WO2022267424A1 - 废旧电池回用制备磷酸铁锂的方法 - Google Patents

废旧电池回用制备磷酸铁锂的方法 Download PDF

Info

Publication number
WO2022267424A1
WO2022267424A1 PCT/CN2021/142952 CN2021142952W WO2022267424A1 WO 2022267424 A1 WO2022267424 A1 WO 2022267424A1 CN 2021142952 W CN2021142952 W CN 2021142952W WO 2022267424 A1 WO2022267424 A1 WO 2022267424A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
lithium
waste
ball milling
Prior art date
Application number
PCT/CN2021/142952
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112021005203.9T priority Critical patent/DE112021005203T5/de
Priority to MX2023013191A priority patent/MX2023013191A/es
Priority to GBGB2313081.8A priority patent/GB202313081D0/en
Priority to ES202390049A priority patent/ES2962916R1/es
Priority to HU2200231A priority patent/HUP2200231A2/hu
Priority to MA60466A priority patent/MA60466A1/fr
Priority to US18/265,862 priority patent/US11958743B2/en
Publication of WO2022267424A1 publication Critical patent/WO2022267424A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of lithium-ion battery new energy materials, and in particular relates to a method for preparing lithium iron phosphate by recycling waste batteries.
  • Lithium iron phosphate power battery has high safety, can be charged quickly and the number of cycles can reach 2000 times, has good safety performance, and has gradually become a new choice for power batteries for electric vehicles.
  • the recycling of lithium iron phosphate in waste lithium iron phosphate power batteries has also become one of the key contents of power battery recycling.
  • lithium iron phosphate power battery does not contain precious metals, but is mainly composed of aluminum, lithium, iron, phosphorus and carbon elements. Because of this, companies are not enthusiastic about the recycling of lithium iron phosphate, and there are relatively few studies on the recycling of lithium iron phosphate power batteries.
  • the recovery methods of lithium iron phosphate, the positive electrode material are mainly high-temperature regeneration and wet recovery.
  • the high-temperature regeneration process consumes a lot of energy and has strict requirements for the pre-treatment of waste materials. Strict impurity removal is required to avoid residual impurities.
  • the regenerated lithium iron phosphate The capacity and charge and discharge performance of the battery are significantly reduced.
  • the wet recovery technology is relatively mature, and the requirements for the pretreatment of waste batteries are relatively low, and a high metal recovery rate can be achieved, thereby obtaining high-purity precursor materials.
  • the current wet recovery methods mostly use crude iron phosphate and lithium-containing leachate As recovered products, it includes preparation of soluble salt solution by acid dissolution, preparation of iron phosphate salt and lithium solution by addition of alkali. When preparing iron phosphate salt, the pH is often adjusted by adding sodium hydroxide.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for preparing lithium iron phosphate by recycling waste batteries.
  • this method after treating the positive electrode material of the waste lithium iron phosphate power battery, re-synthesizing the lithium iron phosphate positive electrode material through spray pyrolysis, the Compared with the lithium iron phosphate cathode material synthesized for the first time, the capacitance and charge and discharge performance of the lithium iron phosphate cathode material prepared by the method are almost the same.
  • a kind of waste battery recycling method for preparing lithium iron phosphate comprising the following steps:
  • the ball milling product is mixed with the mixed solution, sprayed and pyrolyzed to obtain high-temperature powder, which is sprayed with atomized water to remove impurities, and then calcined to obtain the finished product of lithium iron phosphate.
  • the pretreatment process is as follows: the waste lithium iron phosphate battery is discharged, disassembled and sieved in sequence to obtain the positive electrode sheet, and the positive electrode sheet is pulverized and vibratingly sieved, and the underscreen It is lithium iron phosphate powder.
  • the iron source is one or more of ferrous oxalate, ferrous oxalate, ferric oxide, ferric phosphate, ferric chloride, ferrous chloride or ferric nitrate.
  • the lithium source is one or more of lithium carbonate, lithium hydroxide or lithium dihydrogen phosphate.
