WO2022211088A1 - Multi-shell tank, ship, and gas pressure adjustment method - Google Patents

Multi-shell tank, ship, and gas pressure adjustment method Download PDF

Info

Publication number
WO2022211088A1
WO2022211088A1 PCT/JP2022/016849 JP2022016849W WO2022211088A1 WO 2022211088 A1 WO2022211088 A1 WO 2022211088A1 JP 2022016849 W JP2022016849 W JP 2022016849W WO 2022211088 A1 WO2022211088 A1 WO 2022211088A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
gas
pressure
temperature
space
Prior art date
Application number
PCT/JP2022/016849
Other languages
French (fr)
Japanese (ja)
Inventor
太一郎 下田
晴彦 冨永
麻子 三橋
和宏 黒田
広崇 ▲高▼田
英和 岩▲崎▼
洋輝 中土
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020237037143A priority Critical patent/KR20230162683A/en
Publication of WO2022211088A1 publication Critical patent/WO2022211088A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present disclosure relates to multi-shell tanks, ships and gas pressure regulation methods.
  • a multi-shell tank is known that has an inner tank in which a cryogenic liquid is stored and an outer tank that accommodates the inner tank, and in which a heat insulating space between the inner tank and the outer tank is filled with gas.
  • Patent Document 1 discloses a double-shell tank having an inner tank and an outer tank. filled with boil-off gas.
  • an object of the present disclosure is to provide a multi-shell tank, a vessel, and a gas pressure adjustment method that can suppress condensation of gas in the space outside the inner tank in which the cryogenic liquid is stored.
  • a multi-shell tank includes an inner tank in which a cryogenic liquid is stored, and at least one outer tank containing the inner tank. and a heat insulating space filled with a gas, which is a space between a first tank and a second tank that are adjacent to each other outward from the center of the inner tank among the plurality of tanks.
  • the pressure of the gas in the heat insulating space between the first tank and the second tank is the tank closest to the center of the inner tank of the first tank and the second tank.
  • the temperature of the first tank or the temperature of the inner space of the first tank facing the first tank at a reference temperature that is a temperature determined based on the temperature of the first tank and the second tank is maintained below the saturated vapor pressure of the gas within the adiabatic space between.
  • a ship according to one aspect of the present disclosure includes the multi-shell tank.
  • a gas pressure adjusting method includes a plurality of tanks including an inner tank in which a cryogenic liquid is stored, and at least one outer tank containing the inner tank; and a heat insulating space filled with gas, which is a space between the first tank and the second tank adjacent to each other outward from the center of the inner tank, of the tanks.
  • the temperature of the tank or the temperature of the space inside the first tank facing the first tank is measured, and the measured temperature or the temperature determined based on the plurality of measured temperatures is the reference temperature.
  • the saturated vapor pressure of the gas in the adiabatic space at the reference temperature is derived, and the pressure of the gas in the adiabatic space is maintained below the derived saturated vapor pressure.
  • a multi-shell tank, a vessel, and a gas pressure adjustment method capable of suppressing condensation of gas in the space outside the inner tank in which the cryogenic liquid is stored.
  • FIG. 1 is a schematic side view of a vessel including a multi-shell tank according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic configuration diagram showing the overall configuration of the multi-shell tank shown in FIG. 1.
  • FIG. 3 is a flow chart showing the gas pressure adjustment flow of the multi-shell tank shown in FIG.
  • FIG. 4 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the second embodiment of the present disclosure.
  • FIG. 5 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the third embodiment of the present disclosure.
  • FIG. 6 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the fourth embodiment of the present disclosure.
  • FIG. 7 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the fifth embodiment of the present disclosure.
  • the “inner side” means the side near the center of the space within the inner tank of the multi-shell tank
  • the “outer side” means the side far from the center of the space within the inner tank of the multi-shell tank. means side.
