WO2022255275A1 - スクリュー圧縮機 - Google Patents

スクリュー圧縮機 Download PDF

Info

Publication number
WO2022255275A1
WO2022255275A1 PCT/JP2022/021846 JP2022021846W WO2022255275A1 WO 2022255275 A1 WO2022255275 A1 WO 2022255275A1 JP 2022021846 W JP2022021846 W JP 2022021846W WO 2022255275 A1 WO2022255275 A1 WO 2022255275A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
space
casing
supply port
liquid supply
Prior art date
Application number
PCT/JP2022/021846
Other languages
English (en)
French (fr)
Inventor
修平 永田
茂幸 頼金
謙次 森田
雄太 梶江
紘太郎 千葉
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN202280008601.XA priority Critical patent/CN116710655A/zh
Priority to EP22816023.0A priority patent/EP4350146A1/en
Publication of WO2022255275A1 publication Critical patent/WO2022255275A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/52Bearings for assemblies with supports on both sides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps

Definitions

  • the present invention relates to a screw compressor, and is suitable for application to a screw compressor equipped with a liquid supply mechanism.
  • an oil-cooled screw compressor disclosed in Patent Document 1 is known as a screw compressor.
  • This screw compressor has an oil supply hole through which lubricating oil is supplied to a space in which the suction bearing and the mechanical seal are stored, and a first recovery hole is formed in the partition between the screw rotor and the suction side bearing. Furthermore, a second recovery hole is formed bypassing the first recovery hole, and these first and second recovery holes also have a structure opening to the compressed air suction passage.
  • the suction side bearing agitates the lubricating oil accumulated in the space and also agitates the lubricating oil passing through the suction side bearing.
  • the agitation loss generated by the process was large, which was a factor in the deterioration of the performance as a compressor.
  • the present invention has been made in consideration of the above points, and intends to propose a highly reliable and highly efficient screw compressor that can effectively prevent deterioration in performance as a compressor.
  • the present invention provides a screw compressor for compressing a working medium, which includes first and second screw rotors for sucking, compressing and discharging the working medium, and one end side of a rotating shaft of a power source.
  • a first bearing that rotatably supports the one end side of the connected first screw rotor; a casing that houses the first screw rotor and the first bearing; a through hole of the casing through which the shaft portion of the first screw rotor, which is arranged on the opposite side of the toothed portion of the first screw rotor with respect to one bearing and is connected to the output shaft of the power source, is inserted; a partition wall for separating the first bearing and the shaft sealing member inside the casing; and a first bearing provided in the casing for supplying lubricating fluid to the first bearing.
  • a first liquid supply port and a liquid supply path having a second liquid supply port for supplying the lubricating liquid to the shaft sealing member are provided.
  • FIG. 2 is a horizontal sectional view showing the configuration of the male rotor side in the screw compressor according to the first embodiment
  • FIG. 2 is a vertical sectional view showing the configuration of the male rotor side in the screw compressor according to the first embodiment
  • FIG. 3 is a vertical cross-sectional view showing the configuration of a male rotor-side fluid supply path in the screw compressor according to the first embodiment
  • 2 is a vertical sectional view showing the configuration of the female rotor side in the screw compressor according to the first embodiment
  • FIG. FIG. 3 is a conceptual diagram for explaining an external route of lubricating fluid injected into the screw compressor according to the first embodiment
  • FIG. 6 is a vertical cross-sectional view showing the configuration of a male rotor side in a screw compressor according to a second embodiment
  • FIG. 11 is a vertical cross-sectional view showing the configuration of a male rotor side in a screw compressor according to a third embodiment
  • FIG. 11 is a vertical cross-sectional view showing the configuration of a male rotor side in a screw compressor according to a fourth embodiment
  • FIGS. 1 and 2 show a screw compressor 1 according to a first embodiment.
  • 1 is a CC arrow view (horizontal sectional view) in FIG. 2
  • FIG. 2 is an AA arrow view (vertical sectional view) in FIG.
  • the screw compressor 1 of the present embodiment includes a male rotor 2 and a female rotor 3, which are a pair of screw rotors, and a casing 4 that houses the male rotor 2 and the female rotor 3. configured with.
  • the male rotor 2 includes a toothed portion 2A formed with a plurality of spirally extending teeth (lobes), and one end side of the toothed portion 2A in the axial direction of the rotor (the left side in FIGS. 1 and 2). ), and a discharge-side shaft portion 2C formed on the other end side of the toothed portion 2A in the rotor axial direction (the right side in FIGS. 1 and 2, hereinafter the same).
  • the suction side shaft portion 2B of the male rotor 2 is rotatably supported by a suction side bearing (hereinafter referred to as a first suction side bearing) 5, and the discharge side shaft portion 2C of the male rotor 2 is supported by a discharge side bearing (hereinafter referred to as a first suction side bearing). , which is called a first discharge-side bearing) 6, so as to be rotatable.
  • a suction side bearing hereinafter referred to as a first suction side bearing
  • a discharge side bearing hereinafter referred to as a first suction side bearing
  • the female rotor 3 includes a toothed portion 3A formed with a plurality of teeth that mesh with the teeth of the male rotor 2, a suction side shaft portion 3B formed on one end side of the toothed portion 3A in the axial direction of the rotor, and a toothed portion. and a discharge-side shaft portion 3C formed on the other end side in the rotor axial direction of 3A.
  • the suction side shaft portion 3B of the female rotor 3 is rotatably supported by a suction side bearing (hereinafter referred to as a second suction side bearing) 7, and the discharge side shaft portion 3C of the female rotor 3 is supported by a discharge side bearing (hereinafter referred to as a second suction side bearing). , which is referred to as a second discharge-side bearing) 8 is rotatably supported.
  • the suction side shaft portion 2B of the male rotor 2 penetrates the casing 4 and is connected to the rotating shaft of the motor (not shown).
  • the male rotor 2 can be rotationally driven integrally with the rotating shaft of the motor, and the female rotor 3 can also be rotationally driven integrally with the male rotor 2 accordingly.
  • the casing 4 includes a main casing 4A, a discharge side casing 4B connected to the other end of the main casing 4A in the rotor axial direction, and a suction side partition 4C connected to one end of the main casing 4A in the rotor axial direction. and a suction side casing 4D.
  • the discharge-side casing 4B is provided with a first discharge-side bearing housing space 9A and a second discharge-side bearing housing space 9B which are provided independently of each other.
  • the first discharge side bearing 6 is accommodated, and the second discharge side bearing 8 is accommodated in the second discharge side bearing accommodation space 9B.
  • the discharge-side casing 4B has a discharge port 10 positioned radially outside (lower in FIG. 2) than the toothed portions 2A and 3A of the male rotor 2 and the female rotor 3, and a discharge port 10 and a bore (to be described later).
  • a discharge path 11 connecting between 12 is formed.
  • the main casing 4A is formed with a bore 12 for housing the toothed portion 2A of the male rotor 2 and the toothed portion 3A of the female rotor 3.
  • the bore 12 is a space having a shape in which two cylindrical holes are partially overlapped to accommodate the toothed portion 2A of the male rotor 2 and the toothed portion 3A of the female rotor 3 in a meshed state.
  • a working chamber is formed by the inner wall surface of the bore 12, the tooth spaces of the male rotor 2, and the tooth spaces of the female rotor 3.
  • the working chamber is formed such that its volume gradually decreases from one end side to the other end side in the axial direction of the rotor. As a result, the working medium such as air sucked from the suction port 13 is gradually compressed in the working chamber and discharged from the discharge port 10 through the discharge path 11 .
  • the suction port 13 is formed outside the toothed portion 2A of the male rotor 2 and the toothed portion 3A of the female rotor 3 in the main casing 4A in the rotor radial direction (upper side in FIG. 2).
  • the suction port 13 communicates with the working chamber via the suction space 14 , and the working medium sucked from the suction port 13 is supplied to the working chamber via the suction space 14 .
  • a cylindrical first suction-side bearing housing space 15 and a cylindrical second suction-side bearing housing space 16 are formed in the end face of the main casing 4A on one end side in the rotor axial direction.
  • the first suction side bearing 5 is fitted in the first suction side bearing housing space
  • the second suction side bearing 7 is fitted in the second suction side bearing housing space 16. Contained.
