WO2022222635A1 - 显示模组的补偿方法、装置、电子设备和可读存储介质 - Google Patents

显示模组的补偿方法、装置、电子设备和可读存储介质 Download PDF

Info

Publication number
WO2022222635A1
WO2022222635A1 PCT/CN2022/080083 CN2022080083W WO2022222635A1 WO 2022222635 A1 WO2022222635 A1 WO 2022222635A1 CN 2022080083 W CN2022080083 W CN 2022080083W WO 2022222635 A1 WO2022222635 A1 WO 2022222635A1
Authority
WO
WIPO (PCT)
Prior art keywords
gamma
data
display area
display
debugging
Prior art date
Application number
PCT/CN2022/080083
Other languages
English (en)
French (fr)
Inventor
崔志佳
柏健
李豪凯
孙舟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022222635A1 publication Critical patent/WO2022222635A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present application relates to the field of display technology, and in particular, to a compensation method, device, electronic device and computer-readable storage medium for a display module.
  • the full-screen technology generally adopts the method of integrating the front camera under the screen.
  • the under-screen camera is to set the camera of the electronic device under the display screen to take pictures, and the under-screen camera can display the corresponding area on the display screen, so as to achieve a full-screen display.
  • a compensation method, apparatus, electronic device, and computer-readable storage medium for a display module are provided.
  • a compensation method for a display module the display module includes a first display area and a second display area, wherein the pixel density of the first display area is smaller than the pixel density of the second display area, the method include:
  • a compensation device for a display module the display module includes a first display area and a second display area, wherein the pixel density of the first display area is smaller than the pixel density of the second display area, the device include:
  • a gamma debugging module configured to respectively perform the first gamma debugging on the first display area and the second display area according to a preset gamma debugging strategy
  • the Mura compensation module is used to respectively perform the first Mura compensation on the first display area and the second display area after the first gamma adjustment;
  • a display acquisition module configured to separately acquire the first display information of the first display area and the second display information of the second display area after the first Mura compensation
  • a compensation module configured to perform gamma debugging and Mura compensation on the first display area again if the consistency of the first display information and the second display information does not meet a preset condition.
  • An electronic device comprising a display module, a memory and a processor, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the processor is made to execute the compensation method for the above-mentioned display module A step of.
  • a computer-readable storage medium on which a computer program is stored characterized in that, when the computer program is executed by a processor, the steps of the above-mentioned compensation method for a display module are implemented.
  • FIG. 1 is a schematic structural diagram of an electronic device including a display module in one embodiment
  • 2a-2b are schematic structural diagrams of display modules in different embodiments, respectively;
  • 3a-3e are respectively luminance distribution diagrams of the first display area of the display module
  • 4a-4c are schematic diagrams of the application environment of the conventional method for the display module, respectively;
  • FIG. 5 is a flowchart of a compensation method for a display module in one embodiment
  • FIG. 6 is a schematic diagram of the display changes of each display area during the debugging process of the compensation method of the display module in one embodiment
  • FIG. 7 is a flow chart of performing first gamma debugging on the first display area and the second display area respectively according to a preset gamma debugging strategy in one embodiment
  • FIG. 8 is a flowchart of respectively acquiring first gamma debugging data of the first display area and second gamma debugging data of the second display area according to a preset gamma debugging strategy in one embodiment
  • FIG. 9 is a flowchart of performing gamma adjustment and Mura compensation again on the first display area in one embodiment
  • FIG. 10 is a flow chart of performing a second gamma debugging on the first display area according to the first gamma test data, the target gamma data and the first gamma debugging data in one embodiment;
  • FIG. 11 is a schematic diagram of a gamma curve drawn based on each gamma parameter in one embodiment
  • 13 is a flowchart of updating the first gamma debugging data according to target weighted data in one embodiment
  • 15 is a schematic diagram of display changes of each display area during the debugging process of the compensation method of the display module in another embodiment
  • FIG. 16 is a structural block diagram of a compensation device of a display module in an embodiment.
  • first, second, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish a first element from another element.
  • a first display area may be referred to as a second display area, and similarly, a second display area may be referred to as a first display area, without departing from the scope of this application.
  • Both the first display area and the second display area are display areas, but they are not the same display area.
  • the compensation method for the display module can be applied to the display module.
  • the display module 100 can be integrated on the electronic device 10, wherein the electronic device 10 can be a smart phone, a tablet computer, a game device, an Augmented Reality (AR) device, a data storage device, an audio player Devices, video playback devices, notebooks, desktop computing devices, wearable devices such as watches, glasses, helmets, electronic bracelets, electronic necklaces, electronic clothing devices.
  • the electronic device 10 can be a smart phone, a tablet computer, a game device, an Augmented Reality (AR) device, a data storage device, an audio player Devices, video playback devices, notebooks, desktop computing devices, wearable devices such as watches, glasses, helmets, electronic bracelets, electronic necklaces, electronic clothing devices.
  • AR Augmented Reality
  • the electronic device is taken as an example of a mobile phone for illustration below.
  • the electronic device 10 includes a display device 100 , and the display device 100 includes a first display area 110 and a second display area 120 adjacent to each other.
  • the display device 100 may include a display panel, a driving chip, a driving circuit, and the like.
  • the display panel may be a liquid crystal panel (Liquid Crystal Display, LCD) panel, or may be an organic electro-optical laser display panel (Organic Light-Emitting Diode).
  • the driving circuit may include a plurality of signal lines, wherein the plurality of signal lines include a plurality of scan lines and a plurality of data lines.
  • the loads of the signal lines in the first display area are not completely the same. Specifically, the loads of the data lines in the first display area are not identical, and/or the loads of the scan lines in the first display area are not identical.
  • the load is not exactly the same, which may be caused by the wiring method and length of the signal lines, and may also be caused by the pixel size and the number of pixels connected by the signal lines. Exemplarily, as shown in FIGS.
  • the thin film transistor (Thin Film Transistor, TFT) external area (transition area) 101 to the first display area 110 is connected to the first display area 110 through metal wires (for example, ITO wires)
  • the light-emitting device in the display area 110 and the pixel driving circuit for driving the light-emitting device have long and short ITO wirings, which will cause the load of the first display area 110 to be different.
  • setting the under-screen structured light module at a position corresponding to the first display area 110 will also cause the load of the first display area 110 to be different.
  • the design of the first display area 110 using the narrow border technology will also cause the loads of the first display area 110 to be different.
  • the display brightness of the first display area 110 may cause uneven brightness, for example, the display brightness gradually becomes brighter/dimmer from the outside to the inside etc., as shown in Figures 3a-3e, wherein Figures 3a-3b correspond to the display module shown in Figure 2a, Figures 3c-3d correspond to the display module shown in Figure 2b, and Figure 3e corresponds to with other forms of display mods.
  • the display brightness of the first display area 110 and the second display area 120 may cause uneven brightness.
  • the shape of the first display area 110 may be a circle, a rectangle, an ellipse, a polygon, an irregular shape, etc., which is not limited in the present invention.
  • the electronic device 10 is provided with a photosensitive device 130 , wherein the photosensitive device 130 is at least partially disposed opposite to the first display area 110 .
  • the photosensitive device 130 realizes testing and control based on optical parameters by receiving light.
  • the photosensitive device 130 is disposed below the first display area 110 of the display device 20 , and the photosensitive device 130 is used to transmit and/or receive optical signals through the first display area 110 of the display device 20 .
  • the photosensitive device 130 may be an ambient light sensor, the ambient light sensor may sense the brightness of the environment where the electronic device is located, and the electronic device may adjust the luminous brightness of the display screen according to the ambient light brightness.
  • the photosensitive device 130 may be a camera module.
  • the photosensitive device 130 can also be an optical distance sensor, for example, an infrared sensor, a laser sensor, a proximity sensor, and a distance sensor. The optical distance sensor can receive the light reflected by the target object, so that the electronic device can determine the distance between the target object and the electronic device. distance.
  • the photosensitive device 130 can also be a structured light module, a time-of-flight (TOF) lens module, etc.
  • TOF time-of-flight
  • the lens module is provided with a plurality of sensors arranged in an array, and a complete sensor is formed according to the photosensitive results of each sensor. Image.
  • the photosensitive device 130 can also be an optical fingerprint sensor. By receiving the light intensity reflected from the finger, the optical fingerprint sensor can recognize the protrusions and depressions on the finger, thereby realizing fingerprint recognition. It should be noted that the above-mentioned various photosensitive devices 130 are only used for exemplary description, and are not used to specifically limit the protection scope of the present application.
  • an embodiment of the present application provides a compensation method for a display module, and the compensation method for a display module can be applied to the display module shown in FIGS. 4a-4c, wherein FIG. 4a shows the display module Below the first display area 110 of the group is a schematic diagram of the general state presented by the display module when a camera is correspondingly arranged.
  • FIG. 4b is a schematic diagram of the general state presented by the display module when the first display area 110 of the display module adopts the narrow border technology.
  • 4c is a schematic diagram of a display module in another embodiment, and these embodiments all present the problem that the brightness of the first display area 110 and the second display 120 are quite different.
  • FIG. 5 is a flowchart of a compensation method for a display module in one embodiment.
  • the compensation method for the display module in this embodiment includes steps 502 to 508 .
  • Step 502 respectively perform the first gamma debugging on the first display area and the second display area according to the preset gamma debugging strategy.
  • the preset grayscale binding point may be any grayscale among 0 grayscale, 1 grayscale, 2 grayscale, . . . , 255 grayscale.
  • the gamma debugging device can respectively perform the first gamma debugging on the first display area and the second display area according to the same preset gamma debugging strategy.
  • the gamma debugging device may use the same gamma debugging strategy to perform the first gamma debugging on the first display area and the second display area synchronously or asynchronously.
  • the gamma debugging device may also use different preset gamma debugging strategies to respectively perform the first gamma debugging on the first display area and the second display area.
  • the gamma debugging device may use different gamma debugging data to respectively perform the first gamma debugging on the first display area and the second display area.
  • the gamma debugging data can be used for burning into the driver chip of the display module, so as to realize the gamma debugging of the display module.
  • the gamma debugging data can be obtained according to information such as the default gamma curve, the target gamma curve, and the gamma test data after debugging based on the default gamma curve.
  • Step 504 respectively perform the first Mura compensation on the first display area and the second display area after the first gamma adjustment.
  • Mura compensation equipment for example, automatic optical inspection (AOI) equipment can perform Mura detection on the first display area and the second display area after the first gamma adjustment, and compensate and eliminate Mura after detecting Mura , namely Demura.
  • the Mura compensation device can program the debugging data of the first gamma debugging on the first display area and the second display area respectively into the driver chip of the display module, and control the display module to display several
  • the displayed image can be a grayscale image or an RGB image, and then the images displayed in the first display area and the second display area can be captured based on a high-resolution and high-precision CCD camera.
  • the Mura compensation device can extract the image features of the display screen to distinguish the first image displayed in the first display area and the second image displayed in the second display area, and analyze the first image and the second image.
  • the pixel color distribution characteristics are used to identify the Mura displayed in the first display area and the second display area, and then obtain the Demura data according to the Mura data and the corresponding Demura compensation algorithm to perform the first display area display and the second display area respectively.
  • the brightness of the first display area can be made uniform, or both brightness and chromaticity can be uniform; after the first gamma adjustment After the first Mura compensation is performed on the second display area, the brightness of the second display area can be made uniform, or both the brightness and the chromaticity can be uniform.
  • Step 506 respectively acquiring the first display information of the first display area and the second display information of the second display area after the first Mura compensation.
  • Burn the Demura data to the driver chip of the display module and import the display data corresponding to the set display screen under the preset grayscale binding point to the driver chip of the display module, so that the driver chip can drive the first display according to the display data
  • the first image corresponding to the preset grayscale binding point is displayed in the area, and the second display area is driven to display the second image corresponding to the same preset grayscale binding point.
  • an optical measuring device such as a color analyzer CA402, etc., may be used to collect the first display information of the test area in the first display area and the second display information of the test area in the second display area.
  • the center point of the lens of the optical measuring device can be aligned with the center point of the test area, so as to obtain the display information of each test area more accurately. It should be noted that the detection area of the optical measuring device lens is smaller than the display area of the first display area.
  • both the first display information and the second display information may include at least one of luminance information and chrominance information.
