WO2022253243A1 - 一种盾构隧道管片修复加固成套设备及修复加固工艺 - Google Patents

一种盾构隧道管片修复加固成套设备及修复加固工艺 Download PDF

Info

Publication number
WO2022253243A1
WO2022253243A1 PCT/CN2022/096374 CN2022096374W WO2022253243A1 WO 2022253243 A1 WO2022253243 A1 WO 2022253243A1 CN 2022096374 W CN2022096374 W CN 2022096374W WO 2022253243 A1 WO2022253243 A1 WO 2022253243A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
arm
robot
drive
seat
Prior art date
Application number
PCT/CN2022/096374
Other languages
English (en)
French (fr)
Inventor
班延军
郑军
罗红梅
张浩文
高旭东
梅元元
李才洪
庄元顺
苏叶茂
章龙管
李恒
杨鹏
苏金龙
李川
马周
岳云海
高龙泉
李�杰
陈可
刘绥美
杨梦柳
刘祥
谭远良
吴友兴
黄山乙
Original Assignee
中铁工程服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110601870.4A external-priority patent/CN113404518B/zh
Priority claimed from CN202110604496.3A external-priority patent/CN113414589B/zh
Application filed by 中铁工程服务有限公司 filed Critical 中铁工程服务有限公司
Publication of WO2022253243A1 publication Critical patent/WO2022253243A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/40Devices or apparatus specially adapted for handling or placing units of linings or supporting units for tunnels or galleries