  • the phosphorus source is one or more of ammonium hydrogen phosphate, phosphoric acid, ammonium dihydrogen phosphate or iron phosphate.
  • the molar ratio of lithium, iron and phosphorus in the ball milling product is (1-1.05):(0.95-1):1.
  • the carbon source is one or more of sucrose, starch or glucose.
  • the mass ratio of the carbon source solution to the ball milling product is (1-8):1.
  • the surfactant is one or more of stearic acid, alkyl glucoside, fatty acid glyceride or polysorbate.
  • the surfactant is 0.1-3.0% of the total mass of the mixed solution.
  • the spray pressure of the spray pyrolysis is 0.3-0.8 MPa, and the temperature is 500-750°C.
  • the calcination temperature is 500-700°C
  • the heating rate is 1-5°C/min
  • the calcination time is 2-10h.
  • the waste lithium iron phosphate power battery is pretreated to obtain pure lithium iron phosphate waste, and then the ratio of each element is supplemented, and the lithium iron phosphate product is prepared by spray pyrolysis.
  • the spray pyrolysis method is used to spray The produced lithium iron phosphate droplets have high sphericity and uniform particle size distribution. After high-temperature reaction, spherical lithium iron phosphate will be obtained.
  • the spheroidization of lithium iron phosphate is beneficial to increase the specific surface area of the material and increase the volume specific energy of the material.
  • the inside of the spherical droplet contains lithium iron phosphate solid, thereby avoiding the appearance of hollow particles; the addition of surfactant can further adjust the viscosity and surface tension of the spray liquid, which is beneficial to spray pyrolysis The reaction proceeds so that the particles are prevented from sticking together.
  • the present invention uses the waste heat of high-temperature lithium iron phosphate generated by spraying to remove impurities by spraying atomized pure water, so that the atomized pure water evaporates instantly, thereby taking away impurities such as hydrogen chloride in lithium iron phosphate particles .
  • the waste lithium iron phosphate power battery is recycled, turning waste into treasure, protecting the environment, reducing costs, simple process operation, and can be widely used in the production process of lithium iron phosphate.
  • Figure 1 is a comparison chart of the specific capacity and cycle performance of the lithium iron phosphate product synthesized for the first time and the finished lithium iron phosphate product prepared in Example 1.
  • a method for preparing lithium iron phosphate by recycling waste batteries comprising the following steps:
  • step S2 Add iron source, lithium source or phosphorus source to the filter residue in step S1, adjust the molar ratio of the three elements of lithium, iron and phosphorus to 1.05:1:1, and then perform high-energy ball milling to obtain a ball milling product;
  • S3 preparing a sucrose solution, and adding an alkyl glucoside to the sucrose solution to obtain a mixed solution, wherein the alkyl glucoside is 2.0% of the total mass of the mixed solution;
  • S4 Add the mixed solution and the ball milling product to the spray pyrolysis device at a mass ratio of 4:1 for spray pyrolysis.
  • the spray pyrolysis device is set at a spray pressure of 0.8MPa and a temperature of 750°C to obtain high-temperature powder.
  • the tail gas produced by the solution is washed to produce an acidic solution.
  • the high-temperature powder is sprayed with atomized pure water to remove impurities through a water mist spray device.
  • the high-temperature lithium iron phosphate is mixed with misty pure water, and the pure water evaporates quickly. Remove the impurities in the lithium iron phosphate particles, and finally raise the temperature to 500°C at a rate of 1°C/min, and keep the temperature at this temperature for 2 hours to obtain the finished product of lithium iron phosphate.
  • S3 Prepare a glucose solution, and add polysorbate to the glucose solution to obtain a mixed solution, where the polysorbate is 0.5% of the total mass of the mixed solution;
  • Fig. 1 is the comparison chart of the specific capacity and cycle performance of the conventional lithium iron phosphate product synthesized for the first time (that is, not used) and the finished product of lithium iron phosphate prepared in Example 1, as can be seen from the figure, the specific capacity and cycle performance of the two Comparable performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

