WO2022252851A1 - 电机和电机转子 - Google Patents
电机和电机转子 Download PDFInfo
- Publication number
- WO2022252851A1 WO2022252851A1 PCT/CN2022/087456 CN2022087456W WO2022252851A1 WO 2022252851 A1 WO2022252851 A1 WO 2022252851A1 CN 2022087456 W CN2022087456 W CN 2022087456W WO 2022252851 A1 WO2022252851 A1 WO 2022252851A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron core
- motor rotor
- rotating shaft
- magnetic steel
- branch
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 242
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 97
- 239000010959 steel Substances 0.000 claims abstract description 97
- 238000002955 isolation Methods 0.000 claims description 42
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 238000009434 installation Methods 0.000 description 17
- 230000004907 flux Effects 0.000 description 13
- 230000008093 supporting effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000004382 potting Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical group [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
Definitions
- the present application relates to the technical field of power equipment, in particular to a motor rotor and a motor having the motor rotor.
- the rotor structure of the synchronous reluctance permanent magnet motor in the related art includes magnetic steel, salient poles, punched closed slots, magnetic steel slots, motor rotor and housing, the inside of the housing is provided with punched closed slots, and the punched closed slots are arranged
- the magnetic steel groove is provided with a motor rotor in the casing and a magnetic steel is disposed in the motor rotor.
- the utility model puts the magnetic steel into the motor rotor, and adds salient poles in the axial direction of the motor rotor. Its function is to better increase the difference between the d-axis inductance and the q-axis inductance, thereby improving the reluctance torque of the motor more effectively. , can make the power density of the motor higher, reduce the volume of the motor, and have better starting performance, and is suitable for being widely popularized and used.
- the related technology maximizes the reluctance torque on the premise of an integrated motor rotor, but each layer of magnetic steel still needs to be connected by a magnetic isolation bridge.
- the existence of a magnetic isolation bridge will inevitably lead to an increase in magnetic flux leakage. If the design of the magnetic bridge is too narrow, it will also affect the structural strength of the motor rotor.
- An object of the present application is to propose a motor rotor that can reduce magnetic flux leakage and increase utilization.
- Another object of the present application is to provide an electric motor, which includes the aforementioned electric motor rotor.
- the motor rotor includes a rotating shaft, a first iron core, a plurality of iron core groups and a first magnetic steel, the first iron core is fixedly connected to the rotating shaft; the plurality of iron core groups are arranged along the first An iron core is arranged in the circumferential direction, and the iron core group is separated from the first iron core along the radial direction of the motor rotor, the iron core group includes at least one second iron core, and the second iron core The core is fixedly connected with the first iron core; the first magnetic steel is arranged between the first iron core and the iron core group.
- magnetic flux leakage can be reduced, and the utilization rate of magnetic steel can be increased.
- motor rotor according to the above-mentioned embodiments of the present application may also have the following additional technical features:
- an accommodating groove is provided on the outer peripheral surface of the first iron core, and the iron core group is inserted into the accommodating groove.
- the accommodating groove includes a first inner surface, a second inner surface and a connection surface, the first inner surface and the second inner surface are respectively connected to two sides of the connection surface, and the A flaring shape is formed between the first inner surface and the second inner surface, and the first inner surface, the connection surface, and the second inner surface are all provided with the iron core group.
- the first magnet is a first magnet.
- At least one of the opposite surfaces of the first iron core and the iron core group is provided with a first positioning groove for positioning the first magnetic steel.
- the iron core group includes at least two second iron cores, and the second iron cores in the iron core group are arranged at intervals layer by layer along the radial direction of the rotating shaft, and every two adjacent A second magnetic steel is arranged between the two second iron cores.
- one of the two adjacent second iron cores close to the first iron core includes: a first branch, a second branch and a third branch, the second branch and the third branch
- the branches are connected to opposite sides of the first branch, and the first branch, the second branch and the third branch are connected in a U shape with an opening away from the first iron core.
- At least one of the opposite surfaces of two adjacent second iron cores is provided with a second positioning groove for positioning the second magnet.
- a third magnet is embedded in one of the outermost layers of the plurality of second iron cores.
- the motor rotor further includes a magnetic isolation plate, the magnetic isolation plate is fixedly connected to both ends of the rotating shaft, and the first iron core and the second iron core are both arranged on the insulating plates at both ends of the rotating shaft. between the magnetic plates, and the second iron core is connected to the magnetic isolation plate.
- the motor rotor further includes a heat collar, the heat collar is sleeved on the rotating shaft, and the heat collar is arranged on a side of the magnetic isolation plate away from the first iron core. side, to limit the magnetic isolation plate.
- the first iron core is provided with a plurality of lightening holes, and the plurality of lightening holes are arranged along a direction around the rotating shaft.
- the motor according to the embodiment of the present application includes the aforementioned motor rotor.
- Fig. 1 is an exploded schematic diagram of a motor rotor according to an embodiment of the present application.
- Fig. 2 is a schematic diagram of a motor rotor according to an embodiment of the present application.
- Fig. 3 is a partial cross-sectional view of a motor rotor according to an embodiment of the present application
- Fig. 4 is an exploded schematic diagram of a motor rotor according to an embodiment of the present application.
- Fig. 5 is a partial schematic diagram of a motor rotor according to an embodiment of the present application.
- Fig. 6 is a schematic diagram of a motor according to one embodiment of the present invention.
- Motor 1000 motor rotor 100, rotating shaft 1, magnetic isolation plate 2, first iron core 3, inner ring hub 31, outer ring hub 32, support rib 33, first magnetic steel 4, first corner 4a, second iron core Core 5, first branch 51, second branch 52, third branch 53, second magnetic steel 6, second corner 6a, third magnetic steel 8, connecting bolt 9, heat collar 10, accommodating groove 101,
- the present invention provides a motor rotor 100, which can reduce magnetic flux leakage and increase utilization.
- a motor rotor 100 includes a rotating shaft 1 , a first iron core 3 , a plurality of iron core groups and a first magnetic steel 4 .
- the first iron core 3 is fixedly connected with the rotating shaft 1, and a plurality of iron core groups are arranged along the circumferential direction of the first iron core 3, and the iron core groups are separated from the first iron core 3 along the radial direction of the motor rotor 100, and the iron core groups
- At least one second iron core 5 is included, and the second iron core 5 is fixedly connected with the first iron core 3 .
- the first magnetic steel 4 is arranged between the first iron core 3 and the iron core group.
- the iron core is divided into multiple layers along the radial direction of the rotating shaft 1, that is, the first iron core 3 and the second iron core 5 are arranged at intervals in the radial direction of the rotating shaft 1, ensuring that the motor rotor 100 Under the premise of strength, the magnetic bridge structure is completely canceled, the magnetic steel leakage coefficient is minimized, the utilization rate of the magnetic steel is improved, and less magnetic steel can be used under the same conditions, which saves the cost of the magnetic steel.
- the saliency ratio of the motor is increased, the difference between the d-axis and the q-axis inductance is increased, the reluctance torque of the motor is increased, and the power density of the motor is improved while reducing the cost.
