here is described as being obtained from a function of the indoor temperature Ti and the outdoor temperature To.
  • the process is started from the starting point of the process start of step SS in FIG.
  • step S0 the control system of the exhaust device 18 checks whether the air conditioning operation has started.
  • the air conditioning operation is performed by the control system of the refrigerant circuit 90 .
  • the control system of the refrigerant circuit 90 is implemented by a part of the air conditioning control unit that is separate from the part that constitutes the control system of the exhaust device 18 .
  • step S0 There are various specific events that are treated as "start of air conditioning operation" in step S0. Examples 1 to 3 listed below are examples of starting the air conditioning operation.
  • Example 1 Occurrence of an event in which the user presses a key that instructs the air conditioner 100 to operate.
  • Example 2 Occurrence of an event reaching the reserved operation time set in the air conditioner 100 .
  • Example 3 Occurrence of an event that causes the control system of the refrigerant circuit 90 to operate the compressor 11 after the event of Example 1 or Example 2 above.
  • the control system of the exhaust device 18 shifts the process to S1 when the air conditioning operation has started, and returns the process to S0 when the air conditioning operation has not started.
  • step S1 the air conditioning control unit sets the heat load threshold value Lth, which is a variable managed by itself, to the first value V1.
  • step S2 the air conditioning control unit acquires the indoor temperature Ti by the indoor temperature sensor 63.
  • step S3 the air conditioning control unit acquires the outdoor temperature To by the outdoor temperature sensor 53.
  • step S4 the air conditioning control unit calculates the heat load L of the indoor space SI based on the indoor temperature Ti and the outdoor temperature To. For example, the air conditioning control unit compares the outdoor temperature To and the indoor temperature Ti, and calculates the heat load L according to the difference ⁇ T between the two.
  • step S5 the air conditioning control unit compares the heat load L with the heat load threshold value Lth stored by itself. When the heat load L exceeds the heat load threshold Lth, the process proceeds to step S6, and when the heat load L is equal to or less than the heat load threshold Lth, the process proceeds to step S8.
  • step S6 the air conditioning control unit operates the exhaust device 18.
  • step S7 the air conditioning control unit sets the heat load threshold value Lth to the second value V2.
  • the second value V2 is a value smaller than the first value V1. After that, the air conditioning control unit returns the process to step S2.
  • step S8 the air conditioning control unit stops the exhaust device 18.
  • step S9 the air conditioning control unit sets the thermal load threshold Lth to the first value V1. After that, the air conditioning control unit returns the process to step S2.
  • the graph showing the relationship between the thermal load L and the state of the exhaust device 18 can be obtained as shown in FIG. It exhibits hysteresis characteristics.
  • Exhaust starting conditions include not only the indoor temperature Ti but also the outdoor temperature To. Therefore, it is possible to set the conditions for starting the exhaust in consideration of the indoor temperature Ti and the outdoor temperature To.
  • the thermal load threshold Lth is alternately switched to one of the first value V1 and the second value V2.
  • the hysteresis characteristic is applied to the exhaust control according to the heat load L. Therefore, chattering of the control circuit of the exhaust device 18 can be suppressed.
  • the heat load L to be calculated is obtained as a function of both the indoor temperature Ti and the outdoor temperature To.
  • the heat load L may be obtained as a function of only the indoor temperature Ti without using the outdoor temperature To.
  • the conditions under which the exhaust device 18 operates are independent of the outdoor temperature To, and are determined only by the indoor temperature Ti. Therefore, the calculations performed by the outdoor controller 19 and the indoor controller 29 are simple.
  • heat load L is determined by various temperatures.
  • heat load L may be determined using different humidity in place of or in conjunction with different temperatures.
  • heat load L may be determined by indoor humidity Hi and outdoor humidity Ho.
  • the indoor humidity Hi can be obtained by the indoor humidity sensor 64 .
  • the outdoor humidity Ho can be obtained by the outdoor humidity sensor 54 .
  • the indoor humidity Hi and the outdoor humidity Ho can be used as conditions for starting exhaust.
  • the heat load L may be obtained as a function of only the indoor humidity Hi without using the outdoor humidity Ho.
  • the conditions under which the exhaust device 18 operates are independent of the outdoor humidity Ho, and are determined only by the indoor humidity Hi. Therefore, the calculations performed by the outdoor controller 19 and the indoor controller 29 are simple.
  • the heat load L may be determined by the frame temperature Tb, which is the temperature of the frame forming the room R in which the indoor unit 20 is installed.
  • the body temperature Tb can be obtained by the body temperature sensor 65 .
  • the outdoor controller 19 and the indoor controller 29 may use not only the body temperature Tb, but also various temperatures, various humidity, or both.
  • the heat load L depends on the body temperature Tb. Therefore, the building body temperature Tb is considered as a condition for the exhaust operation.
  • thermo-off (6-5) Fifth Modification When the heat load L of the indoor space SI becomes small and the indoor temperature Ti approaches the target temperature Tt, the control system of the refrigerant circuit 90 realized by the outdoor controller 19 and the indoor controller 29 stops the compressor 11 . This state is called thermo-off.
  • the control system of the refrigerant circuit 90 operates the compressor 11 again to recover from the thermostat off.
  • the outdoor control unit 19 and the indoor control unit 29 may keep the exhaust device 18 stopped without operating it immediately after returning from thermo-off.
  • the exhaust device 18 does not operate when returning from thermo-off. Therefore, the compressor 11 can secure a sufficient amount of energy in the restoration operation from thermo-off, which requires the compressor 11 to have a large amount of energy.
  • the exhaust device 18 operates when the room R is manned. Therefore, since the exhaust device 18 does not operate in an unmanned state, the energy consumption of the air conditioner 100 is further suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Ventilation (AREA)

Abstract

An air-conditioning device (100) comprises a compressor (11), a heat exchanger (25), a fan (26), an exhaust device (18), and control units (19, 29). The heat exchanger (25) performs a heat exchange with indoor air (AI). The fan (26) supplies the indoor air (AI) that has undergone the heat exchange to an indoor space (SI). The exhaust device (18) transports the indoor air (AI) from the indoor space (SI) to an outdoor space (SO). At the beginning of air-conditioning operations, the control units (19, 29) make the exhaust device (18) operate in accordance with the thermal load (L) of the indoor space (SI).