  • the inner tank and at least one outer tank that a multi-shell tank comprises may be simply referred to as "tanks" without distinction from each other.
  • FIG. 1 is a schematic side view of a ship 1 including a multi-shell tank 10A according to the first embodiment.
  • the vessel 1 is a liquefied gas carrier that carries cryogenic liquids.
  • the ship 1 comprises a multi-hull tank 10A.
  • the multi-shell tank 10A comprises an inner tank 11 and an outer tank 12 covering the inner tank 11 .
  • a low-temperature liquid is stored in the storage space R1 inside the inner tank 11 .
  • a sealed heat insulating space R2 is formed outside the inner tank 11 and inside the outer tank 12.
  • the inner tub 11 corresponds to the first tub
  • the outer tub 12 corresponds to the second tub.
  • both the inner tank 11 and the outer tank 12 are spherical.
  • the inner tub 11 and the outer tub 12 do not necessarily have to be spherical.
  • the inner tank 11 and the outer tank 12 may have a shape in which a short cylindrical body is sandwiched between the upper hemispheres, may have a horizontal cylindrical shape, or may have a rectangular shape.
  • the inner bath 11 and the outer bath 12 may have a shape that bulges in an upward 45-degree angle direction and/or downward 45-degree angle direction from the center of the inner bath 11 .
  • the shape of the inner tank 11 and the shape of the outer tank 12 may be similar or non-similar to each other.
  • the center of the inner tub 11 and the center of the outer tub 12 may be aligned with each other, or the center of the inner tub 11 and the center of the outer tub 12 may not be aligned with each other.
  • the center of the inner tub 11 may be eccentric with respect to the center of the outer tub 12 .
  • the upper portion of the outer tub 12 is covered with a tank cover 13, and the remaining portion of the outer tub 12 is covered with a retaining wall 14.
  • the retaining wall 14 is for example part of the hull 2 . That is, the retaining wall 14 includes a pair of longitudinal bulkheads extending in the longitudinal direction on both sides of the outer tank 12 in the transverse direction, and an inner bottom extending in the longitudinal direction below the outer tank 12 and above the bottom shell plate of the hull 2 . Including plates, etc.
  • the tank cover 13 and the retaining wall 14 are configured as one housing structure 15 that houses the outer tank 12 .
  • a closed space is formed inside the tank cover 13 and the holding wall 14 and outside the outer tank 12 by covering the outer tank 12 with the tank cover 13 and the holding wall 14 .
  • the tank cover 13 and the holding wall 14 function as one outer tank that further covers the outer tank 12 .
  • the outer tank of the multi-shell tank includes a storage structure 15 composed of a tank cover and a retaining wall, etc., as the outermost tank forming a sealed space between the outer tank and the inner tank. It should also include what works.
  • the multi-shell tank 10A does not necessarily have to be mounted on the ship 1 as a cargo tank, and may be mounted as a fuel tank. Moreover, although FIG. 1 shows the ship 1 provided with one multi-shell tank 10A, the ship 1 may be provided with a plurality of multi-shell tanks 10A. When the ship 1 is equipped with a plurality of multi-shell tanks 10A, the partition wall provided between two adjacent multi-shell tanks 10A is also included in the housing structure 15 covering the outer tank 12.
  • FIG. 2 is a schematic configuration diagram showing the overall configuration of the multi-shell tank 10A shown in FIG. FIG. 2 includes cross-sectional views of the inner tub 11 and the outer tub 12 . However, in FIG. 2, the tank cover 13 and the holding wall 14 are omitted. As shown in FIG. 2, the inner tank 11 partitions a storage space R1 inside the inner tank 11 containing the low-temperature liquid and a heat insulating space R2 outside the inner tank 11 and inside the outer tank 12. . The gas layer above the storage space R1 is filled with the boil-off gas that is obtained by vaporizing the cryogenic fluid in the storage space R1.
  • a heat insulating material is placed in the heat insulating space R2.