  • the attributes of the information included in the first display information and the second display information are the same.
  • both the first display information and the second display information include the attribute of luminance information, or, both the first display information and the second display information include the attribute of chrominance information, or, the first display information and the second Display information includes two attributes, luminance information and chrominance information.
  • Step 508 If the consistency between the first display information and the second display information does not meet the preset condition, perform gamma debugging and Mura compensation on the first display area again.
  • an optical measuring device can be used to analyze the difference between the first display information and the second display information, so as to obtain whether the consistency of the first display information and the second display information satisfies a preset condition.
  • the first display information and the second display information are both luminance information as an example for description.
  • the optical testing device may obtain the first brightness of the first display area and the second brightness of the second display area, respectively, and compare the magnitudes of the first brightness and the second brightness.
  • the ratio (or difference) of the first brightness and the second brightness is less than or equal to the preset threshold, it is determined that the consistency of the first display information and the second display information satisfies the preset condition; if the first brightness and the second brightness If the difference is greater than the preset threshold, it is determined that the consistency of the first display information and the second display information does not meet the preset condition.
  • the preset threshold may be set according to the inherent properties of the display module (eg, screen size, resolution, etc.), which is not further limited in this embodiment of the present application.
  • the gamma adjustment and Mura compensation are performed again on the first display area. Because the consistency of the display information of the first display area and the second display area does not meet the preset condition because the first display area is too bright or too dark, the first display area after the first mura compensation can be Perform gamma adjustment and Mura compensation again, that is, you can first perform the second gamma adjustment on the first display area after the first mura compensation, and perform the second gamma adjustment on the first display area after the second gamma adjustment.
  • the second mura compensation can make the consistency of the first display information and the second display information after the second mura compensation meet the preset condition.
  • the consistency of the first display information and the second display information satisfies a preset condition, it can be determined that after the first mura compensation, the brightness or brightness, chromaticity of the first display area and the second display area If it is relatively consistent, there is no need to perform the second Gamma debugging and the second mura compensation on the display module.
  • the first gamma adjustment can be performed on the first display area and the second display area respectively according to a preset gamma adjustment strategy;
  • the first Mura compensation is performed on the first display area and the second display area after the horse debugging, respectively; the first display information of the first display area and the first display information of the second display area after the first Mura compensation are obtained respectively.
  • Display information if the consistency of the first display information and the second display information does not meet the preset condition, perform gamma debugging and Mura compensation on the first display area again.
  • the accuracy of the test data for the second gamma adjustment can be improved, and the accuracy of the second gamma adjustment can be improved.
  • Performing dual gamma debugging and dual mura compensation can make the consistency of the first display information and the second display information after the second mura compensation meet the preset conditions, as shown in FIG. 6 .
  • the first image (or debugging image) displayed in the first display area and the second image (or debugging image) displayed in the second display area can be the same , can also be different.
  • the first gamma tuning is performed on the first display area and the second display area respectively according to a preset gamma tuning strategy, including steps 702 to 704 .
  • Step 702 Acquire the first gamma debugging data of the first display area and the second gamma debugging data of the second display area respectively according to the preset gamma debugging strategy.
  • the first gamma tuning data and the second gamma tuning data are determined by a preset gamma tuning strategy.
  • the first gamma debugging data and the second gamma debugging data may be the same or different.
  • respectively acquiring the first gamma debugging data of the first display area and the second gamma debugging data of the second display area according to the preset gamma debugging strategy may specifically include steps 7022 to 7026 .
  • Step 7022 Acquire the second gamma test data of the first display area and the third gamma test data of the second display area based on the initial gamma debugging data.
  • the initial gamma debugging data may be used to reflect the default gamma curve, wherein the default gamma curve corresponding to the first display area and the default gamma curve corresponding to the second display area may be the same or different.
  • the initial gamma debugging data may include initial gamma parameters corresponding to different preset grayscale binding points under at least one brightness level.
  • the initial gamma parameter can be represented by a register value.
  • multiple (eg, 8-10) gamma registers are set in the gamma debugging device to store gamma parameters corresponding to different bands (ie, different brightness levels) for implementing the gamma debugging process. That is, one register can correspondingly store each gamma parameter corresponding to a plurality of preset gray-scale binding points under one brightness level.
  • the brightness value range corresponding to the brightness level of each register is different, for example, the brightness value range corresponding to the first register is 0-200nit, the brightness value range corresponding to the second register is 201-600nit, and so on.
  • the same brightness level (eg Band 3) and 23 preset gray-scale binding points are used as an example for description, as shown in Table 1.
  • the initial gamma parameters can be expressed as a1, a2, a3, ..., a23, and the initial gamma parameters under the remaining brightness levels Band are referred to together, and the difference algorithm for non-brightness level positions can be unchanged.
  • Table 1 shows various parameters in the gamma debugging process of the first display area under the brightness level in one embodiment
  • the register value may be expressed in hexadecimal, such as a value from "000" to "FFF".
  • the register value can be used to represent the brightness value of the display module, that is, different register values can represent different brightness values when the same picture is displayed. There is a linear relationship between the register value of the display module and the brightness value of the display module. For example, the register value "000” can be used to indicate the minimum display brightness level corresponding to the darkest state, and the register value "FFF" can be used to indicate that corresponding to the brightest state The maximum display brightness level for the status.
  • the corresponding relationship between the register value and the display brightness value of the display module is not limited to the example of the embodiment of the present application.
  • the type is not limited, for example, it can be 51 registers, 9325 registers, etc.
  • the gamma debugging device can burn the initial gamma debugging data to the display module, so as to realize the initial gamma debugging of the display module, and control the first display area and the second display area of the display module to display the image to be debugged.
  • the second gamma test data of the test area of the first display area and the third gamma test data of the test area of the second display area may be collected respectively by using an optical measurement device.
  • the second gamma test data and the third gamma test data include gamma test parameters of multiple preset gray-scale binding points under at least one brightness level, wherein the gamma test parameters are brightness values or transmittances.
  • the gamma debugging device can convert the gamma test parameters into register values for storage.
  • Step 7024 Acquire first gamma debugging data according to the second gamma test data and the target gamma data.
  • Step 7026 Acquire second gamma debugging data according to the third gamma test data and the target gamma data.
  • the target gamma data may be used to reflect the target gamma curve, wherein the target gamma curve corresponding to the first display area and the target gamma curve corresponding to the second display area are the same.
  • the target gamma curve, ⁇ 2.2.
  • the target gamma debugging data may include target gamma parameters corresponding to different preset grayscale binding points under at least one brightness level. As shown in Table 1, the target gamma parameters c1, c2, c3, ..., c23 can be represented by register values.
  • the gamma debugging device can obtain the first gamma debugging data based on the second gamma test data and the target gamma test data in the first display area based on the gamma debugging algorithm; correspondingly, the gamma debugging device can be based on the gamma debugging algorithm
  • the second gamma debugging data may be acquired according to the third gamma test data and the target gamma test data in the second display area.
  • the first gamma adjustment data may include first gamma adjustment parameters corresponding to different preset grayscale binding points under at least one brightness level. As shown in Table 1, the first gamma debugging parameters b1, b2, b3, . . . , b23 can be represented by register values.
  • the gamma debugging algorithm may be a traditional gamma debugging algorithm, and in this embodiment of the present application, the gamma debugging algorithm is not further limited.
  • obtaining the first gamma debugging data according to the second gamma test data and the target gamma data may be replaced by: according to the third gamma test data and the target gamma data to obtain the first gamma debug data, respectively.
  • the first gamma debugging data may be acquired based on the third gamma test data and the target gamma data in the second display area. That is, the first gamma tuning data of the first display area is the same as the second gamma tuning data of the second display area.
  • the process of acquiring the second gamma test data can be omitted, and the direct Using the third gamma test data and target gamma data of the second display area to simultaneously acquire the gamma debugging data of the first display area and the second display area can improve the acquisition of the first gamma debugging data and the second gamma debugging data , thereby improving the efficiency of the first gamma debugging of the first display area and the second display area.
  • the second gamma debugging data is obtained in the same direction as the second gamma debugging data in the foregoing embodiment, and the difference is that the first gamma debugging data is obtained in a different manner.
  • the first gamma debugging data is initial gamma debugging data. That is, the initial gamma adjustment data can be directly used as the first gamma adjustment data of the first display area.
  • the process of acquiring the second gamma test data can be omitted, and the first gamma debugging of the first display area is directly performed with the original gamma debugging data, which can improve the gamma of the first display area. Debugging efficiency.
  • Step 704 Perform the first gamma adjustment on the first display area according to the first gamma adjustment data, and perform the first gamma adjustment on the second display area according to the second gamma adjustment data.
  • the gamma debugging device can burn the first gamma debugging data to the display module to realize the first gamma debugging of the first display area, and can also burn the second gamma debugging data to the display module, In order to realize the first gamma debugging of the second display area.
  • the gamma debugging device can burn the second gamma debugging data to the display module, so as to synchronize the first display area and the second display area.
  • the first gamma debugging can improve the debugging efficiency of the first gamma debugging.
  • performing gamma adjustment and Mura compensation on the first display area again includes steps 902 to 906 .
  • Step 902 acquiring first gamma test data of the first display area.
  • the first gamma test data is the measured value of the first display area after the first gamma adjustment is performed on the first display area based on the first gamma adjustment data, and then the first mura compensation is performed on the first display area.
  • Gamma data may be used to collect the first gamma test data of the test area in the first display area.
  • the first gamma test data includes first gamma test parameters of multiple preset gray-scale binding points under at least one brightness level, wherein the first gamma test parameter is a brightness value or a transmittance.
  • the gamma debugging device can convert the first gamma test parameter into a register value for storage. As shown in Table 1, the first gamma test parameter corresponding to the 23 preset gray-scale binding points can be respectively expressed as e1, e2, e3, ..., e23.
  • Step 904 Perform a second gamma adjustment on the first display area according to the first gamma test data, the target gamma data and the first gamma adjustment data.
  • the gamma debugging device can obtain the third gamma debugging data according to the first gamma test data, the target gamma data and the first gamma debugging data, and then burn the third gamma debugging data to the display module, In order to realize the second gamma debugging of the first display area.
  • the second gamma adjustment is performed on the first display area according to the first gamma test data, the target gamma data and the first gamma adjustment data, including steps 9042 to 9046 .
  • Step 9042 Acquire gamma compensation data according to the first gamma test data and the target gamma data.
  • the gamma debugging device can obtain gamma compensation parameters corresponding to the same preset grayscale binding point according to the first gamma test parameter and target gamma parameter corresponding to the same preset grayscale binding point under at least one brightness level , and obtain gamma compensation data according to the gamma compensation parameters corresponding to each preset grayscale binding point respectively.
  • Table 1 for each preset binding point, the difference between the first gamma test parameter and the target gamma parameter can be obtained correspondingly, and the difference can be used as the gamma compensation parameter corresponding to the bound grayscale .
  • the corresponding gamma compensation parameter d2 c3-e3.
  • each gamma compensation parameter corresponding to each preset grayscale binding point can be obtained correspondingly.
  • the gamma compensation parameters corresponding to the 23 preset grayscale binding points can be d1, d2, d3, . . . , d23.
  • Each gamma compensation parameter can correspondingly constitute gamma compensation data.
  • Step 9044 Acquire third gamma debugging data according to the gamma compensation data and the first gamma debugging data.
  • the first gamma tuning data includes first gamma tuning parameters corresponding to multiple preset gray-scale binding points under at least one brightness level.
  • the gamma debugging device can obtain the third gamma debugging parameter corresponding to the same preset grayscale binding point according to the sum of the gamma compensation parameter corresponding to the same preset grayscale binding point and the first gamma debugging parameter, and The third gamma adjustment data is acquired according to the third gamma adjustment parameter corresponding to each preset grayscale binding point.
  • each third gamma debugging parameter corresponding to each preset grayscale binding point can be obtained correspondingly.
  • the third gamma debugging parameters corresponding to the 23 preset grayscale binding points can be f1 and f2 respectively. , f3, ..., f23.
  • Each third gamma debugging parameter may correspond to constitute third gamma debugging data.
  • 11 is a gamma curve drawn based on each gamma parameter.
