WO2022227607A1 - 激光雷达的控制方法及激光雷达 - Google Patents

激光雷达的控制方法及激光雷达 Download PDF

Info

Publication number
WO2022227607A1
WO2022227607A1 PCT/CN2021/138321 CN2021138321W WO2022227607A1 WO 2022227607 A1 WO2022227607 A1 WO 2022227607A1 CN 2021138321 W CN2021138321 W CN 2021138321W WO 2022227607 A1 WO2022227607 A1 WO 2022227607A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse sequence
echo
pulse
echo pulse
effective
Prior art date
Application number
PCT/CN2021/138321
Other languages
English (en)
French (fr)
Inventor
刘魁
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Priority to KR1020237034093A priority Critical patent/KR20230155522A/ko
Priority to EP21939066.3A priority patent/EP4332619A1/en
Priority to DE112021007178.5T priority patent/DE112021007178T5/de
Priority to MX2023012644A priority patent/MX2023012644A/es
Priority to JP2023563890A priority patent/JP2024514914A/ja
Publication of WO2022227607A1 publication Critical patent/WO2022227607A1/zh
Priority to US18/384,218 priority patent/US20240159880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4804Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of laser detection, in particular to a control method of a laser radar and a laser radar.
  • Lidar transmits signal pulses actively, and then receives the signal reflected by the object, and determines the azimuth and distance of the detected object through factors such as time and signal phase difference. After the point frequency of the lidar (determined by the number of channels, distance measurement, resolution, and refresh rate) reaches a certain level, it may appear in a detection cycle, and it is impossible to allocate time for each channel to work in sequence. For example: For example, the lidar has 64 channels (lines), requiring a 200m distance measurement, a refresh rate (rotation speed) of 10Hz, and a horizontal angular resolution of 0.2°.
  • lidar As the application of lidar becomes more and more common, the probability of lidar encounter also increases greatly. There will be mutual interference between different lidars working at the same time in the same space.
  • lidar may also generate signals that interfere with lidar.
  • the present invention provides a control method for a laser radar, including:
  • S101 transmit a multi-pulse sequence encoded at time intervals
  • S102 Receive a radar echo, and determine whether the radar echo includes an effective echo pulse sequence corresponding to the multi-pulse sequence;
  • S104 When the effective echo pulse sequence is interfered, adjust the time interval code in the next transmission according to the distribution of the interference signal in the radar echo.
  • step S102 further comprises:
  • the interference signal in the radar echo includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the disturbed pulse in the wave pulse train includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the disturbed pulse in the wave pulse train includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the disturbed pulse in the wave pulse train includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • step S102 further comprises:
  • it further comprises:
  • the time interval coding is adjusted in the next transmission.
  • step S103 further comprises:
  • Whether the effective echo pulse sequence is disturbed is determined according to the similarity between the peak intensity characteristics of the multiple pulses in the effective echo pulse sequence and the peak intensity characteristics of the multiple pulses in the multi-pulse sequence.
  • step S103 further comprises:
  • the valid echo pulse sequence is determined is disturbed, and at least one disturbed pulse is determined according to the relative difference of the pulse widths.
  • step S103 further comprises:
  • the sum of the absolute difference values is greater than the second tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference value.
  • step S103 further comprises:
  • the effective echo pulse sequence is determined is disturbed, and at least one disturbed pulse is determined according to the relative difference of the peak intensities.
  • step S103 further comprises:
  • the third tolerance threshold When the sum of the absolute difference values is greater than the third tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference value.
  • step S104 further includes:
  • the time interval coding is adjusted in the next transmission, so that the effective echo pulse sequence generated by the multi-pulse sequence of the next transmission is located in the time period outside the interference signal.
  • step S104 further includes:
  • a multi-pulse sequence with a preset time delay is transmitted in the next transmission.
  • the present invention also provides a laser radar, comprising:
  • a transmitting unit configured to transmit a multi-pulse sequence encoded at time intervals
  • a receiving unit configured to receive radar echoes
  • a signal processing unit coupled to the transmitting unit and the receiving unit respectively, is configured to:
  • the radar echo includes a valid echo pulse sequence corresponding to the multi-pulse sequence, determine whether the valid echo pulse sequence is interfered according to the pulse characteristics of the valid echo pulse sequence;
  • the time interval coding is adjusted in the next transmission according to the distribution of the interference signal in the radar echo.
  • it also includes:
  • an analog-to-digital conversion unit configured to sample the radar echo and perform analog-to-digital conversion
  • the signal processing unit is further configured to:
  • the interference signal in the radar echo includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the disturbed pulse in the wave pulse train includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the disturbed pulse in the wave pulse train includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the disturbed pulse in the wave pulse train includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the effective echo pulse signal.
  • the signal processing unit is further configured to:
  • the signal processing unit is further configured to:
  • the time interval coding is adjusted in the next transmission.
  • the signal processing unit is further configured to:
  • the effective echo pulse sequence According to the similarity between the peak intensity characteristics of the multiple pulses in the effective echo pulse sequence and the peak intensity characteristics of the multiple pulses in the multi-pulse sequence, it is determined whether the effective echo pulse sequence is disturbed.
  • the signal processing unit is further configured to:
  • the valid echo pulse sequence is determined being disturbed, and determining at least one disturbed pulse based on the relative difference in the pulse widths;
  • the effective echo pulse sequence is determined is disturbed, and at least one disturbed pulse is determined according to the relative difference of the peak intensities.
  • the signal processing unit is further configured to:
  • the sum of the absolute difference values is greater than the second tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference value; and/or
  • the third tolerance threshold When the sum of the absolute difference values is greater than the third tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference value.
  • the signal processing unit is further configured to:
  • the time interval coding is adjusted in the next transmission, so that the effective echo pulse sequence generated by the multi-pulse sequence of the next transmission is located in the time period outside the interference signal.
  • the signal processing unit is further configured to:
  • a multi-pulse sequence with a preset time delay is transmitted in the next transmission.
  • a preferred embodiment of the present invention provides a control method for a laser radar, which judges whether the effective echo pulse sequence is interfered by the consistency (or the degree of conformity to expectations) of the pulse characteristics of the effective echo pulse sequence; The distribution of interfering signals in the wave, the settings of the time interval coding are adjusted on the next transmission. After judging that the effective echo pulse sequence has been interfered, use the undisturbed time segment in the radar echo to re-set the encoding. In the next working cycle, the relatively regular and fixed signal interference can be effectively avoided, thereby improving the performance of the system. The detection performance of lidar. In addition, since the coding is set to be dynamic, it can avoid the complete loss of the radar echo signal caused by the effective signal being always under the influence of strong interference.
  • FIG. 1 schematically shows the distribution of the transmitted signal with time interval coding and the interfering signal in the radar echo
  • FIG. 2 shows a control method of a lidar according to a preferred embodiment of the present invention
  • Figure 3 schematically shows the identification of a transmitted signal with time interval coding and its reflected echo
  • Figure 4 schematically shows the transmission of a multi-pulse sequence with time interval coding and its pulse characteristics according to a preferred embodiment of the present invention
  • FIG. 5 schematically shows the extraction of effective echo pulse sequences from radar echoes according to a preferred embodiment of the present invention
  • FIG. 6 schematically shows the pulse characteristics of an effective echo pulse sequence according to a preferred embodiment of the present invention
  • FIG. 7 schematically shows a preferred encoding time segment according to a preferred embodiment of the present invention.
  • FIG. 8 schematically shows a preferred encoding time segment according to a preferred embodiment of the present invention.
  • Figure 9 schematically illustrates re-encoding within a preferred encoding time segment according to a preferred embodiment of the present invention.
  • Figure 10 schematically shows a lidar according to a preferred embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection: it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes that the first feature is directly above and diagonally above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature has a lower level than the second feature.
  • a common method is to use the signal encoding method: that is, multiple optical pulses are used as a set of signals, and the optical pulses have a specific time interval as the code, and the encoding feature is used to identify the channel. , so as to identify the signal belonging to its own channel.
  • This method can solve the interference problem to a certain extent, but this method is not flexible and effective.
  • Figure 1 shows an example of the laser radar channel A (usually including a corresponding laser and a detector) transmitting signals using three-pulse coding
  • the time interval between the three pulses is (a1, a2)
  • the received signal That is, when the radar echo received by the detector of channel A removes the pulse whose peak intensity is lower than the intensity threshold
  • the pulse of the interference signal 1 and the transmitted signal of this channel are reflected by external obstacles.
  • the pulses do not overlap, and the effective echo pulse sequence (a group of pulses with the same coding characteristics) can be identified according to the coding feature matching, and the distance can be accurately known.
  • the pulse of the interference signal 2 is superimposed with the pulse of the transmitted signal of this channel reflected by external obstacles (strong interference), and the second pulse in the radar echo is the transmitted signal of this channel
  • the echo reflected by the external obstacle and the interference signal are superimposed, and it is still regarded as a pulse after the superposition.
  • coding feature matching coding feature matching usually has a certain tolerance
  • the above interference pulses may come from other channels of the radar, or from other radars or other laser products with similar wavelengths to the lidar.
  • a preferred embodiment of the present invention provides a control method for a laser radar, which analyzes whether the effective echo pulse sequence in the radar echo is disturbed according to the consistency characteristics of the multi-pulse signal, and after judging that it is disturbed, makes the laser radar active Take measures to solve the signal interference problem of lidar by avoiding the interference source.