  • the heat insulating material may be a granular material such as perlite, or may be a heat insulating panel attached to the surface of the inner tank 11 or the like.
  • the heat insulating space R2 is filled with gas.
  • the type of gas filled in the heat insulation space R2 is the same as the type of boil-off gas in the storage space R1.
  • the low-temperature liquid in the storage space R1 is liquefied hydrogen
  • the gas in the heat insulating space R2 is hydrogen gas.
  • the multi-shell tank 10A has an introduction passage 21 for introducing the boil-off gas in the inner tank 11, that is, the boil-off gas in the storage space R1, into the heat insulation space R2.
  • An introduction valve 22 is provided in the introduction path 21 .
  • the introduction valve 22 functions as a pressure regulator that regulates the pressure of the gas within the heat insulating space R2.
  • the introduction valve 22 is an on-off valve.
  • the inlet valve 22 may be another type of valve such as a pressure regulating valve.
  • the introduction valve 22 is controlled by a control device 33, which will be described later.
  • the multi-shell tank 10A also includes an exhaust path 23 that guides the gas in the heat insulating space R2 to the outside of the heat insulating space R2, and an exhaust device 24 provided in the exhaust path 23.
  • One end of the exhaust path 23 is arranged inside the heat insulation space R2, and the other end of the exhaust path 23 is arranged outside the heat insulation space R2.
  • the other end of the exhaust path 23 is connected to other equipment.
  • Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like.
  • the other end of the exhaust path 23 may be open to the atmosphere.
  • the exhaust device 24 functions as a pressure regulating device that regulates the pressure of the gas inside the heat insulating space R2.
  • Examples of the exhaust device 24 include a compressor and an exhaust pump such as a vacuum pump.
  • the exhaust device 24 is controlled by a control device 33, which will be described later.
  • the multi-shell tank 10A includes an escape passage 25 that guides the gas inside the heat insulation space R2 to the outside of the heat insulation space R2, and an escape valve 26 provided in the escape passage 25.
  • One end of the escape path 25 is arranged inside the heat insulation space R2, and the other end of the escape path 25 is arranged outside the heat insulation space R2.
  • the other end of escape path 25 is connected to other equipment.
  • Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like.
  • the pressure around the other end of the escape channel 25 is near atmospheric pressure.
  • the other end of escape path 25 may be open to the atmosphere.
  • the relief valve 26 functions as a pressure regulator that regulates the pressure of the gas inside the heat insulating space R2.
  • the relief valve 26 is an on-off valve.
  • relief valve 26 may be another type of valve, such as a pressure regulating valve.
  • the relief valve 26 is controlled by a controller 33, which will be described later.
  • the relief path 25 may be provided with a rupture disk or the like that does not involve control.
  • the multi-shell tank 10A includes five thermometers 31, a pressure gauge 32, and a controller 33.
  • the five thermometers 31 measure the temperature of the storage space R1.
  • the five thermometers 31 are respectively provided at multiple locations within the storage space R1. Specifically, the five thermometers 31 are respectively arranged in five areas when the storage space R1 in the inner tank 11 is vertically divided into five areas. More specifically, five thermometers 31 are arranged inside a pipe tower (not shown). For example, the thermometer 31 placed at the top of the five thermometers 31 is placed in the air layer in the inner tank 11 to measure the temperature of the boil-off gas, and the other four thermometers 31 are It is arranged in the liquid layer in the inner tank 11 and measures the temperature of the low-temperature liquid.
  • the five thermometers 31 are communicatively connected to the controller 33 . Information on temperatures measured by the five thermometers 31 is sent to the control device 33 .
  • the pressure gauge 32 measures the gas pressure in the heat insulation space R2.
  • the pressure gauge 32 is communicably connected to the control device 33 . Information on the pressure measured by the pressure gauge 32 is sent to the control device 33 .