Definitions

  • the application relates to the technical field of tunnel repair and reinforcement, in particular, to a complete set of equipment for repair and reinforcement of shield tunnel segments and a repair and reinforcement process.
  • the spatial range of human activities continues to expand. With the continuous development of underground space, the construction of urban subways requires the construction of many shield tunnels.
  • the shield segment is the main assembly component of shield construction and the innermost barrier of the tunnel, which bears the role of resisting soil pressure, groundwater pressure and some special loads.
  • prefabricated reinforced concrete segments are widely used in the field of shield tunnel support because of their advantages such as convenient material acquisition, simple manufacturing process, low cost, fast construction speed, and high strength.
  • the cracking and damage of the segment lining on the tunnel site also occurs from time to time. The cracking and damage of the segment will weaken the overall support strength of the tunnel lining. threaten.
  • tunnel structure usually has deformation and other diseases, which generally include tunnel vertical displacement deformation (staggered platform), lateral displacement deformation (staggered platform), elliptic deformation (convergence deformation), cracks, leakage, etc., which will affect operational safety in severe cases.
  • deformation and other diseases which generally include tunnel vertical displacement deformation (staggered platform), lateral displacement deformation (staggered platform), elliptic deformation (convergence deformation), cracks, leakage, etc., which will affect operational safety in severe cases.
  • tunnels with an operation period of about 10 years need to enter the renovation and restoration stage.
  • the steel plate ring reinforcement method is mainly used for the repair and reinforcement of the segment damage of Chinese and foreign shield tunnel subway tunnels.
  • the steel plate ring is grasped and installed, and the joints between several steel plate rings are welded.
  • Many links such as epoxy resin glue injection and steel plate ring anti-corrosion treatment still need manual intervention, and cannot effectively repair the field segment lining quickly.
  • This application aims to solve one of the technical problems in related technologies at least to a certain extent, and proposes a complete set of equipment for repairing and strengthening shield tunnel segments and a process for repairing and strengthening segments.
  • High, low construction efficiency, and difficult construction problems improve the intelligent level and construction efficiency of tunnel construction, and reduce the labor intensity of operators.
  • the embodiment of the present application proposes a complete set of equipment for shield tunnel segment repair and reinforcement, including first segment repair and reinforcement equipment, wherein the first segment repair and reinforcement equipment includes a first assembly system, a drilling system, a welding System, bottom system, auxiliary operation platform system, steel plate ring bracket and epoxy resin barrel; each system is installed and placed in sequence;
  • the first assembly system is used to grab the steel plate ring on the steel plate ring support and install it to a predetermined position, and the drilling system is used to drill holes and install anchor bolts; the welding system is used to fix several installed The seam welding between the steel plate rings; the bottom system is used for overall mobile operation; the auxiliary work platform is used to assist workers to press-inject the steel plate rings and segments and then enter the anchor bolts to anchor, And spray anti-rust, anti-corrosion and fire-resistant coating.
  • the first assembly system includes a first assembly robot, one end of the first assembly robot is provided with an electro-permanent magnetic chuck, and a scanning positioning module is fixedly installed above the electro-permanent magnetic chuck, so The bottom of the first assembling robot is slidably connected with a sliding platform of the first assembling robot.
  • the drilling system includes a drilling robot, one end of the drilling robot is provided with an anchoring integrated assembly, and the anchoring integrated assembly is provided with a quick change assembly to connect with the drilling robot;
  • the bottom of the punching robot is slidably connected with a punching robot slide table, and the bottom of the punching robot slide table is provided with a punching robot lifting platform.
  • the drilling robot is a six-axis industrial robot.
  • the anchor integration assembly includes:
  • a mounting frame a connection plate is arranged above the mounting frame, and the quick-change assembly is fixed at both ends of the connection plate, and is connected to the robot through the quick-change assembly;
  • An anchor bolt continuous feeding assembly is connected to the connecting plate and is located on the side of the installation frame; the anchor bolt is clamped below the anchor bolt continuous feeding assembly; the anchor bolt
  • the bolt continuous feeding assembly includes a plug-in seat, a backing plate, and an anchor bolt fixing frame; wherein both ends of the backing plate can be plugged and flexibly connected under the plug-in row seat; the anchor bolt fixing frame is arranged on the backing plate Below; several anchor bolts are arranged on the anchor bolt fixing frame;
  • Mobile module the mobile module is integrated under the installation frame through a linear slide rail, slides relative to the installation frame along the linear slide rail, and grabs the anchor through the fixed loading gripper on the mobile module
  • the anchor bolt on the continuous feeding assembly the mobile module includes a segment drilling assembly, an anchor bolt installation assembly, an anchor bolt tightening assembly and a module control cabinet; wherein the segment drilling assembly, the anchor bolt Both the installation assembly and the anchor bolt tightening assembly are connected with the rodless cylinder to respectively realize forward and backward feed movement;
  • the visual positioning system scans and locates the position of punching
  • a steel bar detector detects whether there is a steel bar at the punching place.
  • the sensors are fixed at both ends of the connecting plate through sensor brackets to control the distance from the mobile module to the working surface.
  • the loading gripper is fixed on one side of the moving module, including a first cylinder mounting seat for the first cylinder, a second cylinder mounting seat for the second cylinder, and a second cylinder mounting seat for the third cylinder.
  • Three-cylinder mounting base and gripper assembly wherein the first cylinder mounting base is connected to the mobile module; the first cylinder is connected to the second cylinder mounting base; the second cylinder is connected to the third cylinder mounting seat; the third cylinder is connected to the gripper assembly through the gripper support; the gripper assembly grabs the anchor bolts on the anchor bolt continuous feeding assembly and aligns the anchor bolts to The anchor bolt is installed on the component.
  • the socket includes a fixing plate and limiting plates arranged at both ends of the fixing plate; flanges are arranged on the limiting plate; Between the limiting plates, it is pluggable and movably connected with the socket.
  • the anchor bolt fixing frame is connected to the backing plate, and the anchor bolt fixing frame is a buckle or an electro-permanent magnet block.
  • the anchor bolt continuous feeding assembly further includes a plug-in seat board; wherein there are several plug-in seat boards, one end of which is vertically connected above the plug-in seat and arranged parallel to the anchor bolt ; The other end is fixed on the connecting plate.
  • the anchor bolt is sheathed with a nut matching it.
  • the gripper assembly includes a gripper and a gripper shaft; the middle part of the gripper is connected to the gripper shaft; the gripper shaft is connected to the gripper support, and the gripper assembly Grab the anchor bolts on the anchor bolt continuous feeding assembly, and align the anchor bolts on the anchor bolt installation assembly.
  • the quick change assembly includes a male buckle device and a female buckle device, wherein the male buckle device is connected to the robot; the female buckle device is fixedly arranged at both ends of the connecting plate; the The male buckle device and the female buckle device are respectively provided with several grooves and several convex rafters for rotational connection.
  • the welding system includes a welding robot, and one end of the welding robot is provided with a welding seam scanning positioning module, a robot arc welding torch, and a welding seam detection module.
  • the bottom system includes a multi-track bogie
  • the top of the multi-track bogie is provided with a two-way traction flatbed
  • the bottom of the two-way traction flatbed is provided with balancing legs.
  • the auxiliary working platform system includes an auxiliary working platform, an equipment control cabinet is arranged at the bottom of the auxiliary working platform, and a welding module power supply is arranged on one side of the equipment control cabinet.
  • one side of the first assembling robot fixes the steel plate ring bracket for storing the steel plate ring; one side of the epoxy resin bucket is provided with an air compressor.
  • a complete set of equipment for shield tunnel segment repair and reinforcement includes a second segment repair and reinforcement device that includes a second assembly system; the second assembly system includes a second assembly robot; the steel plate ring is equipped with A support; wherein the second assembling robot is detachably connected to the steel plate ring through the execution assembly provided thereon.
  • the second assembly robot includes a slide rail and a slide table, and the slide table is slidably mounted on the slide rail;
  • the first rotary assembly, the first arm and the first drive, the first rotary assembly is arranged on the slide table, the first arm is connected with the first rotary assembly, the first drive is connected to the first rotary assembly Between an arm and the first rotary assembly, the first drive is adapted to drive the first arm to swing, and the first rotary assembly is adapted to drive the first arm and the first drive to rotate circumferentially ;
  • a second arm and a second drive the second arm is rotationally connected to the first arm, the second drive is connected between the first arm and the second arm, the second drive is adapted to driving the second arm to swing relative to the first arm;
  • a first seat and a third drive the first seat is connected in rotation with the second arm, the third drive is connected between the first seat and the second arm, and the third drive is suitable for driving the first seat to swing relative to the second arm;
  • the telescopic arm is arranged on the first seat
  • the second seat and the fourth drive the second seat is rotatably connected with the telescopic arm, the fourth drive is connected between the telescopic arm and the second seat, and the fourth drive is suitable for driving the The second seat swings relative to the telescopic arm;
  • the second rotary assembly and the actuator assembly is connected between the actuator assembly and the second seat, the second rotary assembly is suitable for driving the actuator assembly relative to the telescopic arm turn.
  • the second assembly robot includes a first link, one end of the first link is rotatably connected to the first arm, and the other end of the first link is connected to the second driving arm.
  • One end of the second arm is rotationally connected to form a first fulcrum, and the first fulcrum is drivingly connected to the second arm and is suitable for driving the second arm to swing.
  • the second assembly robot includes a second link, one end of the second link is connected to the second arm, and the other end of the second link is connected to the third driven arm. One end is rotationally connected to form a second fulcrum, and the second fulcrum is in transmission connection with the first fulcrum.
  • the second assembly robot includes a third link, one end of the third link is rotationally connected to the first fulcrum, and the other end of the third link is connected to the second fulcrum Turn connected.
  • the second connecting rod and the third connecting rod are arc rods, the second connecting rod corresponds to a first center of circle, the third connecting rod corresponds to a second center of circle, the The connecting position of the first connecting rod and the first arm, the first center of circle, and the second center of circle are all located on the same side of the second connecting rod and the third connecting rod.
  • the first seat includes a first section and a second section, the first section and the second section form an included angle, and the connection between the first section and the second section is connected to the
  • the second arm is rotatably connected, the telescopic arm is arranged on the first section, the other end of the third drive is rotatably connected to the second section, and the second connecting rod and the second section on the same side as the second arm.
  • the telescoping arm includes an inner cylinder, an outer cylinder and a fifth drive
  • the inner cylinder is fitted within the outer cylinder and is slidable relative to the outer cylinder, at least part of the fifth drive
  • One end of the fifth driver is connected to the inner cylinder in rotation
  • the other end of the fifth driver is connected to the outer cylinder
  • the outer cylinder is connected to the first seat.
  • the inner cylinder is connected to the second seat
  • the fourth drive is connected to the outer cylinder
  • the driving end of the fourth drive is connected to the second seat in rotation.
  • a repair and reinforcement process for shield tunnel segments is proposed, using the complete set of equipment for repair and reinforcement of shield tunnel segments in any of the above embodiments to repair and strengthen shield tunnel segments, including the following steps :
  • Segment deformation evaluation according to the laser scanner and the industrial vision system to scan and detect the inner wall of the tunnel, the evaluation parameters are collected; the evaluation parameters include the measurement of the ellipticity of the inner wall of the tunnel, staggering, and damaged cracks;
  • Pretreatment pipeline relocation, ballast bed cutting and chisel removal, sealing and smoothing the annular seams, longitudinal seams, and hand holes of the segments, and keeping the joints of the segments without leakage. After the surface is dry, Carry out grinding and napping treatment;
  • the drilling system drills holes and installs the anchor bolts, the screwing depth is greater than 125mm in order from bottom to top, and reserves drill holes as grouting holes and Exhaust holes;
  • the welding system welds the seams between several steel plate rings;
  • the bottom system performs overall mobile operation;
  • the auxiliary work platform assists workers from the grouting hole between the steel plate rings and segments After pressure injection, the anchor bolts are installed from the grouting holes and vent holes, and finally the auxiliary work platform assists workers to spray anti-rust, anti-corrosion and fire-resistant coatings;
  • the ellipticity of the inner wall of the tunnel is When a is greater than 20 ⁇ , the tunnel is reinforced; where D max is the maximum outer diameter of the segment; D min is the minimum outer diameter of the segment; D is the nominal outer diameter of the segment.
  • the ellipticity of the inner wall of the tunnel is When a is greater than 20 ⁇ or the one-way deformation rate is 12 ⁇ a1 ⁇ 20 ⁇ , the tunnel shall be reinforced.
  • D max is the maximum outer diameter
  • D min is the minimum outer diameter
  • D is the nominal outer diameter
  • a1 is the vertical deformation rate.
  • step 2) the annular and longitudinal seams are drilled obliquely and injected with elastic epoxy grout under the grouting pressure not greater than 0.2Mpa.
  • the joints between both sides of the steel plate ring and the segment in step 3) are sealed with epoxy cement, and the epoxy resin is injected between the grouting hole and the segment, and the pressure is controlled at 0.1Mpa-0.15Mpa.
  • the assembly, drilling, anchoring, and welding are all operated by robots, and the intelligent vision system is used for positioning, obstacle detection, and path planning to achieve efficient and accurate assembly actions.
  • Drilling also adopts the visual positioning system for hole position identification, which can accurately locate the hole position, realize automatic drilling, retrieving, loading, and tightening actions, and the operation efficiency is high.
  • Using welding robots instead of manual welding can effectively improve welding efficiency and shorten working time.
  • it also solves the problem of maintaining the overhead welding posture for a long time when manually welding the steel girth weld on the top of the tunnel. The entire operation process only needs 2 people to cooperate to complete, the personnel investment is greatly reduced, and the personnel cost is greatly reduced.
  • Fig. 1 is a schematic structural view of the first segment repair and reinforcement equipment provided by the embodiment of the present application
  • Figure 2 is an isometric view of Figure 1;
  • Fig. 3 is a schematic structural diagram of the first assembly system provided by the embodiment of the present application.
  • Fig. 4 is a schematic structural view of a welding system provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a punching system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a punching robot provided in an embodiment of the present application.
  • Fig. 7 is another schematic structural view of the punching robot of Fig. 6;
  • Fig. 8 is a schematic structural diagram of the anchoring integrated component provided by the embodiment of the present application.
  • Fig. 9 is a schematic structural view of the anchor bolt continuous feeding assembly provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural view of the socket provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of an anchor bolt and a nut provided in an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a mobile module provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural view of the feeding gripper assembly provided by the embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of the quick-change assembly provided by the embodiment of the present application.
  • Fig. 15 is a schematic structural view of the steel plate ring bracket provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the working structure of the second assembly robot provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of the second assembly robot provided by the embodiment of the present application.
  • FIG. 18 is a schematic cross-sectional view of FIG. 17 .
  • Welding seam scanning positioning module 21. Robotic arc welding torch; 25. Anchor bolt continuous feeding component; 2501, plug-in row seat; 2502, backing plate; 2503, anchor bolt fixing frame; 2504, plug-in row seat plate; 2505, anchor bolt; 26, gripper support; 2601, first cylinder; 2602, first cylinder mounting seat; 2603, the second cylinder; 2604, the second cylinder mounting seat; 2605, the third cylinder; 2606, the third cylinder mounting seat; 2607, the gripper assembly; 2608, the fixed plate; 2609, the limit plate; 2630, the flange; 27. Segment drilling assembly; 271. Anchor bolt installation assembly; 272. Anchor bolt tightening assembly; 273. Module control cabinet; 28. Mounting frame; 29. Rodless cylinder; 30. Linear slide rail; 31. Sensor; 32 , sensor bracket; 33, quick change assembly; 34, connecting plate; 35, feeding gripper; 36, nut;
  • the embodiment of this application proposes a complete set of equipment for the repair and reinforcement of shield tunnel segments, including the first segment repair and reinforcement equipment as shown in Figure 1- Figure 2, the first segment repair and reinforcement
  • the equipment includes the first assembly system, punching system, welding system, bottom system, auxiliary operation platform system, steel plate ring bracket 12 and epoxy resin glue barrel 1; each system is installed and placed in sequence;
  • the drilling system is used to drill holes and install anchor bolts;
  • the bottom system is used for overall mobile operation;
  • the auxiliary work platform is used to assist workers to anchor the anchor bolts between the steel plate ring and the segments, and spray anti-rust, anti-corrosion and fire-resistant coatings.