  • the present invention provides a method 10 for controlling a lidar, including steps S101 to S104.
  • a multi-pulse sequence encoded at time intervals is transmitted.
  • the laser of channel A of the lidar emits a multi-pulse sequence with time interval coding, and the multi-pulse sequence may include the first laser pulse, the second laser pulse... the Nth laser pulse, and the multiple laser pulses have a time sequence relationship, such as the first laser pulse.
  • the above-mentioned time interval expresses the timing relationship of the transmitted pulse sequence.
  • step S102 a radar echo is received, and it is determined whether the radar echo includes a valid echo pulse sequence corresponding to the multi-pulse sequence.
  • the laser of channel A of the lidar emits a multi-pulse sequence with time interval encoding
  • the multi-pulse sequence includes the first laser pulse, the second laser pulse and the third laser pulse, wherein the second pulse and the first laser pulse are There is a time interval a1 between the laser pulses, and a time interval a2 between the third laser pulse and the second laser pulse.
  • the above-mentioned pulse signal will reflect on the target and generate an echo signal.
  • the pulse train interval of the echo signal will be the same as the interval of the transmit pulse train. That is to say, it is possible to use the characteristic that the echo of the laser pulse and the transmitted signal have the same timing characteristics, and to judge whether the radar echo includes the reflected echo of the transmitted pulse of the channel by comparing the pulse sequence of the transmitted pulse and the received pulse.
  • the multiple echo pulse signals in the received pulse sequence have time intervals (a1, a2), that is, the multiple echo pulses
  • the timing of the signal is the same as that of the transmitted multi-pulse sequence, the multiple echo pulse signals are determined as valid echo pulse sequences corresponding to the transmitted multi-pulse sequence, and the information carried by the signals is extracted.
  • the multiple echo pulse signals in the received pulse sequence have time intervals (b1, b2), that is, the multiple echo pulse signals Different from the timing of the transmitted multi-pulse sequence, it is not the echo of the transmitted multi-pulse sequence (a1, a2), then continue to search from the second echo pulse until the transmitted multi-pulse sequence (a1, a2) is found.
  • the echo of a2), or all the echo pulses in the radar echo have been searched and no valid echo pulse sequence has been found.
  • step S103 when the radar echo includes a valid echo pulse sequence corresponding to the multi-pulse sequence, it is determined whether the valid echo pulse sequence is disturbed according to the pulse characteristics of the valid echo pulse sequence.
  • the laser of channel A of the lidar emits three laser pulses with time interval coding (a1, a2), and the pulse characteristics of the emitted pulse sequence include: each of The pulse widths of the pulses are in turn: w1', w2' and w3', and the peak intensity of each pulse is in turn: h1', h2' and h3'.
  • the pulse characteristics of the effective echo pulse sequence received by the detector of channel A including the variation trend of the peak intensity and/or pulse width of multiple pulses, and the effective echo pulse sequence is determined by analyzing the consistency of the pulse characteristics in the effective echo pulse sequence. Whether the wave pulse sequence is disturbed. Theoretically, the effective echo pulse sequence selected by this channel should be caused by the active light emission of this channel, then the pulse characteristics (including but not limited to peak intensity and pulse width) of multiple pulses in the effective echo pulse sequence should be can be expected. Since the probability that multiple pulses in the effective echo pulse sequence are subject to the same interference is very low, it can be ignored.
  • the peak intensities of the multi-pulse sequences transmitted by this channel are the same, then the peak intensities of the multiple pulses in the effective echo pulse sequence should also be the same. If the peak intensities of the multi-pulse sequences transmitted by this channel are different, such as a combination of strong, weak, and strong, then the peak intensity of the effective echo pulse sequences should also show a trend of strong, weak, and strong changes.
  • the pulse widths of the multiple pulse sequences transmitted by this channel should also be the same. If the pulse widths of the multi-pulse sequences transmitted by this channel are different, such as a combination of wide, narrow, and wide, the pulse width of the effective echo pulse sequence should also show a trend of wide, narrow, and wide changes.
  • step S104 when the effective echo pulse sequence is interfered, the time interval coding is adjusted in the next transmission according to the distribution of the interference signal in the radar echo.
  • the interference of the lidar comes from two aspects.
  • the mutual interference between the channels of the lidar itself emits light at the same time.
  • the transmitted signal of channel A is highly reflected. After the board is reflected, it may illuminate other channels working at the same time (that is, optical crosstalk occurs).
  • channel B working at the same time as an example, in addition to receiving echo pulses from its own channel, channel B also receives echo pulses from channel A.
  • the pulses received by channel B will be stacked, resulting in inaccurate ranging and reflectivity, or even complete loss of detection; on the other hand, it comes from the outside world, such as interference from other lidars or similar wavelengths used by lidars. of other products luminous interference.
  • the invention adjusts the time interval coding in the next transmission, so that the effective echo pulse sequence is located in the time period outside the distribution of the interference signal, so as to avoid relatively fixed and regular interference Signal.
  • step S102 further includes: extracting multiple echo pulse signals whose peak intensity is greater than an intensity threshold in the radar echo; when the time of the multiple echo pulse signals When the interval matches the time interval of the transmission pulse sequence, the multiple echo pulse signals are regarded as valid echo pulse sequences corresponding to the transmission pulse sequence.
  • the interfering signals in the radar echo include: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo remove the echo pulse signals of the effective echo pulse sequence, and the interfered pulses in the effective echo pulse sequence .
  • the full-wave waveform of the radar echo is obtained by sampling an analog-to-digital converter (ADC), and by setting an intensity threshold, the radar echoes whose peak intensity is greater than the intensity threshold are screened out.
  • ADC analog-to-digital converter
  • Multiple echo pulse signals The time interval of the three echo pulse signals circled in the figure matches the time interval of the transmit pulse sequence, and the three echo pulse signals are regarded as an effective echo pulse sequence corresponding to the transmit pulse sequence.
  • the effective echo pulse sequences ie, the three echo pulse signals circled in the figure
  • the remaining echo pulse signals ie, the The echo pulse signal indicated by the dotted arrow in 5
  • the disturbing signal in the radar echo also includes: the disturbed pulse in the effective echo pulse sequence (the echo pulse signal indicated by the solid arrow in FIG. 5 ).
  • step S102 further includes: calculating the difference between the time interval of the multiple echo pulse signals and the time interval of the transmitted pulse sequence, when the difference value is less than the first When there is a tolerance threshold, the plurality of echo pulse signals are regarded as valid echo pulse sequences corresponding to the transmitted pulse sequence.
  • the matching of coding features is usually set with a certain tolerance, and the tolerance corresponds to the confidence.
  • the tolerance needs to be reduced.
  • the laser of channel A of the lidar emits three laser pulses with time interval coding
  • the expression of the tolerance is:
  • the difference value, code12 represents the corresponding initial setting value, that is, the difference between the leading edge moments of the first and second transmit pulses in the transmit pulse sequence.
  • the time interval of the multiple echo pulse signals is the same as the time interval of the transmitted pulse sequence, that is, the calculation result is within the confidence interval.
  • the multiple echo pulse signals are extracted as a valid echo pulse sequence corresponding to the transmitted pulse sequence.
  • the calculation method of the tolerance is not unique.
  • the calculation is performed by comparing the pulse front time in the multiple echo pulses with the pulse front time of the transmitted pulse as described above, or by comparing the pulse front time of the multiple echo pulses.
  • the pulse front edge is calculated by comparing the time determined after correction with the pulse width and the pulse front edge time of the transmitted pulse, which are all within the protection scope of the present invention.
  • the control method 10 for a lidar further includes: when the radar echo includes an echo pulse signal with a peak intensity greater than an intensity threshold and does not include a valid echo pulse sequence corresponding to the transmit pulse sequence , and adjust the time interval coding in the next transmission.
  • the channel reconfigures the time interval coding to try to avoid strong interference.
  • step S103 further includes: according to the pulse width characteristics of multiple pulses in the effective echo pulse sequence and the pulse width characteristics of multiple pulses in the transmit pulse sequence determine whether the effective echo pulse sequence is disturbed; and/or, according to the similarity between the peak intensity characteristics of multiple pulses in the effective echo pulse sequence and the peak intensity characteristics of multiple pulses in the transmitted pulse sequence , to determine whether the effective echo pulse sequence is disturbed.
  • the laser of channel A of the lidar emits three laser pulses with time interval coding, and the pulse widths of the emitted pulse sequence are: w1', w2', w3 ', the peak intensity is as follows: h1', h2', h3'.
  • the detector of channel A receives the radar echo, and obtains an effective echo pulse sequence through intensity threshold screening and time interval coding matching.
  • the pulse width of the effective echo pulse sequence is: w1, w2, w3
  • the peak intensity is as follows: h1, h2, h3.
  • step S103 further includes: when the pulse width of the multiple pulses in the effective echo pulse sequence is relative to the pulse width of the multiple pulses in the emission pulse sequence When the difference is greater than the second tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the relative difference of the pulse widths.
  • the laser of channel A of the lidar transmits three laser pulses with equal pulse widths, that is, the ratio of the pulse widths of the transmitted pulse sequence is 1:1:1.
  • the ratio of the pulse width of the echo pulse sequence should be consistent with the transmit pulse sequence, that is, it is still 1:1:1 (usually it is considered that a transmit pulse of e.g. 3 pulses are reflected from the same point).
  • Calculate the ratio of the pulse widths of the effective echo pulse sequence and calculate the difference between the pulse width ratios. If the difference (tolerance) of the pulse width ratios is greater than the second tolerance threshold, it is determined that the effective echo pulse sequence is disturbed.
  • the ratio of the pulse widths of the effective echo pulse sequences received by the detector of channel A is 1.2:1:1 (the difference between the pulse width ratios is 0.2, for example, the second tolerance threshold is preset to 0.1), it is considered that the The valid echo pulse train is disturbed, and the first echo pulse signal is the disturbed pulse.
  • the ratio of the pulse widths of the effective echo pulse sequences received by the detector of channel A is 1.2:1:1 (the difference between the pulse width ratios is 0.2, for example, the second tolerance threshold is preset to 0.1)