提供了一种废旧电池回用制备磷酸铁锂的方法,首先对废旧磷酸铁锂动力电池进行前处理,得到纯净的磷酸铁锂废料,再经补充各个元素配比,通过喷雾热解的方式制备出磷酸铁锂产品,喷雾热解法喷出的磷酸铁锂雾滴球形度较高、粒度分布均匀,经过高温反应后会得到类球形的磷酸铁锂,磷酸铁锂球形化有利于增加材料的比表面积,提高材料的体积比能量,在除杂时,利用喷雾产生的高温磷酸铁锂的余热,经过雾化纯水喷淋除杂,使雾化纯水瞬间蒸发,从而带走磷酸铁锂颗粒中的氯化氢等杂质。制备出的磷酸铁锂正极材料电容量、充放电性能与首次合成的磷酸铁锂正极材料相比几乎相同。

Description

废旧电池回用制备磷酸铁锂的方法 技术领域
本发明属于锂离子电池新能源材料技术领域,具体涉及废旧电池回用制备磷酸铁锂的方法。
背景技术
磷酸铁锂动力电池的安全性高,可快速充电且循环次数能达到2000次,具有很好的安全性能,逐渐成为电动汽车用动力电池的新选择。随着磷酸铁锂动力电池市场占有量和报废量的日益上升,废旧磷酸铁锂动力电池中的磷酸铁锂回收利用也成为动力电池回收的重点内容之一。
在多种锂动力电池中,只有磷酸铁锂动力电池正极材料不含贵金属,而是主要由铝、锂、铁、磷和碳元素组成。正因如此,企业对磷酸铁锂的回收利用并不热心,针对磷酸铁锂动力电池回收的研究也比较少。
目前正极材料磷酸铁锂的回收的方法主要为高温再生和湿法回收两种。高温再生工艺能耗高,且对于废旧材料的前处理要求严苛,需要进行严格的除杂以避免杂质残留,再生后的磷酸铁锂与首次合成的磷酸铁锂电池正极材料相比,该材料的电容量、充放电性能有明显的下降。
湿法回收技术较为成熟,对废旧电池的前处理要求较低,可以实现较高的金属回收率,从而得到高纯度的前驱体材料,目前的湿法回收方法多以磷酸铁粗品和含锂浸出液作为回收产品,包括酸溶制备可溶性盐溶液、加碱制备磷酸铁盐和锂溶液。在制备磷酸铁盐时,多通过加入氢氧化钠调节pH,一方面引入大量的阳离子杂质Na离子,造成后续碳酸锂的纯度降低;另一方面,磷酸盐由于粘度高,难以洗涤,酸溶过程和加碱过程中均会引入的大量金属阳离子杂质,进一步增加了磷酸盐洗涤的困难,为了降低其中的杂质含量,制备较高纯度的磷酸铁盐,必然会消耗大量的水,从而形成大量难以处理的化工废水。
因此,亟需一种废旧电池回用制备磷酸铁锂的新方法,来解决以上问题。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种废旧电池回用制备磷酸铁锂的方法,该方法通过将废旧磷酸铁锂动力电池的正极材料处理后,经喷雾热解重新合成制备出磷酸铁锂正极材料,该方法制备出的磷酸铁锂正极材料电容量、充放电性能与首次合成的磷酸铁锂正极材料相比几乎相同。
根据本发明的一个方面,提出了一种废旧电池回用制备磷酸铁锂的方法,包括以下步骤:
将废旧磷酸铁锂电池进行前处理得到磷酸铁锂粉末,向所述磷酸铁锂粉末中加入碱液,过滤得到滤渣;
向所述滤渣中添加铁源、锂源或磷源,进行球磨,得到球磨产物;
制备碳源溶液,并向碳源溶液中加入表面活性剂,得到混合溶液;
将所述球磨产物和混合溶液混合,进行喷雾热解,得到高温粉料,高温粉料经过雾化水喷淋除杂,再经过煅烧,即得磷酸铁锂成品。
在本发明的一些实施方式中,所述前处理的过程如下:将废旧磷酸铁锂电池依次进行放电、拆解和筛分,得到正极片,将正极片粉碎后进行振动筛分,筛下物即为磷酸铁锂粉末。
在本发明的一些实施方式中,所述铁源为草酸亚铁、乙二酸亚铁、氧化铁、磷酸铁、氯化铁、氯化亚铁或硝酸铁中的一种或多种。
在本发明的一些实施方式中,所述锂源为碳酸锂、氢氧化锂或磷酸二氢锂中的一种或多种。