  • the application can grab and install the steel plate ring to the predetermined position through the first assembly system.
  • the steel plate ring can be fixed by punching holes and installing anchor bolts through the drilling system.
  • the welding system can weld the seams between several steel plate rings to fix the steel plate rings in the tunnel as a whole.
  • the bottom system can ensure the overall operation and working stability of the device.
  • the auxiliary operation platform can assist workers.
  • the first assembly system The process of grabbing, installing and placing the steel plate ring can be automated and intelligent.
  • the installation position and the steel plate ring are scanned, and then the electro-permanent disk is used for grabbing, and the electro-permanent magnetic chuck 19 is aligned with the pre-installation position to complete
  • the preliminary installation of the steel plate ring using the above-mentioned device, can grasp, install and place the steel plate ring in the shield tunnel; Seam welding can be automated and intelligent, reducing labor costs.
  • the first assembly system includes a first assembly robot 5, one end of the first assembly robot 5 is provided with an electro-permanent magnetic chuck 19, and the top of the electro-permanent magnetic chuck 19 is fixedly provided with an installation scan
  • the positioning module 18 is slidably connected to the bottom of the first assembling robot 5 with the slide table 13 of the first assembling robot.
  • One side of the first assembling robot 5 is fixedly provided with a steel plate ring support 12 as shown in FIG. 15 for storing steel plate rings.
  • the plate ring storage rack includes a bracket seat 1201, a storage rack bottom plate 1202 is arranged above the bracket seat 1201, and two limit block 1203 groups are symmetrically arranged on the storage rack bottom plate 1202, and each limit block 1203 group includes four limit block 1203 , the four limit blocks 1203 are provided with an arc structure, the arc of the arc structure of the four limit blocks 1203 is the same as the arc of the steel plate ring, and the joint limit of the steel plate ring can realize the overlapping placement of multiple steel plate rings , to prevent the steel plate ring from moving with the two-way traction flatbed truck 17 from displacement.
  • the punching system includes a punching robot 4 as shown in Fig. 5-Fig. Bottom is slidingly connected with punching robot slide table 3, and the bottom of punching robot slide table 3 is provided with punching robot lifting platform 15.
  • the punching robot 4 can be understood as a six-axis multi-joint robot, which can not only rotate freely on the horizontal plane but also move on the vertical plane, and can pick up parts with any orientation on the horizontal plane and put them into products at special angles.
  • it specifically includes one shaft, two shafts 402, three shafts 403, four shafts 404, five shafts 405 and six shafts 406, one of which is the base 401: the part of the first shaft connected to the base, which mainly bears the weight of each shaft and
  • the left and right rotation, left rotation and right rotation of the base 401 are driven by the built-in motor and reducer of the joint, each axis replaces a movement direction, and the movement range of one axis can reach ⁇ 360°.
  • the two-axis 402 is the shoulder: the two-axis 402 controls the function of the main arm of the robot to swing back and forth and the whole arm to move up and down.
  • the three-axis 403 is the elbow: the three-axis 403 is also the function of controlling the robot to swing back and forth, but the range of the swing arm of the third axis 403 is smaller than that of the second axis 402 .
  • the four-axis 404 is the wrist: the four-axis 404 controls the fine-tuning up and down flipping action, and the maximum range of rotation can reach ⁇ 180°.
  • the five-axis 405 is the wrist: the five-axis 405 controls and fine-tunes the left and right rotation movements, and the maximum range of rotation can reach ⁇ 180°.
  • the six-axis 406 is the wrist: the six-axis 406 is the end joint part, which is responsible for the work of the end fixture, and the range of rotation can reach ⁇ 360°.
  • the specific punching robot 4 models and models with different working radii are selected according to the radius of the single-circle shield tunnel to meet the requirements of tunnel anchoring operations with different radii.
  • the quick-change assembly 33 is installed on the anchoring integrated assembly to connect with the robot, and the flange connection quick-change assembly 33 is arranged at both ends of the connecting plate 34, so as to realize the anchoring operation requirements of the anchor robot at each position on both sides of a ring in the single-circle shield tunnel.
  • the anchoring integrated assembly includes a mounting frame 28; a connecting plate 34 is arranged above the mounting frame 28, and the two ends of the connecting plate 34 are connected with the punching robot 4 hands;
  • Mobile module the mobile module is integrated under the installation frame 28 through the linear slide rail 30, slides relative to the installation frame 28 along the linear slide rail 30, and grabs the anchor bolt continuous feeding assembly 25 through the fixed loading gripper 35 on it.
  • the visual positioning system scans and locates the position of the punch
  • the steel bar detector detects whether there is steel bar at the punched hole
  • the anchoring robot also includes a sensor 31; the sensor 31 is fixed on both ends of the connecting plate 34 through the sensor bracket 32, and controls the distance from the mobile module to the working surface.
  • the vision positioning system can be understood as a 3D vision system scanning and positioning the punching position.
  • the anchor bolt continuous feeding assembly 25 in this embodiment includes a plug-in seat 2501, a backing plate 2502, an anchor bolt fixing frame 2503 and a plug-in seat plate 2504; the two ends of the backing plate 2502 can be plugged in and moved Connected under the socket 2501; the anchor bolt fixing frame 2503 is arranged under the backing plate 2502; several anchor bolts 2505 are arranged on the anchor bolt fixing frame 2503, among which there are several socket plates 2504, which can be adjusted according to the length of the socket 2501 .
  • screw holes are set on both the plug-in seat plate 2504 and the plug-in seat 2501, and one end of the plug-in seat plate 2504 is vertically connected to the top of the plug-in seat 2501 by bolts, and is arranged parallel to the anchor bolt 2505; The other end is also connected with the connecting plate 34 by bolts.
  • the anchor bolt fixing frame 2503 and the backing plate 2502 in this embodiment can be detachably connected or fixedly connected through different processes, such as the anchor bolt fixing frame 2503 and the backing plate 2502 can be detachably connected by bolts, which is convenient for buckle maintenance , maintenance and replacement; or the anchor bolt fixing frame 2503 and the backing plate 2502 can also be fixed by welding.
  • the socket 2501 includes a fixing plate 2608 and a limiting plate 2609 arranged at both ends of the fixing plate 2608; a flange 2630 is arranged on the limiting plate 2609; a backing plate 2502 is arranged above the flange 2630 and between the limiting plate 2609 It can be plugged and connected with the socket 2501, and the thickness of the backing plate 2502 is smaller than the height of the limit plate 2609, which is convenient for the quick replacement of the backing plate 2502. positioning and orientation.
  • the anchor bolt fixing frame 2503 is connected with the backing plate 2502, and the anchor bolt fixing frame 2503 can be understood as a buckle or an electro-permanent magnet block.
  • the anchor bolt fixing frame 2503 can be understood as a buckle or an electro-permanent magnet block.
  • the buckle includes a top plate and a clamping plate symmetrically arranged below the top plate; the top plate is connected to the backing plate 2502; the anchor bolt 2505 is clamped between the clamping plates;
  • the bolt 2505 can also be uniformly arranged under the backing plate 2502 through the electro-permanent magnet block. In this application, when the loading gripper 35 grabs the anchor bolt 2505, the anchor bolt 2505 is pulled out vertically downward.
  • Another backing plate 2502 of the bolt is used to realize the loading of the plug-in anchor bolt 2505.
  • the mobile module includes a segment drilling assembly 27, an anchor bolt installation assembly 271, an anchor bolt tightening assembly 272 and a module control cabinet 273; wherein the segment drilling assembly 27, the anchor bolt installation assembly 271 and the anchor bolt tightening assembly 272 are all connected with rodless cylinder 29, respectively realize forward and backward feeding motion.
  • the module control device, electrical device and system are arranged in the module control cabinet 273 .
  • the loading gripper 35 is fixed on one side of the mobile module, including the first cylinder mounting seat 2602 provided with the first cylinder 2601, the second cylinder mounting seat 2604 provided with the second cylinder 2603, and the third cylinder mounting seat 2604 provided.
  • the third cylinder 2605 is connected to the gripper assembly 2607 through the gripper support 26;
  • the gripper assembly 2607 includes a gripper and a gripper shaft; the middle part of the gripper is connected to the gripper shaft; the gripper shaft is connected to the gripper support 26;
  • the servo motor Drive the gripper shaft to rotate, after the gripper clamps the anchor bolt 2505, the third cylinder 2605 retracts to make the gripper grasp the anchor bolt 2505, and the second cylinder 2603 and the third cylinder 2605 stretch out a suitable distance, so as to prevent the gripper from rotating and
  • the handle assembly 2607 rotates 180° to make the handle downward, and the first cylinder 2601, the second cylinder 2603 and the third cylinder 26
  • the anchoring robot also includes a quick change assembly 33 as shown in Figure 14;
  • the quick change assembly 33 includes a male buckle device and a female buckle device, wherein the male buckle device is connected to the punching robot 4 and the female buckle device is fixed on the On the flanges at both ends of the connecting plate 34, a number of grooves and a number of convex rafters are respectively provided on the male buckle device and the female buckle device for rotational connection.
  • the convex rafters and grooves can be directly inserted into the connection through rotation, and it can also be understood that Threads are provided on the protruding rafters and in the grooves, which can be rotated by the punching robot 4, and the male buckle device arranged on it can be connected with the female buckle device on the flange of the connecting plate 34 only by mechanically rotating, further realizing Mounting frame 28 is connected with punching robot 4 quickly.
  • the operating principle and usage method of the anchoring robot in this embodiment are as follows: screw holes are set on both the socket board 2504 and the socket 2501, and one end of the socket board 2504 is vertically connected to the top of the socket 2501 by bolts, and the socket There are three seat plates 2504, which are respectively fixed at the two ends and the middle position of the socket 2501. The other end of the seat plate 2504 is connected to the connecting plate 34 by bolts, and the punching robot 4 is connected to the connecting plate 34 through the quick change assembly 33.
  • Use the 3D vision positioning system to scan the segment to determine the positioning and punching position, and use the steel bar detector to detect whether there is steel bar inside the segment.
  • the setting of the sensor 31 is convenient for the mobile module to adjust the position and use 27 pairs of segment drilling components
  • the segment is drilled precisely, and the anchor bolt 2505 is grasped by the anchor bolt continuous feeding component 25 and aligned on the anchor bolt installation component 271.
  • the mobile module can adjust the position to the drilled position of the segment, which is convenient for the anchor bolt installation component 271 Cooperate with the gripper to enter and exit the anchor bolt 2505 and the anchor bolt tightening assembly 272 to tighten the nut 36 .
  • the positioning, drilling, installation and tightening of the anchor bolt 2505 can be automatically completed by mechanization, which improves the repair efficiency of the subway tunnel segment and reduces the error rate of manual operation.
  • the two ends of the backing plate 2502 can be plugged and flexibly connected to the bottom of the socket 2501, and the other anchor bolt fixing frame 2503 and the anchor bolt can be fixed by quick replacement.
  • the backing plate 2502 realizes the loading of plug-in anchor bolts 2505, improves the grabbing efficiency, and saves time and effort.
  • the scope of application of this embodiment is not limited to the steel plate ring anchoring operation, and can also be used in other operations such as anchor bolt installation of signal brackets.
  • the side of the punching robot 4 away from the first assembling robot 5 is provided with an epoxy resin barrel 1, and the side of the epoxy resin barrel 1 is provided with an air compressor 2, which is used for segment pretreatment, tube Air pressure is provided for the glue injection of the segment and hole cleaning, and the epoxy resin barrel is filled with epoxy resin, which is used to provide raw materials for the weld glue injection after the segment is installed and welded.
  • the auxiliary operation platform system includes an auxiliary operation platform 8 , an equipment control cabinet 9 is arranged at the bottom of the auxiliary operation platform 8 , and a welding module power supply 10 is arranged on one side of the equipment control cabinet 9 .
  • the welding system includes a welding robot 7 , a welding robot sliding table 6 , a welding robot lifting platform 11 , a welding seam scanning positioning module 20 , a robot arc welding torch 21 , and a welding seam detection module.
  • the bottom system includes a multi-track bogie 16, the top of the multi-track bogie 16 is provided with a two-way traction flat car 17, and the bottom of the multi-track bogie 16 is provided with a balance leg 14.
  • the bottom system includes a two-way traction flat car 17, a multi-track bogie 16, a balance leg 14 and a braking part.
  • Two-way traction joints are reserved for the double traction flatbed car 17 to ensure that when one end of the traction locomotive fails, the equipment can be pulled away from the subway track from the other end of the traction joint in time to ensure that normal subway operations are not affected.
  • the multi-track bogie 16 can not only meet the requirement of running on subway tunnels already in operation, but also realize running on subway tunnels under construction.
  • the balance outrigger 14 can be unfolded after the double traction flatbed truck is in place, which can increase the anti-overturning ability of the equipment and ensure the stability of the equipment during operation; the balance outrigger 14 can also be self-aligned during operation to align with the axis of the subway tunnel Towards.
  • the shield tunnel segment repair and reinforcement equipment includes the second segment repair and reinforcement equipment, which includes the second assembly system; the second assembly system includes the second assembly robot; the steel plate ring 2-9 is provided with a support; wherein the second assembling robot is detachably connected with the steel plate ring 2-9 through the execution assembly provided thereon.
  • the support 2-91 is provided with a first pin hole
  • the executive assembly includes a snatch plate 2-8 and a pin shaft
  • the snatch plate 2-8 is provided with a second pin hole
  • the pin shaft is suitable for passing through the first pin hole and the pin shaft.
  • the second pin hole is to detachably connect the steel plate ring 2-9 to the robot.
  • the second assembling system in this embodiment also includes a pallet, the slide rail 2-11 of the robot is arranged on the pallet, the steel plate ring 2-9 is arranged on the pallet, and there are two supports 2-91, two A support 2-91 is arranged in parallel at intervals, and there are multiple first pin holes, and a plurality of first pin holes are arranged at intervals along the length direction of the support 2-91.
  • bearing 2-91 is provided with two, and snatch plate 2-8 is provided with two, and first pin hole is provided with multiple, and second pin hole is provided with multiple, pin shaft is provided with multiple, increased
  • the number of connection points between the actuator assembly and the steel plate ring 2-9 improves the stability of the connection between the robot and the steel plate ring 2-9 in the embodiment of the present application.
  • the second assembly robot includes a slide rail 2-11, a slide table 2-12, a first rotary assembly 2-21, a first arm 2-22, a first drive 2-23, a second arm 2-31, a first Second drive 2-32, first seat 2-41, third drive 2-42, second seat 2-61, fourth drive 2-62, telescopic arm 2-5, second rotary assembly 2-7 and executive assembly .
  • the slide table 2-12 is slidably assembled on the slide rail 2-11. Specifically, the slide table 2-12 is arranged on the slide rail 2-11, and the slide table 2-12 is provided with pulleys, and the slide table 2-12 can slide along the length direction of the slide rail 2-11, so that the robot of the embodiment of the application There may be a first linear degree of freedom along the length of the slide rail 2-11.
  • the first rotary assembly 2-21 is arranged on the slide table 2-12, the first arm 2-22 is connected with the first rotary assembly 2-21, and the first drive 2-23 is connected between the first arm 2-22 and the first rotary assembly Between 2-21, the first drive 2-23 is adapted to drive the first arm 2-22 to swing, and the first rotary assembly 2-21 is adapted to drive the first arm 2-22 and the first drive 2-23 to rotate in a circumferential direction.
  • the rotating shaft of the first rotary assembly 2-21 extends vertically, the stator part of the first rotary assembly 2-21 is connected with the slide table 2-12, and the rotor part of the first rotary assembly 2-21 is connected with the first arm 2-22, so as to drive the first arm 2-22 to rotate around the rotation axis of the first rotary assembly 2-21, so that the robot in the embodiment of the present application has the first rotational degree of freedom.
  • One end of the first arm 2-22 is rotatably connected with the first rotary assembly 2-21, one end of the first drive 2-23 is rotatably connected with the rotor part of the first rotary assembly 2-21, and the first drive 2- The other end of 23 is rotatably connected with the first arm 2-22, and the length of the first drive 2-23 is adjustable to drive the first arm 2-22 to swing relative to the rotor part of the first rotary assembly 2-21, so that Going to buy which embodiment the robot has a second rotational degree of freedom.
  • the second arm 2-31 is rotatably connected with the first arm 2-22, the second drive 2-32 is connected between the first arm 2-22 and the second arm 2-31, and the second drive 2-32 is suitable for driving the first
  • the second arm 2-31 swings relative to the first arm 2-22.
  • one end of the first arm 2-22 away from the first rotary assembly 2-21 is rotatably connected to one end of the second arm 2-31, and one end of the second drive 2-32 is rotatably connected to the first arm 2-22.
  • the other end of the second drive 2-32 is rotatably connected with the second arm 2-31, and the length of the second drive 2-32 is adjustable to drive the second arm 2-31 relative to the first arm 2- 22 swing, so that the robot in the embodiment of the present application has a third rotational degree of freedom.
  • the first base 2-41 is rotationally connected with the second arm 2-31
  • the third drive 2-42 is connected between the first base 2-41 and the second arm 2-31
  • the third drive 2-42 is suitable for driving the first One base 2-41 swings relative to the second arm 2-31.
  • the first seat 2-41 is arranged at the end of the second arm 2-31 away from the first arm 2-22, and the first seat 2-41 is rotatably connected with the second arm 2-31, and the third drive 2 One end of -42 is rotatably connected with the second arm 2-31, and the other end of the third drive 2-42 is rotatably connected with the first seat 2-41 to drive the first seat 2-41 relative to the second arm 2-31 swing, so that the robot in the embodiment of the present application has a fourth rotational degree of freedom.
