WO2022242512A1 - 一种聚乳酸复合纱线及其制备方法和应用 - Google Patents

一种聚乳酸复合纱线及其制备方法和应用 Download PDF

Info

Publication number
WO2022242512A1
WO2022242512A1 PCT/CN2022/092104 CN2022092104W WO2022242512A1 WO 2022242512 A1 WO2022242512 A1 WO 2022242512A1 CN 2022092104 W CN2022092104 W CN 2022092104W WO 2022242512 A1 WO2022242512 A1 WO 2022242512A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
fibers
short
composite yarn
yarn
Prior art date
Application number
PCT/CN2022/092104
Other languages
English (en)
French (fr)
Inventor
华涛
胡红
杨雅蝶
鞠紫昕
Original Assignee
香港纺织及成衣研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心有限公司 filed Critical 香港纺织及成衣研发中心有限公司
Publication of WO2022242512A1 publication Critical patent/WO2022242512A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the invention relates to a moisture-absorbing and quick-drying polylactic acid composite yarn, a method for preparing the composite yarn and an application of the composite yarn, belonging to the technical field of textile product manufacturing.
  • Polylactic acid (PLA) fiber is a new type of green fiber made from corn, wheat, sugar beet and other starchy agricultural products, which are fermented to produce lactic acid, then polymerized to form polylactic acid, and melt-spun.
  • Polylactic acid staple fiber not only has the advantages of biodegradability, renewable, abundant raw material sources, low energy consumption, and environmental compatibility, but its fabric also has excellent wearing characteristics such as skin-friendly antibacterial, comfortable and smooth, and has high wear resistance. Economic Value.
  • polylactic acid short fibers have excellent moisture permeability, their hygroscopicity is poor, and it is difficult to achieve the performance requirements of moisture absorption and quick drying with a single component.
  • One solution is to use polylactic acid staple fibers blended with other hydrophilic fibers to improve moisture absorption and quick-drying performance, such as cotton fibers and viscose fibers.
  • these fibers are prone to mold and bacteria after absorbing moisture, the resulting blended yarn loses its antibacterial properties, and the original excellent antibacterial properties of polylactic acid cannot be fully exerted, which cannot meet the multifunctional requirements of the yarn.
  • the size of the capillary inside the yarn is different, and then a differential capillary effect is generated to endow the yarn with moisture absorption and quick drying performance.
  • the existing moisture-absorbing and quick-drying yarns are not only very cumbersome to chemically modify and finish the fibers, but also violate the concept of environmental protection, and even reduce the air permeability of the fabric during the finishing process. ;
  • the use of hydrophilic fibers and hydrophobic fibers to blend moisture-absorbing and quick-drying yarns will inevitably destroy the original excellent properties of the fibers during the spinning process, such as antibacterial properties, breathability, comfort, etc., and the scope of use is limited;
  • the process design of the existing multi-layer structure moisture-absorbing and quick-drying yarn is very complicated, the spinning method is special, the production difficulty is high, and it is difficult to realize large-scale production.
  • the object of the present invention is to solve one or more problems in the prior art, and provide a polylactic acid composite yarn, a method for preparing the composite yarn and applications of the composite yarn.
  • the polylactic acid composite yarn of the present invention maintains the natural characteristics of polylactic acid, which are biodegradable, renewable, skin-friendly, antibacterial, and ecologically friendly, and on the other hand, it improves the moisture absorption and quick-drying performance.
  • the method for preparing the composite yarn provided by the invention is easy to operate and easy to realize, and is suitable for large-scale industrial application.
  • a polylactic acid composite yarn which includes a core layer and an outer layer covering the core layer, wherein the core layer includes a first polylactic acid short fiber, and the outer layer
  • the layer includes second polylactic acid staple fibers; and preferably, the first polylactic acid staple fibers and the second polylactic acid staple fibers are different in fineness and/or length.
  • a method for preparing the composite yarn according to the first aspect of the present invention comprising the following steps:
  • a fabric prepared from the composite yarn according to the first aspect of the present invention or the composite yarn prepared according to the method according to the second aspect of the present invention is provided.
  • Fig. 1 is a schematic structural view of a polylactic acid composite yarn provided according to some embodiments of the present invention
  • Fig. 2 is a schematic cross-sectional structure diagram of a polylactic acid composite yarn provided according to some embodiments of the present invention
  • 1 represents the first polylactic acid short fiber
  • 2 represents the second polylactic acid short fiber
  • Fig. 3 is a schematic diagram of the spinning process of the polylactic acid composite yarn provided according to some embodiments of the present invention, wherein a represents the first polylactic acid roving, b represents the second polylactic acid roving, 3 represents the back roller, 4 represents the middle roller, and 5 Indicates the front roller;
  • Fig. 4 is a curve diagram of the wicking height test results of the polylactic acid composite yarn provided according to some embodiments of the present invention, wherein curve 1, curve 2 and curve 3 are prepared in embodiment 1, embodiment 2 and embodiment 3 respectively
  • the curve of the wicking height of the composite yarn changing with time the curve 4 is the curve of the wicking height of the polylactic acid yarn prepared in Comparative Example 1 changing with time, and the curve 5 is the wicking of the polylactic acid yarn prepared in Comparative Example 2 A curve of height versus time.
  • multiple and multiple roots in the specification means at least two or two, such as three or three, four or four, five or no roots, six or six... Wait.
  • any reference to any numerical value in this invention includes all values in increments of one unit from the lowest value to the highest value if there is a separation of only two units between any lowest value and any highest value.
  • the amount of a component, or the value of a process variable such as temperature, pressure, time, etc. is 50-90, in this specification it means that 51-89, 52-88...and 69 Values such as -71 and 70-71.
  • 0.1, 0.01, 0.001 or 0.0001 may be considered as a unit as appropriate.
  • step A, step B, step C, step D, and step E should be interpreted to mean that step A is performed first, and step E is performed last, and that steps B, C, and D are performed between steps A and E implemented in. They can be performed in any order and still fall within the literal scope of the claimed process. Likewise, a given step or sub-step may be repeated.
  • a polylactic acid composite yarn which includes a core layer and an outer layer covering the core layer, wherein the core layer includes a first polylactic acid short fiber or is basically composed of a first polylactic acid short fiber.
  • a short polylactic acid fiber, the outer layer includes or consists essentially of a second short polylactic acid fiber; and preferably, the first short polylactic acid fiber and the second short polylactic acid fiber Varying in fineness and/or length.
  • the polylactic acid composite yarn of the present invention consists of a core layer and an outer layer covering the core layer.
  • the present invention does not specifically limit the source of the short polylactic acid fibers.
  • Various short polylactic acid fibers that are commercially available or self-synthesized are suitable for the present invention.
  • polylactic acid can be prepared by ring-opening polymerization of lactide (a cyclic dimer of lactic acid) or direct polymerization of lactic acid, and then prepared into short polylactic acid fibers by spinning processes known in the art.
  • the polylactic acid composite yarn of the present invention does not contain raw materials other than short polylactic acid fibers.
  • the first polylactic acid short fibers and the second polylactic acid short fibers have different finenesses.
  • the fineness of the first short polylactic acid fibers is smaller than the fineness of the second short polylactic acid fibers.
  • the fineness of the first short polylactic acid fibers is smaller than that of the second short polylactic acid fibers, and the lengths of the first short polylactic acid fibers and the second short polylactic acid fibers are the same.
  • the lengths of the first short polylactic acid fibers and the second short polylactic acid fibers are different.
  • the length of the first short polylactic acid fibers is greater than the length of the second short polylactic acid fibers.
  • the length of the first short polylactic acid fibers is longer than that of the second short polylactic acid fibers, and the fineness of the first short polylactic acid fibers and the second short polylactic acid fibers are the same.
  • the first polylactic acid short fibers and the second polylactic acid short fibers are different in fineness and length.
  • the fineness of the first short polylactic acid fibers is smaller than that of the second short polylactic acid fibers, and the length of the first short polylactic acid fibers is greater than the length of the second short polylactic acid fibers.
  • the content of the first short polylactic acid fibers in the core layer is more than 50%, such as more than 60%, more than 70%, more than 80%, more than 90%, more than 95%, more than 98%, or More than 99%.