在本发明的一些实施方式中,所述磷源为磷酸氢铵、磷酸、磷酸二氢铵或磷酸铁中的一种或多种。
在本发明的一些实施方式中,所述球磨产物中锂、铁、磷三种元素的摩尔比为(1-1.05):(0.95-1):1。
在本发明的一些实施方式中,所述碳源为蔗糖、淀粉或葡萄糖中的一种或多种。
在本发明的一些实施方式中所述碳源溶液与球磨产物的质量比为(1-8):1。
在本发明的一些实施方式中,所述表面活性剂为硬脂酸、烷基葡糖苷、脂肪酸甘油酯或聚山梨酯中的一种或多种。
在本发明的一些实施方式中,所述表面活性剂为混合溶液总质量的0.1-3.0%。
在本发明的一些实施方式中,所述喷雾热解的喷雾压力为0.3-0.8MPa,温度为500-750℃。
在本发明的一些实施方式中,所述煅烧的温度为500-700℃,升温速率为1-5℃/min,煅烧的时间为2-10h。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明首先对废旧磷酸铁锂动力电池进行前处理,得到纯净的磷酸铁锂废料,再经补充各个元素配比,通过喷雾热解的方式制备出磷酸铁锂产品,喷雾热解法喷出的磷酸铁锂雾滴球形度较高、粒度分布均匀,经过高温反应后会得到类球形的磷酸铁锂,磷酸铁锂球形化有利于增加材料的比表面积,提高材料的体积比能量。
2、本发明在进行喷雾反应时,球形雾滴内部含有磷酸铁锂固体,从而避免了空心颗粒的出现;通过表面活性剂的添加,可进一步调节喷雾液的黏度和表面张力,利于喷雾热解反应的进行,避免颗粒粘结在一起。
3、本发明在除杂时,利用喷雾产生的高温磷酸铁锂的余热,经过雾化纯水喷淋除杂,使雾化纯水瞬间蒸发,从而带走磷酸铁锂颗粒中的氯化氢等杂质。
4、本发明的整个过程将废旧的磷酸铁锂动力电池进行了回用,变废为宝,保护了环境,降低了成本,工艺操作简单,可广泛应用于磷酸铁锂的生产工艺中。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为首次合成的磷酸铁锂产品与实施例1制备的磷酸铁锂成品的比容量及循环性能对比图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种废旧电池回用制备磷酸铁锂的方法,包括以下步骤:
S1:将废旧磷酸铁锂电池依次进行放电、拆解、筛分,得到正极片,将正极片粉碎后进行振动筛分,去除上层铝箔,得到磷酸铁锂粉末,向磷酸铁锂粉末中加入碱液,去除残余的铝,过滤得到滤渣;
S2:向步骤S1的滤渣中添加铁源、锂源或磷源,调节锂、铁、磷三种元素的摩尔比为1.05:1:1,再进行高能球磨,得到球磨产物;
S3:制备蔗糖溶液,并向蔗糖溶液中加入烷基葡糖苷,得到混合溶液,烷基葡糖苷为混合溶液总质量的2.0%;
S4:将混合溶液和球磨产物按质量比4:1共同加入到喷雾热解装置进行喷雾热解,喷雾热解装置设定喷雾压力为0.8MPa,温度为750℃,得到高温粉料,喷雾热解产生的尾气经淋洗后制得酸性溶液,高温粉料经过水雾喷淋装置进行雾化纯水喷淋除杂,将高温磷酸铁锂与雾状纯水进行混合,纯水快速蒸发带走磷酸铁锂颗粒中的杂质,最后以1℃/min的速度升温至500℃,并在此温度下恒温2h,即得磷酸铁锂成品。
实施例2
一种废旧电池回用制备磷酸铁锂的方法,包括以下步骤:
S1:将废旧磷酸铁锂电池依次进行放电、拆解、筛分,得到正极片,将正极片粉碎后进行振动筛分,去除上层铝箔,得到磷酸铁锂粉末,向磷酸铁锂粉末中加入碱液,去除残余的铝,过滤得到滤渣;