  • step S103 further includes: calculating the sum of absolute differences between the pulse widths of multiple pulses in the effective echo pulse sequence; when the sum of the absolute differences is greater than the second tolerance When the threshold value is reached, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference.
  • the laser of channel A of the lidar emits three laser pulses with the same pulse width, that is, the ratio of the pulse width of the emitted pulse sequence is 1:1:1.
  • where ⁇ width13 represents the pulse width difference between the first and third echo pulses, ⁇ width12 Indicates the pulse width difference between the first and second echo pulses, and sets the second tolerance threshold. If
  • the tolerance can also be further corrected by other pulse characteristics such as peak intensity. For example, when the peak intensity is low, the second tolerance threshold can be increased corresponding to the distance measurement is farther, and when the peak intensity is high, the second tolerance threshold can be decreased corresponding to the distance measurement is closer.
  • step S103 further includes: when the peak intensity peak intensity of multiple pulses in the effective echo pulse sequence is the same as the peak intensity of multiple pulses in the transmit pulse sequence When the relative difference of peak intensity is greater than the third tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the relative difference of peak intensity and peak intensity.
  • the laser of channel A of the lidar emits three laser pulses with equal peak intensities, that is, the ratio of the peak intensities of the emission pulse sequence is 1:1:1.
  • the ratio of the peak intensity of the echo pulse sequence should be consistent with the transmit pulse sequence, that is, still 1:1:1. Calculate the ratio of the peak intensity of the effective echo pulse sequence, and calculate the difference between the peak intensity ratios. If the difference (tolerance) of the peak intensity ratio is greater than the third tolerance threshold, it is determined that the effective echo pulse sequence is disturbed.
  • the ratio of the peak intensities of the valid echo pulse sequence received by the detector of channel A is 1:1.2:1 (the difference between the peak intensity ratios is 0.2, for example, the third tolerance threshold is preset to 0.15), it is considered valid
  • the echo pulse train is disturbed, and the second echo pulse signal is the disturbed pulse.
  • multiple echo pulse signals are interfered at the same time, and the possibility of the same deviation value is low.
  • step S103 further includes: calculating the sum of absolute differences between the peak intensities of multiple pulses in the effective echo pulse sequence; when the sum of absolute differences is greater than the third tolerance When the threshold value is reached, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference.
  • the laser of channel A of the lidar emits three laser pulses with equal peak intensities, that is, the ratio of the peak intensities of the emitted pulse sequence is 1:1:1.
  • represents the peak intensity difference between the first and third echo pulses
  • ⁇ height12 Indicates the peak intensity difference between the first and second echo pulses, and sets a third tolerance threshold. If
  • the pulse widths and peak intensities of the laser emission pulses of channel A are all equal. It is also feasible to judge the interference signal in the radar echo according to the similarity of the changing trend, and these solutions are all within the protection scope of the present invention.
  • step S104 further includes: according to the distribution of the interference signal in the radar echo, adjusting the time interval coding in the next transmission, so that the multi-pulse of the next transmission is The sequence of valid echo pulses produced by the sequence lies outside the time period of the interfering signal.
  • the laser of channel A of the lidar emits a multi-pulse sequence with time interval coding, if the interfering signal in the radar echo comes from the transmit pulses of other channels (eg channel B) of the lidar by the target
  • the transmit pulses of other channels eg channel B
  • the distance of the target usually does not change much, so the interference signal generated by channel B’s light emission is distributed in the radar echo.
  • the time period is relatively fixed. By adjusting the time interval coding of the transmission pulse sequence of channel A in the next transmission, the effective echo pulse sequence can be distributed in the time period other than the interference signal, that is, the interference caused by the light emission of other channels (such as channel B) can be effectively avoided.
  • the time segment of the radar echo with the interference moment removed is taken as the “preferred coding time segment”.
  • “Preferred” means: in the next working cycle (eg, the lidar turns to the next horizontal angle), when the effective echo pulse sequence falls in this time segment, the probability of being disturbed will be greatly reduced.
  • the time segment of the interfering moment includes both weak interfering signals, which are identifiable only by code matching, and disturbed pulses in the valid echo pulses, which contain strong interfering signals superimposed on the echo pulses.
  • step S104 further includes: transmitting a multi-pulse sequence with a preset time delay in the next transmission according to the distribution of interference signals in the radar echo.
  • the time interval coding is performed again in the "preferred coding time segment".
  • the specific operation method is as follows: First, select a time segment with a larger time interval (the width of the echo pulse that can accommodate the emission of the first laser pulse signal, as shown in Fig. 8, it is preferable to encode the segment in the time segment 1), set a time delay ⁇ T when transmitting the signal, so that the echo pulse of the first laser pulse signal falls within the segment 1, and the echo pulses of the second laser pulse signal and the third laser pulse signal fall within the segment. 2 inside.
  • transmitting a multi-pulse sequence through a preset time delay is also a kind of time interval encoding in a broad sense, that is, by setting the time interval encoding as a pulse sequence of ( ⁇ T, a1', a2'), so that the transmitted pulses are
  • the echo pulse sequence of the sequence is located in the preferred coding time segment, that is, the effective echo pulse sequence is distributed in the time segment other than the interfering signal, and the interfering signal in the radar echo is effectively avoided.
  • step S104 further includes: adjusting the time interval coding during the next transmission, so that the effective echo pulse sequence generated by the multi-pulse sequence of the next transmission is located in the interference signal other time periods.
  • the radar echo of the actual transmitted pulses (for example, three pulses, the time interval between pulses is a1', a2') is shown in the figure As shown in Fig. 9, the effective echo pulse sequence effectively avoids the interfering signal.
  • the receiving time should remove the preset time delay ⁇ T.
  • the new coding feature ( ⁇ T, a1', a2') is not a unique solution, as long as it meets the requirement of avoiding the time period of the interference signal.
  • the setting of time interval coding is adjusted in the next transmission, including modifying one, or two, or three of the coding features ( ⁇ T, a1', a2'), but not necessarily three. Adjust at the same time.
  • the present invention further provides a lidar 100, including:
  • a transmitting unit 110 configured to transmit multi-pulse sequences encoded at time intervals
  • a receiving unit 120 configured to receive radar echoes
  • the signal processing unit 130 coupled to the transmitting unit 110 and the receiving unit 120 respectively, is configured as:
  • the radar echo includes an effective echo pulse sequence corresponding to the multi-pulse sequence, according to the pulse characteristics of the effective echo pulse sequence, determine whether the effective echo pulse sequence is disturbed;
  • the time interval coding is adjusted in the next transmission.
  • the lidar 100 further includes:
  • an analog-to-digital conversion unit configured to sample radar echoes and perform analog-to-digital conversion
  • the signal processing unit 130 is further configured to:
  • the multiple echo pulse signals are regarded as valid echo pulse sequences corresponding to the transmission pulse sequence;
  • the interference signal in the radar echo includes: multiple echo pulse signals whose peak intensity is greater than the intensity threshold in the radar echo removes the echo pulse signal of the effective echo pulse sequence, and the interfered pulse in the effective echo pulse sequence.
  • the signal processing unit 130 is further configured to:
  • the signal processing unit 130 is further configured to:
  • the time interval coding is adjusted in the next transmission.
  • the signal processing unit 130 is further configured to:
  • the similarity between the pulse width characteristics of the plurality of pulses in the effective echo pulse sequence and the pulse width characteristics of the plurality of pulses in the transmission pulse sequence determine whether the effective echo pulse sequence is disturbed; and/or
  • the signal processing unit 130 is further configured to:
  • the relative difference between the pulse widths of the plurality of pulses in the valid echo pulse sequence and the pulse widths of the plurality of pulses in the transmit pulse sequence is greater than the second tolerance threshold, it is determined that the valid echo pulse sequence is disturbed, and determining at least one disturbed pulse based on the relative difference in pulse width;
  • the relative difference between the peak intensities of the plurality of pulses in the effective echo pulse sequence and the peak intensities of the plurality of pulses in the transmit pulse sequence is greater than the third tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and At least one disturbed pulse is determined based on the relative difference in the peak intensities.
  • the signal processing unit 130 is further configured to:
  • the sum of the absolute difference values is greater than the second tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference value; and/or
  • the third tolerance threshold When the sum of the absolute difference values is greater than the third tolerance threshold, it is determined that the effective echo pulse sequence is disturbed, and at least one disturbed pulse is determined according to the absolute difference value.
  • the signal processing unit 130 is further configured to:
  • the time interval coding is adjusted in the next transmission, so that the effective echo pulse sequence generated by the multi-pulse sequence of the next transmission is located in the time period outside the interference signal.
  • the signal processing unit 130 is further configured to:
  • a multi-pulse sequence with a preset time delay is transmitted in the next transmission.
  • the preferred embodiment of the present invention provides a control method for a laser radar, which judges whether the laser radar is interfered by the consistency (or the expected degree) of the pulse characteristics of the effective echo pulse sequence; The distribution of interfering signals, adjust the settings of the time interval coding in the next transmission. After judging that the lidar has been interfered, use the uninterrupted time segment in the radar echo to re-set the encoding, in the next working cycle, it can effectively avoid relatively regular and fixed signal interference, thus improving the lidar's performance. detection performance. In addition, since the coding is set to be dynamic, it can avoid the complete loss of the radar echo signal caused by the effective signal being always under the influence of strong interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种激光雷达(100)的控制方法(10),包括:发射以时间间隔编码的多脉冲序列(S101);接收雷达回波,判断雷达回波中是否包括与多脉冲序列对应的有效回波脉冲序列(S102);当雷达回波中包括与多脉冲序列对应的有效回波脉冲序列时,根据有效回波脉冲序列的脉冲特征,判断有效回波脉冲序列是否受到干扰(S103);当有效回波脉冲序列受到干扰时,根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码(S104)。通过有效回波脉冲序列的脉冲特征的一致性(或者符合期望的程度),判断有效回波脉冲序列是否受到了干扰;根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码的设置。