  • the telescopic arm 2-5 is located on the first seat 2-41. Specifically, the telescopic arm 2-5 has a fixed portion and a free portion, the fixed portion of the telescopic arm 2-5 is fixedly connected to the first seat 2-41, and the free portion of the telescopic arm 2-5 can be moved relative to the fixed portion along the length direction of the fixed portion. The fixed portion of the telescopic arm 2-5 slides, so that the length of the telescopic arm 2-5 can be adjusted, so that the robot in the embodiment of the present application has a second linear degree of freedom.
  • the second seat 2-61 is rotationally connected with the telescopic arm 2-5
  • the fourth drive 2-62 is connected between the telescopic arm 2-5 and the second seat 2-61
  • the fourth drive 2-62 is suitable for driving the second seat 2-61 swings relative to telescopic arm 2-5.
  • the second seat 2-61 is located at the free end of the telescopic arm 2-5, and the second seat 2-61 is rotatable relative to the telescopic arm 2-5, and one end of the fourth drive 2-62 is connected to the telescopic arm 2-5. 5 is rotatably connected, the other end of the fourth drive 2-62 is rotatably connected with the second seat 2-61, and the length of the fourth drive 2-62 is adjustable to drive the second seat 2-61 to be opposite to the telescopic arm 2 -5 swings, so that the robot of the embodiment of the present application has a fifth rotational degree of freedom.
  • the second rotary assembly 2-7 is connected between the actuator assembly and the second base 2-61, and the second rotary assembly 2-7 is suitable for driving the actuator assembly to rotate relative to the telescopic arm 2-5.
  • the second rotary assembly 2-7 is arranged at the end of the second seat 2-61 away from the telescopic arm 2-5, the stator part of the second rotary assembly 2-7 is connected with the second seat 2-61, and the second rotary assembly
  • the rotor part of 2-7 is connected with the executive assembly, and the rotor part of the second rotary assembly 2-7 can rotate relative to the stator part of the second rotary assembly 2-7, so that the robot of the embodiment of the present application has the sixth degree of freedom of rotation .
  • the robot of the embodiment of the present application has the first linear degree of freedom by setting the slide rail 2-11 and the slide table 2-12, the first rotary degree of freedom by setting the first rotary assembly 2-21, and the first rotary degree of freedom by setting the first arm 2-12.
  • 22 and the first drive 2-23 have a second degree of freedom of rotation
  • by setting the second arm 2-31 and the second drive 2-32 have a third degree of freedom of rotation
  • by setting the first seat 2-41 and the third drive 2 -42 has the fourth rotational degree of freedom
  • setting the telescopic arm 2-5 to have the second linear degree of freedom
  • by setting the second seat 2-61 and the fourth drive 2-62 to have the fifth rotational degree of freedom
  • by setting the second rotational Assembly 2-7 has a sixth rotational degree of freedom.
  • the actuator when the robot of the embodiment of the present application is working, the actuator has six rotational degrees of freedom and two linear degrees of freedom. Compared with the related art, two linear degrees of freedom are added, and the swing of the actuator is increased.
  • the range of motion has the advantage of a larger working range.
  • the robot includes a first link 2-33, one end of the first link 2-33 is rotationally connected to the first arm 2-22, and the other end of the first link 2-33 is connected to the second drive 2
  • One end of -32 is rotationally connected to form a first fulcrum, and the first fulcrum is connected to the second arm 2-31 in transmission and is suitable for driving the second arm 2-31 to swing.
  • the first link 2-33 is arranged on the first arm 2-22, the first link 2-33 can swing relative to the first arm 2-22, and the second drive 2-32 is connected to the first link Between the free end of 2-33 and the first arm 2-22, so that the second drive 2-32, the first connecting rod 2-33 and the first arm 2-22 form a triangular structure, and the second drive 2-32 It has higher stability when driving the first link 2-33 to swing.
  • the second arm 2-31 can follow the first link 2-33 to swing. 33 swing and move, so that the second arm 2-31 swings relative to the first arm 2-22.
  • the second drive 2-32 drives the first connecting rod 2-33 to swing
  • the first connecting rod 2-33 drives the second arm 2-31 to swing relative to the first arm 2-22
  • the second arm 2-31 swings relative to the first arm 2-22
  • 31 can be regarded as a rocker that swings relative to the first arm 2-22
  • the first connecting rod 2-33 can be regarded as a crank that swings relative to the first arm 2-22, so that by setting the first connecting rod 2-33 can The swing angle of the second arm 2-31 relative to the first arm 2-22 is increased, thereby increasing the swing range of the execution assembly of the robot in the embodiment of the present application when working.
  • the robot includes a second link 2-311, one end of the second link 2-311 is connected to the second arm 2-31, and the other end of the second link 2-311 is connected to the third drive 2-311.
  • One end of 42 is connected by rotation and forms a second fulcrum, and the second fulcrum is connected with the first fulcrum by transmission.
  • the second connecting rod 2-311 is arranged on the second arm 2-31, the second connecting rod 2-311 extends out of the second arm 2-31, the second fulcrum is located on one side of the second arm 2-31, and There is a set distance between the second fulcrum and the second arm 2-31.
  • the second drive 2-32 stretches, the second fulcrum is driven to swing relative to the first arm 2-22, so that the second arm 2-31 swings relative to the first arm 2-22.
  • the second fulcrum is located on one side of the second arm 2-31.
  • the second connecting rod 2-311 can increase the force arm of the second arm 2-31, so as to drive the second arm 2-31 to swing around the first arm 2-22.
  • the robot includes a third link 2-34, one end of the third link 2-34 is rotatably connected to the first fulcrum, and the other end of the third link 2-34 is rotatably connected to the second fulcrum.
  • the third link 2-34 is arranged between the first link 2-33 and the second link 2-311, and the third link 2-34 is connected with the first link 2-33 and the second link.
  • the rods 2-311 are hinged so that a planar four-bar linkage is formed among the third link 2-34, the first link 2-33, the first arm 2-22 and the second link 2-311.
  • the first arm 2-22 can be regarded as a frame
  • the first link 2-33 and the second link 2 -311 can be regarded as a double rocker, so that when the second drive 2-32 stretches, the second drive 2-32 drives the first connecting rod 2-33 to swing, and the third connecting rod 2-34 drives the second connecting rod 2- 311 swings so that the second arm 2-31 swings relative to the first arm 2-22.
  • the change in length of the second drive 2-32 can be converted into the length of the second arm 2-31.
  • the angle relative to the first arm 2-22 changes, thereby driving the second arm 2-31 to swing relative to the first arm 2-22.
  • the first link 2-33 and the third link 2-34 can move the The amplitude of telescopic transportation of the second drive 2-32 is amplified and transmitted to the second arm 2-31, thereby increasing the swing amplitude of the second arm 2-31 relative to the first arm 2-22, to increase the robot performance of the embodiment of the present application. scope of work.
  • the second connecting rod 2-311 and the third connecting rod 2-34 are arc rods, the second connecting rod 2-311 corresponds to the first circle center, and the third connecting rod 2-34 corresponds to the second The center of the circle, the connecting position of the first connecting rod 2-33 and the first arm 2-22, the first center of the circle and the second center of the circle are all located on the same side of the second connecting rod 2-311 and the third connecting rod 2-34.
  • the second link 2-311 and the third link 2-34 are arc-shaped, the second link 2-311 bends toward the side away from the first arm 2-22, and the third link 2-34 faces The side away from the first arm 2-22 is bent, and the first link 2-33, the second link 2-311 and the third link 2-34 are located on the first arm 2-22 and the second arm 2-31 same side of the composite.
  • the second link 2-311 and the third link 2-34 are bent towards the side away from the first arm 2-22, on the one hand the increased second link 2-311 and the third link 2-34
  • the bending of the second link 2-311 and the third link 2-34 toward the side away from the first arm 2-22 can increase the second link 2-311 and the third link 2- 34 and the space between the first arm 2-22 and the second arm 2-31 to avoid the first arm 2-22 when the second arm 2-31 bends relative to the first arm 2-22, so that the second arm The 2-31 has a larger swing stroke when swinging relative to the first arm 2-22.
  • the first seat 2-41 includes a first section 2-411 and a second section 2-412, the first section 2-411 and the second section 2-412 form an angle, and the first section 2-411
  • the connection with the second section 2-412 is connected to the second arm 2-31 in rotation
  • the telescopic arm 2-5 is located on the first section 2-411
  • the other end of the third drive 2-42 is connected to the second section 2-412 They are connected in rotation
  • the second link 2-311 and the second section 2-412 are located on the same side of the second arm 2-31.
  • the first seat 2-41 is rotatably connected with the second arm 2-31 and has a third fulcrum, the third fulcrum is located between the first segment 2-411 and the second segment 2-412, the first segment 2 -411 is provided with a plurality of reinforcing plates to increase the stability of the connection between the first section 2-411 and the telescopic arm 2-5, and the end of the second section 2-412 away from the first section 2-411 is connected to the third drive 2-411 42 is rotatably connected.
  • the third drive 2-42 drives the first seat 2-41 to swing relative to the second arm 2-31
  • the second section 2-412 can increase the driving force arm that drives the first seat 2-41 to swing
  • the third drive 2-42 is convenient for driving the first seat 2-41 to swing relative to the second arm 2-31.
  • the telescopic arm 2-5 can avoid the first arm 2-22, avoiding mutual interference between the telescopic arm 2-5 and the first arm 2-22, thereby increasing the telescopic arm 2-22. 5 swing range.
  • the telescoping arm 2-5 includes an inner cylinder 2-51, an outer cylinder 2-52 and a fifth drive 2-53, and the inner cylinder 2-51 fits in the outer cylinder 2-52 and is relative to the outer cylinder 2-52.
  • 52 is slidable, at least part of the fifth driving 2-53 is located in the inner cylinder 2-51, one end of the fifth driving 2-53 is connected to the inner cylinder 2-51 in rotation, and the other end of the fifth driving 2-53 is connected to the outer cylinder 2-51.
  • the cylinder 2-52 is connected, the outer cylinder 2-52 is connected with the first seat 2-41, the inner cylinder 2-51 is connected with the second seat 2-61, the fourth drive 2-62 is connected with the outer cylinder 2-52, and the first The driving end of four drives 2-62 is connected with the second seat 2-61 in rotation.
  • the inner cylinder 2-51 has an inner cavity
  • a part of the fifth drive 2-53 is located in the inner cavity and is rotatably connected with the inner cylinder 2-51 and has a first connection position
  • the other part of the fifth drive 2-53 Located on the outside of the inner cylinder 2-51 and fixedly connected to the outer cylinder 2-52 and having a second connection position, the length of the fifth drive 2-53 is adjustable to adjust the distance between the first connection position and the second connection position, Thereby adjust the length of telescopic arm 2-5.
  • One end of the fourth drive 2-62 is rotatably connected with the outer cylinder 2-52, the other end of the fourth drive 2-62 is rotatably connected with the second seat 2-61, and the length of the fourth drive 2-62 is adjustable To drive the second base 2-61 to swing relative to the second arm 2-31.
  • the inner cylinder 2-51 is slidably assembled in the outer cylinder 2-52 along the length direction of the outer cylinder 2-52, and there are multiple sliders between the inner cylinder 2-51 and the outer cylinder 2-52 to lower the inner cylinder 2.
  • the cross-sectional shape of the inner cylinder 2-51 and the outer cylinder 2-52 is a symmetrical hexagon along the width direction of the inner cylinder 2-51.
  • the use of the robot comprises the steps of:
  • S1 Manipulate the fourth drive 2-62 and the fifth drive 2-53 to expand and contract synchronously to drive the second seat 2-61 to translate. Specifically, the fourth drive 2-62 and the fifth drive 2-53 expand and contract synchronously, so that the angle between the second seat 2-61 and the telescopic arm 2-5 remains unchanged when the telescopic arm 2-5 is stretched, thereby , to prevent the expansion and contraction of the telescopic arm 2-5 from affecting the angle of the second seat 2-61, and prevent the second linear degree of freedom from interfering with the fifth rotational degree of freedom.
  • the robot includes a slide drive 2-13
  • the slide drive 2-13 is connected between the slide rail 2-11 and the slide table 2-12
  • the length of the slide drive 2-13 is adjustable to drive the slide table 2-13.
  • 12 slides along the slide rail 2-11
  • the slide rail 2-11 includes a first block 2-15 and a second block 2-16
  • the slide table 2-12 includes a limit block 2-14
  • the limit block 2-14 It can slide between the first stopper 2-15 and the second stopper 2-16 so that the slide table 2-12 has a set stroke relative to the slide rail 2-11.
  • one end of the slide drive 2-13 is fixedly connected to the slide rail 2-11, the other end of the slide drive 2-13 is fixedly connected to the slide table 2-12, and the slide drive 2-13 is fixed along the length of the slide rail 2-11.
  • the sliding drive 2-13 can be retracted to adjust the position of the slide table 2-12 relative to the slide rail 2-11, thereby driving the slide table 2-12 to slide relative to the slide rail 2-11.
  • the limit block 2-14 is located on the side of the slide table 2-12 perpendicular to the length direction of the slide rail 2-11.
  • the limit block 2-14 slides along the The length direction of the rail 2-11 is translated relative to the slide rail 2-11
  • the first stop 2-15 is located on one side of the limit block 2-14 along the length direction of the slide rail 2-11
  • the second stop 2-16 is located at The limit block 2-14 is along the other side in the length direction of the slide rail 2-11.
  • the sliding drive 2-13 extends along the length direction of the slide rail 2-11, which increases the guideability of the slide table 2-12 sliding relative to the slide rail 2-11; on the other hand, the first stopper 2-15 And the second block 2-16 limits the movement stroke of the limit block 2-14, thereby avoiding the sliding table 2-12 from overrunning.
  • the embodiment of the present application proposes a shield tunnel segment repair process, including the following steps:
  • Segment deformation evaluation according to the laser scanner and industrial vision system to scan and detect the inner wall of the tunnel to collect evaluation parameters; evaluation parameters include the ellipticity of the inner wall of the tunnel, staggered platform, and measurement of damaged cracks and gaps; determine the reinforcement position according to the scanning results, and draw up the reinforcement plan , prepare reinforcement equipment and materials;
  • the ellipticity of the inner wall of the tunnel is When a is greater than 20 ⁇ or the one-way deformation rate is 12 ⁇ a1 ⁇ 20 ⁇ , the tunnel shall be reinforced;
  • D max is the maximum outer diameter
  • D min is the minimum outer diameter
  • D is the nominal outer diameter
  • a1 is the vertical deformation rate.
  • Pretreatment pipeline relocation, ballast bed cutting and chiseling, sealing and smoothing the segment rings, longitudinal seams, and hand holes, and keeping the segment joints free of leakage, after the surface is dry, perform grinding and roughening treatment. 1. Under the grouting pressure of not more than 0.2Mpa, the longitudinal joints are drilled obliquely and injected with elastic epoxy grout.
  • the pipeline is relocated first, the ballast bed is cut and removed, and then the elastic epoxy grout is injected into the oblique drilling of the segment ring and longitudinal seam, and then the segment damage repair and staggered repair are carried out, and the segment wall is then grouted Fill the cavity to stop the water, and then seal the bolt hand hole and the longitudinal joint of the segment with anti-cracking mortar. Finally, after keeping the surface of the segment joint without leakage and drying, the inner wall is polished and roughened with a grinder.
  • segment damage cracks are divided into four cases according to different plugging methods:
  • the first type of impermeable cracks the elastic epoxy resin slurry and epoxy adhesive are injected into the cracks;
  • the second type of water seepage crack first use the secondary grouting hole to pour double liquid grout, then use oily polyurethane for local plugging, and finally use elastic epoxy resin grout and epoxy adhesive to seal;
  • the third type of local damage not greater than 0.2m2 when it does not exceed the protective layer of steel bars, repair it with high-strength epoxy mortar and seal it;
  • the fourth type of local damage larger than 0.2m 2 repair with high-strength epoxy mortar, pre-embed the grouting pipe, and inject elastic epoxy grout into the grouting pipe.
  • misalignment does not exceed 2cm, use high-strength epoxy resin mortar for smoothing. If the misalignment exceeds 2cm, first perform plum blossom-shaped reinforcement, and then use high-strength epoxy resin mortar for smoothing.
  • the staff can use the first segment repair and reinforcement equipment or the second segment repair and reinforcement equipment to assemble steel plate rings, weld, grout and spray; in this embodiment, the first segment repair and reinforcement equipment is taken as an example to illustrate the method.
  • the first assembling robot 5 locates the installation position of the steel plate ring and the position of the steel plate ring by installing the scanning positioning module 18, calculates the moving path of the first assembling robot 5 by a computer, and then moves the electric permanent magnetic chuck 19 to the side of the steel plate ring storage rack, And grab the steel plate ring from the steel plate ring storage rack through the electric permanent magnetic sucker 19, the first assembly robot 5 adjusts the posture of the steel plate ring through rotation, pitching and other actions, and assembles the steel plate ring into the shield tunnel, and the punching robot 4 cooperates
  • the vision system scans and locates the drilling position, the drilling robot 4 segment drilling assembly 27 punches holes, the anchor bolt installation assembly 271 installs the M16 anchor bolt 2505, the anchor bolt tightening assembly 272 tightens the anchor bolt 2505, and fixes the steel plate ring on the subway tunnel pipe
  • the inner wall of the sheet, the screwing depth is greater than 125mm, the order is from bottom to top, and anchor bolt holes are reserved as grouting holes and vent holes
  • the sliding table 6 adjusts the posture of the welding robot 7, the welding seam scanning and positioning module 20 of the welding robot 7 locates the position of the weld seam, and welds the seam between the steel plate rings.
  • the robot welding system can realize seam search and positioning, seam tracking, and seam detection, etc. Function.
  • the bottom system moves as a whole, and the auxiliary operation platform 8 assists the workers in grouting and anti-corrosion spraying of the steel plate ring. Resin injection, the pressure is controlled at 0.1Mpa-0.15Mpa, and finally the auxiliary operation platform assists workers to spray anti-rust, anti-corrosion and fire-resistant coatings.
  • the second segment repair and reinforcement equipment when using the second segment repair and reinforcement equipment to assemble steel plate rings, welding, grouting and spraying, compared with the first segment repair and reinforcement equipment, more manual processes are used, that is, the second assembly robot grabs the steel plate rings and passes through Rotate, pitch and other actions to adjust the posture of the steel plate ring, and assemble the steel plate ring to the shield tunnel, and then use manual anchoring, welding, grouting and spraying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本申请实施例提出了一种盾构隧道管片修复加固成套设备及管片修复加固工艺,针对现有技术中施工周期长、施工成本高、施工效率低、施工困难大的问题,提高隧道施工的智能化水平和施工效率、降低作业人员劳动强度。