Description

排気装置を有する空気調和装置Air conditioner with exhaust system
 排気装置を有する空気調和装置に関する。  Regarding an air conditioner with an exhaust system.
 特許文献1(特開2007-032855号公報)に開示される空気調和装置は、排気装置を備える。排気装置は、室内の臭い成分を空気とともに室外へ排出するためのものである。排気装置の動作は、臭いの水準によって決定される。 The air conditioner disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-032855) includes an exhaust device. The exhaust device is for discharging indoor odor components to the outdoors together with the air. The operation of the exhaust system is determined by the odor level.
 上述の文献の構成においては、空気調和装置が消費するエネルギーを低減させることは特段考慮されていない。したがって、排気装置の利用によって空気調和対象の熱負荷を軽減させ、それによって空気調和装置の消費エネルギーを低減させることについては改善の余地がある。 In the configuration of the above document, no particular consideration is given to reducing the energy consumed by the air conditioner. Therefore, there is room for improvement in reducing the heat load on the object to be air-conditioned by using the exhaust system, thereby reducing the energy consumption of the air-conditioning system.
 第1観点の空気調和装置は、空調運転を行うことによって室内空間の空気調和を行う。空気調和装置は、圧縮機と、熱交換器と、ファンと、排気装置と、制御部と、を備える。熱交換器は、室内空気と熱交換を行う。ファンは、熱交換された室内空気を室内空間に供給する。排気装置は、室内空間から室外空間へ室内空気を移動させる。制御部は、空調運転の開始時において、室内空間の熱負荷に応じて排気装置を動作させる。 The air conditioner of the first aspect air-conditions the indoor space by performing an air-conditioning operation. An air conditioner includes a compressor, a heat exchanger, a fan, an exhaust device, and a controller. The heat exchanger exchanges heat with indoor air. The fan supplies the heat-exchanged indoor air to the indoor space. Exhaust devices move indoor air from an indoor space to an outdoor space. The control unit operates the exhaust device according to the heat load of the indoor space at the start of the air conditioning operation.
 この構成によれば、室内空気から取り除くべき熱負荷の一部が、空調運転によってだけでなく、排気装置の動作によっても取り除かれる。したがって、空気調和装置によって消費されるエネルギーを抑制することができる。 According to this configuration, part of the heat load that should be removed from the indoor air is removed not only by the air conditioning operation but also by the operation of the exhaust system. Therefore, the energy consumed by the air conditioner can be suppressed.
 第2観点の空気調和装置は、第1観点の空気調和装置において、熱負荷が、室内空気の温度、及び室内空気の湿度、の少なくとも1つによって決定される。 The air conditioner of the second aspect is the air conditioner of the first aspect, wherein the heat load is determined by at least one of the temperature of the indoor air and the humidity of the indoor air.
 この構成によれば、熱負荷は室内温度又は室内湿度に依存する。したがって、排気動作の条件として、室内温度又は室内湿度が考慮される。 According to this configuration, the heat load depends on the room temperature or room humidity. Therefore, room temperature or room humidity is taken into consideration as a condition for exhaust operation.
 第3観点の空気調和装置は、第1観点又は第2観点の空気調和装置において、熱負荷が、空気調和装置が設置される部屋を構成する躯体の温度、によって決定される。 The air conditioner of the third aspect is the air conditioner of the first aspect or the second aspect, in which the heat load is determined by the temperature of the frame constituting the room in which the air conditioner is installed.
 この構成によれば、熱負荷は躯体温度に依存する。したがって、排気動作の条件として、躯体温度が考慮される。 According to this configuration, the heat load depends on the body temperature. Therefore, the building body temperature is considered as a condition for the exhaust operation.
 第4観点の空気調和装置は、第1観点から第3観点のいずれか1つ空気調和装置において、制御部が、室内空気の温度と、室外空気の温度との比較結果に応じて排気装置を動作させる。 An air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect, wherein the control unit operates the exhaust device according to a comparison result between the temperature of the indoor air and the temperature of the outdoor air. make it work.
 この構成によれば、排気の開始条件に、室内温度のみならず室外温度が含まれる。したがって、室内温度及び室外温度を考慮した排気の開始条件を設定することができる。 According to this configuration, the conditions for starting exhaust include not only the indoor temperature but also the outdoor temperature. Therefore, it is possible to set the exhaust start condition in consideration of the indoor temperature and the outdoor temperature.
 第5観点の空気調和装置は、第1観点から第3観点のいずれか1つ空気調和装置において、制御部は、室内空気の湿度と、室外空気の湿度との比較結果に応じて排気装置を動作させる。 An air conditioner according to a fifth aspect is the air conditioner according to any one of the first aspect to the third aspect, wherein the control unit operates the exhaust device according to the result of comparison between the humidity of the indoor air and the humidity of the outdoor air. make it work.
 この構成によれば、排気の開始条件に、室内湿度のみならず室外湿度が含まれる。したがって、室内湿度及び室外湿度を考慮した排気の開始条件を設定することができる。 According to this configuration, not only the indoor humidity but also the outdoor humidity are included in the exhaust start conditions. Therefore, it is possible to set the exhaust start condition in consideration of the indoor humidity and the outdoor humidity.
 第6観点の空気調和装置は、第1観点から第5観点のいずれか1つ空気調和装置において、室内空間の熱負荷が小さくなることで圧縮機が停止した直後の、空調運転の開始時には、制御部は排気装置を動作させない。 An air conditioner according to a sixth aspect is an air conditioner according to any one of the first aspect to the fifth aspect, at the start of air conditioning operation immediately after the compressor has stopped due to a decrease in the heat load in the indoor space, The controller does not operate the exhaust system.
 この構成によれば、圧縮機が停止した直後の空調運転の開始時、すなわちサーモオフからの復帰時において、排気装置は動作しない。したがって、圧縮機が大きなエネルギーを必要とする際に、圧縮機が十分な量のエネルギーを確保できる。 According to this configuration, the exhaust device does not operate when the air-conditioning operation starts immediately after the compressor stops, that is, when returning from thermo-off. Therefore, when the compressor requires a large amount of energy, the compressor can secure a sufficient amount of energy.
 第7観点の空気調和装置は、第1観点から第6観点のいずれか1つ空気調和装置において、人検知装置をさらに備える。人検知装置は、空気調和装置が設置される部屋の内部にいる人を検知する。制御部は、人検知装置が人を検知したときに、排気装置を動作させる。 The air conditioner of the seventh aspect is any one of the air conditioners of the first to sixth aspects, further comprising a human detection device. A human detection device detects a person inside a room in which an air conditioner is installed. The control unit operates the exhaust device when the human detection device detects a person.
 この構成によれば、部屋の有人状態において排気装置が動作する。したがって、無人状態において排気装置が動作しないので、空気調和装置の消費エネルギーがさらに抑制される。 According to this configuration, the exhaust device operates when the room is manned. Therefore, since the exhaust device does not operate in an unmanned state, the energy consumption of the air conditioner is further suppressed.