  • the content of the second short polylactic acid fibers in the outer layer is more than 50%, such as more than 60%, more than 70%, more than 80%, more than 90%, more than 95%, more than 98%, or More than 99%.
  • the second short polylactic acid fibers partially or completely cover the first short polylactic acid fibers in a helical shape.
  • the second polylactic acid short fibers partially wrap the first polylactic acid short fibers in a helical shape along the axis of the yarn core, thereby forming a covered yarn with an incomplete covering structure.
  • the second polylactic acid short fibers wrap the first polylactic acid short fibers in a parallel helical shape along the axis of the yarn core.
  • the second short polylactic acid fibers do not completely cover the first short polylactic acid fibers.
  • the coverage rate of the second polylactic acid short fibers on the first polylactic acid short fibers is 50% or more, for example, 55% or more, 60% or more, or 65% or more.
  • the mass ratio of the first short polylactic acid fibers to the second short polylactic acid fibers is (20-80):(80-20).
  • the mass ratio of the first short polylactic acid fibers to the second short polylactic acid fibers is (35-65):(65-35).
  • the mass ratio of the first short polylactic acid fibers to the second short polylactic acid fibers is (45-55):(55-45).
  • the first polylactic acid short fiber and the second polylactic acid short fiber are polylactic acid short fibers that have undergone a roving preparation process and have been drawn.
  • the short polylactic acid fibers that have undergone a roving preparation process and have been drawn can be in the form of strands, and these strands are, for example, roughly parallel.
  • first polylactic acid short fibers and the second polylactic acid short fibers that have been drawn are combined and twisted to form the core layer and the core layer covering the core layer. outer layer.
  • the cross-sections of the first short polylactic acid fibers and the second short polylactic acid fibers are independently selected from circular and special-shaped cross-sections, preferably selected from circular, Y-shaped, and cross-shaped cross-sections.
  • Fig. 1 and Fig. 2 schematically show the structural diagrams of polylactic acid composite yarns provided according to some embodiments of the present invention.
  • the composite yarn includes a core layer and an outer layer covering the core layer, wherein the core layer includes a first polylactic acid short fiber 1, and the outer layer includes a second polylactic acid short fiber 2, wherein The fineness of the first polylactic acid short fiber 1 is smaller than the fineness of the second polylactic acid short fiber 2, and the second polylactic acid short fiber 2 wraps the first polylactic acid short fiber 1 with a helical part, thereby forming an incomplete wrapping.
  • Covering structure wherein, most, for example, more than 50% of the first short polylactic acid fibers 1 are located in the core layer, and most, for example, more than 50%, of the second short polylactic acid fibers 2 are located in the outer layer.
  • the thinner and longer fibers are located in the core layer of the yarn, and the thicker and shorter fibers are concentrated in the outer layer of the yarn, Then the capillary diameter of the yarn core layer is smaller than the capillary diameter of the yarn outer layer. According to the mechanism of differential capillary effect, it is easier for liquid to enter the core layer of yarn from the outer layer of the yarn.
  • polylactic acid short fibers have excellent moisture permeability, and the polar oxygen bonds in the fiber molecules are connected with water molecules to accelerate the transfer of water vapor in the fibers, so that the liquid rapidly diffuses along the inner layer of the yarn, and further flows to the yarn.
  • the surface of the outer layer of the wire is quickly transported and evaporated.
  • the incomplete covering structure enhances the capillary effect of the fiber in the fabric, which makes up for the relatively weak hygroscopicity of the polylactic acid staple fiber, so that the pure polylactic acid staple fiber yarn can also achieve high-efficiency moisture absorption and quick-drying effect.
  • a method for preparing the aforementioned polylactic acid composite yarn of the present invention comprising the following steps:
  • the fineness and/or length of the first polylactic acid staple fiber raw material and the second polylactic acid short fiber raw material are different.
  • the fineness of the first polylactic acid staple fiber raw material and the second polylactic acid short fiber raw material are different.
  • the fineness of the first polylactic acid staple fiber raw material is smaller than the fineness of the second polylactic acid short fiber raw material.
  • the fineness of the first polylactic acid staple fiber raw material is smaller than the fineness of the second polylactic acid short fiber raw material, and the length of the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material is same.
  • the lengths of the first polylactic acid staple fiber raw material and the second polylactic acid short fiber raw material are different.
  • the length of the first polylactic acid short fiber raw material is greater than the length of the second polylactic acid short fiber raw material.
  • the length of the first polylactic acid short fiber raw material is greater than the length of the second polylactic acid short fiber raw material, and the fineness of the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material are the same .
  • the fineness and length of the first polylactic acid staple fiber raw material and the second polylactic acid short fiber raw material are different.
  • the fineness of the first polylactic acid staple fiber raw material is smaller than the fineness of the second polylactic acid short fiber raw material, and the length of the first polylactic acid short fiber raw material is greater than that of the second polylactic acid short fiber raw material length.
  • the length of the first polylactic acid short fiber raw material is 30-70 mm, such as 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm mm and any value therebetween, preferably 35-45 mm.
  • the fineness of the first polylactic acid staple fiber raw material is 1.0-3.0 denier, such as 1.0 denier, 1.5 denier, 2.0 denier, 2.5 denier, 3.0 denier and any value between them, preferably 1.5-2.5 denier.
  • the length of the second polylactic acid short fiber raw material is 20-60 mm, such as 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm mm and any value between them, preferably 30-40 mm.
  • the fineness of the second polylactic acid short fiber raw material used as raw material is 1.5-4.5 denier, such as 1.5 denier, 2.0 denier, 2.5 denier, 3.0 denier, 3.5 denier, 4.0 denier, 4.5 denier and Any value between them, preferably 2-3.5 denier.
  • the amount of the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material can be adjusted to prepare composite yarns with different covering degrees and properties.
  • the mass ratio of the first polylactic acid short fiber raw material to the second polylactic acid short fiber raw material is (20-80):(80-20), for example, 20:80, 25:75, 30 :70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20 and any value in between, It is preferably (35-65):(65-35), more preferably (45-55):(55-45).
  • the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material are each independently selected from round and special-shaped polylactic acid short fibers, preferably selected from round, Y-shaped, ten Polylactic acid short fiber with zigzag cross section.
  • step (2) of the present invention is not particularly limited, and can be carried out by methods well known to those skilled in the art.
  • the step (2) includes:
  • the first polylactic acid staple fiber raw material and the second polylactic acid short fiber raw material are respectively subjected to the processes of opening, impurity removal, carding and drawing to produce the first polylactic acid roving and the second polylactic acid roving.
  • the fineness of the first polylactic acid roving and the second polylactic acid roving may be the same or different.
  • the fineness of the first polylactic acid roving is 250-350 tex, for example, 250 tex, 260 tex, 270 tex, 280 tex, 290 tex, 300 tex, 310 tex, 320 tex, 330 tex
  • the fineness of the second polylactic acid staple fiber roving is 250-350 tex, for example, 250 tex, 260 tex, 270 tex, 280 tex, 290 tex, 300 tex, 310 tex, 320 tex, 330 tex, 340 tex, 350 tex and any value between them, preferably 260-310 tex.
  • the roving preparation parameters in step (2) are as follows:
  • the basis weight of the first polylactic acid roving and the second polylactic acid roving is 2.6 g/10 meters; and/or, the twist coefficient is 104; and/or, the twist is 6.5 twist/10 cm; and/or, the roller gauge adopts 11 mm x 29.5 mm x 46.5 mm; and/or, mechanical draft of 11.45 times; and/or, rear zone draft of 1.21 times.
  • the method for spinning the two rovings into composite yarns in step (3) is not particularly limited, and can be carried out by methods well known to those skilled in the art, such as ring spinning, compact spinning, Solo Spinning, air spinning and other processes.
  • a ring spinning process is used to spin the first polylactic acid roving and the second polylactic acid roving into the polylactic acid composite yarn.
  • Ring spinning is the most widely used and most versatile spinning method on the market today.
  • Ring spinning refers to the sliver or roving fiber strip after drafting is introduced by the ring traveler, the bobbin winding speed is faster than the traveler, and the cotton yarn is twisted into spun yarn, which is widely used in the spinning of various short fibers project.