  • the control device 33 is a so-called computer, and has an arithmetic processing unit such as a CPU, and a storage unit such as ROM and RAM (none of which are shown).
  • the storage unit stores programs executed by the arithmetic processing unit, various fixed data, and the like.
  • the arithmetic processing unit transmits and receives data to and from an external device.
  • the gas pressure adjustment process for adjusting the gas pressure in the heat insulation space R2 is performed by the arithmetic processing section reading out and executing a predetermined gas pressure adjustment program stored in the storage section.
  • Correspondence information indicating the relationship between the temperature and the saturated vapor pressure of the gas whose pressure is to be adjusted is pre-stored in the storage unit.
  • a reference temperature T is a temperature determined based on temperatures measured by the five thermometers 31 . In this embodiment, the reference temperature T is the lowest temperature among the temperatures measured by the five thermometers 31 .
  • the second differential pressure ⁇ P2 is greater than the first differential pressure ⁇ P1.
  • the set lower limit pressure is preferably set to 1 kPa or more.
  • the first differential pressure ⁇ P1 is preferably set within a range of 3 kPa or more and 70 kPa or less.
  • the second differential pressure ⁇ P2 is preferably set within a range of 10 kPa or more and 100 kPa or less.
  • the difference between the set upper limit pressure P up and the set lower limit pressure P low that is, the differential pressure obtained by subtracting the first differential pressure ⁇ P1 from the second differential pressure ⁇ P2 is preferably set within the range of 0 kPa or more and 30 kPa or less.
  • FIG. 3 is a flow chart showing the flow of gas pressure adjustment processing for the heat insulating space R2 in the multi-shell tank 10A shown in FIG.
  • the controller 33 first acquires temperatures measured by the five thermometers 31 (step S1).
  • the control device 33 determines the lowest temperature among the temperatures measured by the five thermometers 31 as the reference temperature T (step S2).
  • the control device 33 calculates the saturated vapor pressure Ps of the gas within the heat insulating space R2 at the determined reference temperature T (step S3).
  • Correspondence information indicating the relationship between the temperature and the saturated vapor pressure of the gas (hydrogen in this example) in the heat insulating space R2 is stored in advance in the storage unit of the control device 33 .
  • the arithmetic processing unit of the control device 33 uses the correspondence information stored in the storage unit to derive the saturated vapor pressure corresponding to the reference temperature T determined in step S2.
  • the control device 33 acquires the pressure P measured by the pressure gauge 32, that is, the gas pressure P in the heat insulating space R2 (step S4).
  • the control device 33 determines whether or not the acquired pressure P is greater than the pressure obtained by subtracting the preset first differential pressure ⁇ P1 from the saturated vapor pressure Ps (step S5). Specifically, the control device 33 subtracts a preset first differential pressure ⁇ P1 from the saturated vapor pressure Ps derived in step S3 to calculate the set upper limit pressure Pup. Then, the control device 33 determines whether or not the acquired pressure P is higher than the set upper limit pressure Pup .
  • step S6 When determining that the acquired pressure P is higher than the set upper limit pressure P up (step S5: YES), the control device 33 determines whether or not the acquired pressure P is a negative pressure (step S6).
  • step S6 When determining that the acquired pressure P is a negative pressure (step S6: YES), the control device 33 operates the exhaust device 24 so as to reduce the gas pressure in the heat insulating space R2 (step S7).
  • step S6 When determining that the acquired pressure P is not a negative pressure (step S6: NO), the control device 33 opens the relief valve 26 so as to reduce the gas pressure in the heat insulating space R2 (step S8).
  • step S5 NO
  • the control device 33 stops the exhaust device 24 and closes the relief valve 26 (step S9). If the evacuation device 24 is already stopped, the control device 33 keeps the evacuation device 24 stopped. If the relief valve 26 is already closed, the controller 33 keeps the relief valve 26 closed.