- the first iron core 3 in this application can be sleeved on the outside of the rotating shaft 1, and the first iron core 3 is fixedly connected to the rotating shaft 1 (such as interference fit, key connection, etc.), so as to realize the connection between the first iron core 3 and the rotating shaft. 1 rotates synchronously on the rotating shaft 1, and the first iron core 3 can extend along the axial direction of the rotating shaft 1.
- the iron core group and the first iron core 3 are arranged at intervals along the radial direction of the rotating shaft 1, wherein the second iron core 5 extends along the axial direction of the rotating shaft 1, and the iron core group includes at least one second iron core 5, the second iron core 5
- the two ends of the second iron core 3 can be flush with the two ends of the first iron core 3, and the second iron core 5 is fixedly connected with the first iron core 3, for example, fixedly connected together by pins, bonding, welding and the like.
- an accommodating groove 101 is provided on the outer peripheral surface of the first iron core 3 , and the iron core group is inserted into the accommodating groove 101 .
- the first iron core 3 of the present application may be completely embedded in the accommodating groove, or a part of the first iron core 3 may be embedded in the accommodating groove.
- the outer surface of the iron core group and the outer peripheral surface of the first iron core 3 can be on the same peripheral surface, thereby optimizing the structure of the motor rotor 100 .
- At least one of the opposite surfaces of the first iron core 3 and the iron core group is provided with a first positioning groove 1051, and the first positioning groove 1051 is used for positioning the corresponding first magnetic steel 4, and the first magnetic steel 4 Embedding the corresponding first positioning groove 1051, for example, the first positioning groove 1051 can be set on the surface of the first iron core 3 facing the iron core group; or the first positioning groove 1051 can be set on the surface of the iron core group facing the first iron core 3 A positioning groove 1051 and so on.
- the first positioning groove 1051 can extend along the axial direction of the rotating shaft 1, and the elongated first magnetic steel 4 extending along the axial direction of the rotating shaft 1 can be embedded in the corresponding first positioning groove 1051, so that the alignment can be realized through the first positioning groove 1051.
- the positioning of the first magnetic steel 4. By providing the first positioning groove 1051 , the stable installation of the first magnet steel 4 can be realized, the first magnet steel 4 can be prevented from sliding along the circumferential direction of the motor rotor 100 , and the performance of the motor rotor 100 can be improved.
- a first notch 1061 can also be provided on at least one of opposite sides of the first positioning groove 1051 , and the first corner 4 a of the first magnet 4 is opposite to the first notch 1061 .
- the first positioning groove 1051 is provided with a first notch 1061 on both sides of the circumferential direction of the rotating shaft 1, and the first notch 1061 can be used to give way to the first corner 4a of the first magnet 4, avoiding the first positioning groove
- the side of 1051 affects the installation of the first magnet 4, improves the installation efficiency and stability of the first magnet 4, and can effectively improve the utilization rate of the magnet.
- the accommodating groove includes a first inner side 1031, a second inner side 1032 and a connecting surface 1033, and the first inner side 1031 and the second inner side 1032 are respectively connected to the connecting surface 1033
- the two sides of the inner surface 1031 and the second inner surface 1032 are configured with a flared shape, and the first inner surface 1031, the connecting surface 1033 and the second inner surface 1032 are all provided with a first Magnetic steel 4.
- the first inner surface 1031, the connecting surface 1033 and the second inner surface 1032 are sequentially connected to each other, so as to form an accommodating groove 101 whose opening is far away from the rotating shaft 1.
- At least a part of the core set is inserted into the accommodating groove 101 to complete the installation and assembly of the core set.
- the reluctance torque of the motor with the motor rotor 100 can be effectively improved by arranging a plurality of first magnet steels 4 .
- the iron core group of the present application may include a second iron core 5 or at least two second iron cores 5, for example, the iron core group may include a second iron core 5, and the second iron core 5 is on the shaft 1 Radially spaced apart from the first iron core 3, and the second iron core 5 is fixedly connected to the first iron core 3; the iron core group can also include at least two second iron cores 5, the first iron core 3, the second iron core The cores 5 are arranged layer by layer along the radial direction of the rotating shaft 1 , and the second iron core 5 is fixedly connected to the first iron core 3 .
- the iron core group includes at least two second iron cores 5, and the second iron cores 5 in the iron core group are arranged at intervals layer by layer along the radial direction of the rotating shaft 1, that is to say, The first iron core 3 and the second iron core 5 in the iron core group are arranged at intervals layer by layer radially outward of the rotating shaft 1 .
- the rotating shaft 1, the first iron core 3 and the second iron core 5 are fixedly connected.
- a second magnetic steel 6 is arranged between every two adjacent second iron cores 5 .
- At least one first magnetic steel 4 can be arranged between the first iron core 3 and one iron core group.
- at least one second magnetic steel can also be arranged between every two adjacent second iron cores 5. Magnetic steel6.
- one of the two adjacent second cores 5 close to the first core 3 includes a first branch 51 , a second branch 52 and a third branch 53 , the second branch 52 and the third branch 53 are connected to opposite sides of the first branch 51 , and the first branch 51 , the second branch 52 and the third branch 53 are connected to form a U-shaped opening away from the first core 3 .
- This facilitates the matching of the iron core group and the first iron core 3 , and improves the assembly efficiency and space utilization of the motor rotor 100 .
- the second branch portion 52 , the first branch portion 51 and the third branch portion 53 are sequentially connected to form a U shape with an opening away from the first iron core 3 .
- the second magnetic steel 6 is provided between the first branch 51 , the second branch 52 and the third branch 53 and the adjacent second iron core 5 .
- any one of the first branch 51, the second branch 52 and the third branch 53 can be provided with one or more second magnets 6 between the adjacent second iron core 5, and the second magnets 6 Extending in a direction parallel to the axis of the rotating shaft 1 , the two ends of the second magnetic steel 6 can be flush with the two ends of the first iron core 3 .
- two second magnetic steels 6 are arranged between the first branch 51 and the adjacent second iron core 5, and the second branch 52 and the third branch 53 are all connected to the adjacent second iron core 5.
- a second magnetic steel 6 is set between them.
- At least one of the opposite surfaces of two adjacent second iron cores 5 is provided with a second positioning groove 1052 , and the corresponding second magnetic steel 6 can be positioned through the second positioning groove 1052 .
- the second positioning groove 1052 can extend along the axial direction of the rotating shaft 1, and the elongated second magnetic steel 6 extending along the axial direction of the rotating shaft 1 can be embedded in the second positioning groove 1052, so that the alignment can be realized through the second positioning groove 1052.
- the positioning of the second magnetic steel 6. By providing the second positioning groove 1052 , the stable installation of the second magnetic steel 6 can be realized, the second magnetic steel 6 can be prevented from sliding along the circumferential direction of the motor rotor 100 , and the performance of the motor rotor 100 can be improved.
- At least one of the opposite sides of the second positioning groove 1052 is provided with a second notch 1062 , and the second corner 6 a of the second magnet 6 is opposite to the second notch 1062 .