Description

激光雷达的控制方法及激光雷达 技术领域
本发明涉及激光探测技术领域,尤其涉及一种激光雷达的控制方法及激光雷达。
背景技术
激光雷达通过主动发射信号脉冲,再接收物体反射回来的信号,通过时间、信号相位差等因素来确定探测物体的方位与距离。激光雷达的点频(由通道数、测远距离、分辨率、刷新率共同决定)达到一定程度以后,有可能出现在一个探测周期内,无法分配时间让每个通道依次工作的状况。举个例子:例如激光雷达为64通道(线),要求200m测远,刷新率(转速)10Hz,水平角分辨率0.2°。那么,根据飞行时间法d=c*t/2(d为距离,c为光速,t为飞行时间),200m测远光往返飞行时间为1.34us,转过水平角分辨率0.2°耗时55.6us,55.6/1.34=41.5,也就说在一个探测周期内最多只能发出41次光,因此64线的情况下必然有多个通道同时进行工作。如果在激光雷达线数更高、测远距离更远、分辨率更高、刷新率更高的情况下,那么同时工作的通道数会更多。要求多个通道同时进行工作,也就带来了激光雷达自身通道间互相干扰的问题。
而随着激光雷达的应用越来越普遍,激光雷达相遇的概率也大大增加。在同一空间同时工作的不同激光雷达之间,会存在互相干扰的情况。
此外,一些和激光雷达使用波长相近的其他激光产品,也有可能产生对激光雷达干扰的信号。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于现有技术的至少一个缺陷,本发明提供一种激光雷达的控制方法,包括:
S101:发射以时间间隔编码的多脉冲序列;
S102:接收雷达回波,判断所述雷达回波中是否包括与所述多脉冲序列对应的有效回波脉冲序列;
S103:当所述雷达回波中包括与所述多脉冲序列对应的有效回波脉冲序列时,根据所述有效回波脉冲序列的脉冲特征,判断所述有效回波脉冲序列是否受到干扰;
S104:当所述有效回波脉冲序列受到干扰时,根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码。
根据本发明的一个方面,其中步骤S102进一步包括:
提取所述雷达回波中峰值强度大于强度阈值的多个回波脉冲信号;
当所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔相匹配时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列;
所述雷达回波中的干扰信号包括:所述雷达回波中峰值强度大于所述强度阈值的多个回波脉冲信号去除所述有效回波脉冲序列的回波脉冲信号,以及所述有效回波脉冲序列中的受干扰脉冲。
根据本发明的一个方面,其中步骤S102进一步包括:
计算所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔之间的差值,当所述差值小于第一容差阈值时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列。
根据本发明的一个方面,进一步包括:
当所述雷达回波中包括峰值强度大于所述强度阈值的回波脉冲信号、且不包括与所述多脉冲序列对应的有效回波脉冲序列时,在下次发射时调整所述时间间隔编码。
根据本发明的一个方面,其中步骤S103进一步包括:
根据所述有效回波脉冲序列中的多个脉冲的脉冲宽度特征与所述多脉冲序列中的多个脉冲的脉冲宽度特征的相似度,判断所述有效回波脉冲序列是否受到干扰;和/或
根据所述有效回波脉冲序列中的多个脉冲的峰值强度特征与所述多脉冲序列中的多个脉冲的峰值强度特征的相似度,判断所述有效回波脉冲序列是否受到干扰。
根据本发明的一个方面,其中步骤S103进一步包括:
当所述有效回波脉冲序列中的多个脉冲的脉冲宽度与所述多脉冲序列中的多个脉冲的脉冲宽度的相对差值大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述脉冲宽度的相对差值确定至少一个受干扰脉冲。
根据本发明的一个方面,其中步骤S103进一步包括:
计算所述有效回波脉冲序列中的多个脉冲的脉冲宽度两两之间的绝对差值之和;
当所述绝对差值之和大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲。
根据本发明的一个方面,其中步骤S103进一步包括:
当所述有效回波脉冲序列中的多个脉冲的峰值强度与所述多脉冲序列中的多个脉冲的峰值强度的相对差值大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述峰值强度的相对差值确定至少一个受干扰脉冲。
根据本发明的一个方面,其中步骤S103进一步包括:
计算所述有效回波脉冲序列中的多个脉冲的峰值强度两两之间的绝对差值之和;
当所述绝对差值之和大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲。
根据本发明的一个方面,中步骤S104进一步包括:
根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于所述干扰信号以外的时间段。
根据本发明的一个方面,其中步骤S104进一步包括:
根据所述雷达回波中的干扰信号的分布,在下一次发射时发射具有预设时间延迟的多脉冲序列。
本发明还提供一种激光雷达,包括:
发射单元,配置成发射以时间间隔编码的多脉冲序列;
接收单元,配置成接收雷达回波;
信号处理单元,与所述发射单元、所述接收单元分别耦接,配置成:
判断所述雷达回波中是否包括与所述多脉冲序列对应的有效回波脉冲序列;
当所述雷达回波中包括与所述多脉冲序列对应的有效回波脉冲序列时,根据所述有效回波脉冲序列的脉冲特征,判断所述有效回波脉冲序列是否受到干扰;
当所述有效回波脉冲序列受到干扰时,根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码。
根据本发明的一个方面,还包括:
模拟数字转换单元,配置成对所述雷达回波采样并进行模数转换;
其中所述信号处理单元进一步配置成:
提取模数转换后的所述雷达回波中峰值强度大于强度阈值的多个回波脉冲信号;
当所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔相匹配时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列;
所述雷达回波中的干扰信号包括:所述雷达回波中峰值强度大于所述强 度阈值的多个回波脉冲信号去除所述有效回波脉冲序列的回波脉冲信号,以及所述有效回波脉冲序列中的受干扰脉冲。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
计算所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔之间的差值,当所述差值小于第一容差阈值时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
当所述雷达回波中包括峰值强度大于所述强度阈值的回波脉冲信号、且不包括与所述多脉冲序列对应的有效回波脉冲序列时,在下次发射时调整所述时间间隔编码。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
根据所述有效回波脉冲序列中的多个脉冲的脉冲宽度特征与所述多脉冲序列中的多个脉冲的脉冲宽度特征的相似度,判断所述有效回波脉冲序列中是否受到干扰;和/或
根据所述有效回波脉冲序列中的多个脉冲的峰值强度特征与所述多脉冲序列中的多个脉冲的峰值强度特征的相似度,判断所述有效回波脉冲序列中是否受到干扰。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
当所述有效回波脉冲序列中的多个脉冲的脉冲宽度与所述多脉冲序列中的多个脉冲的脉冲宽度的相对差值大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述脉冲宽度的相对差值确定至少一个受干扰脉冲;和/或
当所述有效回波脉冲序列中的多个脉冲的峰值强度与所述多脉冲序列中的多个脉冲的峰值强度的相对差值大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述峰值强度的相对差值确定至少一个受干扰脉冲。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
计算所述有效回波脉冲序列中的多个脉冲的脉冲宽度两两之间的绝对差值之和;
当所述绝对差值之和大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲;和/或
计算所述有效回波脉冲序列中的多个脉冲的峰值强度两两之间的绝对差值之和;
当所述绝对差值之和大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于所述干扰信号以外的时间段。
根据本发明的一个方面,其中所述信号处理单元进一步配置成:
根据所述雷达回波中的干扰信号的分布,在下一次发射时发射具有预设时间延迟的多脉冲序列。
本发明的优选实施例提供了一种激光雷达的控制方法,通过有效回波脉冲序列的脉冲特征的一致性(或者符合期望的程度),判断有效回波脉冲序列是否受到了干扰;根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码的设置。在判断有效回波脉冲序列受到了干扰以后,利用雷达回波中未受到干扰的时间片断重新进行编码设置,在下一个工作周期内,能够有效避开相对有规律、固定的信号干扰,从而提升了激光雷达的探测性能。此外,由于将编码设置为动态的,可以避免有效信号一直处于强干扰的影响之下,造成的雷达回波信号的完全丢失。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本 发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1示意性地示出了具有时间间隔编码的发射信号与雷达回波中的干扰信号的分布;
图2示出了根据本发明的一个优选实施例的激光雷达的控制方法;
图3示意性地示出了具有时间间隔编码的发射信号及其反射回波的识别;
图4示意性地示出了根据本发明的一个优选实施例发射具有时间间隔编码的多脉冲序列及其脉冲特征;
图5示意性地示出了根据本发明的一个优选实施例从雷达回波中提取有效回波脉冲序列;
图6示意性地示出了根据本发明的一个优选实施例有效回波脉冲序列的脉冲特征;
图7示意性地示出了根据本发明的一个优选实施例的优选编码时间片段;
图8示意性地示出了根据本发明的一个优选实施例的优选编码时间片段;
图9示意性地示出了根据本发明的一个优选实施例的在优选编码时间片段内重新编码;
图10示意性地示出了根据本发明的一个优选实施例的激光雷达。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的 方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的实施例进行说明,应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