  • a first bearing communication space 17 having a slightly smaller diameter than the first suction side bearing housing space 15 and communicating between the first suction side bearing housing space 15 and the suction space 14;
  • a second bearing communicating space 18 having a slightly smaller diameter than the second suction side bearing accommodating space 16 and communicating between the second suction side bearing accommodating space 16 and the suction space 14 is formed.
  • a suction side partition 4C is fixed to one end face of the main casing 4A in the rotor axial direction
  • a suction side casing 4D is fixed to the end of the suction side partition 4C in the rotor axial direction.
  • a shaft sealing space 20 communicating with the through hole 19 through which the suction side shaft portion 2B of the male rotor 2 is inserted is formed on the surface facing the suction side partition wall 4C.
  • a shaft sealing member 21 for sealing the through hole 19 is arranged inside.
  • the casing 4 of the screw compressor 1 is provided with a first working chamber liquid supply port 22 that communicates with the working chamber in the bore 12 , and through this first working chamber liquid supply port 22 is adapted to inject liquid into the working chamber.
  • a first suction side liquid supply port 23 is provided on the side of the suction port 13 of the casing 4, and a first discharge side liquid supply port 24 is provided on the side of the discharge port 10 of the casing 4.
  • the liquid can be injected into the shaft sealing space 20 and the first suction-side bearing housing space 15 through the suction-side liquid supply port 23, and the liquid can be injected into the first discharge-side liquid supply port 24 through the first discharge-side liquid supply port 24. Liquid can be injected into the discharge side bearing housing space 9A.
  • the lubricating liquid injected into the first suction side liquid supply port 23 passes through the inside of the casing 4 and is discharged into the shaft seal space 20 via the first liquid supply port 25, and is discharged into the second liquid supply. It is discharged into the first suction side bearing accommodation space 15 through the port 26 .
  • FIG. 3 shows the flow path inside the casing 4 of the lubricating liquid supplied to the first suction side bearing 5 and the shaft sealing member 21 .
  • the arrows in the drawing indicate the direction in which the lubricating liquid is supplied.
  • a first liquid supply path 27 that communicates the first suction side liquid supply port 23 with the first and second liquid supply ports 25 and 26. It is The first liquid supply path 27 branches into first and second branched paths 27A and 27B on the way, the first branched path 27A communicates with the first liquid supply port 25, and the second branched path 27B is formed to communicate with the second liquid supply port 26 .
  • the first liquid supply port 25 opens toward the shaft sealing member 21 arranged in the shaft sealing space 20 , so that the liquid is injected into the casing 4 from the first suction side liquid supply port 23 .
  • the lubricating liquid that has flowed into the first branch passage 27A is discharged from the first liquid supply port 25 and supplied to the shaft sealing member 21 .
  • the shaft seal space 20 communicates with the suction space 14 via a bypass communication passage 28, whereby the lubricating fluid injected into the shaft seal space 20 is discharged to the suction space 14 via the bypass communication passage 28.
  • the second liquid supply port 26 opens toward the first suction side bearing 5 housed in the first suction side bearing housing space 15, thereby forming the first suction side liquid supply port.
  • 23 into the casing 4 and flowed into the second branch passage 27B is discharged from the second liquid supply port 26 and supplied to the first suction side bearing 5 from the male rotor 2 side.
  • the first suction side bearing 5 since the first suction side bearing 5 is partially exposed to the suction space 14 via the first bearing communication space 17 of the main casing 4A, the first The lubricating fluid supplied to the suction side bearing 5 flows out to the suction space 14 via the first bearing communication space 17 . This lubricating fluid then joins the lubricating fluid that has flowed into the suction space 14 via the bypass communication passage 28, and is conveyed to the working chamber together with the working medium that has flowed into the suction space 14 from the suction port 13.
  • the agitation loss of the lubricating liquid in the first suction side bearing 5 is considered.
  • the first suction side bearing 5 is a roller bearing, but it is not limited to this. There may be.
  • the rolling elements in the rolling bearing roll while pushing the lubricating liquid aside, so they are subject to fluid resistance. Further, in the present embodiment, since the lubricating fluid supplied to the first suction side bearing 5 is constantly replaced, the rolling elements need to accelerate the newly introduced lubricating fluid. There is The sum of these is the agitation loss.
  • the location where the first suction-side bearing 5 is arranged is located higher than the lowest end of the suction space 14, so that the lubricating fluid is less likely to accumulate. It has become.
  • the screw compressor 1 is installed with the male rotor 2 and the female rotor 3 horizontal as shown in FIG. Since the first bearing communication space 17 is formed so as to be lower than the height position of the lowermost end of the inner diameter of the outer ring, the lubricant in the rolling element raceway of the first suction side bearing 5 is discharged to the suction space 14. It has an easy-to-use structure.
  • the second liquid supply port 26 is formed on the side of the suction side partition wall 4C, the lubricating liquid supplied to the first suction side bearing 5 through the second liquid supply port 26 flows into the suction space 14 side. In order to flow out, the lubricating liquid needs to pass through the rolling element raceway of the first suction side bearing 5 which rotates, so the stirring loss increases accordingly.
  • the second liquid supply port 26 is formed so as to supply the lubricating liquid to the first suction side bearing 5 from the male rotor 2 side. It is not necessary for all the lubricating fluid supplied to the first suction side bearing 5 to pass through the rolling element raceways of the rotating first suction side bearing 5 . Therefore, it can be said that the present screw compressor 1 has a structure in which the agitation loss of the lubricating liquid in the rolling element raceway portion of the first suction side bearing 5 is small.
  • the required amount of lubricating liquid in the first suction side bearing 5 is generally smaller than the required amount in the shaft sealing member 21 such as a mechanical seal.
  • the space 20 is separated from the space 20 by the suction side partition wall 4C, and the first liquid supply port 25 for supplying the lubricating liquid to the shaft sealing member 21 and the second liquid supply port 25 for supplying the lubricating liquid to the first suction side bearing 5 are provided. Since the liquid supply port 26 is provided independently, it is possible to supply lubricating liquid in an amount suitable for each of the shaft sealing member 21 and the first suction side bearing 5 .
  • the distribution of the amount of lubricating fluid supplied to the shaft sealing member 21 and the first suction side bearing 5 can be determined by the pressure loss of the first fluid supply path 27. can be determined by the length of the branch passages 27A and 27B, the hydraulic diameter, the diameters of the first and second liquid supply ports 25 and 26, and the like. In the present embodiment, as described above, the amount of lubricating liquid required to be supplied to the shaft sealing member 21 is larger than the amount of lubricating liquid to be supplied to the first suction side bearing 5.
  • the lengths and hydraulic diameters of the first and second branches 27A, 27B and the diameters of the first and second liquid supply ports 25, 26 are selected.
  • FIG. 4 is a BB arrow view (vertical sectional view) in FIG.
  • the main casing 4A is provided with a second working chamber liquid supply port 30 communicating with the working chamber in the bore 12, and lubrication is performed from the outside of the screw compressor 1 via the second working chamber liquid supply port 30. It is adapted to supply liquid to the working chamber.
  • a second discharge-side liquid supply port 31 is formed in the discharge-side casing 4B. Lubricant can be supplied to the second discharge side bearing 8 provided.
  • a second suction-side fluid supply port 32 is formed outside the rotor radial direction of the suction-side casing 4D, and a second suction-side fluid supply port 32 is housed in the second suction-side bearing housing space 16 of the main casing 4A.
  • a third liquid supply port 33 is provided toward the suction side bearing 7 , and the third liquid supply port 33 is connected to the second suction side via a second liquid supply path 34 formed inside the casing 4 . It communicates with the liquid supply port 32 . Accordingly, by injecting the lubricating liquid into the screw compressor 1 through the second suction-side liquid feeding port 32, the lubricating liquid is injected into the third liquid feeding port 33 via the second liquid feeding path 34. to the second suction side bearing 7.