  • gamma curve 1 is an initial gamma curve
  • gamma curve 2 is a gamma curve drawn according to the first gamma test data
  • gamma curve 3 is a target gamma curve.
  • the ordinates (brightness) of the intersection points of gamma curve 1, gamma curve 2, and gamma curve 3 and the preset grayscale binding points are An, En, and Cn.
  • the brightness An corresponds to the register value an in Table 1
  • the brightness En corresponds to en
  • the brightness Cn corresponds to the register value cn in Table 1
  • calculate the brightness difference of each gray scale between En and Cn and calculate the register value difference dn
  • the third gamma Horse debugging parameters fn, fn bn+dn.
  • Step 9046 Perform a second gamma adjustment on the first display area according to the third gamma adjustment data.
  • the gamma debugging device can burn the acquired third gamma debugging data to the display module, so as to realize the second gamma tuning of the first display area, that is, the first display area can pass through twice In the gamma adjustment, the brightness of the first display area after two gamma adjustments is uniform, which can eliminate the phenomenon of uneven brightness in the first display area, thereby improving the display uniformity of the first display area.
  • step 9046 before performing the second gamma adjustment on the first display area according to the third gamma adjustment data, further includes the step of clearing the compensation data for the first Mura compensation on the first display area .
  • the gamma debugging device when the gamma debugging device burns the third gamma debugging data to the display module, it can first clear the demura data burned to the display module, thereby reducing the debugging logic of the second gamma debugging, so as to improve the Debug efficiency for the second gamma debug.
  • Step 906 Perform a second Mura compensation on the first display area after the second gamma adjustment.
  • the compensation method of the second mura compensation is similar to the compensation method of the first mura compensation.
  • the difference is that the mura compensation device can perform mura detection again on the first display area after the second gamma adjustment. And after detecting Mura, perform compensation again to eliminate Mura, that is, the second Demura.
  • the brightness of the first display area and the second display area can be made uniform, or the first display area and the second display area can be made uniform.
  • the brightness and chromaticity of the second display area are uniform and uniform.
  • an embodiment of the present application further provides a compensation method for a display module, and the compensation method for a display module includes steps 1202 to 1222 .
  • Step 1202 acquiring the second gamma test data of the first display area and the third gamma test data of the second display area based on the initial gamma debugging data;
  • Step 1204 Acquire the first gamma debugging data according to the second gamma test data and target gamma data, and obtain the second gamma debugging data according to the third gamma test data and target gamma data ;
  • Step 1206 Perform the first gamma debugging on the first display area according to the first gamma debugging data, and perform the first gamma debugging on the second display area according to the second gamma debugging data debugging;
  • Step 1208 respectively performing the first Mura compensation on the first display area and the second display area after the first gamma adjustment
  • Step 1210 respectively acquiring the first display information of the first display area and the second display information of the second display area after the first Mura compensation;
  • Step 1212 if the consistency of the first display information and the second display information does not meet a preset condition, acquire the first gamma test data of the first display area;
  • the determination bar in step 1210 and step 1212 may be omitted: if the consistency of the first display information and the second display information does not meet the preset condition, that is, in step 8, After the first Mura compensation is respectively performed on the first display area and the second display area after the first gamma adjustment, the step of acquiring the first gamma test data of the first display area is directly performed.
  • Step 1214 obtain gamma compensation data according to the first gamma test data and target gamma data
  • Step 1216 Acquire third gamma debugging data according to the gamma compensation data and the first gamma debugging data;
  • Step 1218 clear the compensation data for the first Mura compensation on the first display area
  • Step 1220 performing the second gamma debugging on the first display area according to the third gamma debugging data
  • Step 1222 Perform a second Mura compensation on the first display area after the second gamma adjustment.
  • the compensation method of the display module above can make the consistency of the first display information and the second display information after the second mura compensation meet preset conditions by performing dual gamma debugging and dual mura compensation on the first display area, for example , the brightness of the first display area and the second display area can be made uniform, or the brightness and chromaticity of the first display area and the second display area can be uniform.
  • the compensation method for the display module may further include the step of updating the first gamma adjustment data according to target weighted data if the first display information meets a preset display condition.
  • the preset display condition may be that the first display information has a preset gradient pattern in the first display area, and the preset gradient pattern may be gradually darkened from outside to inside, or gradually brightened from outside to inside, or other gradients 3a-3e, in this embodiment of the present application, the preset gradient law is not further limited. If the first display information meets the preset display condition, the first gamma debugging data may be updated according to the target weighted data.
  • the first display information has a gradient regularity
  • the area of the test area is smaller than the area of the first display area, and the test area can be understood as the detection area of the optical measuring device. If the difference is kept within a certain preset range, it can be more accurately determined whether the first display area has a preset gradient law, and then the target weighted data can be determined more accurately, so as to improve the accuracy of gamma debugging.
  • the target weighting data may include a plurality of target weighting parameters corresponding to a plurality of preset grayscale bindings under at least one brightness level.
  • a single brightness level and 23 preset gray-scale binding points are used as an example for description. That is, the 23 target weighting parameters corresponding to the 23 preset grayscale binding points can be represented by m1, m2, m3, . . . , m23.
  • the values of each target weighting parameter are not exactly the same, or may be completely different.
  • Target weighting data can be pre-stored in the gamma debug device.
  • Table 2 shows various parameters in the gamma debugging process of the first display area under the brightness level in another embodiment
  • the gamma debugging device can burn the updated first gamma debugging data and the second gamma debugging data to the display module, so as to realize the gamma debugging of the first display area and the second display area respectively.
  • directional weighting may be performed on the first gamma debugging data, so as to realize the adjustment of the first gamma debugging data.
  • the display information of the first display area and the second display area remain consistent. For example, the display brightness of the first display area and the second display area are consistent and uniform. The brightness and chromaticity are also uniform and uniform, and the compensation efficiency of the compensation method of the display module can also be improved.
  • the compensation method for the display module before updating the first gamma debugging data according to the target weighted data, the compensation method for the display module further includes the step of acquiring the target weighted data.
  • the step of obtaining the target weighted data may include configuring a one-to-one mapping relationship between a plurality of preset display conditions and a plurality of preset weighted data; Relationships determine target weighted data.
  • the gamma debugging device stores multiple sets of preset weighted data, and each set of preset weighted data corresponds to a gradient law. Wherein, each preset weighted data can be obtained by referring to batch regular data.
  • the regular data may be debugging data for gamma debugging of display modules of the same batch or model with the same uneven display brightness. After the gamma debugging of the display module based on the debugging data, the phenomenon of uneven display of the brightness of the first display area can be eliminated.
  • the first gamma debugging data is updated according to the target weighted data, which specifically includes steps 1302 to 1304 .
  • Step 1302 Acquire a new first gamma tuning parameter corresponding to the same preset gray level binding point according to the sum of the first gamma tuning parameter and the target weighting parameter corresponding to each preset gray level binding point.
  • Step 1304 Determine new first gamma tuning data according to the new first gamma tuning parameters corresponding to the multiple preset gray-scale binding points.
  • the sum value of the target weighting parameter and the first gamma debugging parameter can be obtained correspondingly, and the sum value can be used as the new first value corresponding to the gray-scale binding point.
  • the third gamma tuning parameter corresponding to the 23 preset grayscale binding points can be respectively b1 ', b2', b3', ..., b23', each new first gamma debugging parameter can correspond to constitute new first gamma debugging data.
  • the gamma debugging device can burn the new first gamma debugging data to the display module, and perform the first gamma debugging on the display module based on the new first gamma debugging data, which can guarantee the first gamma debugging with a certain probability.
  • the effect after demura is to make at least one of brightness and chromaticity of the first display area and the second display area relatively consistent after the first mura compensation.
  • an embodiment of the present application further provides a compensation method for a display module.
  • the compensation method for a display module may specifically include steps 1402 to 1412 .
  • Step 1402 Acquire second gamma test data of the first display area and third gamma test data of the second display area based on the initial gamma debugging data.
  • Step 1404 Acquire the first gamma debugging data according to the second gamma test data and target gamma data, and obtain the second gamma debugging data according to the third gamma test data and target gamma data .
  • Step 1406 If the first display information complies with a preset display condition, update the first gamma debugging data according to the target weighted data.
  • Step 1408 Perform the first gamma debugging on the first display area according to the updated first gamma debugging data, and perform the first gamma debugging on the second display area according to the second gamma debugging data Sub-gamma debugging.
  • Step 1410 respectively perform a first Mura compensation on the first display area and the second display area after the first gamma adjustment.
  • the display diagram of the display module after the first Mura compensation is respectively performed on the first display area and the second display area after the first gamma adjustment is shown in FIG. 15 , among which, FIG. 15 In the shown graph, the middle graph is the display graph after the first gamma tuning based on the new first gamma tuning data.
  • Step 1412 respectively acquiring the first display information of the first display area and the second display information of the second display area after the first Mura compensation.
  • Step 1414 if the consistency between the first display information and the second display information satisfies a preset condition, the process is completed.
  • Step 1416 If the consistency between the first display information and the second display information does not meet a preset condition, perform gamma debugging and Mura compensation on the first display area again.
  • gamma debugging can be performed on the first display area according to the updated first gamma debugging data, and gamma debugging can be performed on the second display area according to the second gamma debugging data, which can guarantee the first display area with a high probability.
  • the display information of the first display area and the second display area are consistent.
  • the display brightness of the first display area and the second display area are consistent and uniform, and the first display area and the second display area
  • the display brightness and chromaticity of the display module are also uniform and uniform, and the compensation efficiency of the compensation method of the display module can also be improved.
  • the first gamma debugging is performed on the first display area according to the updated first gamma debugging data
  • the consistency of the display information of the first display area and the second display area does not meet the preset conditions, and the It is also possible to perform gamma adjustment and Mura compensation on the first display area again. Since the brightness of the first display area after the first mura compensation is uniform, the accuracy of the test data of the second gamma adjustment can be improved, which in turn can improve the accuracy of the test data for the second gamma adjustment.
  • the consistency of the first display information and the second display information after the second mura compensation can meet the preset Conditions, for example, can make the luminance distribution of the first display area and the second display area uniform and consistent.
  • the execution order of these sub-steps or stages is not necessarily carried out sequentially, but may be executed in turn or alternately with other steps or at least a part of sub-steps or stages of other steps.
  • the gamma adjustment and mura compensation for the second display area may be performed first, and then the dual gamma adjustment and dual mura compensation for the first display area are performed; First perform the first gamma debugging for the first display area and the second display area, respectively, then perform the first mura compensation for the first display area and the second display area, respectively, and then perform the first display area.
  • the second gamma debugging, the second mura compensation may be performed first, and then the dual gamma adjustment and dual mura compensation for the first display area are performed.
  • FIG. 16 is a structural block diagram of a compensation device of a display module according to an embodiment.
  • the compensation device of the display module includes: a gamma debugging module 1602 , a Mura compensation module 1604 , a display acquisition module 1606 and a compensation module 1608 .
  • the gamma debugging module 1602 is used to respectively perform the first gamma debugging on the first display area and the second display area according to a preset gamma debugging strategy;
  • the Mura compensation module 1604 is used to adjust the gamma for the first time.
  • the first display area and the second display area after the first gamma adjustment are respectively subjected to the first Mura compensation; the display acquisition module 1606 is used to respectively acquire the first Mura compensation after the first Mura compensation.
  • the first display information in the display area and the second display information in the second display area; the compensation module 1608 is configured to, if the consistency of the first display information and the second display information does not meet the preset condition, Gamma adjustment and Mura compensation are performed again in the first display area.
  • the gamma debugging module 1602 can respectively perform the first gamma debugging on the first display area and the second display area according to a preset gamma debugging strategy; the Mura compensation module 1604 The first display area and the second display area after the first gamma adjustment are respectively subjected to the first Mura compensation; the display acquisition module 1606 respectively obtains the first Mura compensation of the first display area after the first Mura compensation. First display information and second display information in the second display area; the compensation module 1608 may re-adjust the first display area when the consistency between the first display information and the second display information does not meet the preset condition Do gamma tuning and Mura compensation.
  • Performing dual gamma debugging and dual mura compensation can make the first display information and the second display information consistent after the second mura compensation, for example, can make the brightness distribution of the first display area and the second display area uniform and consistent Wait.