为了抑制激光雷达受到的干扰,比较常见的一种方法是采用信号编码的方法:即采用多个光脉冲作为一组信号,光脉冲之间具备特定的时间间隔作为编码,使用编码特征来识别通道,从而识别属于自己通道的信号。这种方法可以在一定程度上解决干扰问题,但是这种方法不够灵活有效,当激光雷达受到较强的干扰,例如干扰信号的脉冲刚好和正常信号的脉冲相叠加时,仍旧会呈现精度、反射率、抑噪等性能降低,甚至探测完全丢失的情况,如图1所示。图1中示出了激光雷达的通道A(通常包括相对应的一个激光器和一个探测器)发射信号采用三脉冲编码的示例,三脉冲间的时间间隔为(a1,a2),当接收信号(即通道A的探测器接收到的雷达回波去除峰值强度低于强度阈值的脉冲后的结果)为“接收信号1”时,其中干扰信号1的脉冲与本通道发射信号被外界障碍物反射的脉冲无交叠,根据编码特征匹配可识别出有效回波脉冲序列(编码特征相同的一组脉冲)并准确获知距离。当接收信号为“接收信号2”时,其中干扰信号2的脉冲与本通道发射信号被外界障碍物反射的脉冲相叠加(强干扰),雷达回波中的第2个脉冲是本通道发射信号被外界障碍物反射的回波与干扰信号叠加而形成的,叠加后仍被视为一个脉冲。根据编码特征匹配(编码特征匹配通常有一定的容差)同样可以识别为有效回波脉冲序列,但由于有效回波脉冲序列中的第1个回波脉冲的脉冲宽度(或脉冲前沿)发生变化,会导致测距不准、反射率异常等情况。上述干扰脉冲可能来自雷达的其他通道,也可能来自其他雷达或和激光雷达使用波长相近的其他激光产品。
本发明的优选实施例提供一种激光雷达的控制方法,根据多脉冲信号的一致性特征,分析雷达回波中的有效回波脉冲序列是否受到干扰,在判断其受到干扰以后,令激光雷达主动采取措施,通过避让干扰源的方式,来解决激光雷达的信号干扰问题。
根据本发明的一个优选实施例,如图2所示,本发明提供一种激光雷达的控制方法10,包括步骤S101至步骤S104。
在步骤S101中,发射以时间间隔编码的多脉冲序列。激光雷达的通道A的激光器发射具有时间间隔编码的多脉冲序列,该多脉冲序列中可以包含第1激光脉冲,第2激光脉冲……第N激光脉冲,多个激光脉冲具有时序关系,例如第2激光脉冲与第1激光脉冲之间具有时间间隔a1,第3激光脉冲与第2激光脉冲之间具有时间间隔a2……第N激光脉冲与第N-1激光脉冲之间具有时间间隔aN-1。上述时间间隔表述了发射脉冲序列的时序关系。
在步骤S102中,接收雷达回波,判断雷达回波中是否包括与该多脉冲序列对应的有效回波脉冲序列。
如图3所示,激光雷达的通道A的激光器发射具有时间间隔编码的多脉冲序列,该多脉冲序列包含第1激光脉冲,第2激光脉冲和第3激光脉冲,其中第2脉冲与第1激光脉冲之间具有时间间隔a1,第3激光脉冲与第2激光脉冲之间具有时间间隔a2。在探测区域内,上述脉冲信号会在目标物上发生反射并产生回波信号。回波信号的脉冲序列间隔会与发射脉冲序列的间隔相同。也就是说,可以利用激光脉冲的回波与发射信号具有相同时序特性的特点,通过比对发射脉冲与接收脉冲的脉冲序列来判断雷达回波是否包括该通道发射脉冲的反射回波。
通道A的探测器接收到的雷达回波去除峰值强度低于强度阈值的脉冲后,从第1个回波脉冲起依次提取出与发射的多脉冲序列包含相同数量脉冲(此处为3个)的接收脉冲序列,其中通道A的探测器接收到的雷达回波是指通道A的探测器在读取时间窗口内接收到的全部信号。当提取出的接收脉冲序列是如图3中①中所示的情形时,该接收脉冲序列中多个回波脉冲信号具有时间间隔(a1,a2),也就是说,该多个回波脉冲信号与发射的多脉冲序列的时序相同,将该多个回波脉冲信号判断为发射的多脉冲序列对应的有效回波脉冲序列,并提取该信号所携带的信息。当提取出的接收脉冲序列是如图3中②所示的情形时,该接收脉冲序列中多个回波脉冲信号具有时间间隔(b1,b2),也就是说,该多个回波脉冲信号与发射的多脉冲序列的时序不同,其并不是发射的多脉冲序列(a1,a2)的回波,则继续从第2个回波脉冲开始进 行搜索,直至找到发射的多脉冲序列(a1,a2)的回波,或雷达回波中所有回波脉冲搜索完毕仍未找到有效回波脉冲序列。
在步骤S103中,当雷达回波中包括与多脉冲序列对应的有效回波脉冲序列时,根据该有效回波脉冲序列的脉冲特征,判断有效回波脉冲序列是否受到干扰。
根据本发明的一个优选实施例,如图4所示,激光雷达的通道A的激光器发射具有时间间隔编码(a1,a2)的三个激光脉冲,该发射脉冲序列的脉冲特征包括:其中每个脉冲的脉冲宽度依次为:w1'、w2'和w3',每个脉冲的峰值强度依次为:h1'、h2'和h3'。
通道A的探测器接收的有效回波脉冲序列的脉冲特征,包括多个脉冲的峰值强度和/或脉冲宽度的变化趋势,通过分析有效回波脉冲序列中脉冲特征的一致性,来判断有效回波脉冲序列是否受到干扰。理论上,本通道筛选出来的有效回波脉冲序列应该是由本通道主动发光引起的,那么,有效回波脉冲序列中的多个脉冲的脉冲特征(包括但不限于峰值强度、脉冲宽度)应该是可以预期的。由于有效回波脉冲序列中的多个脉冲都受到同样干扰的概率很低,基本可以忽略不计,通过分析有效回波脉冲序列中的多个脉冲的脉冲特征与预期是否一致,可以判断该有效回波脉冲序列是否受到了干扰。例如,如果本通道发射的多脉冲序列的峰值强度是相同的,那么,有效回波脉冲序列中的多个脉冲的峰值强度也应该是一致的。如果本通道发射的多脉冲序列的峰值强度不同,例如是强、弱、强的组合,那么有效回波脉冲序列的峰值强度也应该呈现强、弱、强的变化趋势。又例如,如果本通道发射的多脉冲序列的脉冲宽度是相同的,那么,有效回波脉冲序列中的多个脉冲的脉冲宽度也应该是一致的。如果本通道发射的多脉冲序列的脉冲宽度不同,例如是宽、窄、宽的组合,那么有效回波脉冲序列的脉冲宽度也应该呈现宽、窄、宽的变化趋势。
在步骤S104中,当有效回波脉冲序列受到干扰时,根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码。
激光雷达受到的干扰来自两个方面,一方面是激光雷达自身同时发光的通道之间的相互干扰,例如同时工作的多个通道遇到近处的高反板时,通道A发射信号被高反板反射后可能会照亮同时工作的其他通道(即发生光串扰),以同时工作的通道B为例,通道B除接收到自身通道的回波脉冲还会接收到通道A的回波脉冲,此时通道B接收的脉冲会发生堆叠,导致测距、反射率不准,甚至探测完全丢失的情况;另一方面是来自于外界,比如其他激光雷达发光的干扰或者和激光雷达使用的波长相近的其他产品发光的干扰。本发明根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码,以使得有效回波脉冲序列位于干扰信号分布以外的时间段内,以避开相对固定的、有规律的干扰信号。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S102进一步包括:提取雷达回波中峰值强度大于强度阈值的多个回波脉冲信号;当该多个回波脉冲信号的时间间隔与发射脉冲序列的时间间隔相匹配时,将该多个回波脉冲信号作为与发射脉冲序列对应的有效回波脉冲序列。其中,雷达回波中的干扰信号包括:雷达回波中峰值强度大于强度阈值的多个回波脉冲信号去除有效回波脉冲序列的回波脉冲信号,以及有效回波脉冲序列中的受干扰脉冲。
如图5所示,根据本发明的一个优选实施例,通过模拟数字转换器(ADC)采样得到雷达回波的全波波形,通过设置强度阈值,筛选出雷达回波中峰值强度大于强度阈值的多个回波脉冲信号。其中,图中圈选中的三个回波脉冲信号的时间间隔与发射脉冲序列的时间间隔相匹配,将这三个回波脉冲信号作为与发射脉冲序列对应的一个有效回波脉冲序列。如图5所示,通过强度阈值筛选出的多个回波脉冲信号中,去除有效回波脉冲序列(即图中圈选中的三个回波脉冲信号),其余的回波脉冲信号(即图5中虚线箭头所指的回波脉冲信号)为雷达回波中的干扰信号;根据本发明的判断方法(后文将详细介绍),可以判断出有效回波脉冲序列是否受到干扰,并确定至少一个受干扰脉冲,雷达回波中的干扰信号还包括:有效回波脉冲序列中的受干扰脉冲(图 5中实线箭头所指的回波脉冲信号)。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S102进一步包括:计算多个回波脉冲信号的时间间隔与发射脉冲序列的时间间隔之间的差值,当差值小于第一容差阈值时,将该多个回波脉冲信号作为与发射脉冲序列对应的有效回波脉冲序列。
编码特征的匹配通常设置有一定的容差,容差和置信度相对应,容差越大,置信度越低;要提高置信度,则需要降低容差。在置信区间内,设置容差阈值,再根据容差阈值筛选出有效回波脉冲序列。根据本发明的一个优选实施例,激光雷达的通道A的激光器发射具有时间间隔编码的三个激光脉冲,则容差的表达式为:|ΔFront13-code13|+|ΔFront12-code12|,该式中ΔFront13表示选出的雷达回波中峰值强度大于强度阈值的3个回波脉冲信号中,第1个和第3个回波脉冲的脉冲前沿时刻的差值,code13表示对应的初始设定值,即发射脉冲序列中,第1个和第3个发射脉冲的脉冲前沿时刻的差值;ΔFront12表示上述的3个回波脉冲信号中,第1个和第2个回波脉冲的脉冲前沿时刻的差值,code12表示对应的初始设定值,即发射脉冲序列中,第1个和第2个发射脉冲的前沿时刻的差值。当计算所得容差小于容差阈值时,认为该多个回波脉冲信号的时间间隔与发射脉冲序列的时间间隔相同,即计算结果处于置信区间内。提取该多个回波脉冲信号作为与发射脉冲序列相对应的一个有效回波脉冲序列。
本领域技术人员容易理解,容差的计算方法不唯一,通过如上文所述的多个回波脉冲中的脉冲前沿时刻与发射脉冲的脉冲前沿时刻对比进行计算,或者通过多个回波脉冲中的脉冲前沿并结合脉冲宽度进行修正后确定的时刻与发射脉冲的脉冲前沿时刻对比进行计算,这些均在本发明的保护范围之内。
根据本发明的一个优选实施例,激光雷达的控制方法10进一步包括:当雷达回波中包括峰值强度大于强度阈值的回波脉冲信号、且不包括与发射脉冲序列对应的有效回波脉冲序列时,在下次发射时调整时间间隔编码。
如果存在峰值强度大于强度阈值的回波脉冲信号,但是没有筛选出与发 射脉冲序列相对应的有效回波脉冲序列,那么很可能是该通道受到了较强的干扰,在下一工作周期(例如激光雷达转到下一个水平角度时),该通道重新配置时间间隔编码以尝试避开强干扰。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S103进一步包括:根据有效回波脉冲序列中的多个脉冲的脉冲宽度特征与发射脉冲序列中的多个脉冲的脉冲宽度特征的相似度,判断该有效回波脉冲序列是否受到干扰;和/或,根据有效回波脉冲序列中的多个脉冲的峰值强度特征与发射脉冲序列中的多个脉冲的峰值强度特征的相似度,判断该有效回波脉冲序列是否受到干扰。
根据本发明的一个优选实施例,如图4所示,激光雷达的通道A的激光器发射具有时间间隔编码的三个激光脉冲,该发射脉冲序列的脉冲宽度依次为:w1'、w2'、w3',峰值强度依次为:h1'、h2'、h3'。如图6所示,通道A的探测器接收雷达回波,通过强度阈值筛选、时间间隔编码匹配,获得有效回波脉冲序列,该有效回波脉冲序列的脉冲宽度依次为:w1、w2、w3,峰值强度依次为:h1、h2、h3。
将脉冲宽度w1、w2、w3作为整体特征,与w1'、w2'、w3'作为整体特征(趋势)进行比较,根据整体特征(趋势)的相似程度判断该有效回波脉冲序列是否受到干扰;和/或,将峰值强度h1、h2、h3作为整体特征,与h1'、h2'、h3'作为整体特征(趋势)进行比较,根据整体特征(趋势)的相似程度判断该有效回波脉冲序列是否受到干扰。
本领域技术人员容易理解,可以根据某一项脉冲特征的相似程度判断有效回波脉冲序列是否受到干扰,也可以根据多项脉冲特征的相似程度,综合比较结果,进而判断有效回波脉冲是否受到干扰。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S103进一步包括:当有效回波脉冲序列中的多个脉冲的脉冲宽度与发射脉冲序列中的多个脉冲的脉冲宽度的相对差值大于第二容差阈值时,判定该有效回波脉冲序列受到干扰,并根据脉冲宽度的相对差值确定至少一个受干扰脉冲。