  • the second suction side fluid supply port 32 is supplied with the fluid.
  • the lubricating fluid supplied to the second suction side bearing 7 via the second fluid supply path 34 flows out to the suction space 14 via the second bearing communication space 18, and then from the suction port 13. Together with the working medium that has flowed into the suction space 14, it is conveyed to the working chamber.
  • the agitation loss of the lubricating liquid in the second suction side bearing 7 is reduced by the same mechanism as the agitation loss of the lubricating liquid in the first suction side bearing 5. can be suppressed.
  • the second working chamber liquid supply port 30, the second suction side liquid supply port 32 and the second discharge side liquid supply port 31 are the same as the first working chamber liquid supply port 22 and the first working chamber liquid supply port 22 described above with reference to FIG. It may be formed separately from the corresponding one of the suction side liquid supply port 23 and the first discharge side liquid supply port 24, or may be provided at the same location, that is, the first and second The working chamber liquid supply ports 22, 30, the first and second suction side liquid supply ports 23, 32, and the first and second discharge side liquid supply ports 24, 31 may be the same.
  • FIG. 5 shows the external route of the lubricating liquid injected into the screw compressor 1 of this embodiment.
  • the lubricating fluid injected into the screw compressor 1 is discharged from the discharge port 10 (FIGS. 2 and 4) while being mixed with the working medium compressed by the screw compressor 1.
  • FIG. The lubricating fluid is separated from the compressed working medium by the oil separator 40, cooled by the cooler 41, and then passed through the oil filter (and check valve) 42 to the first and second working chambers. It is supplied to liquid supply ports 22 and 30 (FIGS. 2 and 4), and injected into the working chamber through these first and second working chamber liquid supply ports 22 and 30, respectively.
  • the lubricating fluid After passing through the oil filter 42, the lubricating fluid is branched into the first and second suction side fluid supply ports 23 and 32 (FIGS. 2 and 4), the first and second discharge side fluid supply ports 24, 31 (FIGS. 2 and 4), and through the first suction side liquid supply port 23, the shaft sealing member 21 (FIG. 2) in the shaft sealing space 20 (FIG. 2) and the first suction side First suction side bearing 5 in bearing housing space 15 (Fig. 2), second suction side bearing 7 in second suction side bearing housing space 15, first discharge side bearing housing space 9A (Fig. 1)
  • the branching of the lubricating fluid is not limited to the outside of the screw compressor 1 as shown in FIG.
  • the first suction-side bearing housing space 15 housing the first suction-side bearing 5 and the shaft seal member 21 are provided.
  • the shaft sealing space 20 is separated from the shaft sealing space 20 by the suction side partition wall 4 ⁇ /b>C. Since the liquid supply port 26 is provided independently, it is possible to independently supply suitable amounts of lubricating liquid to the shaft sealing member 21 and the first suction side bearing 5 respectively. Therefore, according to the screw compressor 1, it is possible to suppress the churning loss of the lubricating liquid at the first suction side bearing 5 caused by the excessive supply of the lubricating liquid to the first suction side bearing 5. Therefore, a highly reliable and highly efficient screw compressor can be realized.
  • the second liquid supply port 26 is formed so as to supply the lubricating liquid to the first suction side bearing 5 from the male rotor 2 side. It is not necessary for all of the lubricating fluid supplied to the side bearing 5 to pass through the rolling element raceways of the rotating first suction side bearing 5 . Therefore, according to the screw compressor 1, the agitation loss of the lubricating fluid in the first suction side bearing 5 is small, and a higher efficiency screw compressor can be realized.
  • FIG. 6 shows a vertical cross section of a screw compressor 50 according to a second embodiment.
  • the present screw compressor 50 is configured in a casing 51 (a suction side casing 50D, a suction side partition wall 50C and a main casing 50A) so that a bypass communication passage 52 communicates between the shaft seal space 20 and the bore 12. It differs from the screw compressor 1 of the first embodiment.
  • the main casing 50A is provided with the first working chamber fluid supply port 22 (FIG. 2) and a path communicating between the first working chamber fluid supply port 22 and the bore 12.
  • the lubricating fluid supplied to the shaft sealing member 21 in the shaft sealing space 20 is discharged into the bore 12 through the bypass communication passage 52 .
  • the first and second suction side bearings 5 and 7 and the shaft sealing member 21 are provided in the same manner as the screw compressor 1 of the first embodiment. While supplying necessary and sufficient lubricating liquid to the bearings 5 and 7 on the suction side, agitation loss can be kept low. Therefore, according to this embodiment as well, a highly reliable and highly efficient screw compressor can be provided.
  • FIG. 7 shows a vertical cross section of a screw compressor 60 according to a third embodiment.
  • This screw compressor 60 is configured in the same manner as the screw compressor 1 of the first embodiment except that the position of the second liquid supply port 62 is different.
  • the second liquid supply port 62 is provided in the suction side partition wall 60C so that the lubricating liquid can be supplied to the first suction side bearing 5 from the suction side partition wall 60C side.
  • a second branch of the first liquid supply path 63 is formed in the suction side casing 60D and the suction side partition wall 60C so as to communicate between the first liquid supply port 62 and the first suction side liquid supply port 23.
  • a path 63B is provided.
  • the lubricating liquid supplied from the second liquid supply port 62 to the first suction side bearing 5 passes through the rolling element raceway of the rotating first suction side bearing 5.
  • the agitation loss in the first suction side bearing 5 is greater than in the screw compressor 1 according to the first embodiment.
  • the first liquid supply port 62 is provided on the suction side partition wall 60C side with respect to the first suction side bearing 5, the first Since it is not necessary to provide a portion for providing a liquid supply port in the main casing 4A, and the opening area of the first bearing communication space 17 can be increased accordingly, the rolling element raceway portion of the first suction side bearing 5 The lubricating liquid is less likely to stay in the first suction side bearing 5, and the agitation loss in the first suction side bearing 5 can be kept low.
  • the screw compressor 60 of the present embodiment having the above configuration, as in the screw compressor 1 of the first embodiment, the first suction side bearing 5 and the shaft sealing member 21 are sufficiently Agitation loss in the first suction side bearing 5 can be kept low while supplying a sufficient amount of lubricating fluid. Therefore, according to this embodiment as well, a highly reliable and highly efficient screw compressor can be provided.
  • FIG. 8 shows a vertical cross section of a partial configuration of a screw compressor 70 according to a fourth embodiment.
  • the screw compressor 70 part of the lubricating fluid supplied from the second fluid supply port 26 to the first suction side bearing 5 is applied to the rolling element raceway of the rotating first suction side bearing 5.
  • the lubricating fluid passing through the rolling element raceway of the first suction side bearing 5 quickly flows into the shaft seal space 20 through the through hole 72, the first suction side bearing 5
  • the lubricating liquid is less likely to stay in the rolling element raceway, and as a result, the agitation loss in the first suction side bearing 5 can be kept lower than in the screw compressor 1 of the first embodiment.
  • the screw of the first embodiment can Compared to the compressor 1, the agitation loss in the first suction side bearing 5 can be kept low. Therefore, according to this embodiment, it is possible to provide a highly reliable and highly efficient screw compressor.
  • liquid supply path (first branch path) communicating with the first liquid supply port and the liquid supply path (second branch path) communicating with the second liquid supply port 2) are branched inside the casing, but the present invention is not limited to this, and these fluid supply paths are originally formed separately separately formed).
  • the second liquid supply port 62 is provided in the suction side partition wall 60C so that the lubricating liquid can be supplied to the first suction side bearing 5 from the suction side partition wall 60C side.
  • the present invention is not limited to this, and the third liquid supply port 26 described above with reference to FIG. may be provided on the suction side partition wall 60C.
  • the present invention can be widely applied to various configurations of screw compressors for compressing a working medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