  • the traveler is driven by the bobbin through the sliver to rotate around the steel ring for twisting.
  • the friction of the steel ring makes the rotating speed slightly smaller than the bobbin to be wound.
  • the spinning speed is high, and the shape of the ring-spun yarn is a conical helix in which the fibers are mostly transferred from the inside to the outside, so that the fibers are wound and connected inside and outside the yarn.
  • the yarn has a compact structure and high strength. It is suitable for thread making, weaving and knitting, etc. Various products.
  • step (3) the first polylactic acid roving and the second polylactic acid roving are drawn and twisted in the same channel to obtain the composite yarn.
  • the step (3) is carried out as follows:
  • the first polylactic acid roving and the second polylactic acid roving are simultaneously fed into the same channel of the bell mouth before the rear roller of the spinning frame, and then the polylactic acid composite yarn is spun into the polylactic acid composite yarn through drafting and twisting treatment.
  • step (3) a Zinser351 spinning frame is used to prepare polylactic acid composite yarns.
  • the spinning parameters in step (3) are as follows: the spun yarn density is 14.8 tex; and/or, the twist is 3.6 twist/10 cm; and/or, the spindle speed is 8000 rpm .
  • the method further includes selectively adding bundling or auxiliary covering treatment in step (3), so as to promote the formation of an incomplete covering structure of the composite yarn.
  • Figure 3 schematically shows a schematic diagram of the spinning process (step (3)) of the polylactic acid composite yarn provided according to some embodiments of the present invention
  • the first polylactic acid roving a and the second polylactic acid roving b are simultaneously fed into the spun yarn In the same channel of the bell mouth before the back roller 3 of the machine, after merging, pass through the middle roller 4 and the front roller 5 successively through drafting, and then spin into the polylactic acid composite yarn through a twisting process.
  • the method for preparing polylactic acid composite yarn of preferred embodiment of the present invention in spinning process (especially roving is spun into spun yarn, for example adopts ring spinning process), thinner, The longer fibers are easy to transfer to the yarn core layer, and the thicker and shorter fibers are easy to concentrate on the outer layer of the yarn.
  • the core layer of the composite yarn thus obtained mainly includes thinner and longer fibers, while the outer layer Consists mainly of thicker, shorter fibers, and thus the capillary diameter of the yarn core is smaller than the capillary diameter of the yarn skin. According to the mechanism of differential capillary effect, it is easier for liquid to enter the core layer of yarn from the outer layer of the yarn.
  • polylactic acid short fibers have excellent moisture permeability, and the polar oxygen bonds in the fiber molecules are connected with water molecules to accelerate the transfer of water vapor in the fibers, so that the liquid rapidly diffuses along the inner layer of the yarn, and further flows to the yarn.
  • the surface of the outer layer of the wire is quickly transported and evaporated.
  • the incomplete covering structure improves the capillary effect of the fiber in the fabric, makes up for the defect of the poor hygroscopicity of the polylactic acid staple fiber, and enables the pure polylactic acid staple fiber yarn to achieve high-efficiency moisture absorption and quick-drying effect.
  • the term “consisting essentially of” or “comprising essentially” means including the listed ingredients, but may also include other unlisted components that do not affect the properties of the yarn or are necessarily present. In some embodiments, these other components are present in an amount of less than 50 wt%, such as less than 40 wt%, 30 wt%, 20 wt%, 10 wt%, 5 wt%, 2 wt%, 1 wt%, 0.5 wt%, etc.
  • first polylactic acid short fibers means that the core layer includes polylactic acid as a main component in a content of more than 50wt% (such as 60wt%, 70wt%, 80wt%, 90wt% or higher).
  • the first polylactic acid short fiber and may also include a small amount (less than 50wt%, such as less than 40wt%, 30wt%, 20wt%, 10wt%, 5wt%, 2wt%, 1wt%, 0.5wt%) of the second polylactic acid Staple fibers, which can be incorporated into the core during the twisting process.
  • the term "consisting essentially of second polylactic acid short fibers” means that the outer layer includes polylactic acid as a main component in a content of 50 wt% or more (such as 60 wt%, 70 wt%, 80 wt%, 90 wt% or higher)
  • the second polylactic acid short fiber and also can include a small amount (less than 50wt%, such as less than 40wt%, 30wt%, 20wt%, 10wt%, 5wt%, 2wt%, 1wt%, 0.5wt%) of the first polylactic acid Staple fibers, which can be incorporated into the outer layer during the twisting process.
  • an application of the polylactic acid composite yarn of the present invention or the composite yarn prepared according to the method of the present invention in the field of textile product manufacturing is provided.
  • the polylactic acid composite yarn of the present invention has obvious moisture absorption and quick-drying effects, and also has the natural characteristics of polylactic acid short fibers being biodegradable, renewable, skin-friendly and antibacterial, soft to the touch, comfortable and smooth, and compatible with the environment. It can meet the market's multifunctional demand for yarn and has broad development prospects.
  • a fabric which is prepared by the aforementioned polylactic acid composite yarn of the present invention or the composite yarn prepared according to the aforementioned method of the present invention.
  • the fabric is a moisture-wicking, quick-drying fabric.
  • the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material provided in step (1) are made into the first polylactic acid roving of 310 special and the second polylactic acid with special number of 260 special roving;
  • the first polylactic acid roving and the second polylactic acid roving were ring spun according to the mass ratio of 55:45 to make 40 polylactic acid composite yarns-1 with incomplete coating structure.
  • the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material provided in step (1) are made into the first polylactic acid roving of 260 special and the second polylactic acid of 260 special special number roving;
  • the first polylactic acid roving and the second polylactic acid roving were ring-spun according to a mass ratio of 50:50 to produce 40 polylactic acid composite yarns-2 with incomplete coating structure.
  • the first polylactic acid short fiber raw material and the second polylactic acid short fiber raw material provided in step (1) are made into the first polylactic acid roving with a special number of 260 and the second polylactic acid with a special number of 310 special roving;
  • the first polylactic acid roving and the second polylactic acid roving were ring spun according to the mass ratio of 45:55 to make 40 polylactic acid composite yarns-3 with incomplete coating structure.
  • step (1) the polylactic acid short fiber raw material that step (1) provides is made the polylactic acid roving that tex number is 310 tex;
  • a polylactic acid roving from step (2) is ring spun into 40 polylactic acid yarns-4.
  • step (1) the polylactic acid short fiber raw material that step (1) provides is made the polylactic acid roving that special number is 310 special;
  • step (3) The two polylactic acid rovings of step (2) are ring spun into 40-count polylactic acid yarn-5.
  • curve 1, curve 2, and curve 3 are respectively the curves of the wicking height of the yarns prepared in Example 1, Example 2, and Example 3 as a function of time
  • curve 4 is a single polylactic acid
  • Curve 5 is a curve of the wicking height of two identical polylactic acid rovings spun by ordinary ring spinning (the yarn prepared in Comparative Example 2) as a function of time.
  • the liquid passes through capillary action, and the height that rises along the yarn prepared by embodiment 1 in 10 minutes is 26 millimeters, and the height that rises along the yarn prepared by embodiment 2 in 10 minutes is 29 millimeters, in 10 minutes, the rising height along the yarn prepared in embodiment 3 was 29 millimeters, while the rising height along the polylactic acid yarn of comparative example 1 was only 9 millimeters, and the rising height along the polylactic acid yarn of comparative example 2 The rising height is only 15 mm, which shows that the polylactic acid composite yarns of the present invention all have good hygroscopicity.
  • polylactic acid short fiber has excellent moisture permeability, and the polar oxygen bonds in the fiber molecules are connected with water molecules to accelerate the transfer of water vapor in the fiber, so that the liquid diffuses rapidly along the inner layer of the yarn, and further flows to the yarn.
  • the surface of the outer layer of the thread is quickly transported and evaporated, that is, the incompletely covered pure polylactic acid yarn has better moisture absorption and quick-drying properties.
  • parameters such as the thickness, length, mass ratio, yarn density and twist of the two polylactic acid short fiber components can be designed and changed according to specific needs, or polylactic acid short fibers with special-shaped cross-sections can be used to optimize Hygroscopic and quick-drying effects of the incompletely covered polylactic acid hygroscopic and quick-drying yarns spun into the final.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