 第8観点の空気調和装置は、第1観点から第7観点のいずれか1つ空気調和装置において、制御部が、熱負荷が第1値を上回るときに排気装置を動作させるとともに、熱負荷が第1値よりも小さな第2値を下回るときに排気装置を停止させる。 An air conditioner according to an eighth aspect is the air conditioner according to any one of the first aspect to the seventh aspect, wherein the controller operates the exhaust device when the heat load exceeds a first value, and the heat load exceeds the first value. Stopping the exhaust when falling below a second value that is less than the first value.
 この構成によれば、熱負荷に応じた排気制御にヒステリシス特性が適用される。したがって、排気装置の制御回路がチャタリングを起こすことを抑制できる。 According to this configuration, the hysteresis characteristic is applied to the exhaust control according to the heat load. Therefore, it is possible to suppress chattering in the control circuit of the exhaust system.
基本実施形態に係る空気調和装置100を示す模式図である。1 is a schematic diagram showing an air conditioner 100 according to a basic embodiment; FIG. 熱負荷Lを説明するための模式図である。4 is a schematic diagram for explaining a heat load L; FIG. 排気装置18の制御のフローチャートである。4 is a flow chart of control of the exhaust device 18. FIG. 熱負荷Lと、排気装置18の状態の関係を示すグラフである。4 is a graph showing the relationship between the heat load L and the state of the exhaust device 18. FIG.
 <基本実施形態>
 (1)全体構成
 図1に示す空気調和装置100は、室外ユニット10、室内ユニット20、連絡配管30、排気ホース40を有する。空気調和装置100が設置される空間は、建物Bの壁Wによって隔てられる室外空間SO及び室内空間SIの両方にわたっている。室外ユニット10は室外空間SOに設置される。室内ユニット20は室内空間SIに設置される。壁Wは、室内ユニット20が設置される部屋Rの一部を構成する。連絡配管30及び排気ホース40の両方は、壁Wを貫通し、室外ユニット10及び室内ユニット20を接続している。
<Basic embodiment>
(1) Overall Configuration An air conditioner 100 shown in FIG. 1 has an outdoor unit 10, an indoor unit 20, a connecting pipe 30, and an exhaust hose 40. The space in which the air conditioner 100 is installed extends over both the outdoor space SO and the indoor space SI separated by the wall W of the building B. The outdoor unit 10 is installed in the outdoor space SO. The indoor unit 20 is installed in the indoor space SI. The wall W forms part of the room R in which the indoor unit 20 is installed. Both the connecting pipe 30 and the exhaust hose 40 penetrate the wall W and connect the outdoor unit 10 and the indoor unit 20 .
 空気調和装置100は冷媒回路90を有する。冷媒回路90は、冷房運転のときに冷媒を図中の矢印Cの方向に循環させる。冷媒回路90は、暖房運転のときに冷媒を図中の矢印Hの方向に循環させる。 The air conditioner 100 has a refrigerant circuit 90. The refrigerant circuit 90 circulates the refrigerant in the direction of arrow C in the figure during cooling operation. Refrigerant circuit 90 circulates the refrigerant in the direction of arrow H in the figure during heating operation.
 (2)詳細構成
 (2-1)室外ユニット10
 室外ユニット10は、熱源として機能する。室外ユニット10は、冷媒回路90を構成する部品として、圧縮機11、四路切換弁12、室外熱交換器13、室外ファン14、室外膨張弁15、液閉鎖弁16、及び、ガス閉鎖弁17を有する。さらに、室外ユニット10は、室外ケーシング10a、排気装置18、室外制御部19、室外温度センサ53、室外湿度センサ54を有する。
(2) Detailed configuration (2-1) Outdoor unit 10
The outdoor unit 10 functions as a heat source. The outdoor unit 10 includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an outdoor expansion valve 15, a liquid shut-off valve 16, and a gas shut-off valve 17 as components that make up the refrigerant circuit 90. have Furthermore, the outdoor unit 10 has an outdoor casing 10 a , an exhaust device 18 , an outdoor controller 19 , an outdoor temperature sensor 53 and an outdoor humidity sensor 54 .
 (2-1-1)室外ケーシング10a
 室外ケーシング10aは、室外ユニット10の構成部品を収容する。室外ケーシング10aは、室外吸込口51、及び室外吹出口52を有する。図1は、室外ユニット10の構成を模式的に示すものに過ぎず、どの構成部品が室外吸込口51の近くに配置されるとともに、別のどの構成部品が室外吹出口52の近くに配置されるかを示すものではない。
(2-1-1) Outdoor casing 10a
The outdoor casing 10 a accommodates the components of the outdoor unit 10 . The outdoor casing 10 a has an outdoor inlet 51 and an outdoor outlet 52 . FIG. 1 merely shows the configuration of the outdoor unit 10 schematically, which components are arranged near the outdoor air inlet 51 and which other components are arranged near the outdoor outlet 52. It does not indicate whether
 (2-1-2)圧縮機11
 圧縮機11は、低圧ガス冷媒を圧縮することによって、高圧ガス冷媒を作り出す。
(2-1-2) Compressor 11
Compressor 11 produces high pressure gas refrigerant by compressing low pressure gas refrigerant.
 (2-1-3)四路切換弁12
 四路切換弁12は、冷房運転のときに図1の実線で示す接続を実現させる。四路切換弁12は、暖房運転のときに図1の破線で示す接続を実現させる。
(2-1-3) Four-way switching valve 12
The four-way switching valve 12 realizes the connection indicated by the solid line in FIG. 1 during cooling operation. The four-way switching valve 12 realizes the connection indicated by the dashed line in FIG. 1 during heating operation.
 (2-1-4)室外熱交換器13
 室外熱交換器13は、冷媒と室外空気AOの間で熱交換を行う。室外熱交換器13は、冷房運転のときに凝縮器として機能する。室外熱交換器13は、暖房運転のときに蒸発器として機能する。
(2-1-4) Outdoor heat exchanger 13
The outdoor heat exchanger 13 exchanges heat between the refrigerant and the outdoor air AO. The outdoor heat exchanger 13 functions as a condenser during cooling operation. The outdoor heat exchanger 13 functions as an evaporator during heating operation.
 (2-1-5)室外ファン14
 室外ファン14は、室外熱交換器13の熱交換を促進する。室外ファン14は、室外空気AOを室外吸込口51から取り込み、室外熱交換器13へ供給する。室外ファン14は、室外熱交換器13が熱交換を終えた空気を室外吹出口52から排出する。
(2-1-5) Outdoor fan 14
The outdoor fan 14 facilitates heat exchange in the outdoor heat exchanger 13 . The outdoor fan 14 takes in the outdoor air AO from the outdoor suction port 51 and supplies it to the outdoor heat exchanger 13 . The outdoor fan 14 discharges the air after heat exchange by the outdoor heat exchanger 13 through the outdoor outlet 52 .
 (2-1-6)室外膨張弁15
 室外膨張弁15は、冷媒を減圧させる。室外膨張弁15は、冷媒の循環量を調節する。
(2-1-6) Outdoor expansion valve 15
The outdoor expansion valve 15 reduces the pressure of the refrigerant. The outdoor expansion valve 15 adjusts the circulation amount of the refrigerant.
 (2-1-7)液閉鎖弁16、ガス閉鎖弁17
 液閉鎖弁16及びガス閉鎖弁17は、冷媒回路90のうち室外ユニット10の外部にある部分と、室外ユニット10の内部にある部分とを、互いに接続又は切断するためのものである。液閉鎖弁16及びガス閉鎖弁17は、冷媒回路90を閉鎖することができる。
(2-1-7) liquid closing valve 16, gas closing valve 17
The liquid shutoff valve 16 and the gas shutoff valve 17 are for connecting or disconnecting the portion of the refrigerant circuit 90 outside the outdoor unit 10 and the portion inside the outdoor unit 10 . The liquid shutoff valve 16 and the gas shutoff valve 17 can close the refrigerant circuit 90 .
 (2-1-8)排気装置18
 排気装置18は、室内空間SIから室内空気AIを取り出し、室外空間SOへ排気する。
(2-1-8) Exhaust device 18
The exhaust device 18 extracts the indoor air AI from the indoor space SI and exhausts it to the outdoor space SO.
 (2-1-9)室外制御部19
 室外制御部19は、センサの情報の取得、アクチュエータの制御、及び様々な演算を行うコンピュータである。
(2-1-9) Outdoor control unit 19
The outdoor control unit 19 is a computer that acquires sensor information, controls actuators, and performs various calculations.
 (2-1-10)室外温度センサ53、室外湿度センサ54
 室外温度センサ53は、室外空気AOの温度を取得する。室外湿度センサ54は、室外空気AOの湿度を取得する。
(2-1-10) Outdoor temperature sensor 53, outdoor humidity sensor 54
The outdoor temperature sensor 53 acquires the temperature of the outdoor air AO. The outdoor humidity sensor 54 acquires the humidity of the outdoor air AO.