- the second positioning groove 1052 is provided with a second notch 1062 on both sides along the circumferential direction of the rotating shaft 1, and the second notch 1062 can be used to give way to the second corner 6a of the second magnetic steel 6, avoiding the second positioning groove
- the side of 1052 influences the installation of the second magnet 6, improves the installation efficiency and stability of the second magnet 6, and can effectively improve the utilization rate of the magnet.
- a third magnetic steel 8 is embedded in the outermost one of the plurality of second iron cores 5 . Therefore, the utilization rate of the magnetic steel in the motor rotor 100 can be further improved.
- the motor rotor 100 further includes a magnetic isolation plate 2, which is fixedly connected to both ends of the rotating shaft 1, and the first iron core 3 and the second iron core 5 are both arranged between the magnetic isolation plates 2 at both ends of the rotating shaft 1 , and the second iron core 5 is connected to the magnetic isolation plate 2 .
- the first installation hole can be set on the second iron core 5
- the second installation hole can be set on the magnetic isolation plate 2
- the first installation hole and the second installation hole can be passed through the fixing member
- the second iron core 5 It is fixedly connected with the magnetic isolation plate 2.
- other ways can also be used to realize the connection between the second iron core 5 and the magnetic isolation plate 2 .
- the magnetic isolation plate 2 can be fixed together with the rotating shaft 1 through interference fit, keyway fit, etc., so as to realize the stable positioning between the rotating shaft 1 and the magnetic isolation plate 2, and the second iron core 5 can be fixedly connected with the magnetic isolation plate 2 , so as to realize the fixed connection between the first iron core 3 , the second iron core 5 and the rotating shaft 1 .
- the two ends of the second iron core 5 along the axial direction of the rotating shaft can be provided with a first connection hole 102, and the magnetic isolation plate 2 is provided with a second connection hole 103, the first connection hole 102 and the second connection hole 103 are opposite, And the first connection hole 102 and the second connection hole 103 are connected in series through the fixing piece to realize the connection between the second iron core 5 and the magnetic isolation plate 2 , and further realize the fixed connection between the second iron core 5 and the first iron core 3 .
- the fixing member may be a connecting bolt.
- the gap between the first iron core 3 and the second iron core 5 can be filled with glue.
- the iron core group may include at least two second iron cores 5, and each second iron core 5 may be connected with the magnetic isolation plate 2 in the aforementioned manner, thereby realizing the first
- the fixed connection between the iron core 3 and the second iron core 5, and the gap between two adjacent second iron cores 5 can also be filled with glue.
- the motor rotor 100 also includes a thermal collar 10, which is sleeved on the rotating shaft 1, and the thermal collar 10 is arranged on the side of the magnetic isolation plate 2 away from the first iron core 3, so as to limit Magnetic isolation board 2.
- a plurality of weight-reducing holes 104 may be provided on the first iron core 3 of the present application, and the plurality of weight-reducing holes 104 may be arranged in a direction around the rotating shaft 1 , so as to reduce the weight of the first iron core 3 .
- the weight reducing hole 104 extends in a direction parallel to the axis of the rotating shaft, and the weight reducing hole 104 may pass through at least one end of the first iron core 3 along the axial direction, so that heat can be dissipated from the weight reducing hole 104 to improve the heat dissipation effect.
- a plurality of iron core groups can be arranged around the first iron core 101 in the present application, and the weight reduction holes 104 can correspond to the iron core groups in the radial direction of the rotating shaft.
- the plurality of weight reduction holes 104 They can be spaced apart from each other to ensure that the first iron core 3 has sufficient supporting effect and effectively improve the structural strength of the motor rotor.
- the first iron core 3 includes an inner hub 31, an outer hub 32, and a plurality of support ribs 33
- the inner hub 31 is socketed and fixed on the outer periphery of the rotating shaft 1
- the outer hub 32 surrounds the inner hub 31
- the outer ring hub 32 and the inner ring hub 31 are spaced apart in the radial direction of the rotating shaft 1
- the supporting ribs extend radially along the rotating shaft 1
- one end of the supporting ribs 33 is connected to the inner ring hub 31, and the other end of the supporting ribs 33 is connected and extends out.
- the ring hub 32, a plurality of support ribs 33 are arranged at intervals along the circumferential direction of the rotating shaft 1, through the plurality of support ribs 33, a plurality of weight reduction holes 104 can be constructed between the inner ring hub 31 and the outer ring hub 32, and a plurality of weight reduction holes 104 are arranged at intervals along the circumference of the rotating shaft 1 .
- a plurality of supporting ribs 33 protrude between the parts of the outer ring hub 32 to form accommodating grooves for placing the iron core group.
- the inner ring hub 31, the outer ring hub 32, and the plurality of support ribs 33 can be integrally formed.
- This application creatively divides the iron core into several pieces, punches holes at the appropriate positions of each iron core, uses the magnetic isolation plate 2 as a supporting part, completely cancels the magnetic bridge structure under the premise of ensuring the strength of the motor rotor 100, and puts the magnetic steel
- the magnetic flux leakage coefficient is reduced to the minimum, which improves the utilization rate of the magnetic steel, and can use less magnetic steel under the same conditions, saving the cost of the magnetic steel.
- the saliency ratio of the motor is increased, the difference between the d-axis and the q-axis inductance is increased, the reluctance torque of the motor is increased, and the power density of the motor is improved while reducing the cost.
- the present application provides a motor rotor 100 structure with high reluctance torque, including a rotating shaft 1, a magnetic isolation plate 2, a first iron core 3, a second iron core 5, a first magnetic steel 4, a second magnetic steel 6, The third magnetic steel 8 , the connecting bolt 9 and the thermal collar 10 .
- This structure divides the magnetic steel and the iron core into several pieces, that is, the magnetic steel includes the first magnetic steel 4, the second magnetic steel 6 and the third magnetic steel 8, the iron core includes the first iron core 3 and the second iron core 5, and the iron core includes the first iron core 3 and the second iron core 5.
- the core is arranged along the circumferential direction of the rotating shaft 1, and each second iron core 5 is provided with a small hole along the axial end of the rotating shaft 1, and a connecting bolt 9 is inserted in the middle, and the two ends of the connecting bolt 9 are fixed on both sides of the rotating shaft 1
- iron cores are arranged layer by layer outward along the radial direction of the rotating shaft 1 .
- the magnetic steel is arranged between two adjacent layers of iron cores.
- the rotating shaft 1 and the magnetic isolation plate 2 can be connected through interference, or the rotating shaft 1 and the magnetic isolation plate 2 can be connected through a keyway.
- the magnetic steel can be clamped by the iron cores on both sides in the thickness direction, or the magnetic steel can be glued to the iron core, and a limiting groove is arranged on the magnetic core at a position opposite to the magnetic steel width direction.
- the magnetic steel is generally positioned by gluing technology, and epoxy potting glue can also be filled in the magnetic steel tank.