一种聚乳酸复合纱线、制备该复合纱线的方法以及该复合纱线的应用。该聚乳酸复合纱线包括两种细度和/或长度不同的聚乳酸短纤维,一方面保持了聚乳酸可生物降解、可再生、亲肤抑菌及生态环保的天然特性,另一方面提升了吸湿快干性能。制备该复合纱线的方法操作简便、易于实现,适用于大规模工业化应用。

Description

一种聚乳酸复合纱线及其制备方法和应用 技术领域
本发明涉及一种吸湿快干的聚乳酸复合纱线,制备该复合纱线的方法以及该复合纱线的应用,属于纺织产品制造技术领域。
背景技术
随着健身意识深入人心,运动已成为人们的热门话题。人在剧烈运动时会分泌大量汗液,若汗水和湿气无法快速扩散,会给人体造成不适的湿冷感和粘附感。因此,人们对服装的舒适性要求越来越高,尤其是热湿舒适性。近年来,具有吸湿快干性的纺织品以其导湿、快干和舒适等优异的特性受到世人的喜爱和追捧。与此同时,吸湿快干纱线的商业需求也急剧增加。
除吸湿快干功能外,消费者也越来越关注服装面料的环保性与安全性,市场上急需一种生态环保的吸湿快干纱线。传统的纱线生产工艺已无法满足市场需求,但一些可生物降解的环保型纤维如聚乳酸短纤维,就能很好的增加产品的附加值。聚乳酸(PLA)纤维是以玉米、小麦、甜菜等含淀粉的农产品为原料,经发酵生成乳酸,再聚合形成聚乳酸,并通过熔融纺丝而制成的一种新型绿色纤维。聚乳酸短纤维不仅具有可生物降解、可再生、原料来源丰富、能耗量低、环境相容等优点,其织物面料还具有亲肤抗菌和舒适爽滑等优异的服用特性,具有较高的经济价值。然而,聚乳酸短纤维虽具有优异的导湿性能,但其吸湿性较差,单一组分难以实现吸湿快干的性能要求。一种解决方案是采用聚乳酸短纤维和其他亲水纤维混纺来提 高吸湿快干性能,如棉纤维和粘胶纤维等。但是,由于这些纤维吸湿后容易发霉生菌,导致形成的混纺纱失去抗菌特性,使聚乳酸原有的优良抗菌性能得不到充分发挥,无法满足纱线的多功能需求。
目前尚未发现有以两组纯聚乳酸短纤维为原料,来制备生态环保的聚乳酸吸湿快干纱线的专利技术和相关报道。吸湿快干纱线的相关专利一般通过采用物理或化学改性的方法,或将吸湿性纤维与疏水导湿纤维进行混纺来提高纱线的吸湿快干性能。中国专利(公开号CN107858778A)《一种吸湿排汗纱线的制备方法》涉及的纱线先通过等离子表面处理羊毛和化学的方法改性涤纶纤维后,再采用羊毛纤维与改性涤纶经精梳机梳理、细纱机牵伸制成具有吸湿排汗功能的纱线。中国专利(公开号CN110373769A)《一种吸湿排汗混纺纱的制备方法》涉及的纱线通过采用吸湿排汗涤纶异形纤维和莫代尔纤维混纺,实现吸湿排汗的功能与亲肤舒适的性能。中国专利(公开号CN110257986A)《一种轴向非均匀结构吸湿快干纱线》提供了一种沿纱线轴向纤维组分非均匀分布的结构。通过采用亲水性纤维与疏水性纤维沿纱线轴向交替分布,使纱线内部毛细管大小产生差异,进而产生差动毛细效应,以赋予纱线吸湿快干性能。
由以上相关的专利可以看出,现有的吸湿快干纱线,对纤维的化学改性与后整理等工序不仅十分繁琐,还有违环保理念,甚至在整理过程中会降低织物的透气性;而采用亲水性纤维与疏水性纤维混纺吸湿快干纱线在纺纱过程中会不可避免的破坏纤维原有的优异性能,如抗菌性、透气性、舒适性等,使用范围受限;现有多层结构吸湿快干纱线的工艺设计十分复杂、纺纱方法特殊、生产难度高,实现大规模生产比较困难。
发明内容
本发明的目的是针对现有技术存在的一个或多个问题,提供一种聚乳酸复合纱线,制备该复合纱线的方法以及该复合纱线的应用。本发明的聚 乳酸复合纱线一方面保持了聚乳酸可生物降解、可再生、亲肤抑菌及生态环保的天然特性,另一方面提升了吸湿快干性能。本发明提供的制备复合纱线的方法操作简便、易于实现,适用于大规模工业化应用。
根据本发明的第一个方面,提供了一种聚乳酸复合纱线,其包括芯层和包覆所述芯层的外层,其中所述芯层包括第一聚乳酸短纤维,所述外层包括第二聚乳酸短纤维;并且优选地,所述第一聚乳酸短纤维和第二聚乳酸短纤维的细度和/或长度不同。
根据本发明的第二个方面,提供了一种制备根据本发明第一个方面所述的复合纱线的方法,包括以下步骤:
(1)提供第一聚乳酸短纤维原料和第二聚乳酸短纤维原料;
(2)将所述第一聚乳酸短纤维原料和所述第二聚乳酸短纤维原料分别制备成第一聚乳酸粗纱和第二聚乳酸粗纱;
(3)将所述第一聚乳酸粗纱和所述第二聚乳酸粗纱合并经牵伸和加捻处理,获得包括芯层和包覆所述芯层的外层的聚乳酸复合纱线,所述芯层包括所述第一聚乳酸短纤维,并且所述外层包括所述第二聚乳酸短纤维。
根据本发明的第三个方面,提供了根据本发明第一个方面所述的复合纱线或根据本发明第二个方面所述的方法制备的复合纱线在纺织产品制造领域中的应用。
根据本发明的第四个方面,提供了一种织物,其通过根据本发明第一个方面所述的复合纱线或根据本发明第二个方面所述的方法制备的复合纱线制备而成。
附图说明
在附图中,相似的附图标记指代相同或功能相似的元件,附图包含某些实施方案的图形,以进一步示出和阐明本公开的以上和其他方面、优点和特征。应当理解的是,这些附图描绘了示例性实施例,因此并非旨在限 制本公开的范围。通过使用附图,会以附加的特异性和细节来描述和解释本公开。
图1为根据本发明一些实施例提供的聚乳酸复合纱线的结构示意图;
图2为根据本发明一些实施例提供的聚乳酸复合纱线的横截面结构示意图;
在图1和图2中,1表示第一聚乳酸短纤维,2表示第二聚乳酸短纤维;
图3为根据本发明一些实施例提供的聚乳酸复合纱线的纺纱过程示意图,其中a表示第一聚乳酸粗纱,b表示第二聚乳酸粗纱,3表示后罗拉,4表示中罗拉,5表示前罗拉;
图4为根据本发明一些实施例提供的聚乳酸复合纱线的芯吸高度测试结果曲线图,其中曲线1、曲线2与曲线3分别为实施例1、实施例2和实施例3中制备的复合纱线的芯吸高度随时间变化的曲线,曲线4为对比例1制备的聚乳酸纱线的芯吸高度随时间变化的曲线,曲线5为对比例2制备的聚乳酸纱线的芯吸高度随时间变化的曲线。
具体实施方式
下面结合附图和实施例对本发明做更详细的描述,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,而不应当被理解为对本发明的限定。
定义
在说明书中提到“一个实施方案”、“优选的实施方案”,“示例性实施方案”等是指,所描述的实施方案可以包括具体特征、结构或特性,但是并非每个实施方案都可以包括具体特征、结构或特性。而且,这类短语不一定是指相同的实施方案。另外,当结合某个实施方案描述具体特征、结构或 特性时,无论其是否被明确描述,都视为将该特征、结构或特性应用于其他实施例的效果在本领域技术人员的知识范围内。