 (2-2)室内ユニット20
 室内ユニット20は、室内空間SIに滞在するユーザに調和済みの室内空気AIを提供する。室内ユニット20は、冷媒回路90を構成する部品として、室内熱交換器25、及び、室内ファン26を有する。さらに、室内ユニット20は、室内ケーシング20a、室内制御部29、室内温度センサ63、室内湿度センサ64、躯体温度センサ65、人検知装置66を有する。
(2-2) Indoor unit 20
The indoor unit 20 provides conditioned indoor air AI to users staying in the indoor space SI. The indoor unit 20 has an indoor heat exchanger 25 and an indoor fan 26 as components forming the refrigerant circuit 90 . Furthermore, the indoor unit 20 has an indoor casing 20 a , an indoor controller 29 , an indoor temperature sensor 63 , an indoor humidity sensor 64 , a body temperature sensor 65 and a human detection device 66 .
 (2-2-1)室内ケーシング20a
 室内ケーシング20aは、室内ユニット20の構成部品を収容する。室内ケーシング20aは、室内吸込口61、及び室内吹出口62を有する。図1は室内ユニット20の構成を模式的に示すものに過ぎず、どの構成部品が室内吸込口61の近くに配置されるとともに、別のどの構成部品が室内吹出口62の近くに配置されるかを示すものではない。
(2-2-1) Indoor casing 20a
The indoor casing 20 a accommodates the components of the indoor unit 20 . The indoor casing 20 a has an indoor suction port 61 and an indoor air outlet 62 . FIG. 1 only schematically shows the configuration of the indoor unit 20, which component is located near the indoor air inlet 61 and which other component is located near the indoor air outlet 62. It does not indicate whether
 (2-2-2)室内熱交換器25
 室内熱交換器25は、冷媒と室内空気AIの間で熱交換を行う。室内熱交換器25は、冷房運転のときに蒸発器として機能する。室内熱交換器25は、暖房運転のときに凝縮器として機能する。
(2-2-2) Indoor heat exchanger 25
The indoor heat exchanger 25 exchanges heat between the refrigerant and the indoor air AI. The indoor heat exchanger 25 functions as an evaporator during cooling operation. The indoor heat exchanger 25 functions as a condenser during heating operation.
 (2-2-3)室内ファン26
 室内ファン26は、室内熱交換器25の熱交換を促進する。室内ファン26は、室内空気AIを室内吸込口61から取り込み、室内熱交換器25へ供給する。室内ファン26は、室内熱交換器25が熱交換を終えた空気を室内吹出口62から排出する。
(2-2-3) Indoor fan 26
Indoor fan 26 promotes heat exchange in indoor heat exchanger 25 . The indoor fan 26 takes in the indoor air AI from the indoor air inlet 61 and supplies it to the indoor heat exchanger 25 . The indoor fan 26 discharges the air after heat exchange by the indoor heat exchanger 25 from the indoor outlet 62 .
 (2-2-4)室内制御部29
 室内制御部29は、センサの情報の取得、アクチュエータの制御、及び様々な演算を行うコンピュータである。さらに、室内制御部29は、図示しない通信線を用いて室外制御部19と通信を行い、室外制御部19と情報を授受する。
(2-2-4) Indoor controller 29
The indoor control unit 29 is a computer that acquires sensor information, controls actuators, and performs various calculations. Further, the indoor control unit 29 communicates with the outdoor control unit 19 using a communication line (not shown) to exchange information with the outdoor control unit 19 .
 (2-2-5)室内温度センサ63、室内湿度センサ64、躯体温度センサ65
 室内温度センサ63は、室内空気AIの温度を取得する。室内湿度センサ64は、室内空気AIの湿度を取得する。躯体温度センサ65は、壁Wを含む建物Bの躯体の温度を取得する。
(2-2-5) Indoor temperature sensor 63, indoor humidity sensor 64, body temperature sensor 65
The indoor temperature sensor 63 acquires the temperature of the indoor air AI. The indoor humidity sensor 64 acquires the humidity of the indoor air AI. The frame temperature sensor 65 acquires the temperature of the frame of the building B including the wall W.
 (2-2-6)人検知装置66
 人検知装置66は、室内空間SIにいる人を検知する。人検知装置66は、例えば人感センサであってよい。
(2-2-6) Human detection device 66
A human detection device 66 detects a person in the indoor space SI. The human detection device 66 may be, for example, a human sensor.
 (2-3)連絡配管30
 連絡配管30もまた、冷媒回路90を構成する。連絡配管30は、液冷媒配管31、及び、ガス冷媒配管32を有する。液冷媒配管31は、液閉鎖弁16と室内熱交換器25を接続する。ガス冷媒配管32は、ガス閉鎖弁17と室内熱交換器25を接続する。
(2-3) Connecting pipe 30
The connecting pipe 30 also constitutes a refrigerant circuit 90 . The communication pipe 30 has a liquid refrigerant pipe 31 and a gas refrigerant pipe 32 . The liquid refrigerant pipe 31 connects the liquid closing valve 16 and the indoor heat exchanger 25 . A gas refrigerant pipe 32 connects the gas shutoff valve 17 and the indoor heat exchanger 25 .
 (2-4)排気ホース40
 排気ホース40は、室外空間SOと室内空間SIを連通させる。排気装置18が動作するとき、室内空間SIの室内空気AIが、排気ホース40を通過する排気流Vとして室外空間SOへ排気される。
(2-4) Exhaust hose 40
The exhaust hose 40 communicates the outdoor space SO and the indoor space SI. When the exhaust device 18 operates, the indoor air AI in the indoor space SI is exhausted to the outdoor space SO as an exhaust flow V passing through the exhaust hose 40 .
 (3)室内空間SIの熱負荷L
 図2は、熱負荷Lを説明するための模式図である。ここには、部屋Rによって規定される空調対象の室内空間SIが示されている。
(3) Heat load L of indoor space SI
FIG. 2 is a schematic diagram for explaining the heat load L. FIG. Here, an indoor space SI to be air-conditioned defined by the room R is shown.
 室内空間SIは、熱負荷Lを有する。空気調和装置100が冷房運転をする場合、熱負荷Lは、室内温度Tiを目標温度Ttに到達させるために、空気調和装置100が室内空気AIから取り除く必要のある熱量である。 The indoor space SI has a heat load L. When the air conditioner 100 performs cooling operation, the heat load L is the amount of heat that the air conditioner 100 needs to remove from the indoor air AI in order to bring the indoor temperature Ti to the target temperature Tt.
 熱負荷Lには、外部負荷Loと内部負荷Liが含まれる。外部負荷Loは、室外温度Toに起因する。内部負荷Liは、室内空間SIに存在する、家電製品、電子機器、または人間などの熱源80に起因する。室内空間SIの熱負荷Lを低減さるため、空気調和装置100は空調能力Qを生み出す。 The heat load L includes an external load Lo and an internal load Li. The external load Lo is caused by the outdoor temperature To. The internal load Li is caused by a heat source 80 such as a home appliance, an electronic device, or a person present in the indoor space SI. The air conditioner 100 produces an air conditioning capacity Q in order to reduce the heat load L of the indoor space SI.
 室外制御部19及び室内制御部29は、適切な空調能力Qの発生にあたり、室内空間SIの熱負荷Lを算出する。ここで算出される熱負荷Lは、厳密な意味での熱負荷ではなく、熱負荷に関連する量であってもよい。 The outdoor control unit 19 and the indoor control unit 29 calculate the heat load L of the indoor space SI in order to generate an appropriate air conditioning capacity Q. The heat load L calculated here may not be the heat load in the strict sense, but may be an amount related to the heat load.
 算出すべき熱負荷Lは、一例を挙げれば、目標温度Tt、室内温度Ti、及び、室外温度Toの関数によって求められる。 For example, the heat load L to be calculated is determined by a function of the target temperature Tt, the indoor temperature Ti, and the outdoor temperature To.
 (4)排気装置18の制御
 図3及び図4を参照しながら、排気装置18の制御について説明する。図3は、排気装置18の制御フローを示す。この制御フローに従って制御を行う主体は、室外制御部19及び室内制御部29(以下、「空調制御部」と言う)の一部によって実現される排気装置18の制御系統である。図4は、室内空間SIの熱負荷Lと、排気装置18の状態の関係を示す。ここで算出すべき熱負荷Lは、室内温度Ti、及び、室外温度Toの関数によって求められるものとして説明する。