  • the gamma debugging module 1602 is further configured to obtain the first gamma debugging data of the first display area and the second gamma debugging data of the second display area respectively according to a preset gamma debugging strategy data; the first gamma debugging is performed on the first display area according to the first gamma debugging data, and the first gamma debugging is performed on the second display area according to the second gamma debugging data .
  • the compensation module 1608 is further configured to acquire the first gamma test data of the first display area when the consistency between the first display information and the second display information does not meet a preset condition; Perform a second gamma adjustment on the first display area according to the first gamma test data, target gamma data and first gamma adjustment data; perform the second gamma adjustment on the first display after the second gamma adjustment District performs a second Mura compensation.
  • the compensation module 1608 is further configured to obtain gamma compensation data according to the first gamma test data and target gamma data; obtain third gamma compensation data according to the gamma compensation data and the first gamma debugging data Gamma debugging data; perform the second gamma debugging on the first display area according to the third gamma debugging data.
  • the first gamma test data includes first gamma test parameters corresponding to a plurality of preset gray-scale binding points
  • the target gamma data includes a plurality of the preset gray-scale binding points Corresponding target gamma parameters
  • the compensation module 1608 is further configured to obtain the same preset grayscale binding point corresponding to the first gamma test parameter and the target gamma parameter corresponding to the same preset grayscale binding point.
  • Gamma compensation parameters obtain the gamma compensation data according to the gamma compensation parameters corresponding to each of the preset gray-scale binding points respectively.
  • the first gamma tuning data includes first gamma tuning parameters corresponding to multiple preset grayscale binding points, wherein the compensation module 1608 is further configured to bind according to the same preset grayscale The sum of the gamma compensation parameter corresponding to the point and the first gamma adjustment parameter obtains the third gamma adjustment parameter corresponding to the same preset grayscale binding point; according to each of the preset grayscale binding points corresponding to The third gamma debugging parameter acquires the third gamma debugging data.
  • the Mura compensation module 1604 is further configured to clear the compensation data of the first Mura compensation performed on the first display area.
  • the gamma debugging module 1602 is further configured to acquire the second gamma test data of the first display area and the third gamma test data of the second display area based on the initial gamma debugging data ; Acquire the first gamma debug data according to the second gamma test data and the target gamma data; obtain the second gamma debug data according to the third gamma test data and the target gamma data.
  • the gamma debugging module 1602 is further configured to update the first gamma debugging data according to target weighted data when the first display information meets a preset display condition.
  • the gamma debugging module 1602 is further configured to configure a one-to-one mapping relationship between a plurality of the preset display conditions and a plurality of preset weighted data; gradient feature, and determine the target weighted data according to the gradient feature and the mapping relationship; wherein, the target weighted data includes a plurality of weighting parameters corresponding to a plurality of preset gray-scale binding points one-to-one.
  • the first gamma debugging data includes a plurality of first gamma debugging parameters corresponding to a plurality of preset grayscale binding points one-to-one; the gamma debugging module 1602 is further configured to obtaining a new first gamma tuning parameter corresponding to the same preset gray-scale binding point from the sum of the first gamma tuning parameter and the weighting parameter corresponding to the preset gray-scale binding point; The new first gamma tuning parameter corresponding to the order binding point determines new first gamma tuning data.
  • the gamma debugging module 1602 is further configured to acquire the second gamma test data of the first display area and the third gamma test data of the second display area based on the initial gamma debugging data ; Acquire the first gamma debugging data and the second gamma debugging data respectively according to the third gamma test data and the target gamma data; wherein, the first gamma debugging data and the second gamma debugging data Gamma debug data is equal.
  • the gamma debugging module 1602 is further configured to acquire third gamma test data of the second display area based on the initial gamma debugging data; according to the third gamma test data and the target gamma The data acquires the second gamma debugging data; wherein, the first gamma debugging data is the initial gamma debugging data.
  • each module in the compensation device of the display module is only used for illustration. In other embodiments, the compensation device of the display module can be divided into different modules according to needs, so as to complete the compensation device of the display module. full or partial functionality.
  • each module of the compensation device of the display module can be implemented by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • each module in the compensation device for the display module provided in the embodiment of the present application may be in the form of a computer program.
  • the computer program can be run on a terminal or server.
  • the program modules constituted by the computer program can be stored on the memory of the electronic device.
  • An electronic device comprising a memory and a processor, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the processor executes the compensation method for a display module in any of the above-mentioned embodiments A step of.
  • the electronic device may be the electronic device in the foregoing embodiment, please continue to refer to FIG. 1 . That is, the compensation method of the display module thereof can be performed by an electronic device including an under-screen camera.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions that, when executed by one or more processors, cause the processors to perform any of the above-described embodiments The steps of the compensation method of the module.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), Memory Bus (Rambus) Direct RAM (RDRAM), Direct Memory Bus Dynamic RAM (DRDRAM), and Memory Bus Dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Memory Bus Radbus