在说明书中提到“多个”、“多根”等是指,包括至少两个或两根,例如三个或三根、四个或四根、五个或无根、六个或六根……等。
在本发明中的提到的任何数值,如果在任何最低值和任何最高值之间只是有两个单位的间隔,则包括从最低值到最高值的每次增加一个单位的所有值。例如,如果声明一种组分的量,或诸如温度、压力、时间等工艺变量的值为50-90,在本说明书中它的意思是具体列举了51-89、52-88……以及69-71以及70-71等数值。对于非整数的值,可以适当考虑以0.1、0.01、0.001或0.0001为一单位。这仅是一些特殊指明的例子。在本申请中,以相似方式,所列举的最低值和最高值之间的数值的所有可能组合都被认为已经公开。
如本文所述,除非另有说明,否则术语“一个/种”用于包括一个/种或多个/种,并且术语“或”用于表示非排他性的“或”。另外,当本文所用的术语没有另外定义时,应将它们理解为仅用于描述的目的而非限制的目的。另外,说明书提及的所有出版物、专利和专利文件均通过引用全文并入本文,如同通过引用单独并入一样。如果本文档与通过引用并入的那些文档之间的用法不一致,则应将引用的参考文献中的用法视为对本文档的补充。出于不可调和的不一致之处,以本文中的用法为准。
在说明书所述的制造方法中,除了明确说明时间或操作顺序之外,可以以任何顺序实施步骤,而不脱离本发明的原理。权利要求指出,首先实施一个步骤,然后实施几个其他步骤。应该认为第一步是在任何其他步骤之前实施的,并且可以在任何其他步骤中执行其他步骤,除非在其他步骤中该步骤中进一步列出了该顺序。例如,陈述了“步骤A、步骤B、步骤C、步骤D和步骤E”的权利要求应解释为意味着首先实施步骤A,最后实施步 骤E,并且步骤B、C和D在步骤A和E中实施。它们可以以任何顺序执行,并且这些顺序仍然落入权利要求要求保护的过程的字面范围内。同样,可以重复给定的步骤或子步骤。
聚乳酸复合纱线
根据本发明的一些实施方式,提供了一种聚乳酸复合纱线,其包括芯层和包覆所述芯层的外层,其中所述芯层包括第一聚乳酸短纤维或基本上由第一聚乳酸短纤维组成,所述外层包括第二聚乳酸短纤维或基本上由第二聚乳酸短纤维组成;并且优选地,所述第一聚乳酸短纤维和第二聚乳酸短纤维的细度和/或长度不同。在一些实施方案中,本发明的聚乳酸复合纱线由芯层和包覆所述芯层的外层组成。
对于聚乳酸短纤维的来源,本发明不做特殊限定。市售或自行合成的各种聚乳酸短纤维均适用于本发明。例如可通过丙交酯(乳酸的环状二聚体)的开环聚合或乳酸的直接聚合等制备聚乳酸,然后再通过本领域已知纺丝工艺制备成聚乳酸短纤维。在一些实施方案中,本发明的聚乳酸复合纱线不包含聚乳酸短纤维之外的原料。
在一些实施方式中,所述第一聚乳酸短纤维和第二聚乳酸短纤维的细度不同。
在一些实施方式中,所述第一聚乳酸短纤维的细度小于第二聚乳酸短纤维的细度。
在一些实施方式中,所述第一聚乳酸短纤维的细度小于第二聚乳酸短纤维的细度,且所述第一聚乳酸短纤维和第二聚乳酸短纤维的长度相同。
在一些实施方式中,所述第一聚乳酸短纤维和第二聚乳酸短纤维的长度不同。
在一些实施方式中,所述第一聚乳酸短纤维的长度大于第二聚乳酸短纤维的长度。
在一些实施方式中,所述第一聚乳酸短纤维的长度大于第二聚乳酸短纤维的长度,且所述第一聚乳酸短纤维和第二聚乳酸短纤维的细度相同。
在一些实施方式中,所述第一聚乳酸短纤维和第二聚乳酸短纤维的细度和长度均不同。
在一些实施方式中,所述第一聚乳酸短纤维的细度小于第二聚乳酸短纤维的细度,且所述第一聚乳酸短纤维的长度大于第二聚乳酸短纤维的长度。
在一些实施方式中,所述芯层中第一聚乳酸短纤维的含量为50%以上,例如为60%以上、70%以上、80%以上、90%以上、95%以上、98%以上或99%以上。
在一些实施方式中,所述外层中第二聚乳酸短纤维的含量为50%以上,例如为60%以上、70%以上、80%以上、90%以上、95%以上、98%以上或99%以上。
在一些实施方式中,所述第二聚乳酸短纤维以螺旋状部分或完全包覆所述第一聚乳酸短纤维。
在一些实施方式中,所述第二聚乳酸短纤维沿纱芯轴向以螺旋状部分包覆所述第一聚乳酸短纤维,从而形成具有不完全包覆结构的包覆纱。
在一些实施方式中,所述第二聚乳酸短纤维沿纱芯轴向以平行螺旋状包覆所述第一聚乳酸短纤维。
在一些实施方式中,所述第二聚乳酸短纤维不完全包覆所述第一聚乳酸短纤维。
在一些实施方式中,所述第二聚乳酸短纤维对所述第一聚乳酸短纤维的包覆率为50%以上,例如为55%以上、60%以上或65%以上等。
在一些实施方式中,所述第一聚乳酸短纤维和第二聚乳酸短纤维的质量比为(20-80):(80-20)。
在一些实施方式中,所述第一聚乳酸短纤维和第二聚乳酸短纤维的质量比为(35-65):(65-35)。
在一些实施方式中,所述第一聚乳酸短纤维和第二聚乳酸短纤维的质量比为(45-55):(55-45)。
在一些实施方式中,所述第一聚乳酸短纤维和所述第二聚乳酸短纤维是已经经历粗纱制备工艺并经牵伸处理的聚乳酸短纤维。例如,经粗纱制备工艺并经牵伸处理的聚乳酸短纤维可以呈须条状,这些须条状例如大致平行。
在进一步的一些实施方式中,经牵伸处理的所述第一聚乳酸短纤维和所述第二聚乳酸短纤维经合并加捻而形成所述芯层和包覆所述芯层的所述外层。
在一些实施方式中,所述第一聚乳酸短纤维和所述第二聚乳酸短纤维的截面各自独立地选自圆形和异形截面,优选地选自圆形、Y形、十字形截面。
图1和图2示意性地给出了根据本发明一些实施例提供的聚乳酸复合纱线的结构图。如图所示,复合纱线包括芯层和包覆所述芯层的外层,其中所述芯层包括第一聚乳酸短纤维1,所述外层包括第二聚乳酸短纤维2,其中第一聚乳酸短纤维1的细度小于第二聚乳酸短纤维2的细度,第二聚乳酸短纤维2以螺旋状部分包覆所述第一聚乳酸短纤维1,从而形成不完全包覆结构;其中,多数例如多于50%的第一聚乳酸短纤维1位于芯层,而多数例如多于50%的第二聚乳酸短纤维2位于外层。
不意图受限于理论的束缚,在本发明优选实施方式的聚乳酸复合纱线中,较细、较长的纤维位于纱线芯层,较粗、较短的纤维集中在纱线外层,则纱线芯层的毛细管直径小于纱线外层的毛细管直径。根据差动毛细效应机理,液体更容易从纱线外层进入纱线芯层。同时,聚乳酸短纤维具有优 异的导湿性能,其纤维分子中的极性氧键与水分子连接可加快纤维内的水蒸汽转移,使得液体沿着纱线内层迅速扩散,进一步再向纱线外层表面快速输送、蒸发。同时,不完全包覆结构增强了纤维在织物中的毛细效应,弥补了聚乳酸短纤维吸湿性能相对较弱的缺陷,使纯的聚乳酸短纤维纱线也能达到高效吸湿快干效果。
聚乳酸复合纱线的制备方法