- the motor rotor 100 of the present application can reduce the leakage flux of the magnetic steel, increase the utilization rate of the magnetic steel, increase the reluctance torque of the motor, improve the power density of the motor, and can ensure the strength of the motor rotor 100, which can be improved under the premise of saving costs.
- the competitiveness of our products In order to enable those skilled in the art to better understand the solution of the present application, the present application will be further described in detail below in conjunction with the drawings and specific implementation methods.
- the structure of the high reluctance motor rotor 100 includes the following components: the rotating shaft 1, the first iron core 3, the second iron core 5, the first magnetic steel 4, the second The second magnetic steel 6, the third magnetic steel 8, the first iron core 3, and the second iron core 5 are stacked at intervals along the direction away from the rotating shaft 1.
- the direction of the rotating shaft 1 is sequentially stacked at intervals.
- the first magnetic steel 4 is arranged between the first iron core 3 and the second iron core 5, and the second magnetic steel 6 is arranged between two adjacent second iron cores 5.
- the three magnetic steels 8 are embedded in the outermost one of the plurality of second iron cores.
- the rotating shaft 1 plays a supporting role for the whole structure;
- the motor rotor 100 also includes a magnetic isolation plate 2, which not only plays the role of magnetic isolation and adjusting dynamic balance, but also can be used as a supporting component; the magnetic isolation plate 2 is connected to a plurality of second iron cores 5 through connecting bolts 9 , so as to realize the second iron core 5 and the third intimate fixation.
- the end of the rotating shaft 1 is provided with a heat collar 10. After the magnetic isolation plate 2 and the iron core are fixed on the rotating shaft 1, the thermal collar 10 is fixed on the end of the magnetic isolation plate 2 to prevent the iron core and the magnetic isolation plate 2 from rotating. To move.
- the first iron core 3 is interference-fitted on the rotating shaft 1 , and the rotating shaft 1 and the first iron core 3 are fixed.
- a magnetic isolation plate 2 is installed at one end of the rotating shaft 1, and several small holes are regularly distributed on the outer ring of the magnetic isolation plate 2, and connecting bolts 9 are installed in the small holes.
- the second iron core 5 is provided with small holes at appropriate positions, and the small holes of the second iron core 5 are aligned with the connecting bolts 9 for installation.
- the first magnetic steel 4 is inserted between the first iron core 3 and the second iron core 5, the second magnetic steel 6 is inserted between two adjacent second iron cores 5, and the third magnetic steel 8 is inserted into multiple first iron cores 5.
- the inner magnetic steel position of the outermost layer of the second iron core can also be fixedly connected to the magnetic steel and the corresponding iron core through an adhesive process or a potting process.
- the magnetic steel installation positions on the first iron core 3 and the second iron core 5 are designed as "concave” structure, so as to ensure that the magnetic steel will not shake after the installation is completed, which will affect the normal operation of the motor. Or inject potting glue into the hollow area surrounded by the magnetic steel and the iron core to increase the structural strength on the premise of ensuring that the magnetic steel will not shake.