作動媒体を圧縮するスクリュー圧縮機において、作動媒体を吸い込み、圧縮して吐出する第1及び第2のスクリューロータと、動力源の回転軸に一端側が連結された第1のスクリューモータの当該一端側を回転自在に支持する第1の軸受と、第1のスクリューロータ及び第1の軸受が収納されたケーシングと、ケーシング内部における第1の軸受に対して第1のスクリューロータの歯形部の反対側に配置され、動力源の出力軸と連結された第1のスクリューロータの軸部が挿通するケーシングの貫通孔をシールする軸封部材と、ケーシングにおいて第1の軸受及び軸封部材間を隔離する隔壁と、ケーシングに設けられ、第1の軸受に潤滑液を給液するための第1の給液口、及び、軸封部材に潤滑液を供給するための第2の給液口を有する給液経路とを設けるようにした。

Description

スクリュー圧縮機
 本発明はスクリュー圧縮機に関し、給液機構を備えるスクリュー圧縮機に適用して好適なものである。
 従来、スクリュー圧縮機として、特許文献1に開示された油冷式のスクリュー圧縮機が知られている。このスクリュー圧縮機は、吸込軸受及びメカニカルシールが格納されている空間に潤滑油が供給される給油穴を有し、スクリューロータと吸込側軸受の間の隔壁には第一の回収穴が形成され、さらに第一の回収穴をバイパスして第二の回収穴が形成され、これら第一及び第二の回収穴も圧縮空気吸込通路に開口した構造を有するものである。
 このような構造により、かかる特許文献1に開示されたスクリュー圧縮機においては、潤滑油の一部が第二の回収穴を介して回収されることとなり、吸込側軸受を通過する潤滑油の慮を潤滑に必要な最小限に抑えられ、吸込側軸受の攪拌ロスを低減させることが可能となる。
特開2002-21758号公報
 ところで、かかる特許文献1に開示されたスクリュー圧縮機では、吸込側軸受及びメカニカルシールが格納されている空間に溜まった潤滑油の一部が吸込側軸受を通過して第一の回収穴に回収される過程を通じて軸受の潤滑がなされる。
 このため、原理的に吸込側軸受は空間に溜まった潤滑油を攪拌すると共に吸込側軸受を通過する潤滑油を攪拌する構造となっていることから、特に空間に溜まった潤滑油を攪拌することによって発生する攪拌ロスが大きく、圧縮機としての性能低下の要因となっている問題があった。
 本発明は以上の点を考慮してなされたもので、圧縮機としての性能低下を有効に防止し得る、信頼性が高く高効率なスクリュー圧縮機を提案しようとするものである。
 かかる課題を解決するため本発明においては、作動媒体を圧縮するスクリュー圧縮機において、前記作動媒体を吸い込み、圧縮して吐出する第1及び第2のスクリューロータと、動力源の回転軸に一端側が連結された前記第1のスクリューロータの当該一端側を回転自在に支持する第1の軸受と、前記第1のスクリューロータ及び前記第1の軸受が収納されたケーシングと、前記ケーシング内部における前記第1の軸受に対して前記第1のスクリューロータの歯形部の反対側に配置され、前記動力源の前記出力軸と連結された前記第1のスクリューロータの軸部が挿通する前記ケーシングの貫通孔をシールする軸封部材と、前記ケーシング内部において前記第1の軸受及び前記軸封部材間を隔離する隔壁と、前記ケーシングに設けられ、前記第1の軸受に潤滑液を給液するための第1の給液口、及び、前記軸封部材に前記潤滑液を供給するための第2の給液口を有する給液経路とを設けるようにした。
 この結果、軸封部材及び第1の軸受に対してそれぞれの適量の潤滑液を独立して供給することができる。これにより、第1の軸受に過多の潤滑液が給液されることに起因する第1の軸受での潤滑液の攪拌損失を抑制することができる。
 本発明によれば、信頼性が高く、高効率なスクリュー圧縮機を実現できる。
第1の実施の形態によるスクリュー圧縮機における雄ロータ側の構成を示す水平方向断面図である。 第1の実施の形態によるスクリュー圧縮機における雄ロータ側の構成を示す垂直方向断面図である。 第1の実施の形態によるスクリュー圧縮機における雄ロータ側の給液経路の構成を示す垂直方向断面図である。 第1の実施の形態によるスクリュー圧縮機における雌ロータ側の構成を示す垂直方向断面図である。 第1の実施の形態によるスクリュー圧縮機に注入される潤滑液の外部経路の説明に供する概念図である。 第2の実施の形態によるスクリュー圧縮機における雄ロータ側の構成を示す垂直方向断面図である。 第3の実施の形態によるスクリュー圧縮機における雄ロータ側の構成を示す垂直方向断面図である。 第4の実施の形態によるスクリュー圧縮機における雄ロータ側の構成を示す垂直方向断面図である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
 図1及び図2は、第1の実施の形態によるスクリュー圧縮機1を示す。図1は図2におけるC-C矢視図(水平断面図)であり、図2は図1におけるA-A矢視図(垂直断面図)である。
 図1及び図2に示すように、本実施の形態のスクリュー圧縮機1は、一対のスクリューロータである雄ロータ2及び雌ロータ3と、雄ロータ2及び雌ロータ3を収納するケーシング4とを備えて構成される。
 雄ロータ2は、螺旋状に延在する複数の歯(ローブ)が形成された歯形部2Aと、歯形部2Aのロータ軸方向の一端側(図1及び図2の左側であり、以下、同じ。)に形成された吸込側軸部2Bと、歯形部2Aのロータ軸方向の他端側(図1及び図2の右側であり、以下、同じ。)に形成された吐出側軸部2Cとを備えて構成される。雄ロータ2の吸込側軸部2Bは吸込側軸受(以下、これを第1の吸込側軸受と呼ぶ)5により回転自在に支持され、雄ロータ2の吐出側軸部2Cは吐出側軸受(以下、これを第1の吐出側軸受と呼ぶ)6により回転自在に支持されている。
 同様に、雌ロータ3は、雄ロータ2の歯と噛み合う複数の歯が形成された歯形部3Aと、歯形部3Aのロータ軸方向の一端側に形成された吸込側軸部3Bと、歯形部3Aのロータ軸方向の他端側に形成された吐出側軸部3Cとを備えて構成される。雌ロータ3の吸込側軸部3Bは吸込側軸受(以下、これを第2の吸込側軸受と呼ぶ)7により回転自在に支持され、雌ロータ3の吐出側軸部3Cは吐出側軸受(以下、これを第2の吐出側軸受と呼ぶ)8により回転自在に支持されている。
 雄ロータ2の吸込側軸部2Bは、ケーシング4を貫通して図示しないモータの回転軸に連結されている。これによりモータを駆動させることによって雄ロータ2をモータの回転軸と一体に回転駆動させることができ、これに伴って雌ロータ3も雄ロータ2と一体に回転駆動させることができるようになされている。
 ケーシング4は、メインケーシング4Aと、メインケーシング4Aのロータ軸方向の他端側に連結された吐出側ケーシング4Bと、メインケーシング4Aのロータ軸方向の一端側に吸込側隔壁4Cを介して連結された吸込側ケーシング4Dとから構成される。