  • RDRAM Direct RAM
  • DRAM Direct Memory Bus Dynamic RAM
  • RDRAM Memory Bus Dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种显示模组(100)的补偿方法,其中,显示模组(100)包括第一显示区(110)和第二显示区(120),其中,第一显示区(110)的各信号线的负载不完全相同,补偿方法包括:根据预设伽马调试策略分别对第一显示区(110)和第二显示区(120)进行第一次伽马调试(502);对第一次伽马调试后的第一显示区(110)和第二显示区(120)分别进行第一次Mura补偿(504);分别获取第一次Mura补偿后的第一显示区(110)的第一显示信息和第二显示区(120)的第二显示信息(506);若第一显示信息和第二显示信息的一致性不满足预设条件,则对第一显示区(110)再次进行伽马调试和Mura补偿(508)。

Description

显示模组的补偿方法、装置、电子设备和可读存储介质
相关申请的交叉引用
本申请要求于2021年4月19日提交中国专利局、申请号为2021104183567发明名称为“显示模组的补偿方法、装置、电子设备和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示模组的补偿方法、装置、电子设备和计算机可读存储介质。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着科学技术的发展,电子设备的更新换代速度越来越快,屏占比已成为产品差异化的重要标准,促使电子设备朝着全面屏的方向发展。目前,全面屏技术一般采用屏下集成前置摄像头的方式。屏下摄像头是将电子设备摄像头设于显示屏之下实现拍照,并且屏下摄像头在显示屏上对应的区域能够进行显示,从而实现全面屏显示。
但是,目前显示屏在显示图像时,仍存在着设置摄像头的副屏显示区和未设置摄像头位置处的主屏显示区的显示亮度不一致的问题。
发明内容
根据本申请的各种实施例,提供显示模组的补偿方法、装置、电子设备、计算机可读存储介质。
一种显示模组的补偿方法,所述显示模组包括第一显示区和第二显示区,其中,所述第一显示区的像素密度小于所述第二显示区的像素密度,所述方法包括:
根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试;
对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;
分别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;
若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。
一种显示模组的补偿装置,所述显示模组包括第一显示区和第二显示区,其中,所述第一显示区的像素密度小于所述第二显示区的像素密度,所述装置包括:
伽马调试模块,用于根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试;
Mura补偿模块,用于对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;
显示获取模块,用于分用于别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;
补偿模块,用于若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。
一种电子设备,包括显示模组、存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行上述的显示模组的补偿方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述的显示模组的补偿方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中包括显示模组的电子设备的结构示意图;
图2a-2b分别为不同实施例中显示模组的结构示意图;
图3a-3e分别为显示模组的第一显示区的亮度分布图;
图4a-4c分别为对显示模组的传统方法的应用环境示意图;
图5为一个实施例中显示模组的补偿方法的流程图;
图6为一个实施例中显示模组的补偿方法的调试过程中的各显示区的显示变化示意图;
图7为一个实施例中根据预设伽马调试策略分别对第一显示区和第二显示区进行第一次伽马调试的流程图;
图8为一个实施例中根据预设伽马调试策略分别获取第一显示区的第一伽马调试数据和第二显示区的第二伽马调试数据的流程图;
图9为一个实施例中对第一显示区再次进行伽马调试和Mura补偿的流程图;
图10为一个实施例中根据第一伽马测试数据、目标伽马数据和第一伽马调试数据对第一显示区进行第二次伽马调试的流程图;
图11为一个实施例中基于各伽马参数绘制的伽马曲线示意图;
图12为另一实施例中显示模组的补偿方法的流程图;
图13为一个实施例中根据目标加权数据对所述第一伽马调试数据进行更新的流程图;
图14为再一实施例中显示模组的补偿方法的流程图;
图15为另一个实施例中显示模组的补偿方法的调试过程中的各显示区的显示变化示意图;
图16为一个实施例中显示模组的补偿装置的结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一显示区称为第二显示区,且类似地,可将第二显示区称为第一显示区。第一显示区和第二显示区两者都是显示区,但其不是同一显示区。
本申请实施例提供的显示模组的补偿方法可以应用在显示模组上。如图1所示,显示模组100可以集成在电子设备10上,其中,电子设备10可以为智能手机、平板电脑、游戏设备、增强现实(Augmented Reality,AR)设备、数据存储装置、音频播放装置、视频播放装置、笔记本、桌面计算设备、可穿戴设备诸如手表、眼镜、头盔、电子手链、电子项链、电子衣物设备。
为方便理解,下面以电子设备为手机进行举例说明。请继续参阅图1,电子设备10包括显示装置100,显示装置100包括邻接的第一显示区110和第二显示区120。显示装置100可包括显示面板、驱动芯片和驱动电路等。显示面板可以为液晶面板(Liquid Crystal Display, LCD)面板,也可以为有机电激光显示面板(Organic Light-Emitting Diode)。驱动电路可包括多条信号线,其中,多条信号线包括多条扫描线和多条数据线。其中,第一显示区的各信号线的负载不完全相同。具体的,第一显示区的各数据线的负载不完全相同,和/或第一显示区的各扫描线的负载不完全相同。负载不完全相同可能由信号线走线方式、走线长度等产生的,还可能是信号线连接的像素尺寸、像素数量等产生的。示例性的,如图2a和2b所示,从薄膜晶体管(Thin Film Transistor,TFT)外置区(过渡区)101向第一显示区110通过金属走线(例如,ITO走线)连接第一显示区110的发光器件与用于驱动该发光器件的像素驱动电路,其ITO走线有长有短,由此会引起第一显示区110的负载不完全相同。可选的,在第一显示区110对应位置设置屏下结构光模组也会引起第一显示区110的负载不完全相同。可选的,对第一显示区110采用窄边框技术进行设计也会引起第一显示区110的负载不完全相同。由于第一显示区110的负载不完全相同,显示装置20使用一段时间后,第一显示区110的显示亮度会产生亮度不均的问题,例如,显示亮度由外至内逐渐变亮/变暗等,如图3a-3e所示,其中,如图3a-3b对应于如图2a所示的显示模组,如图3c-3d对应于如图2b所示的显示模组,如图3e对应与其他形式的显示模组。同时,第一显示区110和第二显示区120的显示亮度会产生亮度不均的问题。
请参阅图4a-4c,在其中一个实施例中,第一显示区110的形状可以是圆形、矩形、椭圆形、多边形、不规则异形等,本发明对此不作限定。
进一步的,请继续参考图1,电子设备10内设有感光器件130,其中,感光器件130至少部分与第一显示区110相对设置。感光器件130通过接收光线实现基于光学参数的测试和控制。示例性的,感光器件130设置在显示装置20第一显示区110的下方,感光器件130用于透过显示装置20的第一显示区110发射和/或接收光学信号。
其中,感光器件130可以为环境光传感器,环境光传感器可以感测电子设备所处的环境的亮度,电子设备可以根据环境光亮度调节显示屏的发光亮度。感光器件130可以为摄像头模组。感光器件130也可以为光学距离传感器,例如,红外传感器、激光传感器、接近传感器、距离传感器,光学距离传感器可以接收经目标物体反射的光线,以使电子设备可以判断目标物体与电子设备之间的距离。感光器件130也可以为结构光模组、飞行时间测距(Time offlight,TOF)镜头模组等,镜头模组中设置有阵列排布的多个传感器,并根据每个传感器的感光结果形成完整的图像。感光器件130还可以为光学指纹传感器,通过接收来自手指反射的光线强度,光学指纹传感器可以识别手指上的凸起和凹陷,从而实现指纹识别。需要说明的是,上述多种感光器件130仅用于示例性说明,而不用于具体限定本申请的保护范围。
为了解决上述问题,本申请实施例提供了一种显示模组的补偿方法,该显示模组的补偿方法可以应用于如图4a-4c所示的显示模组中,其中,图4a为显示模组的第一显示区110下方对应设置有摄像头时显示模组呈现的一般状态示意图,图4b为显示模组的第一显示区110采用了窄边框技术时显示模组呈现的一般状态示意图,图4c为另一实施例中的显示模组呈现的示意图,这些实施例中都呈现出了第一显示区110和第二显示120亮度差异较大的问题。本申请实施例提供了一种显示模组的补偿方法可以消除第一显示区110和第二显示区120的显示差异,保证第一显示区110和第二显示区120的显示信息(例如,亮度、色度)的一致性。图5为一个实施例中显示模组的补偿方法的流程图。本实施例中的显示模组的补偿方法包括步骤502至步骤508。
步骤502,根据预设伽马调试策略分别对第一显示区和第二显示区进行第一次伽马调试。
向显示模组的驱动芯片导入预设灰阶绑点下的设定显示画面对应的显示数据,以使驱动芯片根据显示数据驱动第一显示区显示预设灰阶绑点对应的第一图像,以及驱动第二显示区显示同一或不同预设灰阶绑点对应的第二图像。其中,预设灰阶绑点可以0灰阶、1灰阶、2灰阶、……、255灰阶中的任一灰阶。
伽马调试设备可以根据采用相同的预设伽马调试策略分别对第一显示区和第二显示区进行第一次伽马调试。示例性的,伽马调试设备可以采用相同伽马调试策略同步或异步对第 一显示区和第二显示区进行第一次伽马调试。可选的,伽马调试设备也可以采用不同的预设伽马调试策略分别对第一显示区和第二显示区进行第一次伽马调试。示例性的,伽马调试设备可以采用不同的伽马调试数据分别对第一显示区和第二显示区进行第一次伽马调试。其中,伽马调试数据可用于烧录至显示模组的驱动芯片中,以实现对显示模组的伽马调试。具体的,伽马调试数据可以根据默认gamma曲线、目标gamma曲线以及基于默认gamma曲线调试后的伽马测试数据等信息来获取。
步骤504,对第一次伽马调试后的第一显示区和第二显示区分别进行第一次Mura补偿。
Mura补偿设备,例如,自动光学检测(automatic optical inspection,AOI)设备可对第一次伽马调试后的第一显示区和第二显示区进行Mura的检测,以及检测到Mura后进行补偿消除Mura,即Demura。具体的,该Mura补偿设备可以将分别对第一显示区和第二显示区进行第一次伽马调试的调试数据烧录至显示模组的驱动芯片中,并控制该显示模组显示若干个图像,其显示的图像可以为灰阶图像,也可以为RGB图像,进而可以基于高分辨率和高精度的CCD照相机拍摄第一显示区和第二显示区显示的图像。具体的,该Mura补偿设备可对显示画面的图像特征进行提取,以区分出第一显示区显示的第一图像和第二显示区显示的第二图像,并分析第一图像和第二图像的pixel颜色分布特征,以识别出第一显示区显示和第二显示区的Mura,进而根据Mura数据及相应的Demura补偿算法获取Demura数据,以分别对第一显示区显示和第二显示区进行第一次Mura补偿以消除Mura。其中,对第一次伽马调试后的第一显示区进行第一次Mura补偿后,可以使得第一显示区的亮度均匀,或,亮度和色度都均匀;对第一次伽马调试后的第二显示区进行第一次Mura补偿后,可以使得第二显示区的亮度均匀,或,亮度和色度都均匀。
步骤506,分别获取第一次Mura补偿后的第一显示区的第一显示信息和第二显示区的第二显示信息。
向显示模组的驱动芯片烧录Demura数据,并向显示模组的驱动芯片导入预设灰阶绑点下的设定显示画面对应的显示数据,以使驱动芯片根据该显示数据驱动第一显示区显示预设灰阶绑点对应的第一图像,以及驱动第二显示区显示同一预设灰阶绑点对应的第二图像。在其中一个实施例中,可以利用光学测量设备,例如色彩分析仪CA402等,来采集第一显示区中测试区的第一显示信息以及第二显示区中测试区的第二显示信息。在测量过程中,可以将光学量测设备的镜头中心点与测试区的中心点对齐,以更准确的获取各测试区的显示信息。需要说明的是,其光学量测设备镜头的探测面积小于第一显示区的显示面积。
具体的,第一显示信息和第二显示信息均可包括亮度信息和色度信息中的至少一种。其中,第一显示信息和第二显示信息所包括的信息的属性相同。示例性的,第一显示信息和第二显示信息均包括亮度信息这一属性,或,第一显示信息和第二显示信息均包括色度信息这一属性,或,第一显示信息和第二显示信息均包括亮度信息和色度信息这两种属性。
步骤508,若第一显示信息和第二显示信息的一致性不满足预设条件,则对第一显示区再次进行伽马调试和Mura补偿。
在其中一个实施例中,可以利用光学测量设备分析第一显示信息和第二显示信息的差异,进而得出其第一显示信息和第二显示信息的一致性是否满足预设条件。示例性的,为了便于说明,以第一显示信息和第二显示信息均为亮度信息为例进行说明。具体的,光学测试设备可以分别获取第一显示区的第一亮度和第二显示区的第二亮度,并比较第一亮度和第二亮度的大小。若第一亮度和第二亮度的比值(或差值)小于或等于预设阈值,则认定该第一显示信息和第二显示信息的一致性满足预设条件;若第一亮度和第二亮度的差值大于预设阈值,则认定该第一显示信息和第二显示信息的一致性不满足预设条件。其中,该预设阈值可以根据该显示模组的固有属性(例如,屏幕大小、分辨率等)来设定,在本申请实施例中不做进一步的限定。
具体的,若第一显示信息和第二显示信息的一致性不满足预设条件,则对第一显示区再次进行伽马调试和Mura补偿。由于,第一显示区和第二显示区的显示信息的一致性不满足 预设条件的原因在于第一显示区过亮或过暗,因此,可以对第一次mura补偿后的第一显示区再次进行伽马调试和Mura补偿,也即,可以先对第一次mura补偿后的第一显示区进行第二次伽马调试,并对第二次伽马调试后的第一显示区再次进行第二次mura补偿,可以使得第二次mura补偿后的第一显示信息和第二显示信息的一致性满足预设条件。
在其中一个实施例中,第一显示信息和第二显示信息的一致性满足预设条件,则可以认定第一次mura补偿后,第一显示区和第二显示区的亮度或亮度、色度相对一致,则不用再对显示模组进行第二次Gamma调试和第二次mura补偿。
本实施例中的显示模组的补偿方法,可根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试;对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;分别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。由于第一次mura补偿后的第一显示区的亮度均匀,可以提高第二次伽马调试的测试数据的准确度,进而可以提高第二次伽马调试的准确度,通过对第一显示区进行双伽马调试和双mura补偿,可以使得第二次mura补偿后的第一显示信息和第二显示信息的一致性满足预设条件,如图6所示。
需要说明的是,在每次进行伽马调试、mura补偿前,其第一显示区显示的第一图像(或调试图像)和第二显示区显示的第二图像(或调试图像)都可以相同,也可以不同。