(4) Control of Exhaust Device 18 Control of the exhaust device 18 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 shows the control flow of the exhaust device 18. As shown in FIG. A control system for the exhaust device 18 realized by a part of the outdoor control unit 19 and the indoor control unit 29 (hereinafter referred to as "air conditioning control unit") is the subject that performs control according to this control flow. FIG. 4 shows the relationship between the heat load L of the indoor space SI and the state of the exhaust device 18. As shown in FIG. The heat load L to be calculated here is described as being obtained from a function of the indoor temperature Ti and the outdoor temperature To.
 図3のステップSSの処理開始の起点から処理が開始される。 The process is started from the starting point of the process start of step SS in FIG.
 ステップS0において、排気装置18の制御系統は、空調運転が開始されたか否かを調べる。当該空調運転は、冷媒回路90の制御系統によって実行される。冷媒回路90の制御系統は、空調制御部における、排気装置18の制御系統を構成する部分とは別の一部によって実現される。 In step S0, the control system of the exhaust device 18 checks whether the air conditioning operation has started. The air conditioning operation is performed by the control system of the refrigerant circuit 90 . The control system of the refrigerant circuit 90 is implemented by a part of the air conditioning control unit that is separate from the part that constitutes the control system of the exhaust device 18 .
 ステップS0において「空調運転の開始」として扱われる具体的な事象としては、様々なものが挙げられる。以下に列挙する例1~例3は、空調運転の開始の例である。 There are various specific events that are treated as "start of air conditioning operation" in step S0. Examples 1 to 3 listed below are examples of starting the air conditioning operation.
  (例1)空気調和装置100に運転を指示するキーが、ユーザによって押下される事象の発生。 (Example 1) Occurrence of an event in which the user presses a key that instructs the air conditioner 100 to operate.
  (例2)空気調和装置100に設定された予約運転の時刻に到達する事象の発生。 (Example 2) Occurrence of an event reaching the reserved operation time set in the air conditioner 100 .
  (例3)上記例1又は例2の事象の後の、冷媒回路90の制御系統が圧縮機11を運転させる事象の発生。 (Example 3) Occurrence of an event that causes the control system of the refrigerant circuit 90 to operate the compressor 11 after the event of Example 1 or Example 2 above.
 排気装置18の制御系統は、空調運転が開始されている場合には処理をS1へ移し、空調運転が開始されていない場合には処理をS0へ戻す。 The control system of the exhaust device 18 shifts the process to S1 when the air conditioning operation has started, and returns the process to S0 when the air conditioning operation has not started.
 ステップS1において、空調制御部は、自身が管理している変数である熱負荷閾値Lthに、第1値V1をセットする。 In step S1, the air conditioning control unit sets the heat load threshold value Lth, which is a variable managed by itself, to the first value V1.
 ステップS2において、空調制御部は、室内温度センサ63によって室内温度Tiを取得する。 In step S2, the air conditioning control unit acquires the indoor temperature Ti by the indoor temperature sensor 63.
 ステップS3において、空調制御部は、室外温度センサ53によって室外温度Toを取得する。 In step S3, the air conditioning control unit acquires the outdoor temperature To by the outdoor temperature sensor 53.
 ステップS4において、空調制御部は、室内温度Ti及び室外温度Toに基づいて、室内空間SIの熱負荷Lを算出する。例えば、空調制御部は、室外温度Toと室内温度Tiを比較し、両者の差分ΔTに応じて熱負荷Lを算出する。 In step S4, the air conditioning control unit calculates the heat load L of the indoor space SI based on the indoor temperature Ti and the outdoor temperature To. For example, the air conditioning control unit compares the outdoor temperature To and the indoor temperature Ti, and calculates the heat load L according to the difference ΔT between the two.
 ステップS5において、空調制御部は、熱負荷Lを、自身が格納している熱負荷閾値Lthと比較する。熱負荷Lが熱負荷閾値Lthを上回るときはステップS6に進み、熱負荷Lが熱負荷閾値Lthと等しいか下回るときはステップS8に進む。 In step S5, the air conditioning control unit compares the heat load L with the heat load threshold value Lth stored by itself. When the heat load L exceeds the heat load threshold Lth, the process proceeds to step S6, and when the heat load L is equal to or less than the heat load threshold Lth, the process proceeds to step S8.
 ステップS6において、空調制御部は、排気装置18を動作させる。 In step S6, the air conditioning control unit operates the exhaust device 18.
 ステップS7において、空調制御部は、熱負荷閾値Lthに、第2値V2をセットする。第2値V2は、第1値V1よりも小さな値である。その後、空調制御部は、処理をステップS2に戻す。 In step S7, the air conditioning control unit sets the heat load threshold value Lth to the second value V2. The second value V2 is a value smaller than the first value V1. After that, the air conditioning control unit returns the process to step S2.
 ステップS8において、空調制御部は、排気装置18を停止させる。 In step S8, the air conditioning control unit stops the exhaust device 18.
 ステップS9において、空調制御部は、熱負荷閾値Lthに、第1値V1をセットする。その後、空調制御部は、処理をステップS2に戻す。 In step S9, the air conditioning control unit sets the thermal load threshold Lth to the first value V1. After that, the air conditioning control unit returns the process to step S2.
 このように、熱負荷閾値Lthを第1値V1及び第2値V2の一方に交互に切り替ることにより、図4に示すように、熱負荷Lと排気装置18の状態の関係を示すグラフはヒステリシス特性を示す。 By alternately switching the thermal load threshold value Lth to one of the first value V1 and the second value V2 in this way, the graph showing the relationship between the thermal load L and the state of the exhaust device 18 can be obtained as shown in FIG. It exhibits hysteresis characteristics.
 (5)特徴
 (5-1)
 空調運転の開始時において、室内空気AIから取り除くべき熱負荷Lの一部が、空調運転によってだけでなく、排気装置18の動作によっても取り除かれる。したがって、空調運転の開始時に、空気調和装置100によって消費されるエネルギーを抑制することができる。
(5) Features (5-1)
At the start of the air-conditioning operation, part of the heat load L to be removed from the room air AI is removed not only by the air-conditioning operation, but also by the operation of the exhaust device 18 . Therefore, the energy consumed by the air conditioner 100 can be suppressed at the start of the air conditioning operation.
 (5-2)
 排気の開始条件に、室内温度Tiのみならず室外温度Toが含まれる。したがって、室内温度Ti及び室外温度Toを考慮した排気の開始条件を設定することができる。
(5-2)
Exhaust starting conditions include not only the indoor temperature Ti but also the outdoor temperature To. Therefore, it is possible to set the conditions for starting the exhaust in consideration of the indoor temperature Ti and the outdoor temperature To.
 (5-3)
 熱負荷閾値Lthが第1値V1及び第2値V2の一方に交互に切り替えられる。これにより、熱負荷Lに応じた排気制御にヒステリシス特性が適用される。したがって、排気装置18の制御回路がチャタリングを起こすことを抑制できる。
(5-3)
The thermal load threshold Lth is alternately switched to one of the first value V1 and the second value V2. Thus, the hysteresis characteristic is applied to the exhaust control according to the heat load L. Therefore, chattering of the control circuit of the exhaust device 18 can be suppressed.
 <基本実施形態の変形例>
 (6)変形例
 以下に、基本実施形態の変形例について説明する。これらの複数の変形例を組み合わせてもよい。
<Modified example of basic embodiment>
(6) Modifications Modifications of the basic embodiment will be described below. A plurality of these modified examples may be combined.
 (6-1)第1変形例
 基本実施形態では、算出すべき熱負荷Lは、室内温度Ti、及び、室外温度Toの両方の関数として求められる。これに代えて、熱負荷Lは、室外温度Toを用いず、室内温度Tiのみの関数として求めてもよい。