根据本发明的一个优选实施例,激光雷达的通道A的激光器发射脉冲宽度相等的三个激光脉冲,即发射脉冲序列的脉冲宽度的比值为1:1:1。理论上,虽然回波脉冲相较于发射脉冲的脉冲宽度会存在展宽,但回波脉冲序列的脉冲宽度的比值应与发射脉冲序列保持一致,即仍为1:1:1(通常认为一次发射的例如3个脉冲是被同一点反射)。计算有效回波脉冲序列的脉冲宽度的比值,并计算脉冲宽度比值之差,若脉冲宽度比值之差(容差)大于第二容差阈值,则判定该有效回波脉冲序列受到了干扰。例如,通道A的探测器接收到的有效回波脉冲序列的脉冲宽度的比值为1.2:1:1(脉冲宽度比值之差为0.2,例如第二容差阈值预设为0.1),则认为该有效回波脉冲序列受到了干扰,且第一个回波脉冲信号为受干扰脉冲。通常情况下,多个回波脉冲信号同时受到干扰,且偏差值一致的可能性较低。
根据本发明的一个优选实施例,也可以通过脉冲宽度之差的绝对值判断回波的受干扰情况。激光雷达的控制方法10中,步骤S103进一步包括:计算有效回波脉冲序列中的多个脉冲的脉冲宽度两两之间的绝对差值之和;当该绝对差值之和大于第二容差阈值时,判定该有效回波脉冲序列受到了干扰,并根据该绝对差值确定至少一个受干扰脉冲。
激光雷达的通道A的激光器发射脉冲宽度相等的三个激光脉冲,即发射脉冲序列的脉冲宽度的比值为1:1:1。计算有效回波脉冲序列中,每两个脉冲宽度差值的绝对值之和:|Δwidth13|+|Δwidth12|,式中Δwidth13表示第1个和第3个回波脉冲的脉冲宽度差值,Δwidth12表示第1个和第2个回波脉冲的脉冲宽度差值,并设定第二容差阈值,若|Δwidth13|+|Δwidth12|在第二容差阈值以内,则认为未被干扰。若超出第二容差阈值,则认为受到了干扰,并根据脉冲宽度差值确定受干扰脉冲。也可以通过其他脉冲特征,如峰值强度等对容差进行进一步的校正。例如峰值强度较低时,相应于测距更远,可以增大第二容差阈值,峰值强度较高时,相应于测距更近,可以降低第二容差阈值。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S103 进一步包括:当有效回波脉冲序列中的多个脉冲的峰值强度峰值强度与发射脉冲序列中的多个脉冲的峰值强度峰值强度强度的相对差值大于第三容差阈值时,判定该有效回波脉冲序列受到干扰,并根据峰值强度峰值强度强度的相对差值确定至少一个受干扰脉冲。
根据本发明的一个优选实施例,激光雷达的通道A的激光器发射峰值强度相等的三个激光脉冲,即发射脉冲序列的峰值强度的比值为1:1:1。理论上,虽然回波脉冲相较于发射脉冲的峰值强度会存在衰减,但回波脉冲序列的峰值强度的比值应与发射脉冲序列保持一致,即仍为1:1:1。计算有效回波脉冲序列的峰值强度的比值,并计算峰值强度比值之差,若峰值强度比值之差(容差)大于第三容差阈值,则判定该有效回波脉冲序列受到了干扰。例如,通道A的探测器接收的有效回波脉冲序列的峰值强度的比值为1:1.2:1(峰值强度比值之差为0.2,例如第三容差阈值预设为0.15),则认为该有效回波脉冲序列受到了干扰,且第二个回波脉冲信号为受干扰脉冲。通常情况下,多个回波脉冲信号同时受到干扰,且偏差值一致的可能性较低。
根据本发明的一个优选实施例,也可以通过峰值强度之差的绝对值判断回波的受干扰情况。激光雷达的控制方法10中,步骤S103进一步包括:计算有效回波脉冲序列中的多个脉冲的峰值强度两两之间的绝对差值之和;当该绝对差值之和大于第三容差阈值时,判定该有效回波脉冲序列受到了干扰,并根据该绝对差值确定至少一个受干扰脉冲。
激光雷达的通道A的激光器发射峰值强度相等的三个激光脉冲,即发射脉冲序列的峰值强度的比值为1:1:1。计算有效回波脉冲序列中,每两个峰值强度差值的绝对值之和:|Δheight13|+|Δheight12|,式中Δheight13表示第1个和第3个回波脉冲的峰值强度差值,Δheight12表示第1个和第2个回波脉冲的峰值强度差值,并设定第三容差阈值,若|Δheight13|+|Δheight12|在第三容差阈值以内,则认为未被干扰。若超出第三容差阈值,则认为受到了干扰,并根据峰值强度差值确定受干扰脉冲。
本领域技术人员能够理解,为了简化叙述,上述实施例中,通道A的激 光器发射脉冲的脉冲宽度均相等、峰值强度均相等,实际应用中,发射脉冲特征具有一定变化趋势的多脉冲序列,在雷达回波中依据该变化趋势的相似程度进行干扰信号的判断,同样是可行的,这些方案都在本发明的保护范围之内。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S104进一步包括:根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于干扰信号以外的时间段。
根据本发明的一个优选实施例,激光雷达的通道A的激光器发射具有时间间隔编码的多脉冲序列,如果雷达回波中的干扰信号来自激光雷达的其他通道(例如通道B)的发射脉冲被目标物反射的回波,由于在下一个工作周期内(例如激光雷达转到下一个水平角度时),目标物的距离通常变化不大,因此通道B发光所产生的干扰信号在雷达回波中分布的时间段是相对固定的。通过调整下一次发射时通道A的发射脉冲序列的时间间隔编码,可以使有效回波脉冲序列分布在干扰信号以外的时间段,即有效地避开其他通道(例如通道B)发光造成的干扰。
根据本发明的一个优选实施例,如图7所示,当有效回波脉冲序列受到了干扰时,将雷达回波中,剔除了干扰时刻的时间片段作为“优选编码时间片段”。“优选”意味着:在下一个工作周期(例如激光雷达转到下一个水平角度),有效回波脉冲序列落在该时间片段时,受到干扰的概率会大大降低。干扰时刻的时间片段既包括了仅通过编码匹配就可识别的弱干扰信号又包括有效回波脉冲中受干扰脉冲,其包含了叠加到回波脉冲上的强干扰信号。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S104进一步包括:根据雷达回波中的干扰信号的分布,在下一次发射时发射具有预设时间延迟的多脉冲序列。
根据本发明的一个优选实施例,当有效回波脉冲序列受到了干扰时,在下一个工作周期,在“优选编码时间片段”内重新进行时间间隔编码。如图 8所示,具体的操作方法如下:首先选定时间区间较大的时间片段(可容置发射第1激光脉冲信号的回波脉冲的宽度,如图8中优选编码时间片段中的片段1),在发射信号时设置一时间延迟ΔT,使发射第1激光脉冲信号的回波脉冲落在片段1内,使发射第2激光脉冲信号及第3激光脉冲信号的回波脉冲落在片段2内。
本领域技术人员能够理解,通过预设时间延迟发射多脉冲序列,也是一种广义上的时间间隔编码,即通过设置时间间隔编码为(ΔT,a1',a2')的脉冲序列,使得发射脉冲序列的回波脉冲序列位于优选编码时间片段,即使得有效回波脉冲序列分布在干扰信号以外的时间段,有效地避开雷达回波中的干扰信号。
根据本发明的一个优选实施例,激光雷达的控制方法10中,步骤S104进一步包括:在下一次发射时调整时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于干扰信号以外的时间段。
根据本发明的一个优选实施例,在如图8所示的优选编码时间片段内重新编码后,实际发射脉冲(例如三脉冲,脉冲间时间间隔为a1',a2')的雷达回波如图9所示,有效回波脉冲序列有效避开了干扰信号。在实际计算距离时,接收时间应去掉预设时间延迟ΔT。新的编码特征(ΔT,a1',a2')非唯一解,只要满足避开干扰信号的时间段的要求即可。另外需要说明的时,在下一次发射时调整时间间隔编码的设置,包括修改编码特征(ΔT,a1',a2')中的一个,或者两个,或者三个均可,而并非一定需要三个同时调整。
根据本发明的一个优选实施例,如图10所示,本发明还提供一种激光雷达100,包括:
发射单元110,配置成发射以时间间隔编码的多脉冲序列;
接收单元120,配置成接收雷达回波;
信号处理单元130,与发射单元110、接收单元120分别耦接,配置成:
判断雷达回波中是否包括与该多脉冲序列对应的有效回波脉冲序列;
当雷达回波中包括与该多脉冲序列对应的有效回波脉冲序列时,根据该有效回波脉冲序列的脉冲特征,判断所该有效回波脉冲序列是否受到干扰;
当该有效回波脉冲序列受到干扰时,根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码。
根据本发明的一个优选实施例,激光雷达100还包括:
模拟数字转换单元,配置成对雷达回波采样并进行模数转换;
其中信号处理单元130进一步配置成:
提取模数转换后的雷达回波中峰值强度大于强度阈值的多个回波脉冲信号;
当该多个回波脉冲信号的时间间隔与发射脉冲序列的时间间隔相匹配时,将该多个回波脉冲信号作为与发射脉冲序列对应的有效回波脉冲序列;
雷达回波中的干扰信号包括:雷达回波中峰值强度大于强度阈值的多个回波脉冲信号去除该有效回波脉冲序列的回波脉冲信号,以及有效回波脉冲序列中的受干扰脉冲。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
计算该多个回波脉冲信号的时间间隔与发射脉冲序列的时间间隔之间的差值,当该差值小于第一容差阈值时,将该多个回波脉冲信号作为与发射脉冲序列对应的有效回波脉冲序列。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
当雷达回波中包括峰值强度大于强度阈值的回波脉冲信号、且不包括与发射脉冲序列对应的有效回波脉冲序列时,在下次发射时调整时间间隔编码。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
根据该有效回波脉冲序列中的多个脉冲的脉冲宽度特征与发射脉冲序列中的多个脉冲的脉冲宽度特征的相似度,判断该有效回波脉冲序列中是否受 到干扰;和/或
根据该有效回波脉冲序列中的多个脉冲的峰值强度特征与发射脉冲序列中的多个脉冲的峰值强度特征的相似度,判断该有效回波脉冲序列中是否受到干扰。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
当该有效回波脉冲序列中的多个脉冲的脉冲宽度与发射脉冲序列中的多个脉冲的脉冲宽度的相对差值大于第二容差阈值时,判定该有效回波脉冲序列受到干扰,并根据该脉冲宽度的相对差值确定至少一个受干扰脉冲;和/或
当该有效回波脉冲序列中的多个脉冲的峰值强度与发射脉冲序列中的多个脉冲的峰值强度的相对差值大于第三容差阈值时,判定该有效回波脉冲序列受到干扰,并根据该峰值强度的相对差值确定至少一个受干扰脉冲。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
计算有效回波脉冲序列中的多个脉冲的脉冲宽度两两之间的绝对差值之和;
当该绝对差值之和大于第二容差阈值时,判定该有效回波脉冲序列受到了干扰,并根据该绝对差值确定至少一个受干扰脉冲;和/或
计算有效回波脉冲序列中的多个脉冲的峰值强度两两之间的绝对差值之和;
当该绝对差值之和大于第三容差阈值时,判定该有效回波脉冲序列受到了干扰,并根据该绝对差值确定至少一个受干扰脉冲。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于干扰信号以外 的时间段。
根据本发明的一个优选实施例,激光雷达100中,信号处理单元130进一步配置成:
根据所述雷达回波中的干扰信号的分布,在下一次发射时发射具有预设时间延迟的多脉冲序列。