- the number of magnetic steel arrangement layers and the number of motor poles can be designed according to the performance requirements, not limited to the three layers and eight poles shown in the figure.
- the method protected by this application can be used for the treatment of the iron core between layers.
- P is the number of poles of the motor
- ⁇ m is the permanent magnet flux linkage, which refers to the magnetism produced by the magnet, which is related to the material and performance of the magnet, the less the flux leakage of the magnet, the greater the permanent magnet flux linkage, i d , i q
- L d , L q are the AC-D axis inductance of the motor, the higher the saliency of the motor, the greater the difference between the AC-D axis inductance.
- the motor 1000 includes the aforementioned motor rotor 100 .
- the iron core is divided into multiple layers along the radial direction of the rotating shaft 1, and the magnetic bridge structure is completely canceled under the premise of ensuring the strength of the motor rotor 100, and the magnetic steel leakage coefficient is reduced to a minimum, which improves the The utilization rate of magnet steel can use less magnet steel under the same conditions, which saves the cost of magnet steel.
- the saliency ratio of the motor 1000 is increased, the difference between the d-axis and the q-axis inductance is increased, the reluctance torque of the motor 1000 is increased, and the power density of the motor 1000 is improved while reducing costs. Therefore, the performance of the motor 1000 can be effectively improved.
- a plurality in this application includes two or more.
- the terms “first” and “second” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
- a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
- “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
- “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
提供了一种电机和电机转子,电机转子(100)包括转轴(1)、第一铁芯(3)、多个铁芯组和第一磁钢(4),第一铁芯(3)与转轴(1)固定连接;多个铁芯组沿第一铁芯(3)的周向设置,且铁芯组与第一铁芯(3)沿电机转子(100)的径向隔开,铁芯组包括至少一个第二铁芯(5),第二铁芯(5)与第一铁芯(3)固定连接;第一磁钢(4)设于第一铁芯(3)和铁芯组之间。
Description
相关申请的交叉引用
本申请要求于2021年05月31日提交中国专利局、申请号为202121202078.3、申请名称为“电机和电机转子”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及动力设备技术领域,特别涉及一种电机转子和具有该电机转子的电机。
相关技术的同步磁阻永磁电机转子结构包括磁钢、凸极、冲片闭口槽、磁钢槽、电机转子和壳体,壳体内侧设置有冲片闭口槽,冲片闭口槽之间设置磁钢槽,壳体内设置有电机转子且电机转子内设置有磁钢。该实用新型将磁钢放入电机转子,在电机转子的轴方向增加了凸极,其作用是更好的增加d轴电感和q轴电感的差值,从而更有效的提高电机磁阻转矩,可以使电机的功率密度更高,电机的体积减少,启动性能更好,适合被广泛推广和使用。
相关技术在一体化电机转子的前提下最大程度的提高了磁阻转矩,但每层磁钢之间仍需要用隔磁桥连接,隔磁桥的存在必然会导致漏磁的增加,同时隔磁桥如果设计的太窄还会影响电机转子的结构强度。
申请内容
本申请的一个目的在于提出一种电机转子,可以减小漏磁,增加利用率。
本申请的另一目的在于提出一种电机,该电机包括前述的电机转子。
根据本申请实施例的电机转子,包括转轴、第一铁芯、多个铁芯组和第一磁钢,所述第一铁芯与所述转轴固定连接;多个铁芯组沿所述第一铁芯的周向设置,且所述铁芯组与所述第一铁芯沿所述电机转子的径向隔开,所述铁芯组包括至少一个第二铁芯,所述第二铁芯与所述第一铁芯固定连接;所述第一磁钢设于所述第一铁芯和所述铁芯组之间。
根据本申请实施例的电机转子,可以减小漏磁,增加磁钢利用率。
另外,根据本申请上述实施例的电机转子,还可以具有如下附加的技术特征:
可选地,所述第一铁芯的外周面上设有容置槽,所述铁芯组嵌入所述容置槽。
可选地,所述容置槽包括第一内侧面、第二内侧面和连接面,所述第一内侧面和所述第二内侧面分别连接于所述连接面的两侧,且所述第一内侧面和所述第二内侧面之间构造出扩口形状,所述第一内侧面、所述连接面以及所述第二内侧面均与所述铁芯组之间设有所述第一磁钢。
可选地,所述第一铁芯和所述铁芯组的相对表面中的至少一个上设有用于定位第一磁钢的第一定位槽。
可选地,所述铁芯组包括至少两个所述第二铁芯,所述铁芯组中的第二铁芯沿所述转轴的径向向外逐层间隔设置,每相邻的两个所述第二铁芯之间设有第二磁钢。
可选地,每相邻的两个所述第二铁芯中靠近所述第一铁芯的一个包括:第一支部、第二支部和第三支部,所述第二支部和所述第三支部连接于所述第一支部的相对两侧,且所述第一支部、第二支部和所述第三支部连接成开口远离所述第一铁芯的U型。
可选地,相邻的两个第二铁芯的相对表面中的至少一个上设有用于定位第二磁钢的第二定位槽。
可选地,多个所述第二铁芯中最外层的一个内嵌有第三磁钢。
可选地,所述电机转子还包括隔磁板,所述隔磁板固定连接于所述转轴两端,所述第一铁芯和所述第二铁芯均设于所述转轴两端的隔磁板之间,且所述第二铁芯与所述隔磁板相连。
可选地,所述电机转子还包括热套环,所述热套环套接于所述转轴上,且所述热套环设于所述隔磁板的远离所述第一铁芯的一侧,以限位所述隔磁板。
可选地,所述第一铁芯上设有多个减重孔,多个所述减重孔沿环绕所述转轴的方向设置。
根据本申请实施例的电机,包括根据前述的电机转子。
图1是本申请一个实施例的电机转子的爆炸示意图。
图2是本申请一个实施例的电机转子的示意图。
图3是本申请一个实施例的电机转子的局部剖视图
图4是本申请一个实施例的电机转子的爆炸示意图。
图5是本申请一个实施例的电机转子的局部示意图。
图6是本发明一个实施例的电机的示意图。
附图标记:
电机1000,电机转子100,转轴1,隔磁板2,第一铁芯3,内圈轮毂31、外圈轮毂32、支撑筋33,第一磁钢4,第一角部4a,第二铁芯5,第一支部51,第二支部52,第三支部53,第二磁钢6,第二角部6a,第三磁钢8,连接螺栓9,热套环10,容置槽101,第一连接孔102,第二连接孔103,减重孔104,第一内侧面1031,第二内侧面1032,连接面1033,第一定位槽1051,第二定位槽1052,第一缺口1061,第二缺口1062。