Description

一种盾构隧道管片修复加固成套设备及修复加固工艺
相关申请的交叉引用
本申请基于申请号为202110604496.3、申请日为2021年05月31日的中国专利以及申请号为202110601870.4、申请日为2021年05月31日的中国专利申请提出,并要求该两项中国专利申请的优先权,将该两项中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及隧道修复加固技术领域,具体而言,涉及一种盾构隧道管片修复加固成套设备及修复加固工艺。
背景技术
人类活动的空间范围不断扩大,随着随着地下空间的不断开发,城市地铁建设需要修建许多盾构隧道。在盾构施工中,盾构管片是盾构施工的主要装配构件,是隧道的最内层屏障,承担着抵抗土层压力、地下水压力以及一些特殊荷载的作用。装配式钢筋混凝土管片作为一种典型隧道支护技术,因其取材方便、制作工艺简单、造价低廉、施工速度快、强度高等优势,被广泛应用于盾构隧道支护领域。然而,隧道现场管片衬砌开裂破损现象也是时有发生,管片开裂破损会削弱隧道衬砌的整体支护强度,一旦对其控制不利,如产生掉块现象,将会给地铁运营列车带来致命威胁。如何进行现场管片衬砌快速修复,是保障隧道施工及运营安全的一项重要任务。相关调查资料研究发现,在运营期间,因地铁结构或周边环境原因,其隧道结构通常有变形等病害发生,一般包含隧道竖向位移变形(错台)、横向位移变形(错台)、椭变(收敛变形)、裂缝、渗漏等,严重时则影响运营安全。基本上运营期在10年左右的隧道都需进入到整治修复阶段。
现有技术中外盾构地铁隧道管片破损修复加固主要采用钢板环加固法,钢板环进行抓取并安装、数个钢板环之间的接缝进行焊接,管片预处理、钢板环安装后的注环氧树脂胶和钢板环防腐处理等多个环节还需要人工介入,且不能有效的对现场管片衬砌快速修复。
因此如何提供一种盾构隧道管片修复加固成套设备及修复加固工艺,减少人工介入环节,一次性完成钢板环安装、定位锚固、整体焊接、钢板环注胶、防腐处理等工艺减小失误率,提高盾构隧道管片修复效率,缩短修复时间是本领域技术人员亟需解决的技术问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一,提出了一种盾构隧道管片修复加固成套设备及管片修复加固工艺,针对现有技术中施工周期长、施工成本高、施工效率低、施工困难大的问题,提高隧道施工的智能化水平和施工效率、降低作业人员劳动强度。
有鉴于此,本申请实施例提出了一种盾构隧道管片修复加固成套设备,包括第一管片修复加固设备,其中第一管片修复加固设备包括第一拼装系统、打孔系统、焊接系统、底部系统、辅助作业平台系统、钢板环支架以及环氧树脂胶桶;各个系统依次安装放置;
所述第一拼装系统用于抓取所述钢板环支架上的钢板环并安装到预定位置后,所述打孔系统用于钻孔并安装锚栓;所焊接系统用于将若干已经安装固定后的所述钢板环之间的接缝焊接;所 述底部系统用于进行整体移动运行;所述辅助作业平台用于辅助工人对钢板环和管片之间压注后进所述锚栓锚固,并喷涂防锈、防腐和耐火涂层。
在一些实施例中,所述第一拼装系统包括第一拼装机器人,所述第一拼装机器人的一端设置有电永磁吸盘,所述电永磁吸盘的上方固定设置有安装扫描定位模块,所述第一拼装机器人的底部滑动连接有第一拼装机器人滑台。
在一些实施例中,所述打孔系统包括打孔机器人,所述打孔机器人的一端设置有锚固集成组件,所述锚固集成组件上设置快换组件与所述所述打孔机器人连接;所述打孔机器人的底部滑动连接有打孔机器人滑台,所述打孔机器人滑台的底部设置有打孔机器人升降平台。
在一些实施例中,所述打孔机器人为六轴工业机器人。
在一些实施例中,所述锚固集成组件包括:
安装架;所述安装架上方设置连接板,所述快换组件固定在所述连接板两端,通过所述快换组件与所述机器人连接;
锚栓连续上料组件;所述锚栓连续上料组件连接在所述连接板上,位于所述安装架的侧面;锚栓卡固在所述锚栓连续上料组件的下方;所述锚栓连续上料组件包括插排座,垫板、锚栓固定架;其中所述垫板两端可插入式活动连接在所述插排座下方;所述锚栓固定架设置在所述垫板下方;若干所述锚栓设置在所述锚栓固定架上;
移动模块;所述移动模块通过线性滑轨集成到所述安装架下方,沿所述线性滑轨相对所述安装架滑动,并通过所述移动模块上固定的上料抓手抓取所述锚栓连续上料组件上的所述锚栓;所述移动模块包括管片钻孔组件、锚栓安装组件、锚栓拧紧组件和模块控制柜;其中所述管片钻孔组件、所述锚栓安装组件和所述锚栓拧紧组件均与无杆气缸连接,分别实现前后进给运动;
视觉定位系统;所述视觉定位系统扫描定位打孔的位置;
钢筋检测仪;所述钢筋检测仪检测打孔处是否有钢筋;和
传感器;所述传感器通过传感器支架固定在所述连接板两端,控制所述移动模块到作业面的距离。
在一些实施例中,所述上料抓手固定在所述移动模块一侧,包括设置第一气缸的第一气缸安装座,设置第二气缸的第二气缸安装座,设置第三气缸的第三气缸安装座和抓手组件;其中所述第一气缸安装座与所述移动模块连接;所述第一气缸连接所述第二气缸安装座;所述第二气缸连接所述第三气缸安装座;所述第三气缸通过抓手支撑与所述抓手组件连接;所述抓手组件抓取所述锚栓连续上料组件上的所述锚栓,并将所述锚栓对准到所述锚栓安装组件上。
在一些实施例中,所述插排座包括固定板和设置在固定板两端的限位板;所述限位板上设置凸缘;所述垫板设置在所述凸缘上方,位于所述限位板之间,与所述插排座可插入式活动连接。
在一些实施例中,所述锚栓固定架与所述垫板连接,所述锚栓固定架为卡扣或电永磁块。
在一些实施例中,所述锚栓连续上料组件还包括插排座板;其中所述插排座板为若干个,一端垂直连接在所述插排座上方,与所述锚栓平行设置;另一端固定在所述连接板上。
在一些实施例中,所述锚栓上套设有与其相适配的螺母。
在一些实施例中,所述抓手组件包括抓手和抓手轴;所述抓手中部与所述抓手轴连接;所述抓手轴与所述抓手支撑连接,所述抓手组件抓取所述锚栓连续上料组件上的所述锚栓,并将所述锚栓对准到所述锚栓安装组件上。
在一些实施例中,所述快换组件包括公扣装置和母扣装置,其中所述公扣装置连接在所述机器人上;所述母扣装置固定设置在所述连接板两端;所述公扣装置和所述母扣装置上分别开设若干凹槽和若干凸椽转动连接。
在一些实施例中,所述焊接系统内包括焊接机器人,所述焊接机器人的一端设置有焊缝扫描定位模块、机器人弧焊焊枪及焊缝检测模块。
在一些实施例中,所述底部系统包括多轨道转向架,所述多轨道转向架的顶部设置有双向牵引平板车,所述双向牵引平板车的底部设置有平衡支腿。
在一些实施例中,所述辅助作业平台系统包括辅助作业平台,所述辅助作业平台的底部设置有设备控制柜,所述设备控制柜的一侧设置有焊接模块电源。
在一些实施例中,所述第一拼装机器人的一侧固定所述钢板环支架用于存放所述钢板环;所述环氧树脂胶桶的一侧设置有空气压缩机。
在一些实施例中,一种盾构隧道管片修复加固成套设备包括第二管片修复加固设备其包括第二拼装系统;所述第二拼装系统包括第二拼装机器人;所述钢板环设有支座;其中所述第二拼装机器人通过其上设置的执行组件与所述钢板环可拆卸地相连。
在一些实施例中,所述第二拼装机器人包括滑轨和滑台,所述滑台可滑移地装配于所述滑轨;
第一回转组件、第一臂和第一驱动,所述第一回转组件设于所述滑台,所述第一臂与所述第一回转组件相连,所述第一驱动连接在所述第一臂和所述第一回转组件之间,所述第一驱动适于驱动所述第一臂摆动,所述第一回转组件适于驱动所述第一臂和所述第一驱动周向转动;
第二臂和第二驱动,所述第二臂与所述第一臂转动相连,所述第二驱动连接在所述第一臂和所述第二臂之间,所述第二驱动适于驱动所述第二臂相对于所述第一臂摆动;
第一座和第三驱动,所述第一座与所述第二臂转动相连,所述第三驱动连接在所述第一座和所述第二臂之间,所述第三驱动适于驱动所述第一座相对于所述第二臂摆动;
伸缩臂,所述伸缩臂设于所述第一座;
第二座和第四驱动,所述第二座与所述伸缩臂转动相连,所述第四驱动连接在所述伸缩臂和所述第二座之间,所述第四驱动适于驱动所述第二座相对于所述伸缩臂摆动;
第二回转组件和所述执行组件,所述第二回转组件连接在所述执行组件和所述第二座之间,所述第二回转组件适于驱动所述执行组件相对于所述伸缩臂转动。
在一些实施例中,所述第二拼装机器人包括第一连杆,所述第一连杆的一端与所述第一臂转动相连,所述第一连杆的另一端与所述第二驱动的一端转动相连并形成第一支点,所述第一支点与所述第二臂传动相连并适于驱动所述第二臂摆动。
在一些实施例中,所述第二拼装机器人包括第二连杆,所述第二连杆的一端与所述第二臂相连,所述第二连杆的另一端与所述第三驱动的一端转动相连并形成第二支点,所述第二支点与所述第一支点传动相连。
在一些实施例中,所述第二拼装机器人包括第三连杆,所述第三连杆的一端与所述第一支点转动相连,所述第三连杆的另一端与所述第二支点转动相连。
在一些实施例中,所述第二连杆和所述第三连杆为弧形杆,所述第二连杆对应有第一圆心,所述第三连杆对应有第二圆心,所述第一连杆和所述第一臂的连接位置、所述第一圆心、所述第二圆心均位于所述第二连杆和所述第三连杆的同侧。
在一些实施例中,所述第一座包括第一段和第二段,所述第一段和所述第二段成夹角,所述第一段和所述第二段的连接处与所述第二臂转动相连,所述伸缩臂设于所述第一段,所述第三驱动的另一端与所述第二段转动相连,且所述第二连杆和所述第二段位于所述第二臂的同侧。
在一些实施例中,所述伸缩臂包括内筒、外筒和第五驱动,所述内筒配合在所述外筒内并相对于所述外筒可滑移,至少部分所述第五驱动设于所述内筒内,所述第五驱动的一端与所述内筒转动相连,所述第五驱动的另一端与所述外筒相连,所述外筒与所述第一座相连,所述内筒与所述第二座相连,所述第四驱动与所述外筒相连,且所述第四驱动的驱动端与所述第二座转动相连。
在一些实施例中,提出了一种盾构隧道管片的修复加固工艺,利用上述任一实施例中的盾构隧道管片修复加固成套设备进行盾构隧道管片的修复加固,包括以下步骤:
1)管片变形评估;根据激光扫描仪和工业视觉系统对隧道内壁扫描检测搜集评估参数;所述评估参数包括所述隧道内壁椭圆度、错台、破损裂缝缝隙测量;
2)预处理;管线改迁,道床切割凿除,并将所述管片的环缝、纵缝、手孔封堵抹平,并保持所述管片的接缝无渗漏表面干燥后,进行打磨拉毛处理;
3)利用盾构隧道管片修复加固成套设备进行拼装钢板环、焊接、注浆和喷涂;
所述第一拼装系统将钢板环抓取并安装到预定位置后,所述打孔系统钻孔并安装锚栓,旋合深度大于125mm顺序由下至上,并预留钻孔作为注浆孔和排气孔;所焊接系统将若干所述钢板环之间的接缝焊接;底部系统进行整体移动运行;所述辅助作业平台辅助工人从所述注浆孔对所述钢板环和管片之间压注后,从所述注浆孔、排气孔处安装所述锚栓,最后所述辅助作业平台辅助工人进行喷涂防锈、防腐和耐火涂层;
4)管线、道床恢复;
5)退场验收。
在一些实施例中,所述隧道内壁椭圆度为
Figure PCTCN2022096374-appb-000001
当a大于20‰则对所述隧道进行加固;其中D max为管片的最大外径;D min为管片的最小外径;D为管片的标称外径。
进一步的,隧道内壁椭圆度为
Figure PCTCN2022096374-appb-000002
当a大于20‰或单向变形率12‰<a1<20‰则对隧道进行加固。其中D max为最大外径;D min为最小外径;D为标称外径;a1为竖向变形率。
其中a小于6‰时,符合规范要求,不进行加固;6‰<a<12‰,若围岩条件好,结构稳定可不加固;12‰<a<20‰或单向变形率9‰<a1<12‰且无明显纵向裂缝和较严重破损时;处于弹性受力阶段,考虑管片拼装质量的影响,采用弱加固。
在一些实施例中,步骤2)中,所述环、纵缝在注浆压力不大于0.2Mpa下,斜向钻孔注弹性环氧浆液。
在一些实施例中,步骤3)中所述钢板环两侧与所述管片的接缝采用环氧胶泥封堵,在通过注浆孔与管片间进行环氧树脂压注,压力控制在0.1Mpa-0.15Mpa。
本申请实施例中拼装、钻孔、锚固、焊接均采用机器人操作,通过智能视觉系统进行定位、障碍检测、路径规划,实现高效精准的拼装动作。钻孔同样采用视觉定位系统进行孔位识别,能精准定位孔位,实现自动钻孔、取料、装填、拧紧动作,作业效率高。通过焊接机器人代替人工焊接,可有效提高焊接效率,缩短作业时间,此外,也解决了人工焊接隧道顶部钢板环焊缝时长时间保持仰焊姿势的问题。整个作业过程只需2人配合完成即可,人员投入大幅缩减,人员成本大大降低。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例提供的第一管片修复加固设备的结构示意图;
图2是图1的等轴测图;
图3是本申请实施例提供的第一拼装系统的结构示意图;
图4是本申请实施例提供的焊接系统的结构示意图;
图5是本申请实施例提供的打孔系统的结构示意图;
图6是本申请实施例提供的打孔机器人的结构示意图;
图7是图6的打孔机器人的另一结构示意图;
图8是本申请实施例提供的锚固集成组件结构示意图;
图9是本申请实施例提供的锚栓连续上料组件的结构示意图;
图10是本申请实施例提供的插排座的结构示意图;
图11是本申请实施例提供的锚栓和螺母的结构示意图;
图12是本申请实施例提供的移动模块的结构示意图;
图13是本申请实施例提供的上料抓手组件的结构示意图;
图14是本申请实施例提供的快换组件的结构示意图;
图15是本申请实施例提供的钢板环支架的结构示意图;
图16是本申请实施例提供的第二拼装机器人的工作结构示意图;
图17是本申请实施例提供的第二拼装机器人的结构示意图;
图18是图17的剖视示意图。
其中1、环氧树脂胶桶;2、空气压缩机;3、打孔机器人滑台;4、打孔机器人;401、基座;402、二轴;403、三轴;404、四轴;405、五轴;406、六轴;5、第一拼装机器人;6、焊接机器人滑台;7、焊接机器人;8、辅助作业平台;9、设备控制柜;10、焊接模块电源;11、焊接机器人升降平台;12、钢板环支架;1201、支架座;1202、存放架底板;1203、限位块;13、第一拼 装机器人滑台;14、平衡支腿;15、打孔机器人升降平台;16、多轨道转向架;17、双向牵引平板车;18、安装扫描定位模块;19、电永磁吸盘;20、焊缝扫描定位模块;21、机器人弧焊焊枪;25、锚栓连续上料组件;2501、插排座;2502、垫板;2503、锚栓固定架;2504、插排座板;2505、锚栓;26、抓手支撑;2601、第一气缸;2602、第一气缸安装座;2603、第二气缸;2604、第二气缸安装座;2605、第三气缸;2606、第三气缸安装座;2607、抓手组件;2608、固定板;2609、限位板;2630、凸缘;27、管片钻孔组件;271、锚栓安装组件;272、锚栓拧紧组件;273、模块控制柜;28、安装架;29、无杆气缸;30、线性滑轨;31、传感器;32、传感器支架;33、快换组件;34、连接板;35、上料抓手;36、螺母;
2-11、滑轨;2-12、滑台;2-13、滑动驱动;2-14、限位块;2-15、第一挡块;2-16、第二挡块;2-21、第一回转组件;2-22、第一臂;2-23、第一驱动;2-31、第二臂;2-311、第二连杆;2-32、第二驱动;2-33、第一连杆;2-34、第三连杆;2-41、第一座;2-411、第一段;2-412、第二段;2-42、第三驱动;2-5、伸缩臂;2-51、内筒;2-52、外筒;2-53、第五驱动;2-61、第二座;2-62、第四驱动;2-7、第二回转组件;2-8、抓举板;2-9、钢板环;2-91、支座。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
如图1-图18所示,本申请实施例提出了一种盾构隧道管片修复加固成套设备,包括第一管片修复加固设备如图1-图2所示,第一管片修复加固设备包括第一拼装系统、打孔系统、焊接系统、底部系统、辅助作业平台系统、钢板环支架12以及环氧树脂胶桶1;各个系统依次安装放置;
第一拼装系统用于抓取钢板环支架12上的钢板环并安装到预定位置后,打孔系统用于钻孔并安装锚栓;所焊接系统用于将若干已经安装固定后的钢板环之间的接缝焊接;底部系统用于进行整体移动运行;辅助作业平台用于辅助工人对钢板环和管片之间压注后进锚栓锚固,并喷涂防锈、防腐和耐火涂层。
通过以上技术方案,本申请可通过第一拼装系统将钢板环进行抓取并安装到预定位置,钢板环初步安装就位后,通过打孔系统通过打孔、安装锚栓将钢板环进行固定,其中焊接系统能够可将数个钢板环之间的接缝进行焊接,使隧道内钢板环整体固定,底部系统可保证装置的整体运行和工作稳定性,辅助作业平台可辅助工人,第一拼装系统可将钢板环的抓取和安装放置过程实现自动化和智能化,先进行安装位置与钢板环的扫描,再通过电永磁盘进行抓取后,将电永磁吸盘19对准预安装位置,完成钢板环的初步安装,采用上述装置,可将盾构隧道内的钢板环的抓取和安装放置过程,打孔系统打孔、安装锚栓和拧紧锚栓,焊接系统将钢板环之间的接缝焊接,均可实现自动化和智能化,降低了人力成本。
在一些实施例中,如图3所示,第一拼装系统包括第一拼装机器人5,第一拼装机器人5的一端设置有电永磁吸盘19,电永磁吸盘19的上方固定设置有安装扫描定位模块18,第一拼装机器人5的底部滑动连接有第一拼装机器人滑台13。第一拼装机器人5的一侧固定设置有钢板环支架12如图15所示,用于存放钢板环。板环存放架包括支架座1201,支架座1201上方设置有存放架底板1202,存放架底板1202上对称设置有两个限位块1203组,每一个限位块1203组包括四个限位块1203,四个限位块1203上设置有弧形结构,四个限位块1203的弧形结构的弧度与放置钢板环的弧度相同,协同对于钢板环进行限位,可以实现多个钢板环重叠放置,防止钢板环随双向牵引平板车17移动而产生位移。
打孔系统包括打孔机器人4如图5-图6所示,打孔机器人4的一端设置有锚固集成组件,锚固集成组件上设置快换组件33与打孔机器人4连接;打孔机器人4的底部滑动连接有打孔机器人滑台3,打孔机器人滑台3的底部设置有打孔机器人升降平台15。
其中如图7所示,打孔机器人4可理解为六轴多关节机器人,不仅能在水平面自由旋转还能 在垂直平面移动,可以拿起水平面上任意朝向的部件,以特殊的角度放入产品里,具体包括一轴,二轴402,三轴403,四轴404,五轴405和六轴406,其中一轴为基座401:第一轴连接底座的部分,主要承载各轴的重量和基座401的左右旋转,左转和右转是通过关节内置的电机和减速器来传动的,每个轴代替一个运动方向,一轴的运动范围可以达到±360°。二轴402为肩部:二轴402控制机器人主臂前后摆动和整个手臂上下运动的功能。三轴403为肘部:三轴403也是控制机器人前后摆动的功能,但第三轴403的摆动臂范围小于第二轴402。四轴404为腕部:四轴404是控制微调上下翻转动作,旋转的运动范围最大可达±180°。五轴405为腕部:五轴405控制微调左右旋转动作,旋转的运动范围最大可达±180°。六轴406为腕部:六轴406是末端关节部分,负责末端夹具工作,旋转的运动范围可达±360°。具体的打孔机器人4机型与根据单圆盾构隧道半径,选用不同工作半径的机型,以实现不同半径隧道锚固作业要求。同时锚固集成组件上设置快换组件33与机器人连接,连接板34两端均设置法兰连接快换组件33,实现锚固机器人在单圆盾构隧道内一环两侧各位置处锚固作业需求。