根据本发明的一些实施方式,提供了一种制备本发明前述聚乳酸复合纱线的方法,包括以下步骤:
(1)提供第一聚乳酸短纤维原料和第二聚乳酸短纤维原料;
(2)将所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料分别制备成第一聚乳酸粗纱和第二聚乳酸粗纱;
(3)将所述第一聚乳酸粗纱和所述第二聚乳酸粗纱合并经牵伸和加捻处理,获得包括芯层和包覆所述芯层的外层的聚乳酸复合纱线,所述芯层包括所述第一聚乳酸短纤维,并且所述外层包括所述第二聚乳酸短纤维。
在一些实施方式中,所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的细度和/或长度不同。
在一些实施方式中,所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的细度不同。
在一些实施方式中,所述第一聚乳酸短纤维原料的细度小于第二聚乳酸短纤维原料的细度。
在一些实施方式中,所述第一聚乳酸短纤维原料的细度小于第二聚乳酸短纤维原料的细度,且所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的长度相同。
在一些实施方式中,所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的长度不同。
在一些实施方式中,所述第一聚乳酸短纤维原料的长度大于第二聚乳酸短纤维原料的长度。
在一些实施方式中,所述第一聚乳酸短纤维原料的长度大于第二聚乳酸短纤维原料的长度,且所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的细度相同。
在一些实施方式中,所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的细度和长度均不同。
在一些实施方式中,所述第一聚乳酸短纤维原料的细度小于第二聚乳酸短纤维原料的细度,且所述第一聚乳酸短纤维原料的长度大于第二聚乳酸短纤维原料的长度。
在一些实施方式中,所述第一聚乳酸短纤维原料的长度为30-70毫米,例如为30毫米、35毫米、40毫米、45毫米、50毫米、55毫米、60毫米、65毫米、70毫米以及它们之间的任意值,优选为35-45毫米。
在一些实施方式中,所述第一聚乳酸短纤维原料的细度为1.0-3.0旦,例如为1.0旦、1.5旦、2.0旦、2.5旦、3.0旦以及它们之间的任意值,优选为1.5-2.5旦。
在一些实施方式中,所述第二聚乳酸短纤维原料的长度为20-60毫米,例如为20毫米、25毫米、30毫米、35毫米、40毫米、45毫米、50毫米、55毫米、60毫米以及它们之间的任意值,优选为30-40毫米。
在一些实施方式中,作为原料的所述第二聚乳酸短纤维原料的细度为1.5-4.5旦,例如为1.5旦、2.0旦、2.5旦、3.0旦、3.5旦、4.0旦、4.5旦以及它们之间的任意值,优选为2-3.5旦。
根据本发明的复合纱线,第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的用量可以调整,以制备出包覆程度和性能不同的复合纱线。
在一些实施方式中,所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料的质量比为(20-80):(80-20),例如为20:80、25:75、30:70、35:65、40:60、45:55、50:50、55:45、60:40、65:35、70:30、75:25、80:20以及它们之间的任意值,优选为(35-65):(65-35),更优选为(45-55):(55-45)。
根据本发明的一些实施方式,所述第一聚乳酸短纤维原料和第二聚乳酸短纤维原料各自独立地选自圆形和异形截面聚乳酸短纤维,优选选自圆形、Y形、十字形截面聚乳酸短纤维。
本发明步骤(2)中由短纤维原料制备粗纱的方法不做特别限定,采用本领域技术人员熟知的方法进行即可。
在一些示例性的实施方式中,所述步骤(2)包括:
将第一聚乳酸短纤维原料和第二聚乳酸短纤维原料分别经开松、除杂、梳理和并条工序,制成第一聚乳酸粗纱和第二聚乳酸粗纱。
在一些优选的实施方式中,第一聚乳酸粗纱和第二聚乳酸粗纱的细度可相同或不同。
在一些实施方式中,所述第一聚乳酸粗纱的细度为250-350特,例如为250特、260特、270特、280特、290特、300特、310特、320特、330
特、340特、350特以及它们之间的任意值,优选为260-310特。
在一些实施方式中,所述第二聚乳酸短纤维粗纱的细度为250-350特,例如为250特、260特、270特、280特、290特、300特、310特、320特、330特、340特、350特以及它们之间的任意值,优选为260-310特。
在一些优选的实施方式中,步骤(2)中的粗纱制备参数如下:
第一聚乳酸粗纱和第二聚乳酸粗纱的定量为2.6克/10米;和/或,捻系数为104;和/或,捻度为6.5捻/10厘米;和/或,罗拉隔距采用11毫米×29.5毫米×46.5毫米;和/或,机械牵伸为11.45倍;和/或,后区牵伸为1.21倍。
根据本发明的制备方法,步骤(3)中将两种粗纱纺成复合纱线的方法不做特别限定,采用本领域技术人员熟知的方法进行即可,例如环锭纺、紧密纺、索罗纺、气流纺等工艺。
在一些优选的实施方式中,采用环锭纺工艺将所述第一聚乳酸粗纱和第二聚乳酸粗纱纺成所述聚乳酸复合纱线。
环锭纺是现时市场上用量最多、最通用的纺纱方法。环锭纺指条子或粗纱经牵伸后的纤维条通过环锭钢丝圈旋转引入,筒管卷绕速度比钢丝圈快,棉纱被加捻制成细纱,广泛应用于各种短纤维的纺纱工程。如普梳、精梳及混纺,钢丝圈由筒管通过纱条带动绕钢领回转进行加捻,同时,钢领的摩擦使其转速略小于筒管而得到卷绕。纺纱速度高,环锭纱的形态,为纤维大多呈内外转移的圆锥形螺旋线,使纤维在纱中内外缠绕联结,纱的结构紧密,强力高,适用于制线以及机织和针织等各种产品。
在一些具体的实施方式中,步骤(3)中将所述第一聚乳酸粗纱与第二聚乳酸粗纱在同一通道内进行牵伸和加捻处理,获得所述复合纱线。
在一些具体的实施方式中,所述步骤(3)按照如下方法进行:
将所述第一聚乳酸粗纱与第二聚乳酸粗纱同时喂入细纱机后罗拉前的喇叭口的同一通道内,而后经牵伸与加捻处理纺成所述聚乳酸复合纱线。
在一些优选的实施方式中,步骤(3)中采用Zinser351细纱机制备聚乳酸复合纱线。
在一些优选的实施方式中,步骤(3)中的纺纱参数如下:细纱线密度为14.8特;和/或,捻度为3.6捻/10厘米;和/或,锭子转速为8000转/分钟。