S2:向步骤S1的滤渣中添加铁源、锂源或磷源,调节锂、铁、磷三种元素的摩尔 比为1.05:0.95:1,再进行高能球磨,得到球磨产物;
S3:制备淀粉溶液,并向淀粉溶液中加入脂肪酸甘油酯,得到混合溶液,脂肪酸甘油酯为混合溶液总质量的3.0%;
S4:将混合溶液和球磨产物按质量比6:1共同加入到喷雾热解装置进行喷雾热解,喷雾热解装置设定喷雾压力为0.3MPa,温度为500℃,得到高温粉料,喷雾热解产生的尾气经淋洗后制得酸性溶液,高温粉料经过水雾喷淋装置进行雾化纯水喷淋除杂,将高温磷酸铁锂与雾状纯水进行混合,纯水快速蒸发带走磷酸铁锂颗粒中的杂质,最后以5℃/min的速度升温至700℃,并在此温度下恒温10h,即得磷酸铁锂成品。
实施例3
一种废旧电池回用制备磷酸铁锂的方法,包括以下步骤:
S1:将废旧磷酸铁锂电池依次进行放电、拆解、筛分,得到正极片,将正极片粉碎后进行振动筛分,去除上层铝箔,得到磷酸铁锂粉末,向磷酸铁锂粉末中加入碱液,去除残余的铝,过滤得到滤渣;
S2:向步骤S1的滤渣中添加铁源、锂源或磷源,调节锂、铁、磷三种元素的摩尔比为1:0.95:1,再进行高能球磨,得到球磨产物;
S3:制备葡萄糖溶液,并向葡萄糖溶液中加入聚山梨酯,得到混合溶液,聚山梨酯为混合溶液总质量的0.5%;
S4:将混合溶液和球磨产物按质量比2:1共同加入到喷雾热解装置进行喷雾热解,喷雾热解装置设定喷雾压力为0.5MPa,温度为600℃,得到高温粉料,喷雾热解产生的尾气经淋洗后制得酸性溶液,高温粉料经过水雾喷淋装置进行雾化纯水喷淋除杂,将高温磷酸铁锂与雾状纯水进行混合,纯水快速蒸发带走磷酸铁锂颗粒中的杂质,最后以3℃/min的速度升温至600℃,并在此温度下恒温6h,即得磷酸铁锂成品。
图1为首次合成(即未使用过)的常规磷酸铁锂产品与实施例1制备的磷酸铁锂成品的比容量及循环性能对比图,从图中可以看出,两者的比容量和循环性能相当。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所 属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种废旧电池回用制备磷酸铁锂的方法,其特征在于,包括以下步骤:
    将废旧磷酸铁锂电池进行前处理得到磷酸铁锂粉末,向所述磷酸铁锂粉末中加入碱液,过滤得到滤渣;
    向所述滤渣中添加铁源、锂源或磷源,进行球磨,得到球磨产物;
    制备碳源溶液,并向碳源溶液中加入表面活性剂,得到混合溶液;
    将所述球磨产物和混合溶液混合,进行喷雾热解,得到高温粉料,高温粉料经过雾化水喷淋除杂,再经过煅烧,即得磷酸铁锂成品。
  2. 根据权利要求1所述的方法,其特征在于,所述前处理的过程如下:将废旧磷酸铁锂电池依次进行放电、拆解和筛分,得到正极片,将正极片粉碎后进行振动筛分,筛下物即为磷酸铁锂粉末。
  3. 根据权利要求1所述的方法,其特征在于,所述铁源为草酸亚铁、乙二酸亚铁、氧化铁、磷酸铁、氯化铁、氯化亚铁或硝酸铁中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于,所述球磨产物中锂、铁、磷三种元素的摩尔比为(1-1.05):(0.95-1):1。
  5. 根据权利要求1所述的方法,其特征在于,所述碳源为蔗糖、淀粉或葡萄糖中的一种或多种。
  6. 根据权利要求1所述的方法,其特征在于,所述碳源溶液与球磨产物的质量比为(1-8):1。
  7. 根据权利要求1所述的方法,其特征在于,所述表面活性剂为硬脂酸、烷基葡糖苷、脂肪酸甘油酯或聚山梨酯中的一种或多种。