如图8所示,锚固集成组件包括安装架28;安装架28上方设置连接板34,通过连接板34两端与打孔机器人4手连接;
锚栓连续上料组件25;锚栓连续上料组件25连接在连接板34上,位于安装架28的侧面;锚栓2505卡固在锚栓连续上料组件25的下方;锚栓2505上套设有与其相适配的螺母36;
移动模块;移动模块通过线性滑轨30集成到安装架28下方,沿线性滑轨30相对安装架28滑动,并通过其上固定的上料抓手35抓取锚栓连续上料组件25上的锚栓2505;
视觉定位系统;视觉定位系统扫描定位打孔的位置;
钢筋检测仪;钢筋检测仪检测打孔处是否有钢筋;
锚固机器人还包括传感器31;传感器31通过传感器支架32固定在连接板34两端,控制移动模块到作业面的距离。
为优化本实施例,视觉定位系统可以理解为3D视觉系统扫描定位打孔位置。
如图9-图11,本实施例中锚栓连续上料组件25包括插排座2501,垫板2502、锚栓固定架2503和插排座板2504;其中垫板2502两端可插入式活动连接在插排座2501下方;锚栓固定架2503设置在垫板2502下方;若干锚栓2505设置在锚栓固定架2503上,其中插排座板2504为若干个,可根据插排座2501长度确定,本实施例中为三个,插排座板2504与插排座2501上均设置螺孔,插排座板2504一端通过螺栓垂直连接在插排座2501上方,与锚栓2505平行设置;另一端与连接板34也通过螺栓连接。
本实施例中的锚栓固定架2503与垫板2502的可通过不同的工艺实现可拆卸连接或固定连接,如锚栓固定架2503与垫板2502可通过螺栓可拆卸连接,方便卡扣的维护、检修与更换;又或锚栓固定架2503与垫板2502也可通过焊接工艺焊接固定。
优选的,插排座2501包括固定板2608和设置在固定板2608两端的限位板2609;限位板2609上设置凸缘2630;垫板2502设置在凸缘2630上方,位于限位板2609之间,与插排座2501可插入式活动连接,且垫板2502厚度小于限位板2609高度,方便垫板2502的快速更换,同时凸缘2630的设置防止垫板2502滑动时卡死,且有限位和导向作用。
锚栓固定架2503与垫板2502连接,锚栓固定架2503可理解为卡扣或电永磁块。优选的,卡扣为若干个,均匀设置在垫板2502下方,卡扣包括顶板以及对称设置在顶板下方的卡板;顶板与垫板2502连接;锚栓2505卡设在卡板之间;锚栓2505也可通过电永磁块均匀设置在垫板2502下方。本申请中在上料抓手35抓取锚栓2505时候,将锚栓2505竖直向下拔出,当锚栓2505抓取结束时,及时更换上固定有锚栓固定架2503上设有锚栓的另一垫板2502,实现排插式锚栓2505上料。
其中如图12,移动模块包括管片钻孔组件27、锚栓安装组件271、锚栓拧紧组件272和模块控制柜273;其中管片钻孔组件27、锚栓安装组件271和锚栓拧紧组件272均与无杆气缸29连接,分别实现前后进给运动。模块控制柜273内设置模块控制装置以及电气装置及系统。
本实施例中如图13,上料抓手35固定在移动模块一侧,包括设置第一气缸2601的第一气缸安装座2602,设置第二气缸2603的第二气缸安装座2604,设置第三气缸2605的第三气缸安装座2606和抓手组件2607;其中第一气缸安装座2602与移动模块连接;第一气缸2601连接第二气缸安装座2604;第二气缸2603连接第三气缸安装座2606;第三气缸2605通过抓手支撑26与抓手 组件2607连接;抓手组件2607包括抓手和抓手轴;抓手中部与抓手轴连接;抓手轴与抓手支撑26连接;伺服电机驱动抓手轴转动,抓手夹紧锚栓2505后,第三气缸2605缩回使抓手抓取锚栓2505,第二气缸2603和第三气缸2605伸出合适距离,避免抓手旋转时和其他部件碰撞,抓手组件2607旋转180°使抓手向下,第一气缸2601、第二气缸2603和第三气缸2605缩回调整位置,使抓手上锚栓2505对准到锚栓安装组件271上,移动模块调整位置至管片已钻孔位置处,抓手和锚栓安装组件271配合将锚栓2505安装于隧道管片内,然后锚栓拧紧组件272将锚栓2505拧紧,锚栓2505安装完成,抓手继续去抓取锚栓2505。
为进一步优化本实施例,锚固机器人还包括快换组件33如图14;快换组件33包括公扣装置和母扣装置,其中公扣装置连接在打孔机器人4上和母扣装置固定设置在连接板34两端的法兰上,公扣装置和母扣装置上分别开设若干凹槽和若干凸椽转动连接,具体可理解为凸椽和凹槽通过转动直接插入即可进行连接,也可理解为凸椽上和凹槽内设置螺纹,可通过打孔机器人4转动,将其上设置的公扣装置仅仅通过机械配合转动,即可实现与连接板34法兰上母扣装置连接,进一步实现安装架28与打孔机器人4快速连接。
本实施例中锚固机器人的运行原理和使用方法如下:插排座板2504与插排座2501上均设置螺孔,将插排座板2504一端通过螺栓垂直连接在插排座2501上方,插排座板2504为三个,分别固定在插排座2501两端和中间位置,插排座板2504另一端通过螺栓与连接板34连接,将打孔机器人4通过快换组件33与连接板34上的法兰连接,利用3D视觉定位系统扫描管片确定定位打孔位置,并利用利用钢筋检测仪检测管片内部是否有钢筋,传感器31的设置便于移动模块调整位置利用管片钻孔组件27对管片进行精准钻孔,利用锚栓连续上料组件25抓取锚栓2505对准锚栓安装组件271上,同时移动模块可调整位置至管片已钻孔位置处,便于锚栓安装组件271与抓手配合出入锚栓2505以及锚栓拧紧组件272拧紧螺母36。机械化自动完成锚栓2505的定位、打孔、安装与拧紧,提高地铁隧道管片的修复效率,减少人工操作失误率。当垫板2502上的锚栓2505抓取完时,通过垫板2502两端可插入式活动连接在插排座2501下方,可利用快速更换上固定有锚栓固定架2503和锚栓的另一垫板2502,实现排插式锚栓2505上料,提高抓取效率,省时省力。本实施例的应用范围不仅限于钢板环锚固作业,也会用在其他信号支架的锚栓安装等作业中应用。
打孔机器人4远离第一拼装机器人5的一侧设置有环氧树脂胶桶1,环氧树脂胶桶1的一侧设置有空气压缩机2,空气压缩机2用于管片预处理、管片注胶和转孔清孔时提供气压,环氧树脂桶内盛有环氧树脂,用于管片安装焊接后的焊缝注胶提供原料。
辅助作业平台系统包括辅助作业平台8,辅助作业平台8的底部设置有设备控制柜9,设备控制柜9的一侧设置有焊接模块电源10。
如图4所示,焊接系统包括焊接机器人7、焊接机器人滑台6、焊接机器人升降平台11、焊缝扫描定位模块20和机器人弧焊焊枪21、焊缝检测模块组成。
底部系统包括多轨道转向架16,多轨道转向架16的顶部设置有双向牵引平板车17,多轨道转向架16的底部设置有平衡支腿14。
其中底部系统包括双向牵引平板车17、多轨道转向架16、平衡支腿14和刹车部分。双牵引平板车17预留双向牵引接头,以保证一端牵引机车故障时,设备能够及时从另一端牵引接头牵引驶离地铁轨道,确保不影响正常的地铁运营。多轨道转向架16既可满足在已营运地铁隧道上运行,又可实现在建地铁隧道上行使。平衡支腿14可在双牵引平板车到位后,展开支腿,可增加设备的抗倾覆能力,保证设备作业时候的稳定性;平衡支腿14还可在作业时候进行调心以对准地铁隧道轴向。
在一些实施例中如图16-18图所示,盾构隧道管片修复加固成套设备包括第二管片修复加固设备其包括第二拼装系统;第二拼装系统包括第二拼装机器人;钢板环2-9设有支座;其中第二拼装机器人通过其上设置的执行组件与钢板环2-9可拆卸地相连。
示例性的,支座2-91设有第一销孔,执行组件包括抓举板2-8和销轴,抓举板2-8设有第二销孔,销轴适于贯穿第一销孔和第二销孔以将钢板环2-9和机器人可拆卸地相连。具体地,本实施例中的第二拼装系统还包括板车,机器人的滑轨2-11设于板车,钢板环2-9设于板车上,支座2-91有两个,两个支座2-91平行间隔布置,第一销孔有多个,多个第一销孔沿支座2-91的长度方向间隔布置,抓举板2-8有两个,两个抓举板2-8平行间隔布置,第二销孔有多个,多个第二销孔沿抓举板2-8的长度方向间隔布置,且第一销孔和第二销孔可一一对应。
由此,支座2-91设有两个,抓举板2-8设有两个,第一销孔设有多个,第二销孔设有多个,销轴设置有多个,增加了执行组件与钢板环2-9之间的连接点的数量,从而提高了本申请实施例的机器人与钢板环2-9之间连接的稳定性。
具体的,第二拼装机器人包括滑轨2-11、滑台2-12、第一回转组件2-21、第一臂2-22、第一驱动2-23、第二臂2-31、第二驱动2-32、第一座2-41、第三驱动2-42、第二座2-61、第四驱动2-62、伸缩臂2-5、第二回转组件2-7和执行组件。
滑台2-12可滑移地装配于滑轨2-11。具体地,滑台2-12设于滑轨2-11,滑台2-12设有滑轮,滑台2-12可沿滑轨2-11的长度方向滑动,从而使本申请实施例的机器人可沿滑轨2-11的长度方向具有第一直线自由度。
第一回转组件2-21设于滑台2-12,第一臂2-22与第一回转组件2-21相连,第一驱动2-23连接在第一臂2-22和第一回转组件2-21之间,第一驱动2-23适于驱动第一臂2-22摆动,第一回转组件2-21适于驱动第一臂2-22和第一驱动2-23周向转动。
可知地,第一回转组件2-21的转轴沿竖直方向延伸,第一回转组件2-21的定子部与滑台2-12相连,第一回转组件2-21的转子部与第一臂2-22相连,从而驱动第一臂2-22绕第一回转组件2-21的转轴圆周转动,从而使本申请实施例的机器人具有第一回转自由度。
第一臂2-22的一端与第一回转组件2-21可转动地相连,第一驱动2-23的一端与第一回转组件2-21的转子部可转动地相连,第一驱动2-23的另一端与第一臂2-22可转动地相连,第一驱动2-23的长度可调以驱动第一臂2-22相对于第一回转组件2-21的转子部摆动,从而使奔赴买哪个实施例的机器人具有第二回转自由度。
第二臂2-31与第一臂2-22转动相连,第二驱动2-32连接在第一臂2-22和第二臂2-31之间,第二驱动2-32适于驱动第二臂2-31相对于第一臂2-22摆动。
具体地,第一臂2-22背离第一回转组件2-21的一端与第二臂2-31的一端可转动地相连,第二驱动2-32的一端与第一臂2-22可转动地相连,第二驱动2-32的另一端与第二臂2-31可转动地相连,第二驱动2-32的长度可调,以驱动第二臂2-31相对于第一臂2-22摆动,从而使本申请实施例的机器人具有第三回转自由度。
第一座2-41与第二臂2-31转动相连,第三驱动2-42连接在第一座2-41和第二臂2-31之间,第三驱动2-42适于驱动第一座2-41相对于第二臂2-31摆动。
具体地,第一座2-41设于第二臂2-31远离第一臂2-22的一端,且第一座2-41与第二臂2-31可转动地相连,第三驱动2-42的一端与第二臂2-31可转动地相连,第三驱动2-42的另一端与第一座2-41可转动地相连,以驱动第一座2-41相对于第二臂2-31摆动,从而使本申请实施例的机器人具有第四回转自由度。
伸缩臂2-5设于第一座2-41。具体地,伸缩臂2-5具有固定部和自由部,伸缩臂2-5的固定部与第一座2-41固定连接,伸缩臂2-5的自由部可沿固定部的长度方向相对于伸缩臂2-5的固定部滑移,从而使伸缩臂2-5的长度可调,从而使本申请实施例的机器人具有第二直线自由度。
第二座2-61与伸缩臂2-5转动相连,第四驱动2-62连接在伸缩臂2-5和第二座2-61之间,第四驱动2-62适于驱动第二座2-61相对于伸缩臂2-5摆动。
具体地,第二座2-61设于伸缩臂2-5的自由端,且第二座2-61相对于伸缩臂2-5可转动,第四驱动2-62的一端与伸缩臂2-5可转动地相连,第四驱动2-62的另一端与第二座2-61可转动地相连,第四驱动2-62的长度可调以驱动第二座2-61相对与伸缩臂2-5摆动,从而是本申请实施例的机器人具有第五回转自由度。
第二回转组件2-7连接在执行组件和第二座2-61之间,第二回转组件2-7适于驱动执行组件相对于伸缩臂2-5转动。
具体地,第二回转组件2-7设于第二座2-61背离伸缩臂2-5的一端,第二回转组件2-7的定子部与第二座2-61相连,第二回转组件2-7的转子部与执行组件相连,第二回转组件2-7的转子部可相对于第二回转组件2-7的定子部转动,从而使本申请实施例的机器人具有第六回转自由度。
本申请实施例的机器人通过设置滑轨2-11和滑台2-12具有第一直线自由度,通过设置第一回转组件2-21具有第一回转自由度,通过设置第一臂2-22和第一驱动2-23具有第二回转自由度,通过设置第二臂2-31和第二驱动2-32具有第三回转自由度,通过设置第一座2-41和第三驱动2-42具有第四回转自由度,通过设置伸缩臂2-5具有第二直线自由度,通过设置第二座2-61和 第四驱动2-62具有第五回转自由度,通过设置第二回转组件2-7具有第六回转自由度。
由此,使本申请实施例的机器人在工作时,执行组件具有六个回转自由度和两个直线自由度,相较于相关技术中增加了两个直线自由度,增大了执行组件的摆动运动范围,具有作业范围较大的优点。
在一些实施例中,机器人包括第一连杆2-33,第一连杆2-33的一端与第一臂2-22转动相连,第一连杆2-33的另一端与第二驱动2-32的一端转动相连并形成第一支点,第一支点与第二臂2-31传动相连并适于驱动第二臂2-31摆动。
具体地,第一连杆2-33设于第一臂2-22,第一连杆2-33可相对于第一臂2-22摆动,第二驱动2-32的连接在第一连杆2-33的自由端和第一臂2-22之间,从而第二驱动2-32、第一连杆2-33和第一臂2-22形成三角型结构,在第二驱动2-32驱动第一连杆2-33摆动时具有较高的稳定性,第一连杆2-33相对于第一臂2-22摆动时,第二臂2-31可随着第一连杆2-33的摆动而运动,从而使第二臂2-31相对于第一臂2-22摆动。
由此,通过第二驱动2-32驱动第一连杆2-33摆动,通过第一连杆2-33带动第二臂2-31相对于第一臂2-22摆动,第二臂2-31可视为相对于第一臂2-22摆动的摇杆,第一连杆2-33可视为相对于第一臂2-22摆动的曲柄,从而通过设置第一连杆2-33可以增大第二臂2-31相对于第一臂2-22摆动的角度,从而增大了本申请实施例的机器人在工作时执行组件的摆动范围。
在一些实施例中,机器人包括第二连杆2-311,第二连杆2-311的一端与第二臂2-31相连,第二连杆2-311的另一端与第三驱动2-42的一端转动相连并形成第二支点,第二支点与第一支点传动相连。
具体地,第二连杆2-311设于第二臂2-31,第二连杆2-311伸出第二臂2-31,第二支点位于第二臂2-31的一侧,且第二支点与第二臂2-31之间具有设定距离。当第二驱动2-32伸缩时,驱动第二支点相对于第一臂2-22摆动,从而使第二臂2-31相对于第一臂2-22摆动。
由此,通过设置第二连杆2-311,使第二支点位于第二臂2-31的一侧,当第二驱动2-32伸缩驱动第二支点绕第一臂2-22摆动时,第二连杆2-311能够增加第二臂2-31受力的力臂,从而便于驱动第二臂2-31绕第一臂2-22摆动。
在一些实施例中,机器人包括第三连杆2-34,第三连杆2-34的一端与第一支点转动相连,第三连杆2-34的另一端与第二支点转动相连。
具体地,第三连杆2-34设于第一连杆2-33和第二连杆2-311之间,且第三连杆2-34与第一连杆2-33和第二连杆2-311铰接,从而第三连杆2-34、第一连杆2-33、第一臂2-22和第二连杆2-311之间形成平面四连杆机构。
当第二驱动2-32驱动第二臂2-31相对于第一臂2-22摆动时,第一臂2-22可视为机架,第一连杆2-33和第二连杆2-311可视为双摇杆,从而第二驱动2-32伸缩时,第二驱动2-32驱动第一连杆2-33摆动,通过第三连杆2-34驱动第二连杆2-311摆动,从而使第二臂2-31相对于第一臂2-22摆动。
由此,通过设置第一连杆2-33、第二连杆2-311和第三连杆2-34一方面可以将第二驱动2-32的长度变化传转化为第二臂2-31相对于第一臂2-22的角度变化,从而驱动第二臂2-31相对于第一臂2-22摆动,另一方面第一连杆2-33和第三连杆2-34可以将第二驱动2-32伸缩运送的幅度放大并传递至第二臂2-31,从而增加第二臂2-31相对于第一臂2-22摆动的幅度,以增加本申请实施例的机器人的作业范围。
在一些实施例中,第二连杆2-311和第三连杆2-34为弧形杆,第二连杆2-311对应有第一圆心,第三连杆2-34对应有第二圆心,第一连杆2-33和第一臂2-22的连接位置、第一圆心、第二圆心均位于第二连杆2-311和第三连杆2-34的同侧。
具体地,第二连杆2-311和第三连杆2-34为弧形,第二连杆2-311朝向背离第一臂2-22的一侧弯曲,第三连杆2-34朝向背离第一臂2-22的一侧弯曲,且第一连杆2-33、第二连杆2-311和第三连杆2-34位于第一臂2-22和第二臂2-31组合体的同一侧。
由此,第二连杆2-311和第三连杆2-34朝向背离第一臂2-22的一侧弯曲,一方面增加的第二连杆2-311和第三连杆2-34的承载能力,另一方面第二连杆2-311和第三连杆2-34朝向背离第一臂2-22的一侧弯曲可以增加第二连杆2-311和第三连杆2-34与第一臂2-22和第二臂2-31之间的空间以在第二臂2-31相对于第一臂2-22弯曲时避让第一臂2-22,从而使第二臂2-31相 对于第一臂2-22摆动时具有较大的摆动行程。
在一些实施例中,第一座2-41包括第一段2-411和第二段2-412,第一段2-411和第二段2-412成夹角,第一段2-411和第二段2-412的连接处与第二臂2-31转动相连,伸缩臂2-5设于第一段2-411,第三驱动2-42的另一端与第二段2-412转动相连,且第二连杆2-311和第二段2-412位于第二臂2-31的同侧。
具体地,第一座2-41与第二臂2-31可转动地相连并具有第三支点,第三支点位于第一段2-411和第二段2-412之间,第一段2-411设有多个加强板以增加第一段2-411和伸缩臂2-5之间连接的稳定性,第二段2-412背离第一段2-411的一端与第三驱动2-42可转动地相连。