在一些实施方式中,所述方法还包括在步骤(3)中选择性增加集束或助包覆处理,以促进复合纱线不完全包覆结构的形成。
图3示意性地给出了根据本发明一些实施例提供的聚乳酸复合纱线的纺纱过程(步骤(3))示意图,第一聚乳酸粗纱a和第二聚乳酸粗纱b同时喂入细纱机后罗拉3前的喇叭口的同一通道内,合并后依次经过中罗拉4和前罗拉5经牵伸,然后经加捻工艺纺成所述聚乳酸复合纱线。
不意图受限于理论的束缚,在本发明优选实施方式的制备聚乳酸复合纱线的方法中,在纺纱过程(尤其是粗纱纺成细纱,例如采用环锭纺工艺)中,较细、较长的纤维易转移至纱线芯层,较粗、较短的纤维易集中在纱线外层,由此获得的复合纱线的芯层主要包括较细、较长的纤维,而外层主要包括较粗、较短的纤维,并且因此纱线芯层的毛细管直径小于纱线表层的毛细管直径。根据差动毛细效应机理,液体更容易从纱线外层进入纱线芯层。同时,聚乳酸短纤维具有优异的导湿性能,其纤维分子中的极性氧键与水分子连接可加快纤维内的水蒸汽转移,使得液体沿着纱线内层迅速扩散,进一步再向纱线外层表面快速输送、蒸发。同时,不完全包覆结构提高了纤维在织物中的毛细效应,弥补了聚乳酸短纤维吸湿性能较差的缺陷,使纯的聚乳酸短纤维纱线也能达到高效吸湿快干效果。
如本文所使用,术语“基本上由……组成”或“主要包括”是指包括所列出的成分,但也可以包括未列出的不影响纱线性能或必然存在的其它组分。在一些实施方案中,这些其它组分的含量小于50wt%,例如小于40wt%、30wt%、20wt%、10wt%、5wt%、2wt%、1wt%、0.5wt%等。
如本文所使用,术语“基本上由第一聚乳酸短纤维组成”是指芯层包括含量为50wt%以上(例如60wt%、70wt%、80wt%、90wt%或更高)的作为主要成分的第一聚乳酸短纤维,并且也可包括少量(小于50wt%,例如小于40wt%、30wt%、20wt%、10wt%、5wt%、2wt%、1wt%、0.5wt%等)的第二聚乳酸短纤维,其在加捻处理的过程中可掺入芯层。
如本文所使用,术语“基本上由第二聚乳酸短纤维组成”是指外层包括含量为50wt%以上(例如60wt%、70wt%、80wt%、90wt%或更高)的作为主要成分的第二聚乳酸短纤维,并且也可包括少量(小于50wt%,例如小于40wt%、30wt%、20wt%、10wt%、5wt%、2wt%、1wt%、0.5wt%等)的第一聚乳酸短纤维,其在加捻处理的过程中可掺入外层。
聚乳酸复合纱线的应用
根据本发明的一些实施方式,提供了本发明的聚乳酸复合纱线或根据本发明的方法制备的复合纱线在纺织产品制造领域中的应用。
本发明的聚乳酸复合纱线具有明显的吸湿快干效果,还兼具聚乳酸短纤维可生物降解、可再生、亲肤抑菌、手感柔软、舒适爽滑与环境相容的天然特性。能满足市场对纱线的多功能需求,具有广阔的发展前景。
吸湿快干织物
根据本发明的一些实施方式,提供了一种织物,其通过本发明前述聚乳酸复合纱线或根据本发明前述的方法制备的复合纱线制备而成。
在一些实施方式中,所述织物是吸湿快干织物。
实施例
实施例1
(1)提供细度为1.5旦、长度为38毫米的第一聚乳酸短纤维原料以及细度为2.0旦、长度为32毫米的第二聚乳酸短纤维原料;
(2)将步骤(1)提供的第一聚乳酸短纤维原料和第二聚乳酸短纤维原料分别制成特数为310特的第一聚乳酸粗纱和特数为260特的第二聚乳酸粗纱;
(3)将第一聚乳酸粗纱和第二聚乳酸粗纱按照质量比55:45经环锭纺制成40支不完全包覆结构的聚乳酸复合纱线-1。
实施例2
(1)提供细度为1.5旦、长度为38毫米的第一聚乳酸短纤维原料以及细度为2.0旦、长度为32毫米的第二聚乳酸短纤维原料;
(2)将步骤(1)提供的第一聚乳酸短纤维原料和第二聚乳酸短纤维原料分别制成特数为260特的第一聚乳酸粗纱和特数为260特的第二聚乳酸粗纱;
(3)将第一聚乳酸粗纱和第二聚乳酸粗纱按照质量比50:50经环锭纺制成40支不完全包覆结构的聚乳酸复合纱线-2。
实施例3
(1)提供细度为1.5旦、长度为38毫米的第一聚乳酸短纤维原料以及细度为2.0旦、长度为32毫米的第二聚乳酸短纤维原料;
(2)将步骤(1)提供的第一聚乳酸短纤维原料和第二聚乳酸短纤维原料分别制成特数为260特的第一聚乳酸粗纱和特数为310特的第二聚乳酸粗纱;
(3)将第一聚乳酸粗纱和第二聚乳酸粗纱按照质量比45:55经环锭纺制成40支不完全包覆结构的聚乳酸复合纱线-3。
对比例1
(1)提供细度为1.5旦、长度为38毫米的聚乳酸短纤维原料;
(2)将步骤(1)提供的聚乳酸短纤维原料制成特数为310特的聚乳酸粗纱;
(3)将一根步骤(2)的聚乳酸粗纱经环锭纺制成40支的聚乳酸纱线-4。
对比例2
(1)提供细度为1.5旦、长度为38毫米的聚乳酸短纤维原料;
(2)将步骤(1)提供的聚乳酸短纤维原料制成特数为310特的聚乳酸粗纱;
(3)将两根步骤(2)的聚乳酸粗纱经环锭纺制成40支的聚乳酸纱线-5。
按照标准FZ/T 01071-2008《纺织品毛细效应试验方法》中规定的芯吸高度测试方法,对上述实施例和对比例中所述的五种聚乳酸复合纱线的芯吸高度进行测试,以证实本发明的聚乳酸复合纱线具有吸湿快干的效果,具体测试结果如图4所示。在图4中,曲线1、曲线2、与曲线3分别为实施例1、实施例2、和实施例3中制备的纱线的芯吸高度随时间变化的曲线,曲线4为单根聚乳酸粗纱经普通环锭纺制成的纱线(对比例1制备的纱线)的芯吸高度随时间变化的曲线。曲线5为两根相同的聚乳酸粗纱经普通环锭纺制成的纱线(对比例2制备的纱线)的芯吸高度随时间变化的曲线。从图4中可以看出,液体通过毛细管作用,在10分钟时沿实施例1所制备的纱线上升的高度为26毫米,在10分钟时沿实施例2所制备的纱线上升的高度为29毫米,在10分钟时沿实施例3所制备的纱线上升的高度为29毫米,而沿对比例1的聚乳酸纱线上升的高度仅为9毫米,沿对比例2的聚乳酸纱线上升的高度仅为15毫米,表明本发明的聚乳酸复合纱线均具有较好的吸湿性。同时,聚乳酸短纤维具有优异的导湿性能,其纤维分子中的极性氧键与水分子连接可加快纤维内的水蒸汽转移,使得液体沿着纱线 内层迅速扩散,进一步再向纱线外层表面快速输送、蒸发,即不完全包覆的纯聚乳酸纱线具有较好的吸湿快干性能。
本发明在实际应用时,可根据具体需要设计变换两种聚乳酸短纤维组分的粗细、长短、质量比以及成纱线密度、捻度等参数,或是采用异形截面的聚乳酸短纤维以优化最终纺成的不完全包覆的聚乳酸吸湿快干纱线的吸湿快干效果。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。