相关技术中每层放置磁钢的铁芯之间需要用磁桥连接,磁桥的存在必然会导致漏磁的增加,磁桥如果设计的太窄还会影响电机转子的结构强度。为此本发明提供了一种电机转子100,可以减小漏磁,增加利用率。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
如图1至图5所示,根据本申请实施例的电机转子100,包括转轴1、第一铁芯3、多个铁芯组和第一磁钢4。第一铁芯3与转轴1固定连接,多个铁芯组沿第一铁芯3的周向设置,且铁芯组与第一铁芯3沿电机转子100的径向隔开,铁芯组包括至少一个第二铁芯5,第二铁芯5与第一铁芯3固定连接。第一磁钢4设于第一铁芯3和铁芯组之间。
根据本申请实施例的电机转子100,将铁芯沿转轴1的径向分为多层,即第一铁芯3与第二铁芯5在转轴1的径向上间隔设置,在保证电机转子100强度的前提下完全取消了磁桥结构,将磁钢漏磁系数降到最低,提高了磁钢的利用率,在同样条件下可以使用更少的磁钢,节省了磁钢成本。同时增加了电机的凸极率,使d轴与q轴电感的差值加大,增加了电机的磁阻转矩,降成本的同时提高了电机的功率密度。
具体而言,本申请中的第一铁芯3可以套接于转轴1外侧,第一铁芯3与转轴1固定连接(例如过盈配合、键连接等),实现第一铁芯3与转轴1在转轴1同步转动,第一铁芯3可以沿转轴1的轴线方向延伸。铁芯组与第一铁芯3沿转轴1的径向上间隔排布,其中第二铁芯5沿转轴1的轴线方向延伸,铁芯组包括至少一个第二铁芯5,第二铁芯5的两端可以与第一铁芯3的两端齐平,第二铁芯5与第一铁芯3固定连接,例如通过销钉、粘接、焊接等方式固定连接在一起。
如图1、图3和图5所示,在本申请的一些实施例中,第一铁芯3的外周面上设有容置槽101,铁芯组嵌入容置槽101。以将第一铁芯3与铁芯组组装为一个整体结构,方便铁芯组与第一铁芯3的装配,降低磁钢的漏磁,增加电机的磁阻转矩。其中,本申请的第一铁芯3可以完全嵌入到容置槽内,也可以将第一铁芯3的一部分嵌入到容置槽内。另外,铁 芯组完全嵌入容置槽内时,可以将铁芯组的外侧面与第一铁芯3的外周面在同一圆周面上,从而优化电机转子100的结构。
可选地,第一铁芯3和铁芯组的相对表面中的至少一个上设有第一定位槽1051,第一定位槽1051用于定位对应的第一磁钢4,第一磁钢4嵌入对应的第一定位槽1051,例如,可以在第一铁芯3的面向铁芯组的表面上设置第一定位槽1051;或者在铁芯组的面向第一铁芯3的表面上设置第一定位槽1051等。第一定位槽1051可以沿转轴1的轴线方向延伸,而沿转轴1轴线方向延伸的长条形第一磁钢4可以嵌入到对应的第一定位槽1051,从而通过第一定位槽1051实现对第一磁钢4的定位。通过设置第一定位槽1051,可以实现第一磁钢4的稳定安装,避免第一磁钢4沿电机转子100的周向滑动,提升电机转子100的性能。
另外,还可以在第一定位槽1051的相对两侧中的至少一侧设置第一缺口1061,第一磁钢4的第一角部4a与第一缺口1061相对。其中,第一定位槽1051沿转轴1周向上的两侧均设有第一缺口1061,第一缺口1061可以用于让位第一磁钢4的第一角部4a,避免了第一定位槽1051的侧边影响第一磁钢4的安装,提高第一磁钢4的安装效率和稳定性,并可以有效地提高磁钢的利用率。
如图5,在本申请的一些实施例中,容置槽包括第一内侧面1031、第二内侧面1032和连接面1033,第一内侧面1031和第二内侧面1032分别连接于连接面1033的两侧,且第一内侧面1031和第二内侧面1032之间构造出扩口形状,第一内侧面1031、连接面1033以及第二内侧面1032均与铁芯组之间设有第一磁钢4。其中,如图5所示,在电机转子100的周向上,第一内侧面1031、连接面1033和第二内侧面1032依次相接,从而构造成一个开口远离转轴1的容置槽101,将铁芯组的至少一部分嵌入到该容置槽101,完成铁芯组的安装和装配。另外,通过设置多个第一磁钢4可以有效地提高具有该电机转子100的电机的磁阻转矩。
另外,本申请的铁芯组可以包括一个第二铁芯5或者至少两个第二铁芯5,例如,铁芯组可以包括一个第二铁芯5,该第二铁芯5在转轴1的径向上与第一铁芯3间隔开,且第二铁芯5与第一铁芯3固定连接;铁芯组也可以包括至少两个第二铁芯5,第一铁芯3、第二铁芯5沿转轴1的径向逐层排布,且第二铁芯5与第一铁芯3固定连接。
可选地,如图5所示,铁芯组包括至少两个第二铁芯5,铁芯组中的第二铁芯5沿转轴1的径向向外逐层间隔设置,也就是说,第一铁芯3和铁芯组中的第二铁芯5在转轴1的径向向外逐层间隔设置。转轴1、第一铁芯3、第二铁芯5固定连接。每相邻的两个第二铁芯5之间设置了第二磁钢6。通过将铁芯设置为多层结构,可以有效地降低漏磁系数,提高了磁钢的利用率,同时增加了电机的凸极率。
如前所述,第一铁芯3与一个铁芯组之间可以设置至少一个第一磁钢4,同样地,每相邻的两个第二铁芯5之间也可以设置至少一个第二磁钢6。
如图5所示,在本申请的一些实施例中,每相邻的两个第二铁芯5中靠近第一铁芯3的一个包括第一支部51、第二支部52和第三支部53,第二支部52和第三支部53连接于第一支部51的相对两侧,且第一支部51、第二支部52和第三支部53连接成开口远离第一铁芯3的U型。从而方便铁芯组与第一铁芯3的配合,提高电机转子100的装配效率和空间利用率。
其中,在电机转子100的周向上,第二支部52、第一支部51和第三支部53依次相接以构造出开口远离第一铁芯3的U型。其中,第一支部51、第二支部52和第三支部53与相邻的第二铁芯5之间均设有第二磁钢6。其中,第一支部51、第二支部52以及第三支部53中的任一个,可以与相邻的第二铁芯5之间设置一个或多个第二磁钢6,且第二磁钢6沿平行于转轴1轴线的方向延伸,第二磁钢6的两端可以与第一铁芯3的两端齐平。如图5所示,第一支部51与相邻的第二铁芯5之间设置了两个第二磁钢6,第二支部52、第三支部53均与相邻的第二铁芯5之间设置了一个第二磁钢6。
可选地,相邻的两个第二铁芯5的相对表面中的至少一个上设有第二定位槽1052,可以通过第二定位槽1052定位对应的第二磁钢6。其中,第二定位槽1052可以沿转轴1的轴线方向延伸,而沿转轴1轴线方向延伸的长条形第二磁钢6可以嵌入到第二定位槽1052,从而通过第二定位槽1052实现对第二磁钢6的定位。通过设置第二定位槽1052,可以实现第二磁钢6的稳定安装,避免第二磁钢6沿电机转子100的周向滑动,提升电机转子100的性能。
第二定位槽1052的相对两侧中的至少一侧设有第二缺口1062,第二磁钢6的第二角部6a与第二缺口1062相对。其中,第二定位槽1052沿转轴1周向上的两侧均设有第二缺口1062,第二缺口1062可以用于让位第二磁钢6的第二角部6a,避免了第二定位槽1052的侧边影响第二磁钢6的安装,提高第二磁钢6的安装效率和稳定性,并可以有效地提高磁钢的利用率。
可选地,多个第二铁芯5中最外侧的一个内嵌设有第三磁钢8。从而可以进一步地提高电机转子100中磁钢的利用率。
可选地,电机转子100还包括隔磁板2,隔磁板2固定连接于转轴1两端,第一铁芯3和第二铁芯5均设于转轴1两端的隔磁板2之间,且第二铁芯5与隔磁板2相连。其中,可以在第二铁芯5上设置第一安装孔,在隔磁板2上设置第二安装孔,通过固定件穿过第一安装孔和第二安装孔,并将第二铁芯5与隔磁板2固定连接在一起。当然,本申请中也可以采用其他的方式实现第二铁芯5与隔磁板2的连接。
隔磁板2可以与转轴1通过过盈配合、键槽配合等方式固定在一起,从而实现转轴1与隔磁板2之间的稳定定位,而第二铁芯5可以与隔磁板2固定连接,从而实现第一铁芯3、第二铁芯5以及转轴1之间的固定连接。
其中,第二铁芯5的沿转轴轴线方向上的两端可以设置第一连接孔102,隔磁板2上设置了第二连接孔103,第一连接孔102和第二连接孔103相对,并通过固定件串接第一连接孔102和第二连接孔103,实现第二铁芯5与隔磁板2的连接,进而实现第二铁芯5与第一铁芯3的固定连接。其中固定件可以为连接螺栓。第一铁芯3和第二铁芯5之间的空隙可以用胶填充。
另外,结合本申请的其他实施例,铁芯组可以包括至少两个第二铁芯5,每个第二铁芯5都可以通过前述的方式与隔磁板2连接在一起,从而实现第一铁芯3和第二铁芯5的固定连接,而且相邻的两个第二铁芯5之间的缝隙,也可以利用胶进行填充。
可选地,电机转子100还包括热套环10,热套环10套接于转轴1上,且热套环10设于隔磁板2的远离第一铁芯3的一侧,以限位隔磁板2。