由此,一方面第三驱动2-42驱动第一座2-41相对于第二臂2-31摆动时,第二段2-412可以增加驱动第一座2-41摆动的驱动力臂,从而便于第三驱动2-42驱动第一座2-41相对于第二臂2-31摆动,另一方面第一段2-411和第二段2-412具有夹角便于第一座2-41相对于第二臂2-31摆动时伸缩臂2-5可避让第一臂2-22,避免伸缩臂2-5和第一臂2-22之间互相干涉,从而增加了伸缩臂2-5的摆动范围。
在一些实施例中,伸缩臂2-5包括内筒2-51、外筒2-52和第五驱动2-53,内筒2-51配合在外筒2-52内并相对于外筒2-52可滑移,至少部分第五驱动2-53设于内筒2-51内,第五驱动2-53的一端与内筒2-51转动相连,第五驱动2-53的另一端与外筒2-52相连,外筒2-52与第一座2-41相连,内筒2-51与第二座2-61相连,第四驱动2-62与外筒2-52相连,且第四驱动2-62的驱动端与第二座2-61转动相连。
具体地,内筒2-51具有内腔,一部分第五驱动2-53位于内腔中并与内筒2-51可转动地相连并具有第一连接位置,另一部分的第五驱动2-53位于内筒2-51的外侧并与外筒2-52固定相连并具有第二连接位置,第五驱动2-53的长度可调以调整第一连接位置和第二连接位置之间的距离,从而调整伸缩臂2-5的长度。
第四驱动2-62的一端与外筒2-52可转动地相连,第四驱动2-62的另一端与第二座2-61可转动地相连,第四驱动2-62的长度可调以驱动第二座2-61相对于第二臂2-31摆动。
内筒2-51沿外筒2-52的长度方向可滑动的装配与外筒2-52内,内筒2-51和外筒2-52之间具有多个滑块,以降低内筒2-51和外筒2-52之间的摩擦,内筒2-51和外筒2-52的截面形状为沿内筒2-51的宽度方向对称的六边形。由此,在内筒2-51和外筒2-52之间具有较高的导向性的同时,使内筒2-51可外筒2-52具有较高的抗弯性能。
在一些实施例中,机器人在使用时包括以下步骤:
S1:操控第四驱动2-62和第五驱动2-53同步伸缩以驱动第二座2-61平移。具体地,第四驱动2-62和第五驱动2-53同步伸缩,使第二座2-61在伸缩臂2-5伸缩时与伸缩臂2-5之间的夹角不变,由此,避免伸缩臂2-5伸缩时影响第二座2-61的角度,避免第二直线自由度干涉第五回转自由度。
S2:待平移到位后,锁止第五驱动2-53,然后操控第四驱动2-62伸缩以驱动第二座2-61摆动。具体地,当第二座2-61相对与伸缩臂2-5摆动时,第五驱动2-53锁止,使伸缩臂2-5的长度不变。由此,避免在第二座2-61摆动时影响伸缩臂2-5的长度,避免第五回转自由度干涉第二直线自由度。
在一些实施例中,机器人包括滑动驱动2-13,滑动驱动2-13连接在滑轨2-11和滑台2-12之间,滑动驱动2-13的长度可调以驱动滑台2-12沿滑轨2-11滑动,滑轨2-11包括第一挡块2-15和第二挡块2-16,滑台2-12包括限位块2-14,限位块2-14可在第一挡块2-15和第二挡块2-16之间滑动以使滑台2-12相对于滑轨2-11具有设定行程。
具体地,滑动驱动2-13的一端与滑轨2-11固定相连,滑动驱动2-13的另一端与滑台2-12固定相连,且滑动驱动2-13沿滑轨2-11的长度方向延伸,滑动驱动2-13可伸缩以调整滑台2-12相对于滑轨2-11的位置,从而驱动滑台2-12相对于滑轨2-11滑动。
限位块2-14位于滑台2-12垂直于滑轨2-11的长度方向的一侧,当滑台2-12相对于滑轨2-11滑动时,限位块2-14沿滑轨2-11的长度方向相对于滑轨2-11平移,第一挡块2-15位于限位块2-14沿滑轨2-11长度方向的一侧,第二挡块2-16位于限位块2-14沿滑轨2-11长度方向的另一侧。
由此,一方面滑动驱动2-13沿滑轨2-11的长度方向延伸,增加了滑台2-12相对于滑轨2-11 滑动的导向性,另一方面第一挡块2-15和第二挡块2-16限制限位块2-14的移动行程,从而避免滑台2-12滑动超限。
本申请实施例提出了一种盾构隧道管片修复工艺,包括以下步骤:
1)管片变形评估;根据激光扫描仪和工业视觉系统对隧道内壁扫描检测搜集评估参数;评估参数包括隧道内壁椭圆度、错台、破损裂缝缝隙测量;根据扫描结果确定加固位置,拟定加固方案,准备加固设备及材料;
隧道内壁椭圆度为
Figure PCTCN2022096374-appb-000003
当a大于20‰或单向变形率12‰<a1<20‰则对隧道进行加固;
其中D max为最大外径;D min为最小外径;D为标称外径;a1为竖向变形率。
其中a小于6‰时,符合规范要求,不进行加固;6‰<a<12‰,若围岩条件好,结构稳定可不加固;12‰<a<20‰或单向变形率9‰<a1<12‰且无明显纵向裂缝和较严重破损时;处于弹性受力阶段,考虑管片拼装质量的影响,采用弱加固。
2)预处理;管线改迁,道床切割凿除,并将管片环、纵缝、手孔封堵抹平,并保持管片接缝无渗漏表面干燥后,进行打磨拉毛处理,其中环、纵缝在注浆压力不大于0.2Mpa下,斜向钻孔注弹性环氧浆液。
预处理中,先进行管线改迁,道床切割凿除,再将管片环、纵缝斜向钻孔注弹性环氧浆液,接着进行管片破损修复和错台修复,管片壁后注浆填补空洞止水,再对螺栓手孔和管片纵缝用抗裂砂浆封堵,最后并保持管片接缝无渗漏表面干燥后,内壁用砂轮机进行打磨拉毛处理。
其中管片破损裂缝分为四种情况按照不同的封堵处理方法为:
第一种不渗水裂缝:采用裂缝内压注弹性环氧树脂浆液和环氧粘合剂;
第二种渗水裂缝:先采用二次注浆孔灌注双液浆,再使用油性聚氨酯进行局部堵漏,最后采用弹性环氧树脂浆液和环氧粘合剂封闭处理;
第三种不大于0.2m 2的局部破损:不超过钢筋保护层时,用高强度环氧砂浆修补,封闭处理;
第四种大于0.2m 2的局部破损:用高强度环氧砂浆修补,并预埋注浆管,向注浆管内注入弹性环氧浆液。
预处理过程中如果错台不超过2cm,采用高强度环氧树脂砂浆进行修平,如果错台超过2cm,先进行梅花形植筋,再采用高强度环氧树脂砂浆进行修平。
3)管片修复加固成套设备拼装钢板环、焊接、注浆和喷涂;
其中工作人员可利用第一管片修复加固设备或第二管片修复加固设备进行拼装钢板环、焊接、注浆和喷涂;本实施例中以第一管片修复加固设备为例进行方法说明。
第一拼装机器人5通过安装扫描定位模块18定位钢板环安装位置与钢板环位置,通过计算机计算第一拼装机器人5的移动路径,再将电永磁吸盘19移动到到钢板环存放架一侧,并通过电永磁吸盘19从钢板环存放架处抓取钢板环,第一拼装机器人5经过旋转、俯仰等等动作调整钢板环姿态,并将钢板环拼装至盾构隧道,打孔机器人4配合视觉系统扫描定位打孔位置,打孔机器人4管片钻孔组件27打孔、锚栓安装组件271安装M16锚栓2505、锚栓拧紧组件272拧紧锚栓2505,将钢板环固定在地铁隧道管片内壁,旋合深度大于125mm,顺序由下至上,并预留锚栓孔作为注浆孔和排气孔,在完成整环钢板环的安装作业后,焊接机器人7通过机器人升降平台11、机器人滑台6调整焊接机器人7姿态,焊接机器人7焊缝扫描定位模块20定位焊缝位置,焊接钢板环之间的接缝,机器人焊接系统可实现焊缝寻找定位、焊缝追踪、焊缝检测等功能。底部系统进行整体移动运行,辅助作业平台8辅助工人进行注浆和钢板环防腐喷涂,钢板环两侧与管片接缝采用环氧胶泥封堵,在通过注浆孔与管片间进行环氧树脂压注,压力控制在0.1Mpa-0.15Mpa,最后辅助作业平台辅助工人进行喷涂防锈、防腐和耐火涂层。其中利用第二管片修复加固设备进行拼装钢板环、焊接、注浆和喷涂时,相较于第一管片修复加固设备使用人工工序较多,即第二拼装机器人抓取钢板环,并经过旋转、俯仰等等动作调整钢板环姿态,并将钢板环拼装至盾构隧道,后利用人工进行锚固以及焊接、注浆和喷涂。
4)管线、道床恢复。
5)退场验收。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种盾构隧道管片修复加固成套设备,其特征在于,包括第一管片修复加固设备,所述第一管片修复加固设备包括第一拼装系统、打孔系统、焊接系统、底部系统、辅助作业平台系统、钢板环支架以及环氧树脂胶桶;各个系统依次安装放置;
    所述第一拼装系统用于抓取所述钢板环支架上的钢板环并安装到预定位置后,所述打孔系统用于钻孔并安装锚栓;所焊接系统用于将若干已经安装固定后的所述钢板环之间的接缝焊接;所述底部系统用于进行整体移动运行;所述辅助作业平台用于辅助工人对钢板环和管片之间压注后进所述锚栓锚固,并喷涂防锈、防腐和耐火涂层。
  2. 根据权利要求1所述的设备,其特征在于,所述第一拼装系统包括第一拼装机器人,所述第一拼装机器人的一端设置有电永磁吸盘,所述电永磁吸盘的上方固定设置有安装扫描定位模块,所述第一拼装机器人的底部滑动连接有第一拼装机器人滑台。
  3. 根据权利要求1所述的设备,其特征在于,所述打孔系统包括打孔机器人,所述打孔机器人的一端设置有锚固集成组件,所述锚固集成组件上设置快换组件与所述所述打孔机器人连接;所述打孔机器人的底部滑动连接有打孔机器人滑台,所述打孔机器人滑台的底部设置有打孔机器人升降平台。
  4. 根据权利要求3所述的设备,其特征在于,所述打孔机器人为六轴工业机器人。
  5. 根据权利要求3所述的设备,其特征在于,所述锚固集成组件包括:
    安装架;所述安装架上方设置连接板,所述快换组件固定在所述连接板两端,通过所述快换组件与所述机器人连接;
    锚栓连续上料组件;所述锚栓连续上料组件连接在所述连接板上,位于所述安装架的侧面;锚栓卡固在所述锚栓连续上料组件的下方;所述锚栓连续上料组件包括插排座,垫板、锚栓固定架;其中所述垫板两端可插入式活动连接在所述插排座下方;所述锚栓固定架设置在所述垫板下方;若干所述锚栓设置在所述锚栓固定架上;
    移动模块;所述移动模块通过线性滑轨集成到所述安装架下方,沿所述线性滑轨相对所述安装架滑动,并通过所述移动模块上固定的上料抓手抓取所述锚栓连续上料组件上的所述锚栓;所述移动模块包括管片钻孔组件、锚栓安装组件、锚栓拧紧组件和模块控制柜;其中所述管片钻孔组件、所述锚栓安装组件和所述锚栓拧紧组件均与无杆气缸连接,分别实现前后进给运动;
    视觉定位系统;所述视觉定位系统扫描定位打孔的位置;
    钢筋检测仪;所述钢筋检测仪检测打孔处是否有钢筋;和
    传感器;所述传感器通过传感器支架固定在所述连接板两端,控制所述移动模块到作业面的距离。
  6. 根据权利要求5所述的设备,其特征在于,所述上料抓手固定在所述移动模块一侧,包括设置第一气缸的第一气缸安装座,设置第二气缸的第二气缸安装座,设置第三气缸的第三气缸安装座和抓手组件;其中所述第一气缸安装座与所述移动模块连接;所述第一气缸连接所述第二气缸安装座;所述第二气缸连接所述第三气缸安装座;所述第三气缸通过抓手支撑与所述抓手组件连接;所述抓手组件抓取所述锚栓连续上料组件上的所述锚栓,并将所述锚栓对准到所述锚栓安装组件上。
  7. 根据权利要求5所述的设备,其特征在于,所述插排座包括固定板和设置在固定板两端的限位板;所述限位板上设置凸缘;所述垫板设置在所述凸缘上方,位于所述限位板之间,与所述插排座可插入式活动连接。
  8. 根据权利要求5所述的设备,其特征在于,所述锚栓固定架与所述垫板连接,所述锚栓固定架为卡扣或电永磁块。
  9. 根据权利要求5所述的设备,其特征在于,所述锚栓连续上料组件还包括插排座板;其中所述插排座板为若干个,一端垂直连接在所述插排座上方,与所述锚栓平行设置;另一端固定在所述连接板上。
  10. 根据权利要求3所述的设备,其特征在于,所述锚栓上套设有与其相适配的螺母。
  11. 根据权利要求6所述的设备,其特征在于,所述抓手组件包括抓手和抓手轴;所述抓手中部与所述抓手轴连接;所述抓手轴与所述抓手支撑连接,所述抓手组件抓取所述锚栓连续上料组 件上的所述锚栓,并将所述锚栓对准到所述锚栓安装组件上。
  12. 根据权利要求3所述的设备,其特征在于,所述快换组件包括公扣装置和母扣装置,其中所述公扣装置连接在所述机器人上;所述母扣装置固定设置在所述连接板两端;所述公扣装置和所述母扣装置上分别开设若干凹槽和若干凸椽转动连接。
  13. 根据权利要求1所述的设备,其特征在于,所述焊接系统内包括焊接机器人,所述焊接机器人的一端设置有焊缝扫描定位模块、机器人弧焊焊枪及焊缝检测模块。
  14. 根据权利要求1所述的设备,其特征在于,所述底部系统包括多轨道转向架,所述多轨道转向架的顶部设置有双向牵引平板车,所述双向牵引平板车的底部设置有平衡支腿。
  15. 根据权利要求1所述的设备,其特征在于,所述辅助作业平台系统包括辅助作业平台,所述辅助作业平台的底部设置有设备控制柜,所述设备控制柜的一侧设置有焊接模块电源。
  16. 根据权利要求1所述的设备,其特征在于,所述第一拼装机器人的一侧固定所述钢板环支架用于存放所述钢板环;所述环氧树脂胶桶的一侧设置有空气压缩机。
  17. 根据权利要求1所述的设备,其特征在于,包括第二管片修复加固设备其包括第二拼装系统;所述第二拼装系统包括第二拼装机器人;所述钢板环设有支座;其中所述第二拼装机器人通过其上设置的执行组件与所述钢板环可拆卸地相连。
  18. 根据权利要求17所述的设备,其特征在于,所述第二拼装机器人包括滑轨和滑台,所述滑台可滑移地装配于所述滑轨;
    第一回转组件、第一臂和第一驱动,所述第一回转组件设于所述滑台,所述第一臂与所述第一回转组件相连,所述第一驱动连接在所述第一臂和所述第一回转组件之间,所述第一驱动适于驱动所述第一臂摆动,所述第一回转组件适于驱动所述第一臂和所述第一驱动周向转动;
    第二臂和第二驱动,所述第二臂与所述第一臂转动相连,所述第二驱动连接在所述第一臂和所述第二臂之间,所述第二驱动适于驱动所述第二臂相对于所述第一臂摆动;
    第一座和第三驱动,所述第一座与所述第二臂转动相连,所述第三驱动连接在所述第一座和所述第二臂之间,所述第三驱动适于驱动所述第一座相对于所述第二臂摆动;
    伸缩臂,所述伸缩臂设于所述第一座;
    第二座和第四驱动,所述第二座与所述伸缩臂转动相连,所述第四驱动连接在所述伸缩臂和所述第二座之间,所述第四驱动适于驱动所述第二座相对于所述伸缩臂摆动;
    第二回转组件和所述执行组件,所述第二回转组件连接在所述执行组件和所述第二座之间,所述第二回转组件适于驱动所述执行组件相对于所述伸缩臂转动。
  19. 根据权利要求18所述的设备,其特征在于,所述第二拼装机器人包括第一连杆,所述第一连杆的一端与所述第一臂转动相连,所述第一连杆的另一端与所述第二驱动的一端转动相连并形成第一支点,所述第一支点与所述第二臂传动相连并适于驱动所述第二臂摆动。
  20. 根据权利要求19所述的设备,其特征在于,所述第二拼装机器人包括第二连杆,所述第二连杆的一端与所述第二臂相连,所述第二连杆的另一端与所述第三驱动的一端转动相连并形成第二支点,所述第二支点与所述第一支点传动相连。
  21. 根据权利要求20所述的设备,其特征在于,所述第二拼装机器人包括第三连杆,所述第三连杆的一端与所述第一支点转动相连,所述第三连杆的另一端与所述第二支点转动相连。
  22. 根据权利要求21所述的设备,其特征在于,所述第二连杆和所述第三连杆为弧形杆,所述第二连杆对应有第一圆心,所述第三连杆对应有第二圆心,所述第一连杆和所述第一臂的连接位置、所述第一圆心、所述第二圆心均位于所述第二连杆和所述第三连杆的同侧。
  23. 根据权利要求22所述的设备,其特征在于,所述第一座包括第一段和第二段,所述第一段和所述第二段成夹角,所述第一段和所述第二段的连接处与所述第二臂转动相连,所述伸缩臂设于所述第一段,所述第三驱动的另一端与所述第二段转动相连,且所述第二连杆和所述第二段位于所述第二臂的同侧。
  24. 根据权利要求14所述的设备,其特征在于,所述伸缩臂包括内筒、外筒和第五驱动,所述内筒配合在所述外筒内并相对于所述外筒可滑移,至少部分所述第五驱动设于所述内筒内,所述第五驱动的一端与所述内筒转动相连,所述第五驱动的另一端与所述外筒相连,所述外筒与所述第一座相连,所述内筒与所述第二座相连,所述第四驱动与所述外筒相连,且所述第四驱动的驱动端与所述第二座转动相连。
  25. 一种盾构隧道管片的修复加固工艺,其特征在于,包括以下步骤:
    1)管片变形评估;根据激光扫描仪和工业视觉系统对隧道内壁扫描检测搜集评估参数;所述评估参数包括所述隧道内壁椭圆度、错台、破损裂缝缝隙测量;
    2)预处理;管线改迁,道床切割凿除,并将所述管片的环缝、纵缝、手孔封堵抹平,并保持所述管片的接缝无渗漏表面干燥后,进行打磨拉毛处理;
    3)利用权利要求1-24中任一所述的设备进行拼装钢板环、焊接、注浆和喷涂;
    所述第一拼装系统将钢板环抓取并安装到预定位置后,所述打孔系统钻孔并安装锚栓,旋合深度大于125mm顺序由下至上,并预留钻孔作为注浆孔和排气孔;所焊接系统将若干所述钢板环之间的接缝焊接;底部系统进行整体移动运行;所述辅助作业平台辅助工人从所述注浆孔对所述钢板环和管片之间压注后,从所述注浆孔、排气孔处安装所述锚栓,最后所述辅助作业平台辅助工人进行喷涂防锈、防腐和耐火涂层;
    4)管线、道床恢复;
    5)退场验收。
  26. 根据权利要求1所述的工艺,其特征在于,所述隧道内壁椭圆度为
    Figure PCTCN2022096374-appb-100001
    当a大于20‰则对所述隧道进行加固;其中D max为管片的最大外径;D min为管片的最小外径;D为管片的标称外径。
  27. 根据权利要求1所述的修复工艺,其特征在于,步骤2)中,所述环、纵缝在注浆压力不大于0.2Mpa下,斜向钻孔注弹性环氧浆液。
  28. 根据权利要求1所述的修复工艺,其特征在于,步骤3)中所述钢板环两侧与所述管片的接缝采用环氧胶泥封堵,在通过注浆孔与管片间进行环氧树脂压注,压力控制在0.1Mpa-0.15Mpa。
PCT/CN2022/096374 2021-05-31 2022-05-31 一种盾构隧道管片修复加固成套设备及修复加固工艺 WO2022253243A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110604496.3 2021-05-31
CN202110601870.4 2021-05-31
CN202110601870.4A CN113404518B (zh) 2021-05-31 2021-05-31 一种盾构隧道管片修复工艺
CN202110604496.3A CN113414589B (zh) 2021-05-31 2021-05-31 一种锚固机器人