 吐出側ケーシング4Bには、互いに独立して設けられた第1の吐出側軸受収容空間9A及び第2の吐出側軸受収容空間9Bが設けられており、第1の吐出側軸受収容空間9A内に第1の吐出側軸受6が収容され、第2の吐出側軸受収容空間9B内に第2の吐出側軸受8が収容されている。また吐出側ケーシング4Bには、雄ロータ2や雌ロータ3の歯形部2A,3Aよりもロータ径方向の外側(図2の下側)に位置する吐出口10と、吐出口10及び後述のボア12間を接続する吐出経路11とが形成される。
 メインケーシング4Aには、雄ロータ2の歯形部2A及び雌ロータ3の歯形部3Aを収納するボア12が形成される。ボア12は、雄ロータ2の歯形部2A及び雌ロータ3の歯形部3Aを歯が噛み合った状態で収納するための、2つの円筒状の穴が部分的に重なった形状を有する空間である。
 ボア12の内壁面と、雄ロータ2の歯溝及び雌ロータ3の歯溝とにより作動室が形成される。作動室は、ロータ軸方向の一端側から他端側に行くに従って容積が徐々に減少するよう形成される。これにより吸込口13から吸い込まれた空気等の作動媒体が作動室において徐々に圧縮されて吐出経路11を介して吐出口10から吐出される。
 吸込口13は、メインケーシング4Aにおける雄ロータ2の歯形部2A及び雌ロータ3の歯形部3Aよりもロータ径方向の外側(図2の上側)に形成される。吸込口13は、吸込空間14を介して作動室と連通しており、吸込口13から吸い込まれた作動媒体が吸込空間14を経由して作動室に供給される。
 メインケーシング4Aのロータ軸方向の一端側の端面には、円筒状の第1の吸込側軸受収容空間15と、円筒状の第2の吸込側軸受収容空間16とが形成されている。そして第1の吸込側軸受収容空間15内に第1の吸込側軸受5が嵌め込まれるように収容され、第2の吸込側軸受収容空間16内に第2の吸込側軸受7が嵌め込まれるように収容されている。
 またメインケーシング4Aには、第1の吸込側軸受収容空間15よりも僅かに径が小さく、第1の吸込側軸受収容空間15及び吸込空間14間を連通する第1の軸受連通空間17と、第2の吸込側軸受収容空間16よりも僅かに径が小さく、第2の吸込側軸受収容空間16及び吸込空間14間を連通する第2の軸受連通空間18とが形成されている。
 さらにメインケーシング4Aのロータ軸方向の一端側の端面には吸込側隔壁4Cが固定され、この吸込側隔壁4Cのロータ軸方向の端部に吸込側ケーシング4Dが固定されている。そして吸込側ケーシング4Dには、雄ロータ2の吸込側軸部2Bが挿通する貫通孔19と連通する軸封空間20が吸込側隔壁4Cとの対向面に形成されており、この軸封空間20内に貫通孔19を封止する軸封部材21が配設されている。
 加えて、本スクリュー圧縮機1のケーシング4には、ボア12内の作動室と連通する第1の作動室給液口22が設けられており、この第1の作動室給液口22を介して作動室内に液体を注入し得るようになされている。またケーシング4の吸込口13側には第1の吸込側給液口23が設けられると共に、ケーシング4の吐出口10側には第1の吐出側給液口24が設けられており、第1の吸込側給液口23を介して軸封空間20内及び第1の吸込側軸受収容空間15内にそれぞれ液体を注入することができ、第1の吐出側給液口24を介して第1の吐出側軸受収容空間9A内に液体を注入することができるようになされている。
 このような作動室や、軸封空間20、第1の吸込側軸受収容空間15及び第1の吐出側軸受収容空間9Aへの液体の注入は、機構部品及び圧縮空気の冷却や、第1の吸込側軸受5及び第1の吐出側軸受6の潤滑、並びに、軸封部材21によるシール性の向上を目的としており、このとき注入される液体としては油や水が適用される。以下においては、この液体を潤滑液と呼ぶものとする。
 第1の吸込側給液口23に注入された潤滑液は、ケーシング4の内部を通って第1の給液口25を介して軸封空間20内に放出されると共に、第2の給液口26を介して第1の吸込側軸受収容空間15内に放出される。
 図3は、第1の吸込側軸受5及び軸封部材21に供給される潤滑液のケーシング4内部での流通経路を示す。図中の矢印は、潤滑液の給液方向を示している。この図3に示すように、ケーシング4内部には、第1の吸込側給液口23と、第1及び第2の給液口25,26とを連通する第1の給液経路27が設けられている。また第1の給液経路27は、途中で第1及び第2の分岐路27A,27Bに分岐し、第1の分岐路27Aが第1の給液口25と連通し、第2の分岐路27Bが第2の給液口26と連通するよう形成されている。
 この場合、第1の給液口25は、軸封空間20内に配置された軸封部材21に向かって開口しており、これにより第1の吸込側給液口23からケーシング4内に注入されて第1の分岐路27Aに流れ込んだ潤滑液が第1の給液口25から放出されて軸封部材21に供給される。また軸封空間20は、バイパス連通路28を介して吸込空間14と連通しており、これにより軸封空間20に注入された潤滑液はバイパス連通路28を介して吸込空間14に排出される。
 一方、第2の給液口26は、第1の吸込側軸受収容空間15内に収容された第1の吸込側軸受5に向けて開口しており、これにより第1の吸込側給液口23からケーシング4内に注入されて第2の分岐路27Bに流れ込んだ潤滑液が第2の給液口26から放出されて雄ロータ2側から第1の吸込側軸受5に供給される。
 この場合、第1の吸込側軸受5は、メインケーシング4Aの第1の軸受連通空間17を介して部分的に吸込空間14に露出しているため、第2の給液口26から第1の吸込側軸受5に供給された潤滑液は第1の軸受連通空間17を介して吸込空間14へと流出する。この潤滑液は、この後、バイパス連通路28を介して吸込空間14に流入してきた潤滑液と合流し、吸込口13から吸込空間14に流入してきた作動媒体と共に作動室へと搬送される。
 ここで、第1の吸込側軸受5における潤滑液の攪拌損失について考える。本実施の形態においては、第1の吸込側軸受5としてころ軸受を想定しているが、これに限定されるものではなく、第1の吸込側軸受5が玉軸受などの他の転がり軸受であってもよい。
 一般的に、転がり軸受が潤滑液中で回転する場合、その転がり軸受内の転動体は、潤滑液を押しのけながら転動するため流体抵抗を受ける。また本実施の形態においては、第1の吸込側軸受5に供給される潤滑液が常に交換される構造となっているため、かかる転動体は新規に流入した潤滑液を加速させる仕事を行う必要がある。これらを合わせたものが攪拌損失となる。
 本実施の形態においては、図3からも明らかなように、第1の吸込側軸受5が配置されている箇所が吸込空間14の最下端部よりも高い位置にあり、潤滑液が溜まり難い構造となっている。また図3のように本スクリュー圧縮機1を雄ロータ2及び雌ロータ3が水平となるように設置したときに、第1の軸受連通空間17の最下端部が第1の吸込側軸受5の外輪内径の最下端部の高さ位置よりも低くなるよう第1の軸受連通空間17が形成されているため、第1の吸込側軸受5の転動体軌道部内の潤滑液を吸込空間14に排出し易い構造となっている。