另外,本申请的第一铁芯3上可以设置多个减重孔104,多个减重孔104可以沿环绕转轴1的方向设置,从而实现对第一铁芯3的减重。
可选地,减重孔104沿与转轴轴线平行的方向延伸,且减重孔104可以贯穿第一铁芯3沿轴线方向的至少一端,从而使得热量可以从减重孔104中散出,以提高散热效果,另外,本申请中的第一铁芯101的周围可以设置多个铁芯组,减重孔104可以与铁芯组在转轴径向上相互对应,而且,多个减重孔104之间可以相互间隔,保证第一铁芯3具有足够的支撑作用,有效地提高电机转子的结构强度。
具体结合附图5,第一铁芯3包括内圈轮毂31、外圈轮毂32、多个支撑筋33,内圈轮毂31套接固定于转轴1外周,外圈轮毂32环绕内圈轮毂31,且外圈轮毂32与内圈轮毂31在转轴1径向上间隔开,支撑筋沿转轴1的径向延伸,支撑筋33的一端连接内圈轮毂31,且支撑筋33的另一端连接并伸出外圈轮毂32,多个支撑筋33沿转轴1周向间隔设置,通过多个支撑筋33可以在内圈轮毂31和外圈轮毂32之间构造出多个减重孔104,多个减重孔104沿转轴1周向间隔设置,另外,多个支撑筋33伸出外圈轮毂32的部分之间,构造出容置槽以放置铁芯组。其中,内圈轮毂31、外圈轮毂32、多个支撑筋33可以一体成型。
本申请创造性的将铁芯分成若干块,在每块铁芯合适的位置打孔,使用隔磁板2作为支撑部件,在保证电机转子100强度的前提下完全取消了磁桥结构,将磁钢漏磁系数降到最低,提高了磁钢的利用率,在同样条件下可以使用更少的磁钢,节省了磁钢成本。同时增加了电机的凸极率,使d轴与q轴电感的差值加大,增加了电机的磁阻转矩,降成本的 同时提高了电机的功率密度。
本申请提供了一种高磁阻转矩的电机转子100结构,包括转轴1、隔磁板2、第一铁芯3、第二铁芯5、第一磁钢4、第二磁钢6、第三磁钢8、连接螺栓9以及热套环10。该结构将磁钢、铁芯分成数块,即磁钢包括第一磁钢4、第二磁钢6以及第三磁钢8,铁芯包括第一铁芯3和第二铁芯5,铁芯沿转轴1的圆周方向设置,每块第二铁芯5上沿转轴1的轴向的端部设置有小孔,在中间插入连接螺栓9,连接螺栓9的两端固定在转轴1两侧隔磁板2上,铁芯沿转轴1的径向方向向外逐层设置。磁钢设置在相邻两层铁芯之间。
其中,转轴1和隔磁板2之间可以通过过盈连接,或转轴1与隔磁板2之间通过键槽连接,具体选用哪种连接方式主要取决于铁芯与转轴1的连接方式。磁钢可以被厚度方向两侧的铁芯夹紧,或者磁钢与铁芯胶粘,在磁芯上与磁钢宽度方向相对的位置设置有限位槽。磁钢一般采用胶粘工艺定位,也可在磁钢槽内灌上环氧灌封胶。
本申请的电机转子100可以减小磁钢漏磁,增加磁钢利用率,增加电机的磁阻转矩,提高电机的功率密度,并且能够保证电机转子100的强度,在节约成本的前提下提升我司产品的竞争力。为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
如图1至图5,示出了本申请的结构图,本高磁阻电机转子100结构包括以下部件:转轴1、第一铁芯3、第二铁芯5、第一磁钢4、第二磁钢6、第三磁钢8,第一铁芯3、第二铁芯5沿远离转轴1的方向依次间隔层叠,第二铁芯5包括多个,多个第二铁芯5沿远离转轴1的方向依次间隔层叠,第一磁钢4设于第一铁芯3和第二铁芯5之间,第二磁钢6设于相邻的两个第二铁芯5之间,第三磁钢8嵌入到多个第二铁芯中最外层的一个内。其中,转轴1对整个结构起到支撑作用;
电机转子100还包括隔磁板2,隔磁板2不仅起到隔磁和调节动平衡的作用,而且还可以作为支撑部件;隔磁板2与多个第二铁芯5通过连接螺栓9连接,从而实现第二铁芯5和第三贴心的固定。另外,转轴1的端部设有热套环10,隔磁板2和铁芯固定在转轴1上后,热套环10固定在隔磁板2端部,防止铁芯和隔磁板2轴向窜动。
在安装时,首先将第一铁芯3过盈安装到转轴1上,转轴1与第一铁芯3固定。随后在转轴1的一端安装隔磁板2,该隔磁板2外圈规律的分布数个小孔,在小孔内安装连接螺栓9。第二铁芯5在合适的位置设置小孔,将第二铁芯5的小孔对准连接螺栓9安装。随后将第一磁钢4插入第一铁芯3与第二铁芯5之间,第二磁钢6插入相邻的两个第二铁芯5之间,第三磁钢8插入多个第二铁芯中最外层的一个内部的磁钢位,另外,还可以通过胶粘工艺或灌封工艺固定连接磁钢和对应的铁芯。上述操作完成后安装转轴1的另一侧隔磁板2,其上规律分布的小孔对准上述连接螺栓9,最后将热套环10加热后套装在转轴 1上。至此这种高磁阻电机转子100结构安装完成。
第一铁芯3、第二铁芯5上的磁钢安装位设计成“凹”型结构,保证磁钢安装完成后不会发生晃动,影响电机的正常工作。或者在磁钢与铁芯的所围成的中空区域内注入灌封胶,在保证磁钢不会发生晃动的前提下,增加结构强度。
铁芯在设计时,可以根据性能需求设计磁钢排布层数,电机极数,并不限于图中所示的三层,八极。层与层之间铁芯的处理方式可以使用本申请所保护的方法。
下述为电机扭矩的计算公式:
P为电机的极数,ψ
m为永磁磁链,指磁钢产生的磁性,与磁钢的材料和性能相关,磁钢漏磁越少,永磁磁链越大,i
d、i
q指d轴和q轴的电流,L
d,L
q分别为电机的交直轴电感,电机的凸极率越高,交直轴电感的差值越大。
从上述公式可以发现,通过上述设计方式,可以极大的减少磁钢漏磁系数,在同等的性能需求下减少磁钢用量,降低成本。同时该设计大大增加电机的凸极率,增加d轴与q轴电感的差值,增加电机的磁阻转矩。
如图6,根据本申请实施例的电机1000,包括根据前述的电机转子100。通过设置前述的电机转子100,将铁芯沿转轴1的径向分为多层,在保证电机转子100强度的前提下完全取消了磁桥结构,将磁钢漏磁系数降到最低,提高了磁钢的利用率,在同样条件下可以使用更少的磁钢,节省了磁钢成本。同时增加了电机1000的凸极率,使d轴与q轴电感的差值加大,增加了电机1000的磁阻转矩,降成本的同时提高了电机1000的功率密度。从而可以有效地提高电机1000的性能。
此外,本申请中的多个包括两个及以上。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第 一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (12)
- 一种电机转子(100),其特征在于,包括:转轴(1);第一铁芯(3),所述第一铁芯(3)与所述转轴(1)固定连接;多个铁芯组,多个铁芯组沿所述第一铁芯(3)的周向设置,且所述铁芯组与所述第一铁芯(3)沿所述电机转子(100)的径向隔开,所述铁芯组包括至少一个第二铁芯(5),所述第二铁芯(5)与所述第一铁芯(3)固定连接;第一磁钢(4),所述第一磁钢(4)设于所述第一铁芯(3)和所述铁芯组之间。
- 根据权利要求1所述的电机转子(100),其特征在于,所述第一铁芯(3)的外周面上设有容置槽(101),所述铁芯组嵌入所述容置槽(101)。
- 根据权利要求2所述的电机转子(100),其特征在于,所述容置槽(101)包括第一内侧面(1031)、第二内侧面(1032)和连接面(1033),所述第一内侧面(1031)和所述第二内侧面(1032)分别连接于所述连接面(1033)的两侧,且所述第一内侧面(1031)和所述第二内侧面(1032)之间构造出扩口形状,所述第一内侧面(1031)、所述连接面(1033)以及所述第二内侧面(1032)均与所述铁芯组之间设有所述第一磁钢(4)。
- 根据权利要求1-3中任一项所述的电机转子(100),其特征在于,所述第一铁芯(3)和所述铁芯组的相对表面中的至少一个上设有用于定位第一磁钢(4)的第一定位槽(1051)。
- 根据权利要求1-4中任一项所述的电机转子(100),其特征在于,所述铁芯组包括至少两个所述第二铁芯(5),所述铁芯组中的第二铁芯(5)沿所述转轴(1)的径向向外逐层间隔设置,每相邻的两个所述第二铁芯(5)之间设有第二磁钢(6)。
- 根据权利要求5所述的电机转子(100),其特征在于,每相邻的两个所述第二铁芯(5)中靠近所述第一铁芯(3)的一个包括:第一支部(51)、第二支部(52)和第三支部(53),所述第二支部(52)和所述第三支部(53)连接于所述第一支部(51)的相对两侧,且所述第一支部(51)、第二支部(52)和所述第三支部(53)连接成开口远离所述第一铁芯(3)的U型。
- 根据权利要求5或6所述的电机转子(100),其特征在于,相邻的两个第二铁芯(5)的相对表面中的至少一个上设有用于定位第二磁钢(6)的第二定位槽(1052)。
- 根据权利要求5-7中任一项所述的电机转子(100),其特征在于,多个所述第二铁芯(5)中最外层的一个内嵌有第三磁钢(8)。
- 根据权利要求1-8中任一项所述的电机转子(100),其特征在于,所述电机转子(100)还包括:隔磁板(2),所述隔磁板(2)固定连接于所述转轴(1)两端,所述第一铁芯(3)和 所述第二铁芯(5)均设于所述转轴(1)两端的隔磁板(2)之间,且所述第二铁芯(5)与所述隔磁板(2)相连。