  • the control device 33 determines whether or not the acquired pressure P is less than the pressure obtained by subtracting a preset second differential pressure ⁇ P2 from the saturated vapor pressure Ps (step S10). . Specifically, the control device 33 subtracts a preset second differential pressure ⁇ P2 from the saturated vapor pressure Ps derived in step S3 to calculate the set lower limit pressure P low . Then, the control device 33 determines whether or not the acquired pressure P is less than the set lower limit pressure P low .
  • step S10 When determining that the acquired pressure P is less than the set lower limit pressure P low (step S10: YES), the control device 33 opens the introduction valve 22 so as to increase the gas pressure in the heat insulation space R2 (step S11), End the gas pressure adjustment process.
  • step S10: NO the control device 33 closes the introduction valve 22 (step S12) and ends the gas pressure adjustment process. If the introduction valve 22 is already closed, the controller 33 keeps the introduction valve 22 closed.
  • the control device 33 repeats the gas pressure adjustment process of steps S1 to S12 described above to maintain the gas pressure in the heat insulating space R2 within the range of the set lower limit pressure P low or higher and the set upper limit pressure P up or lower.
  • the gas in the heat insulating space R2 is at the temperature of the inner tank 11 or the saturated vapor pressure Ps maintained below Therefore, the condensation temperature of the gas in the heat insulating space R2 can be made lower than the reference temperature T. Therefore, condensation of gas in the heat insulating space R2 between the inner tank 11 and the outer tank 12 can be suppressed.
  • the gas pressure P in the heat insulating space R2 is maintained at or below the set upper limit pressure P up which is lower than the saturated vapor pressure Ps by the first differential pressure ⁇ P1.
  • the first differential pressure ⁇ P1 is provided with respect to the saturated vapor pressure Ps, even if the reference temperature T fluctuates, such as immediately after the reference temperature T drops, condensation of the gas in the heat insulating space R2 can be prevented. can be suppressed.
  • control device 33 controls various pressure regulators so that the pressure P measured by the pressure gauge 32 is less than the saturated vapor pressure Ps of the gas in the heat insulating space R2 at the reference temperature T. Therefore, it is possible to monitor and adjust the gas pressure in the heat insulating space R2 in real time.
  • the lowest temperature among the temperatures measured by the plurality of thermometers 31 is determined as the reference temperature T.
  • the minimum temperature on the outer surface of the inner tank 11 can be accurately predicted, and as a result, the gas pressure range of the heat insulating space R2 suitable for suppressing condensation of gas in the heat insulating space R2 can be derived.
  • the exhaust device 24 can exhaust the gas in the heat insulating space R2 to the outside of the heat insulating space R2. Therefore, even when the gas pressure P in the heat insulating space R2 is negative, You can reduce the pressure inside.
  • the escape valve 26 can exhaust the gas in the heat insulation space R2 to the outside of the heat insulation space R2. Therefore, the pressure in the heat insulating space R2 can be reduced with a small amount of power.
  • the gas in the heat insulating space R2 has a predetermined pressure (second differential pressure ⁇ P2) from the saturated vapor pressure Ps of the gas at the reference temperature T corresponding to the temperature of the inner tank 11 or the temperature in the inner tank 11. is maintained to be equal to or higher than the set lower limit pressure P low . Therefore, the pressure difference between the storage space R1 and the heat insulation space R2 in the inner tank 11 can be kept small while suppressing the condensation of the gas in the heat insulation space R2. Therefore, the strength required for the multi-shell tank 10A can be reduced.
  • second differential pressure ⁇ P2 second differential pressure
  • FIG. 4 is a schematic configuration diagram showing the overall configuration of a multi-shell tank 10B according to the second embodiment.
  • members that are the same as or similar to those of the first embodiment are denoted by the same reference numerals in the drawings, and detailed description thereof will be omitted.
  • the type of gas filled in the heat insulation space R2 is different from the type of boil-off gas in the storage space R1.