(6-1) First Modification In the basic embodiment, the heat load L to be calculated is obtained as a function of both the indoor temperature Ti and the outdoor temperature To. Alternatively, the heat load L may be obtained as a function of only the indoor temperature Ti without using the outdoor temperature To.
 この構成によれば、排気装置18が動作する条件は、室外温度Toとは無関係であり、室内温度Tiのみによって決定される。したがって、室外制御部19及び室内制御部29が行う演算が簡単である。 According to this configuration, the conditions under which the exhaust device 18 operates are independent of the outdoor temperature To, and are determined only by the indoor temperature Ti. Therefore, the calculations performed by the outdoor controller 19 and the indoor controller 29 are simple.
 (6-2)第2変形例
 基本実施形態では、熱負荷Lは各種温度によって決定される。これに代えて、熱負荷Lは、各種温度に代えて又は各種温度と共に、各種湿度を用いて決定してもよい。例えば、熱負荷Lを、室内湿度Hi及び室外湿度Hoによって決定してもよい。室内湿度Hiは、室内湿度センサ64によって取得できる。室外湿度Hoは、室外湿度センサ54によって取得できる。
(6-2) Second Modification In the basic embodiment, the heat load L is determined by various temperatures. Alternatively, heat load L may be determined using different humidity in place of or in conjunction with different temperatures. For example, heat load L may be determined by indoor humidity Hi and outdoor humidity Ho. The indoor humidity Hi can be obtained by the indoor humidity sensor 64 . The outdoor humidity Ho can be obtained by the outdoor humidity sensor 54 .
 この構成によれば、排気の開始条件として、室内湿度Hiと室外湿度Hoを利用することができる。 According to this configuration, the indoor humidity Hi and the outdoor humidity Ho can be used as conditions for starting exhaust.
 (6-3)第3変形例
 さらには、熱負荷Lは、室外湿度Hoを用いず、室内湿度Hiのみの関数として求めてもよい。
(6-3) Third Modification Further, the heat load L may be obtained as a function of only the indoor humidity Hi without using the outdoor humidity Ho.
 この構成によれば、排気装置18が動作する条件は、室外湿度Hoとは無関係であり、室内湿度Hiのみによって決定される。したがって、室外制御部19及び室内制御部29が行う演算が簡単である。 According to this configuration, the conditions under which the exhaust device 18 operates are independent of the outdoor humidity Ho, and are determined only by the indoor humidity Hi. Therefore, the calculations performed by the outdoor controller 19 and the indoor controller 29 are simple.
 (6-4)第4変形例
 あるいは、熱負荷Lは、室内ユニット20が設置される部屋Rを構成する躯体の温度である躯体温度Tbによって決定されてもよい。躯体温度Tbは、躯体温度センサ65によって取得できる。熱負荷Lの算出においては、室外制御部19及び室内制御部29は、躯体温度Tbのみならず、各種温度、各種湿度、又はその両方を併せて使用してもよい。
(6-4) Fourth Modification Alternatively, the heat load L may be determined by the frame temperature Tb, which is the temperature of the frame forming the room R in which the indoor unit 20 is installed. The body temperature Tb can be obtained by the body temperature sensor 65 . In calculating the heat load L, the outdoor controller 19 and the indoor controller 29 may use not only the body temperature Tb, but also various temperatures, various humidity, or both.
 この構成によれば、熱負荷Lは躯体温度Tbに依存する。したがって、排気動作の条件として、躯体温度Tbが考慮される。 According to this configuration, the heat load L depends on the body temperature Tb. Therefore, the building body temperature Tb is considered as a condition for the exhaust operation.
 (6-5)第5変形例
 室内空間SIの熱負荷Lが小さくなり、室内温度Tiが目標温度Ttに近づくと、室外制御部19及び室内制御部29によって実現される冷媒回路90の制御系統は、圧縮機11を停止させる。この状態はサーモオフと呼ばれる。
(6-5) Fifth Modification When the heat load L of the indoor space SI becomes small and the indoor temperature Ti approaches the target temperature Tt, the control system of the refrigerant circuit 90 realized by the outdoor controller 19 and the indoor controller 29 stops the compressor 11 . This state is called thermo-off.
 サーモオフが一定時間継続した後、室内温度Tiが再び目標温度Ttから乖離すると、冷媒回路90の制御系統は、サーモオフから復帰すべく再び圧縮機11を動作させる。このような、サーモオフからの復帰直後に該当する場合には、室外制御部19及び室内制御部29は、排気装置18を動作させず、停止させたままとしてもよい。 After the thermostat is turned off for a certain period of time, when the indoor temperature Ti deviates from the target temperature Tt again, the control system of the refrigerant circuit 90 operates the compressor 11 again to recover from the thermostat off. In this case, the outdoor control unit 19 and the indoor control unit 29 may keep the exhaust device 18 stopped without operating it immediately after returning from thermo-off.
 この構成によれば、サーモオフからの復帰時において、排気装置18は動作しない。したがって、圧縮機11が大きなエネルギーを必要とするサーモオフからの復帰動作おいて、圧縮機11が十分な量のエネルギーを確保できる。 According to this configuration, the exhaust device 18 does not operate when returning from thermo-off. Therefore, the compressor 11 can secure a sufficient amount of energy in the restoration operation from thermo-off, which requires the compressor 11 to have a large amount of energy.
 (6-6)第6変形例
 室外制御部19及び室内制御部29が排気装置18を動作させる際に、人検知装置66が室内空間SIの中に人の存在を検知することを条件にしてもよい。
(6-6) Sixth Modification On the condition that the human detection device 66 detects the presence of a person in the indoor space SI when the outdoor control unit 19 and the indoor control unit 29 operate the exhaust device 18, good too.
 この構成によれば、部屋Rの有人状態において排気装置18が動作する。したがって、無人状態において排気装置18が動作しないので、空気調和装置100の消費エネルギーがさらに抑制される。 According to this configuration, the exhaust device 18 operates when the room R is manned. Therefore, since the exhaust device 18 does not operate in an unmanned state, the energy consumption of the air conditioner 100 is further suppressed.
 <むすび>
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<Conclusion>
Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims.
10  :室外ユニット
11  :圧縮機
13  :室外熱交換器
14  :室外ファン
18  :排気装置
19  :室外制御部(制御部)
20  :室内ユニット
25  :室内熱交換器(熱交換器)
26  :室内ファン(ファン)
29  :室内制御部(制御部)
30  :連絡配管
40  :排気ホース
51  :室外吸込口
52  :室外吹出口
61  :室内吸込口
62  :室内吹出口
66  :人検知装置
100 :空気調和装置
AI  :室内空気
AO  :室外空気
B   :建物
Hi  :室内湿度(室内空気の湿度)
Ho  :室外湿度(室外空気の湿度)
L   :熱負荷
Lth :熱負荷閾値
R   :部屋
SI  :室内空間
SO  :室外空間
Tb  :躯体温度(躯体の温度)
Ti  :室内温度(室内空気の温度)
To  :室外温度(室外空気の温度)
V   :排気流
V1  :第1値
V2  :第2値
W   :壁
10: Outdoor unit 11: Compressor 13: Outdoor heat exchanger 14: Outdoor fan 18: Exhaust device 19: Outdoor controller (controller)
20: Indoor unit 25: Indoor heat exchanger (heat exchanger)
26: Indoor fan (fan)
29: Indoor control unit (control unit)
30: Communication pipe 40: Exhaust hose 51: Outdoor suction port 52: Outdoor air outlet 61: Indoor suction port 62: Indoor air outlet 66: Human detection device 100: Air conditioner AI: Indoor air AO: Outdoor air B: Building Hi : Indoor humidity (humidity of indoor air)
Ho: outdoor humidity (humidity of outdoor air)
L: Thermal load Lth: Thermal load threshold R: Room SI: Indoor space SO: Outdoor space Tb: Frame temperature (framework temperature)
Ti: Room temperature (room air temperature)
To: outdoor temperature (outdoor air temperature)
V: exhaust flow V1: first value V2: second value W: wall
特開2007-032855号公報JP 2007-032855 A