 さらに、例えば第2の給液口26を吸込側隔壁4C側に形成した場合、この第2の給液口26を介して第1の吸込側軸受5に供給した潤滑液が吸込空間14側に流出するためには、この潤滑液が回転運動する第1の吸込側軸受5の転動体軌道部内を通過する必要があるため、その分攪拌損失が大きくなる。これに対して、本実施の形態においては、第1の吸込側軸受5に対して雄ロータ2側から潤滑液を給液し得るように第2の給液口26が形成されているため、第1の吸込側軸受5に供給された潤滑液のすべてが、回転運動する第1の吸込側軸受5の転動体軌道部を通過する必要がない。よって、本スクリュー圧縮機1は、第1の吸込側軸受5の転動体軌道部における潤滑液の攪拌損失が小さい構造であるということができる。
 次に、軸封部材21及び第1の吸込側軸受5への潤滑液の給液量について説明する。上述した特許文献1にも記載されているように、一般的に第1の吸込側軸受5における潤滑液の必要量は、メカニカルシールなどの軸封部材21における必要量よりも少ない。
 この点について、本実施の形態のスクリュー圧縮機1では、第1の吸込側軸受5が収容されている第1の吸込側軸受収容空間15と、軸封部材21が配設されている軸封空間20とが吸込側隔壁4Cによって隔離されており、軸封部材21に潤滑液を給液する第1の給液口25と、第1の吸込側軸受5に潤滑液を給液する第2の給液口26とが独立して設けられているため、軸封部材21及び第1の吸込側軸受5にそれぞれ適した量の潤滑液の供給を行うことができる。
 軸封部材21及び第1の吸込側軸受5に対する潤滑液の給液量の配分については、第1の給液経路27の圧力損失によって定めることができ、具体的には、第1及び第2の分岐路27A,27Bの長さや、水力直径、並びに、第1及び第2の給液口25,26の直径などにより定めることができる。本実施の形態においては、上述のように軸封部材21に対して要求される潤滑液の供給量が、第1の吸込側軸受5に対して要求される潤滑液の供給量よりも多いため、第1の吸込側給液口23から第1の給液口25までの圧力損失が、第1の吸込側給液口23から第2の給液口26までの圧力損失よりも小さくなるよう、第1及び第2の分岐路27A,27Bの長さや水力直径と、第1及び第2の給液口25,26の直径とが選定されている。
 図4は、図1におけるB-B矢視図(垂直断面図)である。メインケーシング4Aには、ボア12内の作動室に連通する第2の作動室給液口30が設けられており、スクリュー圧縮機1の外部から第2の作動室給液口30を介して潤滑液を作動室に供給し得るようになされている。
 加えて、吐出側ケーシング4Bには第2の吐出側給液口31が形成されており、この第2の吐出側給液口31を介して、第2の吐出側軸受収容空間9B内に配設された第2の吐出側軸受8に対して潤滑液を供給できるようになされている。
 また吸込側ケーシング4Dにおけるロータ径方向の外側には第2の吸込側給液口32が形成されると共に、メインケーシング4Aには第2の吸込側軸受収容空間16内に収容された第2の吸込側軸受7に向けて第3の給液口33が設けられており、第3の給液口33がケーシング4内部に形成された第2の給液経路34を介して第2の吸込側給液口32と連通されている。これにより第2の吸込側給液口32を介してスクリュー圧縮機1内に潤滑液を注入することによって、この潤滑液を第2の給液経路34を経由して第3の給液口33から第2の吸込側軸受7に供給できるようになされている。
 この場合において、第2の吸込側軸受7は、メインケーシング4Aの第2の軸受連通空間18を介して部分的に吸込空間14に露出しているため、第2の吸込側給液口32から第2の給液経路34を介して第2の吸込側軸受7に供給された潤滑液は、第2の軸受連通空間18を介して吸込空間14へと流出し、この後、吸込口13から吸込空間14に流入してきた作動媒体と共に作動室へと搬送される。
 このように第2の給液経路34を構成することによって、第1の吸込側軸受5における潤滑液の攪拌損失と同様のメカニズムにより、第2の吸込側軸受7における潤滑液の攪拌損失を小さく抑えることができる。
 なお第2の作動室給液口30、第2の吸込側給液口32及び第2の吐出側給液口31は、それぞれ図2について上述した第1の作動室給液口22、第1の吸込側給液口23及び第1の吐出側給液口24のうちの対応するものとは別個に形成されていても良いし、同一箇所に設けられていても、つまり第1及び第2の作動室給液口22,30、第1及び第2の吸込側給液口23,32、第1及び第2の吐出側給液口24,31がそれぞれも同じものであっても良い。
 図5は、本実施の形態のスクリュー圧縮機1に注入される潤滑液の外部経路を示す。スクリュー圧縮機1に注入された潤滑液は、スクリュー圧縮機1により圧縮された作動媒体に混入した状態で吐出口10(図2、図4)から吐出される。そして、この潤滑液は、オイルセパレータ40により圧縮された作動媒体と分離され、冷却器41により冷却された後に、オイルフィルタ(及び逆止弁)42を経由して第1及び第2の作動室給液口22,30(図2、図4)に与えられ、これら第1及び第2の作動室給液口22,30をそれぞれ介して作動室内に注入される。
 また潤滑液は、オイルフィルタ42を通過後に分岐されて、第1及び第2の吸込側給液口23,32(図2、図4)や第1及び第2の吐出側給液口24,31(図2、図4)にも与えられ、第1の吸込側給液口23を介して軸封空間20(図2)内の軸封部材21(図2)や、第1の吸込側軸受収容空間15(図2)内の第1の吸込側軸受5、第2の吸込側軸受収容空間15内の第2の吸込側軸受7、第1の吐出側軸受収容空間9A(図1)内に収容された第1の吐出側軸受6(図1)、並びに、第2の吐出側軸受収容空間9B(図1)内に収容された第2の吐出側軸受8(図1)にもそれぞれ供給される。なお潤滑液の分岐は、図5のようにスクリュー圧縮機1の外部に限られるものではなく、スクリュー圧縮機1のケーシング4内部において分岐するようにしてもよい。
 以上の構成のように本実施の形態のスクリュー圧縮機1では、第1の吸込側軸受5が収容されている第1の吸込側軸受収容空間15と、軸封部材21が配設されている軸封空間20とが吸込側隔壁4Cによって隔離され、軸封部材21に潤滑液を給液する第1の給液口25と、第1の吸込側軸受5に潤滑液を給液する第2の給液口26とが独立して設けられているため、軸封部材21及び第1の吸込側軸受5にそれぞれ適した量の潤滑液の供給を独立して行うことができる。従って、本スクリュー圧縮機1によれば、第1の吸込側軸受5に過多の潤滑液が給液されることに起因する第1の吸込側軸受5での潤滑液の攪拌損失を抑制することができるため、信頼性が高く、高効率なスクリュー圧縮機を実現できる。
 また本スクリュー圧縮機1では、第1の吸込側軸受5に対して雄ロータ2側から潤滑液を給液し得るように第2の給液口26が形成されているため、第1の吸込側軸受5に供給された潤滑液のすべてが、回転運動する第1の吸込側軸受5の転動体軌道部を通過する必要がない。よって、本スクリュー圧縮機1によれば、第1の吸込側軸受5における潤滑液の攪拌損失が小さく、より高効率なスクリュー圧縮機を実現することができる。