  8. 根据权利要求1所述的方法,其特征在于,所述表面活性剂为混合溶液总质量的0.1-3.0%。
  9. 根据权利要求1所述的方法,其特征在于,所述喷雾热解的喷雾压力为0.3-0.8MPa,温度为500-750℃。
  10. 根据权利要求1所述的方法,其特征在于,所述煅烧的温度为500-700℃,升温速率为1-5℃/min,煅烧的时间为2-10h。
PCT/CN2021/142952 2021-06-24 2021-12-30 废旧电池回用制备磷酸铁锂的方法 WO2022267424A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112021005203.9T DE112021005203T5 (de) 2021-06-24 2021-12-30 Verfahren zur Herstellung von Lithium-Eisen-Phosphat durch Recycling von Altbatterien
MX2023013191A MX2023013191A (es) 2021-06-24 2021-12-30 Metodo para la preparacion de fosfato de hierro - litio mediante el reciclado de baterias usadas.
GBGB2313081.8A GB202313081D0 (en) 2021-06-24 2021-12-30 Method for preparing lithium iron phosphate by recycling waste batteries
ES202390049A ES2962916R1 (es) 2021-06-24 2021-12-30 Metodo para la preparacion de fosfato de hierro - litio mediante el reciclado de baterias usadas
HU2200231A HUP2200231A2 (hu) 2021-06-24 2021-12-30 Eljárás lítium-vas-foszfát elõállítására elhasznált akkumulátorok újrahasznosításával és felhasználásával
MA60466A MA60466A1 (fr) 2021-06-24 2021-12-30 Procédé de préparation de phosphate de fer-lithium par recyclage de batteries usagées
US18/265,862 US11958743B2 (en) 2021-06-24 2021-12-30 Method for preparing lithium iron phosphate by recycling waste batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110706875.3A CN113526482B (zh) 2021-06-24 2021-06-24 废旧电池回用制备磷酸铁锂的方法
CN202110706875.3 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022267424A1 true WO2022267424A1 (zh) 2022-12-29