Claims (8)

  1.  空調運転を行うことによって室内空間(SI)の空気調和を行う空気調和装置(100)であって、
     圧縮機(11)と、
     室内空気(AI)と熱交換を行う熱交換器(25)と、
     熱交換された前記室内空気を前記室内空間に供給するファン(26)と、
     前記室内空間から室外空間(SO)へ前記室内空気を移動させる排気装置(18)と、
     前記空調運転の開始時において、前記室内空間の熱負荷(L)に応じて前記排気装置を動作させる制御部(19、29)と、
    を備える、空気調和装置(100)
    An air conditioner (100) that air-conditions an indoor space (SI) by performing an air-conditioning operation,
    a compressor (11);
    a heat exchanger (25) for exchanging heat with indoor air (AI);
    a fan (26) for supplying the heat-exchanged indoor air to the indoor space;
    an exhaust device (18) for moving the indoor air from the indoor space to an outdoor space (SO);
    a control unit (19, 29) that operates the exhaust device according to the heat load (L) of the indoor space at the start of the air conditioning operation;
    An air conditioner (100) comprising
  2.  前記熱負荷は、前記室内空気の温度(Ti)、及び前記室内空気の湿度(Hi)、の少なくとも1つによって決定される、
    請求項1に記載の空気調和装置。
    The heat load is determined by at least one of the indoor air temperature (Ti) and the indoor air humidity (Hi).
    The air conditioner according to claim 1.
  3.  前記熱負荷は、前記空気調和装置が設置される部屋を構成する躯体の温度(Tb)、によって決定される、
    請求項1又は請求項2に記載の空気調和装置。
    The heat load is determined by the temperature (Tb) of the frame that constitutes the room in which the air conditioner is installed,
    The air conditioner according to claim 1 or 2.
  4.  前記制御部は、前記室内空気の温度(Ti)と、室外空気の温度(To)との比較結果に応じて前記排気装置を動作させる、
    請求項1から3のいずれか1項に記載の空気調和装置。
    The control unit operates the exhaust device according to a comparison result between the indoor air temperature (Ti) and the outdoor air temperature (To).
    The air conditioner according to any one of claims 1 to 3.
  5.  前記制御部は、前記室内空気の湿度(Hi)と、室外空気の湿度(Ho)との比較結果に応じて前記排気装置を動作させる、
    請求項1から3のいずれか1項に記載の空気調和装置。
    The control unit operates the exhaust device according to a comparison result between the humidity (Hi) of the indoor air and the humidity (Ho) of the outdoor air.
    The air conditioner according to any one of claims 1 to 3.
  6.  前記室内空間の前記熱負荷が小さくなることで前記圧縮機が停止した直後の、前記空調運転の開始時には、前記制御部は前記排気装置を動作させない、
    請求項1から5のいずれか1項に記載の空気調和装置。
    At the start of the air conditioning operation immediately after the compressor stops due to the reduction in the thermal load of the indoor space, the control unit does not operate the exhaust device.
    The air conditioner according to any one of claims 1 to 5.
  7.  前記室内空間にいる人を検知する人検知装置(66)、
    をさらに備え、
     前記制御部は、前記人検知装置が前記人を検知したときに、前記排気装置を動作させる、
    請求項1から6のいずれか1項に記載の空気調和装置。
    a human detection device (66) for detecting a person in the indoor space;
    further comprising
    The control unit operates the exhaust device when the human detection device detects the person.
    The air conditioner according to any one of claims 1 to 6.
  8.  前記制御部は、前記熱負荷が第1値(V1)を上回るときに前記排気装置を動作させるとともに、前記熱負荷が前記第1値よりも小さな第2値(V2)を下回るときに前記排気装置を停止させる、
    請求項1から7のいずれか1項に記載の空気調和装置。
    The control unit operates the exhaust device when the heat load exceeds a first value (V1), and operates the exhaust device when the heat load falls below a second value (V2) smaller than the first value. stop the device,
    The air conditioner according to any one of claims 1 to 7.
PCT/JP2022/024775 2021-06-23 2022-06-21 Air-conditioning device with exhaust device WO2022270515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280043373.XA CN117529629A (en) 2021-06-23 2022-06-21 Air conditioning device with exhaust device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021104107A JP2023003126A (en) 2021-06-23 2021-06-23 Air conditioning device including exhaust system
JP2021-104107 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270515A1 true WO2022270515A1 (en) 2022-12-29