(2)第2の実施の形態
 図2との対応部分に同一符号を付して示す図6は、第2の実施の形態によるスクリュー圧縮機50の垂直断面を示す。本スクリュー圧縮機50は、バイパス連通路52が軸封空間20及びボア12間を連通するようにケーシング51(吸込側ケーシング50D、吸込側隔壁50C及びメインケーシング50A)内に構成されている点が第1の実施の形態のスクリュー圧縮機1と相違する。
 このため本スクリュー圧縮機50では、メインケーシング50Aに第1の作動室給液口22(図2)と、当該第1の作動室給液口22及びボア12間を連通する経路とが設けられておらず、軸封空間20内の軸封部材21に供給された潤滑液がバイパス連通路52を介してボア12内に排出される。
 以上の構成を有する本実施の形態のスクリュー圧縮機50によれば、第1の実施の形態のスクリュー圧縮機1と同様に、第1及び第2の吸込側軸受5,7や軸封部材21に対して必要十分な潤滑液を供給しつつ、第1及び第2の吸込側軸受5,7における攪拌損失を低く抑えることができる。よって、本実施の形態によっても、信頼性が高く高効率なスクリュー圧縮機を提供することができる。
(3)第3の実施の形態
 図2との対応部分に同一符号を付して示す図7は、第3の実施の形態によるスクリュー圧縮機60の垂直断面を示す。本スクリュー圧縮機60は、第2の給液口62の位置が異なる点を除いて第1の実施の形態のスクリュー圧縮機1と同様に構成されている。
 実際上、本実施のスクリュー圧縮機60では、第1の吸込側軸受5に対して吸込側隔壁60C側から潤滑液を給液できるよう第2の給液口62が吸込側隔壁60Cに設けられており、この第1の給液口62及び第1の吸込側給液口23間を連通するように吸込側ケーシング60D及び吸込側隔壁60C内に第1の給液経路63の第2の分岐路63Bが設けられている。
 このため本スクリュー圧縮機60では、第2の給液口62から第1の吸込側軸受5に供給された潤滑液が、回転運動する第1の吸込側軸受5の転動体軌道部を通過することとなり、第1の実施の形態によるスクリュー圧縮機1と比べて第1の吸込側軸受5における攪拌損失が大きくなる。
 しかしながら、本スクリュー圧縮機60では、第1の吸込側軸受5に対して吸込側隔壁60C側に第1の給液口62を設けるため、第1の吸込側軸受5に対向させて第1の給液口を設けるための部位をメインケーシング4Aに設ける必要がなく、その分第1の軸受連通空間17の開口面積を大きくとることができるため、第1の吸込側軸受5の転動体軌道部に潤滑液が滞留し難く、第1の吸込側軸受5における攪拌損失を低く抑えることができる。
 以上の構成を有する本実施の形態のスクリュー圧縮機60によれば、第1の実施の形態のスクリュー圧縮機1と同様に、第1の吸込側軸受5や軸封部材21に対して必要十分な潤滑液を供給しつつ、第1の吸込側軸受5における攪拌損失を低く抑えることができる。よって、本実施の形態によっても、信頼性が高く高効率なスクリュー圧縮機を提供することができる。
(4)第4の実施の形態
 図3との対応部分に同一符号を付して示す図8は、第4の実施の形態によるスクリュー圧縮機70の一部構成の垂直断面を示す。本スクリュー圧縮機70は、第1の実施の形態のスクリュー圧縮機1に比べて吸込側隔壁71に形成された雄ロータ2の吸込側軸部2Bを挿通させるための貫通孔72が大きく形成されている点を除いて第1の実施の形態のスクリュー圧縮機1と同様に構成されている。
 このため本実施の形態のスクリュー圧縮機70では、第2の給液口26を介して第1の吸込側軸受5に供給された潤滑液の多くが吸込空間14に流出する一方、残りの一部が第1の吸込側軸受5を通過し貫通孔72を通って軸封空間20に流入し、その後、第1の給液口25を介して軸封空間20に供給された潤滑液と合流してバイパス連通路28を経由して吸込空間14に排出される。
 このように本スクリュー圧縮機70では、第2の給液口26から第1の吸込側軸受5に供給された潤滑液の一部が、回転運動する第1の吸込側軸受5の転動体軌道部を通過することとなるが、第1の吸込側軸受5の転動体軌道部を通過する潤滑液は速やかに貫通孔72を介して軸封空間20に流れ込むため第1の吸込側軸受5の転動体軌道部に潤滑液が滞留し難く、その分、第1の実施の形態のスクリュー圧縮機1に比べて第1の吸込側軸受5における攪拌損失を低く抑えることができる。
 以上の構成を有する本実施の形態のスクリュー圧縮機70によれば、第の吸込側軸受5や軸封部材21に対して必要十分な潤滑液を供給しつつ、第1の実施の形態のスクリュー圧縮機1と比べて第1の吸込側軸受5における攪拌損失を低く抑えることができる。よって、本実施の形態によれば、信頼性が高くより高効率なスクリュー圧縮機を提供することができる。
(5)他の実施の形態
 なお上述の第1~第4の実施の形態においては、雄ロータ2の吸込側軸部のみが動力源としてのモータの回転軸と接続されている場合について述べたが、本発明はこれに限らず、雄ロータ2に代えて又は加えて雌ロータ3の吸込側軸受が動力源の回転軸と接続された形態のスクリュー圧縮機についても本発明を適用することができる。
 また上述の第1~第4の実施の形態においては、第1の給液口と連通する給液経路(第1の分岐路)と、第2の給液口と連通する給液経路(第2の分岐路)とがケーシング内部において分岐するように構成されている場合について述べたが、本発明はこれに限らず、これらの給液経路が元々別々に形成(外部からの給液口が別々に形成)されていてもよい。
 さらに上述の第3の実施の形態においては、第1の吸込側軸受5に対して吸込側隔壁60C側から潤滑液を給液できるよう第2の給液口62を吸込側隔壁60Cに設けるようにした場合について述べたが、本発明はこれに限らず、第2の吸込側軸受7についても吸込側隔壁60C側から潤滑液を給液できるよう図6について上述した第3の給液口26を吸込側隔壁60Cに設けるようにしてもよい。
 本発明は、作動媒体を圧縮する種々の構成のスクリュー圧縮機に広く適用することができる。
 1,50,60,70……スクリュー圧縮機、2……雄ロータ、2A,3A……歯形部、2B,3B……吸込側軸部、2C,3C……吐出側軸部、3……雌ロータ、4,51……ケーシング、5,7……吸込側軸受、6,8……吐出側軸受、9A,9B……吐出側軸受収容空間、10……吐出口、12……ボア、13……吸込口、14……吸込空間、15,16……吸込側軸受収容空間、17,18,72……軸受連通空間、19……貫通孔、20……軸封空間、21……軸封部材、22,30……作動室給液口、23,32……吸込側給液口、24,31……吐出側給液口、25,26,33,62……給液口、27,34,63……給液経路、27A,27B,63A,63B……分岐路、28,52……バイパス連通路。