如图7所示,在其中一个实施例中,根据预设伽马调试策略分别对第一显示区和第二显示区进行第一次伽马调试,包括步骤702-步骤704。
步骤702,根据预设伽马调试策略分别获取第一显示区的第一伽马调试数据和第二显示区的第二伽马调试数据。
第一伽马调试数据和第二伽马调试数据由预设伽马调试策略所决定。其中,其中,第一伽马调试数据和第二伽马调试数据可以相同也可以不同。如图8所示,具体的,根据预设伽马调试策略分别获取第一显示区的第一伽马调试数据和第二显示区的第二伽马调试数据可具体包括步骤7022-步骤7026。
步骤7022,基于初始伽马调试数据获取第一显示区的第二伽马测试数据和第二显示区的第三伽马测试数据。
初始伽马调试数据可以用于反映默认gamma曲线,其中,第一显示区对应的默认gamma曲线和第二显示区对应的默认gamma曲线可以相同,也可以不同。示例性的,不同显示区对应的默认gamma曲线相同,例如γ=2.0等。具体的,该初始伽马调试数据可包括至少一个亮度等级下,不同预设灰阶绑点对应的初始gamma参数。该初始gamma参数可以用寄存器值进行表示。一般,伽马调试设备中会设置多个(例如8-10个)伽马寄存器来对应存储不同Band(即不同亮度等级)下用于实现伽马调试过程中的各伽马参数。也即,一个寄存器可对应存储一个亮度等级下,多个预设灰阶绑点对应的各伽马参数。其中,每一寄存器的亮度等级所对应的亮度值范围不同,例如,第一寄存器对应的亮度值范围为0-200nit,第二寄存器对应的亮度值范围为201-600nit等。
为了便于说明,本申请实施例中,以同一亮度等级(例如Band3)、23个预设灰阶绑点为例进行说明,如表1所示。其中,初始gamma参数可表示为a1,a2,a3,…,a23,其余亮度等级Band下的初始gamma参数一并参考,非亮度等级位置的差值算法可以不变。
表1为一个实施例中亮度等级下第一显示区的伽马调试过程中的各项参数
Figure PCTCN2022080083-appb-000001
Figure PCTCN2022080083-appb-000002
在其中一个实施例中,寄存器值可以是以十六进制来表示,例如可记为从“000”到“FFF”的值。寄存器值可用于表征显示模组的亮度值,即,不同的寄存器值可以表示在显示同一画面时不同的亮度值。显示模组的寄存器值与显示模组的亮度值存在线性关系,例如,寄存器值“000”可用于表示对应于最暗状态的最小显示亮度级,寄存器值“FFF”可用于表示对应于最亮状态的最大显示亮度级。需要说明的是,在本申请实施例中,寄存器值与显示模组的显示亮度值的对应关系不限于本申请实施例的举例说用,且对本申请中用于存储寄存器值的伽马寄存器的类型不做限定,例如,可以为51寄存器、9325寄存器等。
伽马调试设备可以将初始伽马调试数据烧录至显示模组,以实现对显示模组的初始伽马调试,并控制显示模组的第一显示区和第二显示区显示待调试图像。基于显示的调试图像,可以采用光学测量设备分别采集第一显示区测试区的第二伽马测试数据和第二显示区测试区的第三伽马测试数据。其中,第二伽马测试数据和第三伽马测试数据包括至少一个亮度等级下,多个预设灰阶绑点的伽马测试参数,其中,伽马测试参数为亮度值或透过率。进一步的,伽马调试设备可以将该伽马测试参数转换为寄存器值进行存储。
步骤7024,根据第二伽马测试数据和目标伽马数据获取第一伽马调试数据。
步骤7026,根据第三伽马测试数据和目标伽马数据获取第二伽马调试数据。
目标伽马数据可以用于反映目标gamma曲线,其中,第一显示区对应的目标gamma曲线和第二显示区对应的目标gamma曲线相同。示例性的,目标gamma曲线,γ=2.2。具体的,该目标伽马调试数据可包括至少一个亮度等级下,不同预设灰阶绑点对应的目标gamma参数。如表1所示,该目标gamma参数c1,c2,c3,…,c23可以用寄存器值进行表示。
伽马调试设备可基于伽马调试算法可以根据第一显示区的第二伽马测试数据和目标伽马测试数据获取第一伽马调试数据;相应的,伽马调试设备可基于伽马调试算法可以根据第二显示区的第三伽马测试数据和目标伽马测试数据获取第二伽马调试数据。具体的,该第一伽马调试数据可包括至少一个亮度等级下,不同预设灰阶绑点对应的第一gamma调试参数。如表1所示,第一gamma调试参数b1,b2,b3,…,b23可以用寄存器值进行表示。
需要说明的是,伽马调试算法可以为传统的伽马调试算法,在本申请实施例中,对该伽马调试算法不做进一步的限定。
在其中一个实施例中,与前述实施例不同的是,上述步骤4024,根据第二伽马测试数据和目标伽马数据获取第一伽马调试数据,可以替换为:根据第三伽马测试数据和目标伽马数据分别获取第一伽马调试数据。具体的,第一伽马调试数据可基于第二显示区的第三伽马测试数据与目标伽马数据获取。也即,第一显示区的第一伽马调试数据与第二显示区的第二伽马调试数据相同。
由于第一显示区的亮度显示不均匀,其基于第一显示区测得的第二伽马测试数据不准确,在本实施例中,可以省略对第二伽马测试数据的获取过程,而直接用第二显示区的第三伽马测试数据和目标伽马数据来同步获取第一显示区和第二显示区的伽马调试数据,可以提高获取第一伽马调试和第二伽马调试数据的获取效率,进而提高对第一显示区和第二显示区的第一次伽马调试的效率。
在其中一个实施例中,第二伽马调试数据与前述实施例中第二伽马调试数据的获取方向相同,不同的是,第一伽马调试数据的获取方式不同。具体的,第一伽马调试数据为初始伽马调试数据。也即,可以直接将初始伽马调试数据作为第一显示区的第一伽马调试数据。本实施例中,可以省略对第二伽马测试数据的获取过程,而直接用原始伽马调试数据来对第一显示区进行第一次伽马调试,可以提高对第一显示区的伽马调试的调试效率。
步骤704,根据第一伽马调试数据对第一显示区进行第一次伽马调试,并根据第二伽马调试数据对第二显示区进行第一次伽马调试。
伽马调试设备可将第一伽马调试数据烧录至显示模组,以实现对第一显示区的第一次伽马调试,也可以将第二伽马调试数据烧录至显示模组,以实现对第二显示区的第一次伽马调试。
若第一伽马调试数据与第二伽马调试数据相同,则伽马调试设备可将第二伽马调试数据烧录至显示模组,以同步实现对第一显示区和第二显示区的第一次伽马调试,进而可以提高第一次伽马调试的调试效率。
如图9所示,在其中一个实施例中,对第一显示区再次进行伽马调试和Mura补偿,包括:步骤902-步骤906。
步骤902,获取第一显示区的第一伽马测试数据。
第一伽马测试数据是基于第一伽马调试数据对第一显示区进行第一次伽马调试后,再对第一显示区进行第一次mura补偿后所测得的第一显示区的伽马数据。在其中一个实施例中,可以利用光学测量设备,来采集第一显示区中测试区的第一伽马测试数据。第一伽马测试数据包括至少一个亮度等级下,多个预设灰阶绑点的第一伽马测试参数,其中,第一伽马测试参数为亮度值或透过率。进一步的,伽马调试设备可以将第一伽马测试参数转换为寄存器值进行存储,如表1所示,23个预设灰阶绑点对应的第一伽马测试参数可分别表示为e1,e2,e3,…,e23。
步骤904,根据第一伽马测试数据、目标伽马数据和第一伽马调试数据对第一显示区进行第二次伽马调试。
具体的,伽马调试设备可以根据第一伽马测试数据、目标伽马数据和第一伽马调试数据获取第三伽马调试数据,进而将第三伽马调试数据烧录至显示模组,以实现对第一显示区的第二次伽马调试。具体的,如图10所示,根据第一伽马测试数据、目标伽马数据和第一伽马调试数据对第一显示区进行第二次伽马调试,包括步骤9042-步骤9046。
步骤9042,根据第一伽马测试数据和目标伽马数据获取伽马补偿数据。
具体的,伽马调试设备可在至少一个亮度等级下,根据同一预设灰阶绑点对应的第一伽马测试参数和目标伽马参数获取同一预设灰阶绑点对应的伽马补偿参数,并根据每一预设灰阶绑点分别对应的伽马补偿参数获取伽马补偿数据。如表1所示,针对每一预设绑点,可对应获取第一伽马测试参数和目标伽马参数之间的差值,并将该差值作为对应绑定灰阶的伽马 补偿参数。示例性的,针对预设灰阶绑点13,其对应的伽马补偿参数d2=c3-e3。按照该计算方式,可以对应获取每一预设灰阶绑点对应的各伽马补偿参数,例如,23个预设灰阶绑点对应的伽马补偿参数可分别为d1,d2,d3,…,d23。各伽马补偿参数则可以对应构成伽马补偿数据。
步骤9044,根据伽马补偿数据、第一伽马调试数据获取第三伽马调试数据。
在其中一个实施例中,第一伽马调试数据包括至少一个亮度等级下,多个预设灰阶绑点对应的第一伽马调试参数。具体的,伽马调试设备可根据同一预设灰阶绑点对应的伽马补偿参数和第一伽马调试参数的和值获取同一预设灰阶绑点对应的第三伽马调试参数,并根据每一预设灰阶绑点分别对应的第三伽马调试参数获取第三伽马调试数据。如表1所示,针对每一预设绑点,可对应获取伽马补偿参数和第一伽马调试参数的和值,并将该和值作为对应灰阶绑点的第三伽马调试参数。示例性的,针对预设灰阶绑点13,其对应的第三伽马调试参数f=b2+d2。按照该计算方式,可以对应获取每一预设灰阶绑点对应的各第三伽马调试参数,例如,23个预设灰阶绑点对应的第三伽马调试参数可分别为f1,f2,f3,…,f23。各第三伽马调试参数则可以对应构成第三伽马调试数据。图11为基于各伽马参数绘制的伽马曲线,具体的,gamma曲线1为初始gamma曲线,gamma曲线2为根据第一伽马测试数据绘制的gamma曲线,gamma曲线3为目标gamma曲线。gamma曲线1、gamma曲线2和gamma曲线3与预设灰阶绑点的交点的纵坐标(亮度)为An、En、Cn。其中,亮度An对应表1中寄存器值为an,亮度En对应en,亮度Cn对应表1中寄存器值为cn,计算En和Cn的各个灰阶亮度差,计算出寄存器值差异dn,第三伽马调试参数fn,fn=bn+dn。
步骤9046,根据第三伽马调试数据对第一显示区进行第二次伽马调试。
具体的,伽马调试设备可以将获取的第三伽马调试数据烧录至显示模组,以实现对第一显示区的第二次伽马调,也即,第一显示区可经过两次伽马调试,经过两次伽马调试的第一显示区的亮度均匀,可以消除第一显示区亮度不均的现象,进而可提高第一显示区的显示均匀性。
在其中一个实施例中,步骤9046,根据第三伽马调试数据对第一显示区进行第二次伽马调试前,还包括清除对第一显示区进行第一次Mura补偿的补偿数据的步骤。
具体的,伽马调试设备将第三伽马调试数据烧录至显示模组时,可以先清除烧录至显示模组的demura数据,进而可以减少第二次伽马调试的调试逻辑,以提高第二次伽马调试的调试效率。
步骤906,对第二次伽马调试后的第一显示区进行第二次Mura补偿。
具体的,第二次mura补偿的补偿方式与第一次mura补偿的补偿方式相似,其区别点在于,Mura补偿设备可对第二次伽马调试后的第一显示区再次进行mura的检测,以及检测到Mura后进行再次补偿消除Mura,即第二Demura。
本实施例中,对第二次伽马调试后的第一显示区进行第二次Mura补偿后,可以使得第一显示区和第二显示区的亮度均匀一致,或,使得第一显示区和第二显示区的亮度均匀一致以及色度也均匀一致。
如图12所示,在其中一个实施例中,本申请实施例还提供一种显示模组的补偿方法,该显示模组的补偿方法包括步骤1202-步骤1222。
步骤1202,基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据;
步骤1204,根据所述第二伽马测试数据和目标伽马数据获取所述第一伽马调试数据,根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据;
步骤1206,根据所述第一伽马调试数据对所述第一显示区进行第一次伽马调试,并根据所述第二伽马调试数据对所述第二显示区进行第一次伽马调试;
步骤1208,对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;
步骤1210,分别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;
步骤1212,若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则获取所述第一显示区的第一伽马测试数据;
在其中一个实施例中,可以省略步骤1210以及步骤1212中的判定条:若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,也即,可以在步骤8,对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿后,直接执行获取所述第一显示区的第一伽马测试数据的步骤。
步骤1214,根据所述第一伽马测试数据和目标伽马数据获取伽马补偿数据;
步骤1216,根据所述伽马补偿数据、第一伽马调试数据获取第三伽马调试数据;
步骤1218,清除对所述第一显示区进行第一次Mura补偿的补偿数据;
步骤1220,根据所述第三伽马调试数据对所述第一显示区进行所述第二次伽马调试;
步骤1222,对第二次伽马调试后的第一显示区进行第二次Mura补偿。
上述显示模组的补偿方法通过对第一显示区进行双伽马调试和双mura补偿,可以使得第二次mura补偿后的第一显示信息和第二显示信息的一致性满足预设条件,例如,可以使得第一显示区和第二显示区的亮度均匀一致,或,使得第一显示区和第二显示区的亮度均匀一致以及色度也均匀一致。
在其中一个实施例中,显示模组的补偿方法还可以包括若所述第一显示信息符合预设显示条件,则根据目标加权数据对所述第一伽马调试数据进行更新的步骤。其中,预设显示条件可以为第一显示信息在第一显示区具有预设渐变规律,其预设渐变规律可以为由外向内逐渐变暗,也可以为由外向内逐渐变亮,或其他渐变方方式,参考图3a-3e,在本申请实施例中,对其预设渐变规律不做进一步的限定。若该第一显示信息符合预设显示条件时,则可以根据目标加权数据对第一伽马调试数据进行更新。
进一步的,若第一显示信息具有渐变规律,还可以进一步检测第一显示区的平均显示亮度与第一显示区的测试区的平均显示亮度的差值是否保持在一定预设范围内。其中,该测试区的面积小于第一显示区的面积,测试区可以理解为光学测量设备的探测区域。若该差值保持在一定预设范围内,则可以更加精准的确定其第一显示区是否具有预设渐变规律,进而可以更加准确的确定目标加权数据,以提高伽马调试的准确度。
具体的,目标加权数据可包括至少一个亮度等级下,多个预设灰阶绑定对应的多个目标加权参数。为了便于说明,如表2所示,本申请实施例中,以单一亮度等级,23个预设灰阶绑点为例进行说明。也即,该23个预设灰阶绑点对应的23个目标加权参数可以用m1,m2,m3,…,m23来表示。其中,各个目标加权参数的数值不完全相同,也可以完全不同。目标加权数据可以预先存储在伽马调试设备中。
表2为另一个实施例中亮度等级下第一显示区的伽马调试过程中的各项参数
Figure PCTCN2022080083-appb-000003
Figure PCTCN2022080083-appb-000004
伽马调试设备可以将更新后的第一伽马调试数据和第二伽马调试数据烧录至显示模组,以实现分别对第一显示区、第二显示区的伽马调试。
本实施例中,经过初试伽马调试后的第一显示区的第一显示信息符合预设显示调试时,可以对第一伽马调试数据进行定向加权,以实现对第一伽马调试数据的更新,然后,再根据更新后的第一伽马调试数据对第一显示区进行伽马调试,根据第二伽马调试数据对第二显示区进行伽马调试,可以大概率的保证第一次mura补偿后的第一显示区和第二显示区的显示信息保持一致性,例如,第一显示区和第二显示区的显示亮度是一致均匀的,第一显示区和第二显示区的显示亮度、色度也是一致均匀的,也可以提高显示模组的补偿方法的补偿效率。
在其中一个实施例中,根据目标加权数据对所述第一伽马调试数据进行更新前,显示模组的补偿方法还包括获取目标加权数据的步骤。具体的,获取目标加权数据的步骤可包括配置多个预设显示条件分别与多个预设加权数据之间一一对应的映射关系;获取第一显示信息的渐变规律,并根据渐变规律和映射关系确定目标加权数据。具体的,伽马调试设备中会存储有多组预设加权数据,每一组预设加权数据对应一种渐变规律。其中,每一预设加权数据可以参考批量性的规律数据来获取。其中,规律数据可以为对同一批次或型号的具有相同显示亮度不均现象的显示模组进行伽马调试的调试数据。基于调试数据对显示模组进行伽马调试后可以消除亮度第一显示区显示不均的现象。