Claims (10)

  1. 一种聚乳酸复合纱线,其包括芯层和包覆所述芯层的外层,其中所述芯层包括第一聚乳酸短纤维,所述外层包括第二聚乳酸短纤维;并且优选地,所述第一聚乳酸短纤维和第二聚乳酸短纤维的细度和/或长度不同。
  2. 根据权利要求1所述的复合纱线,其特征在于,所述第一聚乳酸短纤维的细度小于所述第二聚乳酸短纤维的细度。
  3. 根据权利要求1或2所述的复合纱线,其特征在于,所述第一聚乳酸短纤维的长度大于所述第二聚乳酸短纤维的长度。
  4. 根据权利要求1-3中任一项所述的复合纱线,其特征在于,所述第一聚乳酸短纤维的细度小于所述第二聚乳酸短纤维的细度,且所述第一聚乳酸短纤维的长度大于所述第二聚乳酸短纤维的长度。
  5. 根据权利要求1-4中任一项所述的复合纱线,其特征在于,所述第二聚乳酸短纤维以螺旋状部分或完全包覆所述第一聚乳酸短纤维。
  6. 根据权利要求1-5中任一项所述的复合纱线,其特征在于,所述第一聚乳酸短纤维和第二聚乳酸短纤维的质量比为(20-80):(80-20),优选为(35-65):(65-35),更优选为(45-55):(55-45)。
  7. 根据权利要求1-6中任一项所述的复合纱线,其特征在于,所述第一聚乳酸短纤维和所述第二聚乳酸短纤维的截面各自独立地选自圆形和异形截面,优选地选自圆形、Y形、十字形截面。
  8. 制备根据权利要求1-7中任一项所述的复合纱线的方法,包括以下步骤:
    (1)提供第一聚乳酸短纤维原料和第二聚乳酸短纤维原料;
    (2)将所述第一聚乳酸短纤维原料和所述第二聚乳酸短纤维原料分别制备成第一聚乳酸粗纱和第二聚乳酸粗纱;
    (3)将所述第一聚乳酸粗纱和所述第二聚乳酸粗纱合并经牵伸和加捻处理,获得包括芯层和包覆所述芯层的外层的聚乳酸复合纱线,所述芯层包括所述第一聚乳酸短纤维,并且所述外层包括所述第二聚乳酸短纤维。
  9. 权利要求1-7中任一项所述的复合纱线或根据权利要求8所述的方法制备的复合纱线在纺织产品制造领域中的应用。
  10. 一种织物,其通过权利要求1-7中任一项所述的复合纱线或根据权利要求8所述的方法制备的复合纱线制备而成;
    优选地,所述织物是吸湿快干织物。
PCT/CN2022/092104 2021-05-21 2022-05-11 一种聚乳酸复合纱线及其制备方法和应用 WO2022242512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110555748.8A CN115369532A (zh) 2021-05-21 2021-05-21 一种聚乳酸复合纱线及其制备方法和应用
CN202110555748.8 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022242512A1 true WO2022242512A1 (zh) 2022-11-24

Family

ID=84059988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092104 WO2022242512A1 (zh) 2021-05-21 2022-05-11 一种聚乳酸复合纱线及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115369532A (zh)
WO (1) WO2022242512A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024174252A1 (en) * 2023-02-24 2024-08-29 The Hong Kong Research Institute Of Textiles And Apparel Limited Preparation of one-way transport moisture management fabric based on material, fiber fineness, yarn structure and fabric structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303283A (ja) * 1999-04-09 2000-10-31 Toray Ind Inc 長短複合糸
JP2003082546A (ja) * 2001-09-06 2003-03-19 Kanebo Ltd 紡績糸及びそれを使用した繊維構造物
JP2003213535A (ja) * 2002-01-11 2003-07-30 Unitika Textiles Ltd 精紡交撚糸及びその製造方法
JP2003247143A (ja) * 2002-02-22 2003-09-05 Unitika Textiles Ltd ポリ乳酸系芯鞘複合紡績糸及びそれからなる織編物
US20080057309A1 (en) * 2006-08-30 2008-03-06 Far Eastern Textile Ltd. Heat Adhesive Biodegradable Bicomponent Fibers
JP2010057606A (ja) * 2008-09-02 2010-03-18 Unitika Trading Co Ltd タオル
US20110171868A1 (en) * 2008-05-29 2011-07-14 Akira Okamura Multilayer composite fiber
CN204125637U (zh) * 2014-01-28 2015-01-28 嘉兴学院 一种包覆纱

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141427C (zh) * 2002-03-07 2004-03-10 薛元 短纤维包覆长丝的包芯复合纱线的制造方法及其装置
DE102011116936A1 (de) * 2010-11-29 2012-05-31 Amann & Söhne GmbH & Co. KG Garn, insbesondere Näh- oder Stickgarn sowie Verfahren zur Herstellung eines derartigen Garnes
CN105297230A (zh) * 2014-07-22 2016-02-03 句容市润龙纺织品有限公司 一种功能性速干吸湿排汗纤维及其制备方法
US10988868B2 (en) * 2015-03-20 2021-04-27 Sysco Guest Supply, Llc Textile structures comprising core spun yarns and associated methods for manufacture
CN107513787A (zh) * 2016-06-15 2017-12-26 东丽纤维研究所(中国)有限公司 一种长短复合纱线及其生产方法
CN106498586B (zh) * 2016-12-14 2018-09-28 江南大学 一种仪纶/棉吸湿混纺纱及其生产方法
CN206927992U (zh) * 2017-05-16 2018-01-26 义乌市金明针织有限公司 排汗包覆纱
CN110760966A (zh) * 2018-07-27 2020-02-07 香港理工大学 一种吸湿导湿纱线的制备方法
CN112695394A (zh) * 2020-12-16 2021-04-23 安踏(中国)有限公司 一种吸湿排汗纱线及其面料、服装

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303283A (ja) * 1999-04-09 2000-10-31 Toray Ind Inc 長短複合糸
JP2003082546A (ja) * 2001-09-06 2003-03-19 Kanebo Ltd 紡績糸及びそれを使用した繊維構造物
JP2003213535A (ja) * 2002-01-11 2003-07-30 Unitika Textiles Ltd 精紡交撚糸及びその製造方法
JP2003247143A (ja) * 2002-02-22 2003-09-05 Unitika Textiles Ltd ポリ乳酸系芯鞘複合紡績糸及びそれからなる織編物
US20080057309A1 (en) * 2006-08-30 2008-03-06 Far Eastern Textile Ltd. Heat Adhesive Biodegradable Bicomponent Fibers
US20110171868A1 (en) * 2008-05-29 2011-07-14 Akira Okamura Multilayer composite fiber
JP2010057606A (ja) * 2008-09-02 2010-03-18 Unitika Trading Co Ltd タオル
CN204125637U (zh) * 2014-01-28 2015-01-28 嘉兴学院 一种包覆纱

Also Published As

Publication number Publication date
CN115369532A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN102304796B (zh) 一种高弹力复合纱的三轴系对称复合纺纱工艺及其设备
CN102304797B (zh) 一种非等汇聚点高弹复合纱的制备方法
KR101886232B1 (ko) 신축성이 개선된 린넨-실크 듀얼 사이로필 방적사 및 이의 제조방법
CN107687042A (zh) 一种舒适护肤多功能辫子花式纱线
CN109610067B (zh) 一种涡流纺竹节包芯纱的纺制方法
CN113174678B (zh) 一种植物纤维混纺面料及其加工方法
CN105926100A (zh) 一种具有负离子释放功能的凉感护肤混纺纱及其纺纱工艺
CN106811849A (zh) 大豆纤维与竹纤维混纺赛络包芯纱线及其纺纱工艺
CN111945269A (zh) 一种复合纱线及其制备方法
CN104294435A (zh) 一种紧密赛络纺ab短纤纱的纺纱工艺
WO2022242512A1 (zh) 一种聚乳酸复合纱线及其制备方法和应用
CN114016177B (zh) 一种具有非均匀弹性包芯纱的生产工艺
CN110804781A (zh) 再生纤维高支包芯纱及其生产方法
KR102004093B1 (ko) 항필링성이 우수한 사이로필 방적사의 제조방법
CN201280622Y (zh) 一种棉涤复合纱线
CN211471700U (zh) 一种弹力涡流纺纱
CN107503013A (zh) 一种锦上添花螺旋凹凸水波纹tt纱线及其制备方法
CN221544889U (zh) 一种包裹竹原纤维的功能纱线
CN220057171U (zh) 一种包芯纱及运用该包芯纱的双包包芯纱
CN206089945U (zh) 易吸湿性短纤纱的加工装置
CN105019081A (zh) 一种色纺保健纱
CN220246368U (zh) 一种抗菌涡流纺包芯纱
CN107620142A (zh) 仿兔毛精纺包芯纱及其纺纱工艺
CN103290581A (zh) 一种棉和大麻混纺紧密竹节纱的生产方法
CN203846184U (zh) 一种抗菌复股纱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803834

Country of ref document: EP

Kind code of ref document: A1