Claims (6)

  1.  作動媒体を圧縮するスクリュー圧縮機において、
     前記作動媒体を吸い込み、圧縮して吐出する第1及び第2のスクリューロータと、
     動力源の回転軸に一端側が連結された前記第1のスクリューロータの当該一端側を回転自在に支持する第1の軸受と、
     前記第1のスクリューロータ及び前記第1の軸受が収納されたケーシングと、
     前記ケーシング内部における前記第1の軸受に対して前記第1のスクリューロータの歯形部の反対側に配置され、前記動力源の前記出力軸と連結された前記第1のスクリューロータの軸部が挿通する前記ケーシングの貫通孔をシールする軸封部材と、
     前記ケーシング内部において前記第1の軸受及び前記軸封部材間を隔離する隔壁と、
     前記ケーシングに設けられ、前記第1の軸受に潤滑液を給液するための第1の給液口、及び、前記軸封部材に前記潤滑液を供給するための第2の給液口を有する給液経路と
     を備えることを特徴とするスクリュー圧縮機。
  2.  前記軸封部材は、前記ケーシングに設けられた第1の空間内に配設され、
     前記第1の軸受は、前記ケーシングに設けられた第2の空間内に配設され、
     前記動力源の前記回転軸に一端側が連結された前記スクリューロータにおける歯が形成された歯形部は、前記ケーシングに設けられた第3の空間内に収納され、
     前記第1及び第2の空間は、前記隔壁により隔離され、
     前記第1の空間がバイパス連通路を介して前記第3の空間と連通され、
     前記第1の空間に供給された前記潤滑液が前記バイパス通路を介して前記第3の空間に排出される
     ことを特徴とする請求項1に記載のスクリュー圧縮機。
  3.  前記第1の給液口は、
     前記スクリューロータ側から前記第1の軸受に前記潤滑液を給液するよう前記ケーシングに形成された
     ことを特徴とする請求項1に記載のスクリュー圧縮機。
  4.  前記第2の空間及び前記第3の空間を連通する連通空間を備え、
     前記第1の軸受に給液された前記潤滑液が前記連通空間を介して前記第3の空間に排出される
     ことを特徴とする請求項2に記載のスクリュー圧縮機。
  5.  前記第1及び第2のスクリューロータが水平となるように設置したときに、前記連通空間の最下端部が前記第1の軸受の外輪内径の下端位置よりも低くなるように前記連通空間が形成された
     ことを特徴とする請求項4に記載のスクリュー圧縮機。
  6.  前記第1のスクリューロータにおける前記動力源の前記回転軸が連結された前記一端側と同じ前記第2のスクリューロータの一端側を回転自在に支持する第2の軸受と、
     前記ケーシングに設けられ、前記第2の軸受に前記潤滑液を給液するための第3の給液口とを備え、
     前記第3の給液口は、
     前記スクリューロータ側から前記第1の軸受に前記潤滑液を給液するよう前記ケーシングに形成された
     ことを特徴とする請求項1に記載のスクリュー圧縮機。
PCT/JP2022/021846 2021-06-01 2022-05-27 スクリュー圧縮機 WO2022255275A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280008601.XA CN116710655A (zh) 2021-06-01 2022-05-27 螺杆压缩机
EP22816023.0A EP4350146A1 (en) 2021-06-01 2022-05-27 Screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092296 2021-06-01
JP2021092296A JP2022184443A (ja) 2021-06-01 2021-06-01 スクリュー圧縮機

Publications (1)

Publication Number Publication Date
WO2022255275A1 true WO2022255275A1 (ja) 2022-12-08

Family

ID=84324191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021846 WO2022255275A1 (ja) 2021-06-01 2022-05-27 スクリュー圧縮機

Country Status (4)

Country Link
EP (1) EP4350146A1 (ja)
JP (1) JP2022184443A (ja)
CN (1) CN116710655A (ja)
WO (1) WO2022255275A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034235A1 (ja) * 2022-08-12 2024-02-15 株式会社日立産機システム 油冷式スクリュー圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021758A (ja) 2000-07-11 2002-01-23 Hitachi Ltd 油冷式スクリュー圧縮機
WO2007000815A1 (ja) * 2005-06-29 2007-01-04 Mayekawa Mfg. Co., Ltd 二段スクリュー圧縮機の給油方法、装置及び冷凍装置の運転方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021758A (ja) 2000-07-11 2002-01-23 Hitachi Ltd 油冷式スクリュー圧縮機
WO2007000815A1 (ja) * 2005-06-29 2007-01-04 Mayekawa Mfg. Co., Ltd 二段スクリュー圧縮機の給油方法、装置及び冷凍装置の運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034235A1 (ja) * 2022-08-12 2024-02-15 株式会社日立産機システム 油冷式スクリュー圧縮機

Also Published As

Publication number Publication date
JP2022184443A (ja) 2022-12-13
CN116710655A (zh) 2023-09-05
EP4350146A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US7458790B2 (en) Vacuum pump with improved oil lubrication
CN109072909B (zh) 涡旋式压缩机
US9617996B2 (en) Compressor
RU2107192C1 (ru) Ротационный винтовой компрессор
CN107304765B (zh) 在密封座中包括润滑槽的旋转泵
KR20120109088A (ko) 스크롤 압축기
CN111133197B (zh) 涡旋式压缩机
WO2022255275A1 (ja) スクリュー圧縮機
US6190149B1 (en) Vacuum pump oil distribution system with integral oil pump
JP2014177887A (ja) スクリュー圧縮機
CN101128671A (zh) 单轴式真空容积泵
JP2007085297A (ja) スクロール圧縮機
US9322403B2 (en) Compressor
US3899271A (en) Sliding vane rotary compressor
JPH0826865B2 (ja) 2シリンダロータリ圧縮機
US11719241B2 (en) Screw compressor having a lubrication path for a plurality of suction side bearings
US20020168279A1 (en) Shaft seal structure of vacuum pumps
JP2007192096A (ja) 回転式気体圧縮機
JP4848844B2 (ja) 電動圧縮機
JP4720649B2 (ja) 電動圧縮機
US9657737B2 (en) Scroll compressor with pressurized oil balance piston
WO2024034235A1 (ja) 油冷式スクリュー圧縮機
CN102822524B (zh) 电动气体压缩机
CN109268272B (zh) 螺旋流体设备
US20190316587A1 (en) Motor-operated compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008601.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022816023

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022816023

Country of ref document: EP

Effective date: 20240102