如图13所示,在其中一个实施例中,根据目标加权数据对所述第一伽马调试数据进行更新,具体包括步骤1302-步骤1304。
步骤1302,根据每一所述预设灰阶绑点对应的第一伽马调试参数和目标加权参数的和值获取同一所述预设灰阶绑点对应的新的第一伽马调试参数。
步骤1304,根据多个所述预设灰阶绑点对应新的第一伽马调试参数确定新的第一伽马调试数据。
具体的,如表2所示,针对每一预设绑点,可对应获取目标加权参数和第一伽马调试参数的和值,并将该和值作为对应灰阶绑点的新的第一伽马调试参数。示例性的,针对预设灰阶绑点13,其对应的新的第一伽马调试参数b2’=b2+m2。按照该计算方式,可以对应获取每一预设灰阶绑点对应的各新的第一伽马调试参数,例如,23个预设灰阶绑点对应的第三伽马调试参数可分别为b1’,b2’,b3’,…,b23’,各个新的第一伽马调试参数则可以对应构成新的第一伽马调试数据。
伽马调试设备可以将新的第一伽马调试数据烧录至显示模组,以基于新的第一伽马调试数据对显示模组进行第一次伽马调试,可以一定概率保证第一次Demura之后的效果,以使 第一次mura补偿后的第一显示区和第二显示区的亮度、色度中的至少一个相对一致。
如图14所示,本申请实施例还提供一种显示模组的补偿方法,具体的,显示模组的补偿方法可具体包括步骤1402-步骤1412。
步骤1402,基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据。
步骤1404,根据所述第二伽马测试数据和目标伽马数据获取所述第一伽马调试数据,根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据。
步骤1406,若所述第一显示信息符合预设显示条件,则根据目标加权数据对所述第一伽马调试数据进行更新。
步骤1408,根据更新后的所述第一伽马调试数据对所述第一显示区进行第一次伽马调试,并根据所述第二伽马调试数据对所述第二显示区进行第一次伽马调试。
步骤1410,对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿。其中,对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿后的显示模组的显示图如图15所示,其中个,图15所示的图中,中间的图为基于新的第一伽马调试数据进行第一次伽马调试后的显示图。
步骤1412,分别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息。
步骤1414,若所述第一显示信息和所述第二显示信息的一致性满足预设条件,则完成。
步骤1416,若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。
本申请实施例中,可以根据更新后的第一伽马调试数据对第一显示区进行伽马调试,根据第二伽马调试数据对第二显示区进行伽马调试,可以大概率的保证第一次mura补偿后的第一显示区和第二显示区的显示信息保持一致性,例如,第一显示区和第二显示区的显示亮度是一致均匀的,第一显示区和第二显示区的显示亮度、色度也是一致均匀的,也可以提高显示模组的补偿方法的补偿效率。另外,即便是根据更新后的第一伽马调试数据对第一显示区进行第一次伽马调试后,第一显示区和第二显示区的显示信息的一致性不符合预设条件,也还可以对第一显示区再次进行伽马调试和Mura补偿,由于第一次mura补偿后的第一显示区的亮度均匀,可以提高第二次伽马调试的测试数据的准确度,进而可以提高第二次伽马调试的准确度,通过对第一显示区进行双伽马调试和双mura补偿,可以使得第二次mura补偿后的第一显示信息和第二显示信息的一致性满足预设条件,例如,可以使得第一显示区和第二显示区的亮度分布均匀且一致等。
应该理解的是,虽然图5、图7-10、图12-14的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图5、图7-10、图12-14中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。示例性的,在本申请实施例中,可以先执行对第二显示区的伽马调试和mura补偿,然后,再执行对第一显示区的双伽马调试和双mura补偿;当然,也可以先分别执行对第一显示区和第二显示区的第一次伽马调试,再分别执行对第一显示区和第二显示区的第一次mura补偿,然后再执行对第一显示区的第二次伽马调试、第二次mura补偿。
图16为一个实施例的显示模组的补偿装置的结构框图。如图16所示,显示模组的补偿装置包括:伽马调试模块1602、Mura补偿模块1604、显示获取模块1606和补偿模块1608。其中,伽马调试模块1602,用于根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试;Mura补偿模块1604,用于对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;显示获取模块1606,用于分用于别获取第 一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;补偿模块1608,用于若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。
上述显示模组的补偿装置中,伽马调试模块1602可根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试;Mura补偿模块1604对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;显示获取模块1606分别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;补偿模块1608可在所述第一显示信息和所述第二显示信息的一致性不满足预设条件时,对所述第一显示区再次进行伽马调试和Mura补偿。由于第一次mura补偿后的第一显示区的亮度均匀,可以提高第二次伽马调试的测试数据的准确度,进而可以提高第二次伽马调试的准确度,通过对第一显示区进行双伽马调试和双mura补偿,可以使得第二次mura补偿后的第一显示信息和第二显示信息保持一致,例如,可以使得第一显示区和第二显示区的亮度分布均匀且一致等。
在其中一个实施例中,伽马调试模块1602还用于根据预设伽马调试策略分别获取所述第一显示区的第一伽马调试数据和所述第二显示区的第二伽马调试数据;根据所述第一伽马调试数据对所述第一显示区进行第一次伽马调试,并根据所述第二伽马调试数据对所述第二显示区进行第一次伽马调试。
在其中一个实施例中,补偿模块1608还用于在第一显示信息和所述第二显示信息的一致性不满足预设条件时,获取所述第一显示区的第一伽马测试数据;根据所述第一伽马测试数据、目标伽马数据和第一伽马调试数据对所述第一显示区进行第二次伽马调试;对第二次伽马调试后的所述第一显示区进行第二次Mura补偿。
在其中一个实施例中,补偿模块1608还用于根据所述第一伽马测试数据和目标伽马数据获取伽马补偿数据;根据所述伽马补偿数据、第一伽马调试数据获取第三伽马调试数据;根据所述第三伽马调试数据对所述第一显示区进行所述第二次伽马调试。
在其中一个实施例中,所述第一伽马测试数据包括多个预设灰阶绑点对应的第一伽马测试参数,所述目标伽马数据包括多个所述预设灰阶绑点对应的目标伽马参数,其中,补偿模块1608还用于根据同一所述预设灰阶绑点对应的第一伽马测试参数和目标伽马参数获取同一所述预设灰阶绑点对应的伽马补偿参数;根据每一所述预设灰阶绑点分别对应的伽马补偿参数获取所述伽马补偿数据。
在其中一个实施例中,所述第一伽马调试数据包括多个预设灰阶绑点对应的第一伽马调试参数,其中,补偿模块1608还用于根据同一所述预设灰阶绑点对应的伽马补偿参数和第一伽马调试参数的和值获取同一所述预设灰阶绑点对应的第三伽马调试参数;根据每一所述预设灰阶绑点分别对应的第三伽马调试参数获取所述第三伽马调试数据。
在其中一个实施例中,Mura补偿模块1604还用于清除对所述第一显示区进行第一次Mura补偿的补偿数据。
在其中一个实施例中,伽马调试模块1602,还用于基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据;根据所述第二伽马测试数据和目标伽马数据获取所述第一伽马调试数据;根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据。
在其中一个实施例中,伽马调试模块1602,还用于在若所述第一显示信息符合预设显示条件时,根据目标加权数据对所述第一伽马调试数据进行更新。
在其中一个实施例中,伽马调试模块1602,还用于配置多个所述预设显示条件分别与多个预设加权数据之间一一对应的映射关系;获取所述第一显示信息的渐变特征,并根据所述渐变特征和所述映射关系确定所述目标加权数据;其中,所述目标加权数据包括多个预设灰阶绑点一一对应的多个加权参数。
在其中一个实施例中,所述第一伽马调试数据包括多个预设灰阶绑点一一对应的多个第 一伽马调试参数;伽马调试模块1602,还用于根据每一所述预设灰阶绑点对应的第一伽马调试参数和加权参数的和值获取同一所述预设灰阶绑点对应的新的第一伽马调试参数;根据多个所述预设灰阶绑点对应的所述新的第一伽马调试参数确定新的第一伽马调试数据。
在其中一个实施例中,伽马调试模块1602,还用于基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据;根据所述第三伽马测试数据和目标伽马数据分别获取所述第一伽马调试数据和所述第二伽马调试数据;其中,所述第一伽马调试数据和所述第二伽马调试数据相等。
在其中一个实施例中,伽马调试模块1602,还用于基于初始伽马调试数据获取所述第二显示区的第三伽马测试数据;根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据;其中,所述第一伽马调试数据为所述初始伽马调试数据。
上述显示模组的补偿装置中各个模块的划分仅用于举例说明,在其他实施例中,可将显示模组的补偿装置按照需要划分为不同的模块,以完成上述显示模组的补偿装置的全部或部分功能。
关于显示模组的补偿装置的具体限定可以参见上文中对于显示模组的补偿方法的限定,在此不再赘述。上述显示模组的补偿装置的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请实施例中提供的显示模组的补偿装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在电子设备的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。
一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行上述任一实施例中显示模组的补偿方法的步骤。
在其中一个实施例中,该电子设备可以为前述实施例中的电子设备,请继续参考图1。也即,其显示模组的补偿方法可以由包括屏下摄像头的电子设备来执行。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行上述任一实施例中显示模组的补偿方法的步骤。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行显示模组的补偿方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种显示模组的补偿方法,所述显示模组包括第一显示区和第二显示区,其中,所述第一显示区的各信号线的负载不完全相同,所述方法包括:
    根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试;
    对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;
    分别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;
    若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。
  2. 根据权利要求1所述的方法,其中,根据预设伽马调试策略分别对所述第一显示区和所述第二显示区进行第一次伽马调试,包括:
    根据预设伽马调试策略分别获取所述第一显示区的第一伽马调试数据和所述第二显示区的第二伽马调试数据;
    根据所述第一伽马调试数据对所述第一显示区进行第一次伽马调试,并根据所述第二伽马调试数据对所述第二显示区进行第一次伽马调试。
  3. 根据权利要求2所述的方法,其中,所述对所述第一显示区再次进行伽马调试和Mura补偿,包括:
    获取所述第一显示区的第一伽马测试数据;
    根据所述第一伽马测试数据、目标伽马数据和第一伽马调试数据对所述第一显示区进行第二次伽马调试;
    对第二次伽马调试后的所述第一显示区进行第二次Mura补偿。
  4. 根据权利要求3所述的方法,其中,所述根据所述第一伽马测试数据、目标伽马数据和第一伽马调试数据对所述第一显示区进行第二次伽马调试,包括:
    根据所述第一伽马测试数据和目标伽马数据获取伽马补偿数据;
    根据所述伽马补偿数据、第一伽马调试数据获取第三伽马调试数据;
    根据所述第三伽马调试数据对所述第一显示区进行所述第二次伽马调试。
  5. 根据权利要求4所述的方法,其中,所述第一伽马测试数据包括多个预设灰阶绑点对应的第一伽马测试参数,所述目标伽马数据包括多个所述预设灰阶绑点对应的目标伽马参数,其中,所述根据所述第一伽马测试数据和目标伽马数据获取伽马补偿数据,包括:
    根据同一所述预设灰阶绑点对应的第一伽马测试参数和目标伽马参数获取同一所述预设灰阶绑点对应的伽马补偿参数;
    根据每一所述预设灰阶绑点分别对应的伽马补偿参数获取所述伽马补偿数据。
  6. 根据权利要求4所述的方法,其中,所述第一伽马调试数据包括多个预设灰阶绑点对应的第一伽马调试参数,其中,所述根据所述伽马补偿数据、第一伽马调试数据获取第三伽马调试数据,包括:
    根据同一所述预设灰阶绑点对应的伽马补偿参数和第一伽马调试参数的和值获取同一所述预设灰阶绑点对应的第三伽马调试参数;
    根据每一所述预设灰阶绑点分别对应的第三伽马调试参数获取所述第三伽马调试数据。
  7. 根据权利要求4所述的方法,其中,所述根据所述第三伽马调试数据对所述第一显示区进行所述第二次伽马调试前,所述方法还包括:
    清除对所述第一显示区进行第一次Mura补偿的补偿数据。
  8. 根据权利要求2所述的方法,其中,根据预设伽马调试策略分别获取所述第一显示 区的第一伽马调试数据和所述第二显示区的第二伽马调试数据,包括:
    基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据;
    根据所述第二伽马测试数据和目标伽马数据获取所述第一伽马调试数据;
    根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据。
  9. 根据权利要求2所述的方法,其中,根据预设伽马调试策略分别获取所述第一显示区的第一伽马调试数据和所述第二显示区的第二伽马调试数据,包括:
    基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据;
    根据所述第三伽马测试数据和目标伽马数据获取所述第一伽马调试数据;
    根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    若所述第一显示信息符合预设显示条件,则根据目标加权数据对所述第一伽马调试数据进行更新。
  11. 根据权利要求10所述的方法,其中,所述根据目标加权数据对所述第一伽马调试数据进行更新前,所述方法还包括:
    配置多个所述预设显示条件分别与多个预设加权数据之间一一对应的映射关系;
    获取所述第一显示信息的渐变特征,并根据所述渐变特征和所述映射关系确定所述目标加权数据;其中,所述目标加权数据包括多个预设灰阶绑点一一对应的多个加权参数。
  12. 根据权利要求11所述的方法,其中,所述第一伽马调试数据包括多个预设灰阶绑点一一对应的多个第一伽马调试参数;其中,所述根据目标加权数据对所述第一伽马调试数据进行更新,包括:
    根据每一所述预设灰阶绑点对应的第一伽马调试参数和加权参数的和值获取同一所述预设灰阶绑点对应的新的第一伽马调试参数;
    根据多个所述预设灰阶绑点对应的所述新的第一伽马调试参数确定新的第一伽马调试数据。
  13. 根据权利要求10所述的方法,其中,所述预设显示条件为所述第一显示信息在所述第一显示区具有预设渐变规律,其中,所述预设渐变规律为由外向内逐渐变暗,或,由外向内逐渐变亮。
  14. 根据权利要求2-13任一项所述的方法,其中,根据预设伽马调试策略分别获取所述第一显示区的第一伽马调试数据和所述第二显示区的第二伽马调试数据,包括:
    基于初始伽马调试数据获取所述第一显示区的第二伽马测试数据和所述第二显示区的第三伽马测试数据;
    根据所述第三伽马测试数据和目标伽马数据分别获取所述第一伽马调试数据和所述第二伽马调试数据;其中,所述第一伽马调试数据和所述第二伽马调试数据相等。
  15. 根据权利要求2-13任一项所述的方法,其中,根据预设伽马调试策略分别获取所述第一显示区的第一伽马调试数据和所述第二显示区的第二伽马调试数据,包括:
    基于初始伽马调试数据获取所述第二显示区的第三伽马测试数据;
    根据所述第三伽马测试数据和目标伽马数据获取所述第二伽马调试数据;其中,所述第一伽马调试数据为所述初始伽马调试数据。
  16. 根据权利要求1所述的方法,其中,所述第一显示信息和第二显示信息均包括亮度信息和色度信息中的至少一种。
  17. 一种显示模组的补偿装置,所述显示模组包括第一显示区和第二显示区,其中,所述第一显示区的像素密度小于所述第二显示区的像素密度,所述装置包括:
    伽马调试模块,用于根据预设伽马调试策略分别对所述第一显示区和所述第二显示区 进行第一次伽马调试;
    Mura补偿模块,用于对所述第一次伽马调试后的所述第一显示区和第二显示区分别进行第一次Mura补偿;
    显示获取模块,用于分用于别获取第一次Mura补偿后的所述第一显示区的第一显示信息和第二显示区的第二显示信息;
    补偿模块,用于若所述第一显示信息和所述第二显示信息的一致性不满足预设条件,则对所述第一显示区再次进行伽马调试和Mura补偿。
  18. 一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至16中任一项所述的显示模组的补偿方法的步骤。
  19. 根据权利要求18所述的电子设备,其中,所述电子设备还包括显示模组和感光器件,其中,所述显示模组包括第一显示区和第二显示区,其中,所述第一显示区的各信号线的负载不完全相同,其中,所述感光器件与所述第一显示区对应设置。
  20. 根据权利要求19所述的电子设备,其中,所述感光器件为摄像头。
  21. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的显示模组的补偿方法的步骤。
PCT/CN2022/080083 2021-04-19 2022-03-10 显示模组的补偿方法、装置、电子设备和可读存储介质 WO2022222635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110418356.7A CN113140196B (zh) 2021-04-19 2021-04-19 显示模组的补偿方法、装置、电子设备和可读存储介质
CN202110418356.7 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022222635A1 true WO2022222635A1 (zh) 2022-10-27

Family

ID=76812709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080083 WO2022222635A1 (zh) 2021-04-19 2022-03-10 显示模组的补偿方法、装置、电子设备和可读存储介质

Country Status (2)

Country Link
CN (1) CN113140196B (zh)
WO (1) WO2022222635A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140196B (zh) * 2021-04-19 2022-06-10 Oppo广东移动通信有限公司 显示模组的补偿方法、装置、电子设备和可读存储介质
CN113889016B (zh) * 2021-09-29 2024-04-19 昆山国显光电有限公司 显示补偿方法、装置、显示装置及存储介质
CN113948041B (zh) * 2021-10-13 2023-01-24 昆山国显光电有限公司 显示面板的亮度补偿方法、装置及电子设备
CN113889021A (zh) * 2021-10-26 2022-01-04 福建华佳彩有限公司 一种改善AA hole横向mura的方法
CN114170947B (zh) 2021-12-14 2023-05-30 武汉华星光电半导体显示技术有限公司 显示面板的mura补偿方法及显示面板
CN114333675B (zh) * 2021-12-30 2023-06-27 昆山国显光电有限公司 显示补偿方法、装置、显示装置及存储介质
CN114446217B (zh) * 2022-03-09 2023-12-22 京东方科技集团股份有限公司 显示补偿方法、补偿装置、显示装置及存储介质
CN115359751A (zh) * 2022-09-05 2022-11-18 昆山国显光电有限公司 伽马调试方法及装置、计算机可读存储介质
CN117931113B (zh) * 2024-03-25 2024-08-23 合肥维信诺电子有限公司 显示差异的确定方法、装置、电子设备及可读存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160148582A1 (en) * 2014-11-21 2016-05-26 Samsung Display Co., Ltd. Vision inspection apparatus and method of compensating gamma defect and mura defect thereof
CN105741764A (zh) * 2016-03-31 2016-07-06 深圳市华星光电技术有限公司 消除OLED显示面板Mura的方法
CN105741763A (zh) * 2016-03-31 2016-07-06 深圳市华星光电技术有限公司 消除OLED显示面板Mura的方法
US20180166030A1 (en) * 2016-09-12 2018-06-14 Novatek Microelectronics Corp. Driving apparatus and method
CN109036275A (zh) * 2018-09-19 2018-12-18 京东方科技集团股份有限公司 一种显示屏的Mura现象补偿方法和装置
CN110447061A (zh) * 2019-04-22 2019-11-12 京东方科技集团股份有限公司 亮度补偿参数检测方法、亮度补偿方法、亮度补偿参数检测装置、亮度补偿装置、显示装置及存储介质
CN111833791A (zh) * 2020-04-14 2020-10-27 昆山国显光电有限公司 伽马调试方法及伽马调试装置
CN111968572A (zh) * 2020-08-20 2020-11-20 昆山国显光电有限公司 显示模组mura补偿数据确定方法、装置
CN112365845A (zh) * 2020-11-10 2021-02-12 京东方科技集团股份有限公司 伽马调试方法和伽马调试装置
US10943530B1 (en) * 2020-02-24 2021-03-09 Himax Technologies Limited Mura compensation method and apparatus for OLED display and electronic device
CN113140196A (zh) * 2021-04-19 2021-07-20 Oppo广东移动通信有限公司 显示模组的补偿方法、装置、电子设备和可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198801B (zh) * 2013-03-11 2015-02-04 深圳市华星光电技术有限公司 平面显示面板大视角Mura区域的补偿方法
EP3264402A4 (en) * 2015-03-20 2018-01-17 Huawei Technologies Co., Ltd. Method for correcting screen asymmetry and device and system thereof
US10204592B1 (en) * 2017-11-30 2019-02-12 Dell Products L.P. Configuring multiple displays of a computing device to have a similar perceived appearance
CN110473502A (zh) * 2018-05-09 2019-11-19 华为技术有限公司 屏幕亮度的控制方法、装置及终端设备
CN110444178B (zh) * 2019-08-20 2022-01-11 京东方科技集团股份有限公司 一种驱动方法、驱动装置及显示设备
CN110706634B (zh) * 2019-09-30 2022-07-26 联想(北京)有限公司 显示方法和电子设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160148582A1 (en) * 2014-11-21 2016-05-26 Samsung Display Co., Ltd. Vision inspection apparatus and method of compensating gamma defect and mura defect thereof
CN105741764A (zh) * 2016-03-31 2016-07-06 深圳市华星光电技术有限公司 消除OLED显示面板Mura的方法
CN105741763A (zh) * 2016-03-31 2016-07-06 深圳市华星光电技术有限公司 消除OLED显示面板Mura的方法
US20180166030A1 (en) * 2016-09-12 2018-06-14 Novatek Microelectronics Corp. Driving apparatus and method
CN109036275A (zh) * 2018-09-19 2018-12-18 京东方科技集团股份有限公司 一种显示屏的Mura现象补偿方法和装置
CN110447061A (zh) * 2019-04-22 2019-11-12 京东方科技集团股份有限公司 亮度补偿参数检测方法、亮度补偿方法、亮度补偿参数检测装置、亮度补偿装置、显示装置及存储介质
US10943530B1 (en) * 2020-02-24 2021-03-09 Himax Technologies Limited Mura compensation method and apparatus for OLED display and electronic device
CN111833791A (zh) * 2020-04-14 2020-10-27 昆山国显光电有限公司 伽马调试方法及伽马调试装置
CN111968572A (zh) * 2020-08-20 2020-11-20 昆山国显光电有限公司 显示模组mura补偿数据确定方法、装置
CN112365845A (zh) * 2020-11-10 2021-02-12 京东方科技集团股份有限公司 伽马调试方法和伽马调试装置
CN113140196A (zh) * 2021-04-19 2021-07-20 Oppo广东移动通信有限公司 显示模组的补偿方法、装置、电子设备和可读存储介质

Also Published As

Publication number Publication date
CN113140196B (zh) 2022-06-10
CN113140196A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2022222635A1 (zh) 显示模组的补偿方法、装置、电子设备和可读存储介质
US10657905B2 (en) Method and apparatus for compensating for brightness of display device
US11074882B2 (en) Method and device for adjusting grayscale of display panel
KR102257160B1 (ko) 표시 패널의 mura 현상 보상 방법 및 표시 패널
US10504400B2 (en) Method and apparatus for performing correction processing on grayscale of a pixel in an image
CN109036245B (zh) 一种显示处理的方法、装置、集成电路及计算机存储介质
US10755633B2 (en) Compensation method and compensation device, display apparatus, display method and storage medium
CN105244007A (zh) 一种曲面显示屏的灰阶修正表的生成方法及装置
CN110189714A (zh) 具有区域调节背光的显示方法及装置、电子设备、介质
US20210358427A1 (en) Backlight brightness processing method and system, backlight brightness adjustment method, storage medium
KR102328446B1 (ko) 액정 디스플레이 패널의 그레이 스케일 보정 데이터의 검출 방법
CN113096583B (zh) 发光器件的补偿方法、装置、显示模组和可读存储介质
WO2016070455A1 (zh) 液晶面板及其像素单元设定方法
WO2020224366A1 (zh) 背光模组的背光控制方法和装置、显示装置
CN113495709B (zh) 色彩校正方法、ap芯片、终端和存储介质
CN114898717A (zh) 残像补偿方法、装置、显示设备和计算机可读存储介质
TW201519212A (zh) 紅綠藍白(rgbw)動態彩色保真度控制
WO2020259517A1 (zh) 一种显示属性调整方法以及相关设备
CN114495812B (zh) 显示面板亮度补偿方法、装置、电子设备及可读存储介质
CN115206236A (zh) 伽马调试方法、伽马调试装置及显示装置
US10970846B1 (en) Repairing method for Mura in display panel
CN105679255A (zh) LCD显示屏的Gamma值烧录方法和烧录装置
US11210991B2 (en) Method of generating correction data for display device, test device, and display device
CN113963658B (zh) 亮度补偿方法及亮度数据确定方法、装置、芯片
CN114266745A (zh) 图像亮度值确定方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790744

Country of ref document: EP

Kind code of ref document: A1