Publications (1)

Publication Number Publication Date
WO2022253243A1 true WO2022253243A1 (zh) 2022-12-08

Family

ID=84323907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096374 WO2022253243A1 (zh) 2021-05-31 2022-05-31 一种盾构隧道管片修复加固成套设备及修复加固工艺

Country Status (1)

Country Link
WO (1) WO2022253243A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116220377A (zh) * 2022-12-28 2023-06-06 上海市城市建设设计研究总院(集团)有限公司 智能监控及自动注胶的平台钢筋砼植筋结构及施工方法
CN116480383A (zh) * 2023-04-26 2023-07-25 南京康泰建筑灌浆科技有限公司 一种隧道接缝防渗堵漏设备
CN116678747A (zh) * 2023-07-28 2023-09-01 首辅工程设计有限公司 一种建筑施工锚栓抗拉拔强度检测设备
CN116786946A (zh) * 2023-08-17 2023-09-22 中建材(合肥)钢构科技有限公司 一种网架杆件与端部配件的环焊装置
CN117287232A (zh) * 2023-11-24 2023-12-26 北京科技大学 一种煤矿采空区灭火巷道快速注浆密封装置
CN117697257A (zh) * 2024-01-12 2024-03-15 天津大学 一种大型复杂工件的自动化焊接生产线及生产方法
CN117900824A (zh) * 2024-03-18 2024-04-19 江苏赛达电子科技有限公司 一种基于自动化水表加工的组装设备及方法
CN117900681A (zh) * 2024-03-19 2024-04-19 中铁四局集团有限公司 一种管片单网片钢筋自动加工设备
CN118003404A (zh) * 2024-04-09 2024-05-10 亨特酒店用品(汕头)有限公司 一种旋盖机旋盖打孔用辅助定位设备
CN118223910A (zh) * 2024-05-23 2024-06-21 北京城建设计发展集团股份有限公司 一种盾构隧道衬砌管片加固体辅助安装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333997A (ja) * 1995-06-08 1996-12-17 Nkk Corp シールドセグメントの位置決め方法
CN103306690A (zh) * 2013-06-19 2013-09-18 上海隧道工程股份有限公司 隧道加固机器人
CN111188641A (zh) * 2020-01-23 2020-05-22 上海先科桥梁隧道检测加固工程技术有限公司 盾构隧道钢管片内衬加固机械臂
CN113090292A (zh) * 2021-04-09 2021-07-09 中铁工程服务有限公司 一种盾构地铁隧道管片修复加固智能成套设备
CN113404518A (zh) * 2021-05-31 2021-09-17 中铁工程服务有限公司 一种盾构隧道管片修复工艺
CN113414589A (zh) * 2021-05-31 2021-09-21 中铁工程服务有限公司 一种锚固机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333997A (ja) * 1995-06-08 1996-12-17 Nkk Corp シールドセグメントの位置決め方法
CN103306690A (zh) * 2013-06-19 2013-09-18 上海隧道工程股份有限公司 隧道加固机器人
CN111188641A (zh) * 2020-01-23 2020-05-22 上海先科桥梁隧道检测加固工程技术有限公司 盾构隧道钢管片内衬加固机械臂
CN113090292A (zh) * 2021-04-09 2021-07-09 中铁工程服务有限公司 一种盾构地铁隧道管片修复加固智能成套设备
CN113404518A (zh) * 2021-05-31 2021-09-17 中铁工程服务有限公司 一种盾构隧道管片修复工艺
CN113414589A (zh) * 2021-05-31 2021-09-21 中铁工程服务有限公司 一种锚固机器人

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116220377A (zh) * 2022-12-28 2023-06-06 上海市城市建设设计研究总院(集团)有限公司 智能监控及自动注胶的平台钢筋砼植筋结构及施工方法
CN116480383B (zh) * 2023-04-26 2024-01-23 南京康泰建筑灌浆科技有限公司 一种隧道接缝防渗堵漏设备
CN116480383A (zh) * 2023-04-26 2023-07-25 南京康泰建筑灌浆科技有限公司 一种隧道接缝防渗堵漏设备
CN116678747A (zh) * 2023-07-28 2023-09-01 首辅工程设计有限公司 一种建筑施工锚栓抗拉拔强度检测设备
CN116678747B (zh) * 2023-07-28 2023-10-20 首辅工程设计有限公司 一种建筑施工锚栓抗拉拔强度检测设备
CN116786946A (zh) * 2023-08-17 2023-09-22 中建材(合肥)钢构科技有限公司 一种网架杆件与端部配件的环焊装置
CN116786946B (zh) * 2023-08-17 2023-11-10 中建材(合肥)钢构科技有限公司 一种网架杆件与端部配件的环焊装置
CN117287232A (zh) * 2023-11-24 2023-12-26 北京科技大学 一种煤矿采空区灭火巷道快速注浆密封装置
CN117287232B (zh) * 2023-11-24 2024-01-30 北京科技大学 一种煤矿采空区灭火巷道快速注浆密封装置
CN117697257A (zh) * 2024-01-12 2024-03-15 天津大学 一种大型复杂工件的自动化焊接生产线及生产方法
CN117900824A (zh) * 2024-03-18 2024-04-19 江苏赛达电子科技有限公司 一种基于自动化水表加工的组装设备及方法
CN117900824B (zh) * 2024-03-18 2024-06-11 江苏赛达电子科技有限公司 一种基于自动化水表加工的组装设备及方法
CN117900681A (zh) * 2024-03-19 2024-04-19 中铁四局集团有限公司 一种管片单网片钢筋自动加工设备
CN118003404A (zh) * 2024-04-09 2024-05-10 亨特酒店用品(汕头)有限公司 一种旋盖机旋盖打孔用辅助定位设备
CN118223910A (zh) * 2024-05-23 2024-06-21 北京城建设计发展集团股份有限公司 一种盾构隧道衬砌管片加固体辅助安装方法

Similar Documents

Publication Publication Date Title
WO2022253243A1 (zh) 一种盾构隧道管片修复加固成套设备及修复加固工艺
AU2018431356B2 (en) Tunnel boring machine steel arch installation system
CN103306690B (zh) 隧道加固机器人
CN111188641A (zh) 盾构隧道钢管片内衬加固机械臂
CN103711437A (zh) 一种连续油管设备专用吊装井架
JP2010121284A (ja) 鉄骨構造物の建方工法
CN102102344B (zh) 组装式波纹管涵洞快速拼装方法
CN113090291A (zh) 一种盾构地铁隧道管片修复加固成套设备
CN115815950B (zh) 一种具有调距功能的管道焊接机器人以及管道焊接方法
CN107620575B (zh) 一种拖挂式管具抓持移运装置
CN113090293A (zh) 一种盾构地铁隧道管片修复加固机械臂设备
CN108532717A (zh) 一种建筑工程用水泥涵管铺设装置
CN108591611A (zh) 一种建筑工程用水泥涵管铺设方法
CN113404518B (zh) 一种盾构隧道管片修复工艺
CN108895831B (zh) 模块化回转窑窑衬安装装置及方法
CN214836435U (zh) 一种盾构地铁隧道管片修复加固机械臂设备
CN114074306A (zh) 一种消防主管安装工具
CN205349253U (zh) 一种钻柱自动排放装置
CN214836436U (zh) 一种盾构地铁隧道管片修复加固成套设备
CN116290809A (zh) 超高层管井立管模块化施工方法
CN113090292B (zh) 一种盾构地铁隧道管片修复加固智能成套设备
CN115977188A (zh) 用于长边坡加固施工的移动式多功能机械手及施工方法
CN111946358B (zh) 一种处置富水砂层中盾尾变形的矫正工装及其施工工艺
KR101488712B1 (ko) 원자로 헤드 검사 및 정비 장치의 이동플랫폼
CN114776332A (zh) 一种既有隧道病害整治维修列车组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815287

Country of ref document: EP

Kind code of ref document: A1