Family

ID=78096732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142952 WO2022267424A1 (zh) 2021-06-24 2021-12-30 废旧电池回用制备磷酸铁锂的方法

Country Status (9)

Country Link
US (1) US11958743B2 (zh)
CN (1) CN113526482B (zh)
DE (1) DE112021005203T5 (zh)
ES (1) ES2962916R1 (zh)
GB (1) GB202313081D0 (zh)
HU (1) HUP2200231A2 (zh)
MA (1) MA60466A1 (zh)
MX (1) MX2023013191A (zh)
WO (1) WO2022267424A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462172A (zh) * 2023-05-22 2023-07-21 甘肃睿思科新材料有限公司 一种利用废旧磷酸铁选择性提锂产生的含碳粗磷酸铁制备电池级磷酸铁的方法
CN116553510A (zh) * 2023-05-11 2023-08-08 江苏大学 一种磷酸铁锂废粉的回收再生方法
CN117393889A (zh) * 2023-11-23 2024-01-12 银贮(宁波)科技有限公司 一种再生废旧磷酸铁锂正极材料及其制备方法和应用
CN117865089A (zh) * 2023-12-19 2024-04-12 重庆长荣新能源材料有限公司 一种基于射流溶铁及喷雾热解制备磷酸铁材料的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526482B (zh) * 2021-06-24 2023-05-09 广东邦普循环科技有限公司 废旧电池回用制备磷酸铁锂的方法
CN114275754A (zh) * 2021-11-16 2022-04-05 哈尔滨工业大学(深圳) 一种基于废旧磷酸铁锂材料制备碳包覆磷酸铁锂的方法
CN115893345B (zh) * 2022-10-21 2024-07-23 中国科学院广州能源研究所 一种废旧磷酸铁锂/磷酸铁钠电池正极材料的高值化回收方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062256A (ja) * 2007-08-10 2009-03-26 Tokyo Institute Of Technology 無機物粒子の製造方法
CN102148374A (zh) * 2010-02-08 2011-08-10 江西省金锂科技有限公司 一种采用喷雾热分解技术制备球形正极材料磷酸铁锂的方法
CN102751548A (zh) * 2012-06-18 2012-10-24 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
KR101435657B1 (ko) * 2014-03-10 2014-08-29 한밭대학교 산학협력단 분무 열분해를 이용한 LiFePO₄의 제조방법
CN109768344A (zh) * 2018-11-30 2019-05-17 江西赣锋循环科技有限公司 一种废旧磷酸铁锂电池的正极极片的分离方法
CN110620278A (zh) * 2019-09-25 2019-12-27 深圳清华大学研究院 一种废旧磷酸铁锂电池正极材料的回收方法
CN112054261A (zh) * 2020-07-28 2020-12-08 昆明理工大学 一种机械活化辅助喷雾热解回收废旧锂电池正极的方法
CN112408353A (zh) * 2019-08-03 2021-02-26 艾姆新能源(江苏)有限公司 一种喷雾焙烧法回收磷酸铁锂正极材料的清洁生产工艺
CN112794300A (zh) * 2019-11-14 2021-05-14 湖南众德新材料科技有限公司 废旧磷酸铁锂电池正极片的分离回收再生方法
CN113526482A (zh) * 2021-06-24 2021-10-22 广东邦普循环科技有限公司 废旧电池回用制备磷酸铁锂的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594708B (zh) * 2013-11-11 2016-03-02 深圳市贝特瑞纳米科技有限公司 一种变价铁基复合正极材料及其制备方法
CN109721043B (zh) * 2018-12-29 2021-09-17 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法
CN110581323B (zh) * 2019-09-25 2021-10-22 深圳清华大学研究院 一种废旧磷酸铁锂电池正极材料的原位再生方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062256A (ja) * 2007-08-10 2009-03-26 Tokyo Institute Of Technology 無機物粒子の製造方法
CN102148374A (zh) * 2010-02-08 2011-08-10 江西省金锂科技有限公司 一种采用喷雾热分解技术制备球形正极材料磷酸铁锂的方法
CN102751548A (zh) * 2012-06-18 2012-10-24 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
KR101435657B1 (ko) * 2014-03-10 2014-08-29 한밭대학교 산학협력단 분무 열분해를 이용한 LiFePO₄의 제조방법
CN109768344A (zh) * 2018-11-30 2019-05-17 江西赣锋循环科技有限公司 一种废旧磷酸铁锂电池的正极极片的分离方法
CN112408353A (zh) * 2019-08-03 2021-02-26 艾姆新能源(江苏)有限公司 一种喷雾焙烧法回收磷酸铁锂正极材料的清洁生产工艺
CN110620278A (zh) * 2019-09-25 2019-12-27 深圳清华大学研究院 一种废旧磷酸铁锂电池正极材料的回收方法
CN112794300A (zh) * 2019-11-14 2021-05-14 湖南众德新材料科技有限公司 废旧磷酸铁锂电池正极片的分离回收再生方法
CN112054261A (zh) * 2020-07-28 2020-12-08 昆明理工大学 一种机械活化辅助喷雾热解回收废旧锂电池正极的方法
CN113526482A (zh) * 2021-06-24 2021-10-22 广东邦普循环科技有限公司 废旧电池回用制备磷酸铁锂的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116553510A (zh) * 2023-05-11 2023-08-08 江苏大学 一种磷酸铁锂废粉的回收再生方法
CN116553510B (zh) * 2023-05-11 2024-05-03 上饶溢骏鑫环境科技有限公司 一种磷酸铁锂废粉的回收再生方法
CN116462172A (zh) * 2023-05-22 2023-07-21 甘肃睿思科新材料有限公司 一种利用废旧磷酸铁选择性提锂产生的含碳粗磷酸铁制备电池级磷酸铁的方法
CN116462172B (zh) * 2023-05-22 2023-09-19 甘肃睿思科新材料有限公司 一种利用废旧磷酸铁选择性提锂产生的含碳粗磷酸铁制备电池级磷酸铁的方法
CN117393889A (zh) * 2023-11-23 2024-01-12 银贮(宁波)科技有限公司 一种再生废旧磷酸铁锂正极材料及其制备方法和应用
CN117865089A (zh) * 2023-12-19 2024-04-12 重庆长荣新能源材料有限公司 一种基于射流溶铁及喷雾热解制备磷酸铁材料的方法