Family

ID=84545483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024775 WO2022270515A1 (en) 2021-06-23 2022-06-21 Air-conditioning device with exhaust device

Country Status (3)

Country Link
JP (1) JP2023003126A (en)
CN (1) CN117529629A (en)
WO (1) WO2022270515A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777564B1 (en) * 2006-09-30 2007-11-21 김천경 Turning running gear for turning type of advertisement artifact

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263743A (en) * 2000-03-24 2001-09-26 Matsushita Seiko Co Ltd Ventilator
JP2002286260A (en) * 2001-03-23 2002-10-03 Mitsubishi Electric Corp Ventilator
JP2012098009A (en) * 2010-11-05 2012-05-24 Mitsubishi Heavy Ind Ltd Air conditioner
JP2013204852A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Air conditioning control method, and air conditioner
WO2019230201A1 (en) * 2018-05-30 2019-12-05 三菱電機株式会社 Ventilation system, air-conditioning system, and method for installing air-conditioning system
WO2021019761A1 (en) * 2019-08-01 2021-02-04 三菱電機株式会社 Air conditioning system and system control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225529A (en) * 2011-04-15 2012-11-15 Daikin Industries Ltd Humidity control device
JP5862266B2 (en) * 2011-12-13 2016-02-16 ダイキン工業株式会社 Ventilation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263743A (en) * 2000-03-24 2001-09-26 Matsushita Seiko Co Ltd Ventilator
JP2002286260A (en) * 2001-03-23 2002-10-03 Mitsubishi Electric Corp Ventilator
JP2012098009A (en) * 2010-11-05 2012-05-24 Mitsubishi Heavy Ind Ltd Air conditioner
JP2013204852A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Air conditioning control method, and air conditioner
WO2019230201A1 (en) * 2018-05-30 2019-12-05 三菱電機株式会社 Ventilation system, air-conditioning system, and method for installing air-conditioning system
WO2021019761A1 (en) * 2019-08-01 2021-02-04 三菱電機株式会社 Air conditioning system and system control device

Also Published As

Publication number Publication date
CN117529629A (en) 2024-02-06
JP2023003126A (en) 2023-01-11

Similar Documents

Publication Publication Date Title
EP3067635B1 (en) Air conditioning device
JP2909187B2 (en) Air conditioner
JP5481937B2 (en) Air conditioner
WO2019069422A1 (en) Air conditioning device
WO2022270515A1 (en) Air-conditioning device with exhaust device
JP2002061996A (en) Air conditioner
EP1677058A2 (en) Method of controlling over-load cooling operation of air conditioner
JP2002174450A (en) Air-conditioning device
JPH1078266A (en) Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function
JP4105413B2 (en) Multi-type air conditioner
CN113531790A (en) Communication control circuit, multi-connected air conditioner and control method
JP3330194B2 (en) Air conditioner
JP2508528Y2 (en) Air conditioner
JP3526393B2 (en) Air conditioner
JP2004044946A (en) Air conditioner
JP3181117B2 (en) Air conditioner
JP2962978B2 (en) Air conditioner
JP3443159B2 (en) Air conditioner
JPH11294834A (en) Multi-room air conditioner provided with air cleaner
JPS6332256A (en) Heat pump system
JP4326389B2 (en) Multi-type air conditioner
JPH0442665Y2 (en)
JP3401873B2 (en) Control device for air conditioner
JP2845617B2 (en) Air conditioner
JPH09152169A (en) Multi-type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280043373.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2024