- 根据权利要求9所述的电机转子(100),其特征在于,所述电机转子(100)还包括:热套环(10),所述热套环(10)套接于所述转轴(1)上,且所述热套环(10)设于所述隔磁板(2)的远离所述第一铁芯(3)的一侧,以限位所述隔磁板(2)。
- 根据权利要求1-10中任一项所述的电机转子(100),其特征在于,所述第一铁芯(3)上设有多个减重孔(104),多个所述减重孔(104)沿环绕所述转轴(1)的方向设置。
- 一种电机(1000),其特征在于,包括根据权利要求1-11中任一项所述的电机转子(100)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121202078.3U CN215772709U (zh) | 2021-05-31 | 2021-05-31 | 电机和电机转子 |
CN202121202078.3 | 2021-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022252851A1 true WO2022252851A1 (zh) | 2022-12-08 |
Family
ID=80098779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/087456 WO2022252851A1 (zh) | 2021-05-31 | 2022-04-18 | 电机和电机转子 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN215772709U (zh) |
WO (1) | WO2022252851A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116404777A (zh) * | 2023-03-01 | 2023-07-07 | 天蔚蓝电驱动科技(江苏)有限公司 | 无主磁桥的转子及转子的制作方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215772709U (zh) * | 2021-05-31 | 2022-02-08 | 比亚迪股份有限公司 | 电机和电机转子 |
CN118117792A (zh) * | 2024-03-15 | 2024-05-31 | 格至控智能动力科技(上海)有限公司 | 转子和电机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011125104A (ja) * | 2009-12-09 | 2011-06-23 | Toyota Motor Corp | Ipmモータ用ロータとipmモータ |
JP2012010556A (ja) * | 2010-06-28 | 2012-01-12 | Aisin Seiki Co Ltd | 回転電機用ロータ |
JP2015195638A (ja) * | 2014-03-31 | 2015-11-05 | ダイキン工業株式会社 | ロータ |
JP2019140843A (ja) * | 2018-02-14 | 2019-08-22 | アイシン・エィ・ダブリュ株式会社 | 回転電機用ロータ |
CN215772709U (zh) * | 2021-05-31 | 2022-02-08 | 比亚迪股份有限公司 | 电机和电机转子 |
-
2021
- 2021-05-31 CN CN202121202078.3U patent/CN215772709U/zh active Active
-
2022
- 2022-04-18 WO PCT/CN2022/087456 patent/WO2022252851A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011125104A (ja) * | 2009-12-09 | 2011-06-23 | Toyota Motor Corp | Ipmモータ用ロータとipmモータ |
JP2012010556A (ja) * | 2010-06-28 | 2012-01-12 | Aisin Seiki Co Ltd | 回転電機用ロータ |
JP2015195638A (ja) * | 2014-03-31 | 2015-11-05 | ダイキン工業株式会社 | ロータ |
JP2019140843A (ja) * | 2018-02-14 | 2019-08-22 | アイシン・エィ・ダブリュ株式会社 | 回転電機用ロータ |
CN215772709U (zh) * | 2021-05-31 | 2022-02-08 | 比亚迪股份有限公司 | 电机和电机转子 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116404777A (zh) * | 2023-03-01 | 2023-07-07 | 天蔚蓝电驱动科技(江苏)有限公司 | 无主磁桥的转子及转子的制作方法 |
CN116404777B (zh) * | 2023-03-01 | 2024-03-05 | 天蔚蓝电驱动科技(江苏)有限公司 | 无主磁桥的转子及转子的制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN215772709U (zh) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022252851A1 (zh) | 电机和电机转子 | |
CN100442637C (zh) | 轴向间隙马达的转子及其制造方法 | |
US8080908B2 (en) | Cooling structure for rotor core in electric rotating machine | |
KR101911978B1 (ko) | 토크 리플을 감소시킨 스포크 영구 자석 머신 및 그 제조 방법 | |
CN206575315U (zh) | 无刷电机 | |
JP6832935B2 (ja) | コンシクエントポール型の回転子、電動機および空気調和機 | |
US8937417B2 (en) | Rotating electric machine and wind power generation system | |
CN113346644A (zh) | 一种永磁电机 | |
CN110601481B (zh) | 一种双转子永磁同步磁阻电机及配置方法 | |
JP6545393B2 (ja) | コンシクエントポール型の回転子、電動機および空気調和機 | |
CN113346652A (zh) | 一种永磁电机 | |
JP6350612B2 (ja) | 回転電機 | |
WO2015045517A1 (ja) | 磁気誘導子型電動機 | |
CN112953043A (zh) | 一种定子组件、转子组件及中心盘轴芯双转子电机 | |
CN110729868B (zh) | 一种磁钢内置式双u型分数槽集中绕组永磁电机 | |
JP6112970B2 (ja) | 永久磁石式回転電機 | |
CN210350986U (zh) | 一种双转子永磁同步磁阻电机 | |
JP2003333813A (ja) | シンクロナスリラクタンスモータのロータ | |
CN216929839U (zh) | 转子结构 | |
CN214590794U (zh) | 一种定子组件、转子组件及中心盘轴芯双转子电机 | |
CN116054519A (zh) | 一种轴向磁场电机转子结构 | |
CN215835213U (zh) | 一种无隔磁桥凸极永磁同步电机转子 | |
JP4491211B2 (ja) | 永久磁石式回転電機 | |
TWM629480U (zh) | 轉子結構 | |
CN211744304U (zh) | 一种轴向复合式永磁辅助同步磁阻电机转子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22814898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22814898 Country of ref document: EP Kind code of ref document: A1 |