激光雷达100各个部件的工作过程在上文对控制方法10的介绍中已经进行了详细的阐释,在此不再赘述。
本发明的优选实施例提供了一种激光雷达的控制方法,通过有效回波脉冲序列的脉冲特征的一致性(或者符合期望的程度),判断激光雷达是否受到了干扰;根据雷达回波中的干扰信号的分布,在下一次发射时调整时间间隔编码的设置。在判断激光雷达受到了干扰以后,利用雷达回波中未受到干扰的时间片断重新进行编码设置,在下一个工作周期内,能够有效避开相对有规律、固定的信号干扰,从而提升了激光雷达的探测性能。此外,由于将编码设置为动态的,可以避免有效信号一直处于强干扰的影响之下,造成的雷达回波信号的完全丢失。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种激光雷达的控制方法,包括:
    S101:发射以时间间隔编码的多脉冲序列;
    S102:接收雷达回波,判断所述雷达回波中是否包括与所述多脉冲序列对应的有效回波脉冲序列;
    S103:当所述雷达回波中包括与所述多脉冲序列对应的有效回波脉冲序列时,根据所述有效回波脉冲序列的脉冲特征,判断所述有效回波脉冲序列是否受到干扰;
    S104:当所述有效回波脉冲序列受到干扰时,根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码。
  2. 如权利要求1所述的控制方法,其中步骤S102进一步包括:
    提取所述雷达回波中峰值强度大于强度阈值的多个回波脉冲信号;
    当所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔相匹配时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列;
    所述雷达回波中的干扰信号包括:所述雷达回波中峰值强度大于所述强度阈值的多个回波脉冲信号去除所述有效回波脉冲序列的回波脉冲信号,以及所述有效回波脉冲序列中的受干扰脉冲。
  3. 如权利要求2所述的控制方法,其中步骤S102进一步包括:
    计算所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔之间的差值,当所述差值小于第一容差阈值时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列。
  4. 如权利要求2或3所述的控制方法,进一步包括:
    当所述雷达回波中包括峰值强度大于所述强度阈值的回波脉冲信号、且不包括与所述多脉冲序列对应的有效回波脉冲序列时,在下次发射时调整所 述时间间隔编码。
  5. 如权利要求1-3中任一项所述的控制方法,其中步骤S103进一步包括:
    根据所述有效回波脉冲序列中的多个脉冲的脉冲宽度特征与所述多脉冲序列中的多个脉冲的脉冲宽度特征的相似度,判断所述有效回波脉冲序列是否受到干扰;和/或
    根据所述有效回波脉冲序列中的多个脉冲的峰值强度特征与所述多脉冲序列中的多个脉冲的峰值强度特征的相似度,判断所述有效回波脉冲序列是否受到干扰。
  6. 如权利要求5所述的控制方法,其中步骤S103进一步包括:
    当所述有效回波脉冲序列中的多个脉冲的脉冲宽度与所述多脉冲序列中的多个脉冲的脉冲宽度的相对差值大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述脉冲宽度的相对差值确定至少一个受干扰脉冲。
  7. 如权利要求5所述的控制方法,其中步骤S103进一步包括:
    计算所述有效回波脉冲序列中的多个脉冲的脉冲宽度两两之间的绝对差值之和;
    当所述绝对差值之和大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲。
  8. 如权利要求5所述的控制方法,其中步骤S103进一步包括:
    当所述有效回波脉冲序列中的多个脉冲的峰值强度与所述多脉冲序列中的多个脉冲的峰值强度的相对差值大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述峰值强度的相对差值确定至少一个受干扰脉 冲。
  9. 如权利要求5所述的控制方法,其中步骤S103进一步包括:
    计算所述有效回波脉冲序列中的多个脉冲的峰值强度两两之间的绝对差值之和;
    当所述绝对差值之和大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲。
  10. 如权利要求1-3中任一项所述的控制方法,其中步骤S104进一步包括:
    根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于所述干扰信号以外的时间段。
  11. 如权利要求10所述的控制方法,其中步骤S104进一步包括:
    根据所述雷达回波中的干扰信号的分布,在下一次发射时发射具有预设时间延迟的多脉冲序列。
  12. 一种激光雷达,包括:
    发射单元,配置成发射以时间间隔编码的多脉冲序列;
    接收单元,配置成接收雷达回波;
    信号处理单元,与所述发射单元、所述接收单元分别耦接,配置成:
    判断所述雷达回波中是否包括与所述多脉冲序列对应的有效回波脉冲序列;
    当所述雷达回波中包括与所述多脉冲序列对应的有效回波脉冲序列时,根据所述有效回波脉冲序列的脉冲特征,判断所述有效回波脉冲序列是否受到干扰;
    当所述有效回波脉冲序列受到干扰时,根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码。
  13. 如权利要求12所述的激光雷达,还包括:
    模拟数字转换单元,配置成对所述雷达回波采样并进行模数转换;
    其中所述信号处理单元进一步配置成:
    提取模数转换后的所述雷达回波中峰值强度大于强度阈值的多个回波脉冲信号;
    当所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔相匹配时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列;
    所述雷达回波中的干扰信号包括:所述雷达回波中峰值强度大于所述强度阈值的多个回波脉冲信号去除所述有效回波脉冲序列的回波脉冲信号,以及所述有效回波脉冲序列中的受干扰脉冲。
  14. 如权利要求13所述的激光雷达,其中所述信号处理单元进一步配置成:
    计算所述多个回波脉冲信号的时间间隔与所述多脉冲序列的时间间隔之间的差值,当所述差值小于第一容差阈值时,将所述多个回波脉冲信号作为与所述多脉冲序列对应的有效回波脉冲序列。
  15. 如权利要求13或14所述的激光雷达,其中所述信号处理单元进一步配置成:
    当所述雷达回波中包括峰值强度大于所述强度阈值的回波脉冲信号、且不包括与所述多脉冲序列对应的有效回波脉冲序列时,在下次发射时调整所述时间间隔编码。
  16. 如权利要求12-14中任一项所述的激光雷达,其中所述信号处理单元进一步配置成:
    根据所述有效回波脉冲序列中的多个脉冲的脉冲宽度特征与所述多脉冲序列中的多个脉冲的脉冲宽度特征的相似度,判断所述有效回波脉冲序列中是否受到干扰;和/或
    根据所述有效回波脉冲序列中的多个脉冲的峰值强度特征与所述多脉冲序列中的多个脉冲的峰值强度特征的相似度,判断所述有效回波脉冲序列中是否受到干扰。
  17. 如权利要求16所述的激光雷达,其中所述信号处理单元进一步配置成:
    当所述有效回波脉冲序列中的多个脉冲的脉冲宽度与所述多脉冲序列中的多个脉冲的脉冲宽度的相对差值大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述脉冲宽度的相对差值确定至少一个受干扰脉冲;和/或
    当所述有效回波脉冲序列中的多个脉冲的峰值强度与所述多脉冲序列中的多个脉冲的峰值强度的相对差值大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述峰值强度的相对差值确定至少一个受干扰脉冲。
  18. 如权利要求16所述的激光雷达,其中所述信号处理单元进一步配置成:
    计算所述有效回波脉冲序列中的多个脉冲的脉冲宽度两两之间的绝对差值之和;
    当所述绝对差值之和大于第二容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲;和/或
    计算所述有效回波脉冲序列中的多个脉冲的峰值强度两两之间的绝对差值之和;
    当所述绝对差值之和大于第三容差阈值时,判定所述有效回波脉冲序列受到干扰,并根据所述绝对差值确定至少一个受干扰脉冲。
  19. 如权利要求12-14中任一项所述的激光雷达,其中所述信号处理单元进一步配置成:
    根据所述雷达回波中的干扰信号的分布,在下一次发射时调整所述时间间隔编码,以使得下一次发射的多脉冲序列产生的有效回波脉冲序列位于所述干扰信号以外的时间段。
  20. 如权利要求19所述的激光雷达,其中所述信号处理单元进一步配置成:
    根据所述雷达回波中的干扰信号的分布,在下一次发射时发射具有预设时间延迟的多脉冲序列。
PCT/CN2021/138321 2021-04-27 2021-12-15 激光雷达的控制方法及激光雷达 WO2022227607A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237034093A KR20230155522A (ko) 2021-04-27 2021-12-15 레이저 레이더의 제어 방법 및 레이저 레이더
EP21939066.3A EP4332619A1 (en) 2021-04-27 2021-12-15 Control method for laser radar, and laser radar
DE112021007178.5T DE112021007178T5 (de) 2021-04-27 2021-12-15 Steuerverfahren für ein lidar und lidar
MX2023012644A MX2023012644A (es) 2021-04-27 2021-12-15 Metodo de control para el radar laser y el radar laser.
JP2023563890A JP2024514914A (ja) 2021-04-27 2021-12-15 レーザーレーダーの制御方法及びレーザーレーダー
US18/384,218 US20240159880A1 (en) 2021-04-27 2023-10-26 Control method for laser radar, and laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110461447.9 2021-04-27
CN202110461447.9A CN115248427A (zh) 2021-04-27 2021-04-27 激光雷达的控制方法及激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/384,218 Continuation US20240159880A1 (en) 2021-04-27 2023-10-26 Control method for laser radar, and laser radar