Also Published As

Publication number Publication date
HUP2200231A2 (hu) 2023-04-28
US11958743B2 (en) 2024-04-16
US20240034627A1 (en) 2024-02-01
DE112021005203T5 (de) 2023-08-24
CN113526482A (zh) 2021-10-22
MA60466A1 (fr) 2023-09-27
GB202313081D0 (en) 2023-10-11
ES2962916R1 (es) 2024-04-26
MX2023013191A (es) 2024-01-05
ES2962916A2 (es) 2024-03-21
CN113526482B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2022267424A1 (zh) 废旧电池回用制备磷酸铁锂的方法
CN102751548B (zh) 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
JP6363733B2 (ja) 廃鉛ペーストから鉛蓄電池の負極に使用する酸化鉛を直接回収するための方法
US20240021903A1 (en) Method for recycling iron phosphate waste and use thereof
CN114606386B (zh) 一种废弃锂电池磨浸回收钴和锂的工艺
US12009492B2 (en) Method for recycling and preparing positive electrode material from waste lithium iron phosphate batteries
CN109704300A (zh) 一种磷酸铁锂电池正极材料回收再利用的方法
WO2024060549A1 (zh) 一种连续化制备磷酸铁的方法和应用
JP2017503088A (ja) 酸化鉛含有廃棄物を回収利用する方法
CN104538629A (zh) 一种球形纳米磷酸铁的制备方法
WO2024125561A1 (zh) 以废弃磷酸铁锂制备碳包覆的氟磷酸铁钠的方法及其应用
CN103391897B (zh) 复氧化物的制造方法及制造装置
CN111129636A (zh) 废旧磷酸铁锂电池正极材料的再生方法
CN113683071A (zh) 一种高倍率磷酸铁锂的制备方法
CN112599766B (zh) 一种废旧磷酸铁锂电池正极材料再生工艺
CN112838289A (zh) 一种从磷酸铁锂正极材料中回收锂和磷酸亚铁的方法
Zhou et al. Selective and efficient extraction of lithium from spodumene via nitric acid pressure leaching
CN111663042A (zh) 一种废旧锂离子电池中有价金属的回收方法
CN101837964A (zh) 利用生产磷酸铁锂过程中产生的氨气制备磷酸二氢铵的方法
CN113774225A (zh) 一种从废旧磷酸铁锂电池中选择性浸出锂的方法
CN115172923A (zh) 低温热解脱附回收电池粉的方法
CN113540442A (zh) 一种碳融合法连续制备纳米球形磷酸铁锂的方法
CN114853074B (zh) 一种利用半导体废酸生产NaFeF3的方法
CN108400303A (zh) 一种锡-石墨烯气流包覆高镍三元锂电池电极材料的方法
CN117568621A (zh) 一种用于废旧锂电池正极材料的提锂溶剂及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265862

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/013191

Country of ref document: MX

122 Ep: pct application non-entry in european phase

Ref document number: 21946897

Country of ref document: EP

Kind code of ref document: A1