Publications (1)

Publication Number Publication Date
WO2022227607A1 true WO2022227607A1 (zh) 2022-11-03

Family

ID=83696970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138321 WO2022227607A1 (zh) 2021-04-27 2021-12-15 激光雷达的控制方法及激光雷达

Country Status (8)

Country Link
US (1) US20240159880A1 (zh)
EP (1) EP4332619A1 (zh)
JP (1) JP2024514914A (zh)
KR (1) KR20230155522A (zh)
CN (1) CN115248427A (zh)
DE (1) DE112021007178T5 (zh)
MX (1) MX2023012644A (zh)
WO (1) WO2022227607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877394A (zh) * 2022-12-29 2023-03-31 中国电子科技集团公司第三十八研究所 基于脉位调制技术的激光雷达测距方法及其测距系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108415028A (zh) * 2018-03-16 2018-08-17 深圳市砝石激光雷达有限公司 脉冲参数加密的激光测距系统及方法
CN108603932A (zh) * 2016-01-31 2018-09-28 威力登激光雷达有限公司 多脉冲的基于光探测和测距的三维成像
WO2020113559A1 (zh) * 2018-12-07 2020-06-11 深圳市大疆创新科技有限公司 一种测距系统及移动平台
US20200256954A1 (en) * 2019-02-07 2020-08-13 Analog Devices, Inc. Optical pulse coding in a lidar system
CN112014824A (zh) * 2019-05-31 2020-12-01 深圳市速腾聚创科技有限公司 一种多脉冲抗干扰信号处理方法及装置
CN112639527A (zh) * 2018-06-27 2021-04-09 上海禾赛科技股份有限公司 用于激光雷达系统的自适应编码

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603932A (zh) * 2016-01-31 2018-09-28 威力登激光雷达有限公司 多脉冲的基于光探测和测距的三维成像
CN108415028A (zh) * 2018-03-16 2018-08-17 深圳市砝石激光雷达有限公司 脉冲参数加密的激光测距系统及方法
CN112639527A (zh) * 2018-06-27 2021-04-09 上海禾赛科技股份有限公司 用于激光雷达系统的自适应编码
WO2020113559A1 (zh) * 2018-12-07 2020-06-11 深圳市大疆创新科技有限公司 一种测距系统及移动平台
US20200256954A1 (en) * 2019-02-07 2020-08-13 Analog Devices, Inc. Optical pulse coding in a lidar system
CN112014824A (zh) * 2019-05-31 2020-12-01 深圳市速腾聚创科技有限公司 一种多脉冲抗干扰信号处理方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877394A (zh) * 2022-12-29 2023-03-31 中国电子科技集团公司第三十八研究所 基于脉位调制技术的激光雷达测距方法及其测距系统
CN115877394B (zh) * 2022-12-29 2024-05-31 中国电子科技集团公司第三十八研究所 基于脉位调制技术的激光雷达测距方法及其测距系统

Also Published As

Publication number Publication date
KR20230155522A (ko) 2023-11-10
DE112021007178T5 (de) 2023-12-21
MX2023012644A (es) 2023-11-08
JP2024514914A (ja) 2024-04-03
US20240159880A1 (en) 2024-05-16
EP4332619A1 (en) 2024-03-06
CN115248427A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN110031822B (zh) 可用于激光雷达的噪点识别方法以及激光雷达系统
CN110749898B (zh) 一种激光雷达测距系统及其测距方法
CN107884780B (zh) 测距方法、激光雷达及车辆
CN110780306B (zh) 一种激光雷达抗干扰方法及激光雷达
US8363511B2 (en) Method and device for detection of surroundings
US10698110B2 (en) Laser scanning apparatus and method
US10126410B2 (en) Determination of an elevation misalignment angle of a radar sensor of a motor vehicle
US7474255B2 (en) Target tracking method of radar with frequency modulated continuous wave
US6856280B1 (en) Method and radar system for determining the directional angle of radar objects
KR102144668B1 (ko) 가변 파형을 이용하여 허위 타켓 판별하는 차량용 레이더 및 이를 이용한 허위 타겟 판별 방법
WO2022227607A1 (zh) 激光雷达的控制方法及激光雷达
US20130342382A1 (en) Target object detecting device and echo signal processing method
CN109669188B (zh) 多沿触发时间鉴别方法和脉冲式激光测距方法
US20230375682A1 (en) Methods and systems for lidar and lidar control
JP2015219120A (ja) 距離測定装置
CN114637021B (zh) 一种亚厘米级全波形激光雷达测距方法、装置
CN114488095A (zh) 用于激光雷达的诊断方法、激光雷达及计算机存储介质
KR101386640B1 (ko) 레이저 레이더 시스템의 고스트 영상 제거 방법
KR102551653B1 (ko) 능동 위상 배열 레이다의 신호 처리 장치 및 방법
WO2019157632A1 (zh) 测距系统、自动化设备及测距方法
JP5784422B2 (ja) レーダ装置、誘導装置及び目標追随方法
WO2023109042A1 (zh) 激光雷达的控制方法以及多通道激光雷达
KR102062899B1 (ko) 표적을 탐지하는 방법 및 장치
CN113341427B (zh) 测距方法、装置、电子设备及存储介质
KR102190875B1 (ko) 수신신호 보정방법, 수신신호 보정장치, 및 이를 구비하는 펄스 레이다

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237034093

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034093

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023563890

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012644

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112021007178

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2301007029

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2021939066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021939066

Country of ref document: EP

Effective date: 20231127