  • the low-temperature liquid in the storage space R1 is liquefied hydrogen
  • the gas in the heat insulating space R2 is nitrogen gas.
  • the multi-shell tank 10B has an introduction path for introducing the boil-off gas in the storage space R1 into the heat insulating space R2. 21 and the introduction valve 22 provided in the introduction path 21 are not provided.
  • the storage unit of the control device 33 stores in advance correspondence information indicating the relationship between the temperature and the saturated vapor pressure of the gas (nitrogen gas in this example) whose pressure is to be adjusted.
  • the gas adjustment process of the present embodiment is the same as the gas adjustment process described in the first embodiment except that steps S10 to S12 are omitted, so the description is omitted.
  • FIG. 5 is a cross-sectional view showing the overall configuration of a multi-shell tank 40A according to the third embodiment.
  • the outer tank 12 covering the inner tank 11 is further covered by another outer tank 41 .
  • the outer tank 41 may be the housing structure 15 configured by the tank cover 13 and the retaining wall 14 described above, or may be a housing structure 15 arranged outside the outer tank 12 and inside the tank cover 13 and the retaining wall 14 .
  • the tank cover 13 and the holding wall 14 may be separate members.
  • the outer tub 12 and the outer tub 41 covering it are referred to as the first outer tub 12 and the second outer tub 41, respectively.
  • a sealed heat insulating space R3 is formed outside the first outer tank 12 and inside the second outer tank 41 . That is, the first outer tank 12 partitions a heat insulating space R2 inside the first outer tank 12 and a heat insulating space R3 outside the first outer tank 12 and inside the second outer tank 41 .
  • the heat insulation space R2 between the inner tank 11 and the first outer tank 12 and the heat insulation space R3 between the first outer tank 12 and the second outer tank 41 are referred to as the first heat insulation space. Let us call it R2 and the second adiabatic space R3.
  • a heat insulating material is arranged in the first heat insulating space R2 and the second heat insulating space R3. Further, the first heat insulating space R2 and the second heat insulating space R3 are filled with gas. In this embodiment, unlike the first and second embodiments, the gas pressure in the first heat insulating space R2 between the inner tank 11 and the first outer tank 12 is not measured, but the gas pressure is measured between the first outer tank 12 and the second outer tank 41. The gas pressure of the second heat insulation space R3 between is adjusted.
  • the first outer tub 12 corresponds to the first tub
  • the second outer tub 41 corresponds to the second tub.
  • the type of gas that fills the second heat insulating space R3 is different from the type of gas that fills the first heat insulating space R2.
  • the storage space R1 stores liquefied hydrogen
  • the first heat insulating space R2 is filled with hydrogen gas
  • the second heat insulating space R3 is filled with nitrogen gas.
  • the type of gas filling the second heat insulating space R3 may be the same as the type of gas filling the first heat insulating space R2.
  • both the first heat insulating space R2 and the second heat insulating space R3 may be filled with hydrogen gas.
  • the multi-shell tank 40A includes an exhaust path 43 that guides the gas in the second heat insulating space R3 to the outside of the second heat insulating space R3, and an exhaust device 44 provided in the exhaust path 43.
  • One end of the exhaust path 43 is arranged inside the second heat insulating space R3, and the other end of the exhaust path 43 is arranged outside the second heat insulating space R3.
  • the other end of the exhaust path 43 is connected to other equipment.
  • Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like.
  • the other end of the exhaust path 43 may be open to the atmosphere.
  • the exhaust device 44 functions as a pressure regulator that regulates the pressure of the gas inside the second heat insulating space R3.
  • Examples of the exhaust device 44 include a compressor and an exhaust pump such as a vacuum pump.
  • the exhaust device 44 is controlled by a control device 33 which will be described later.
  • the multi-shell tank 40A includes an escape passage 45 that guides the gas in the second heat insulation space R3 to the outside of the second heat insulation space R3, and an escape valve 46 provided in the escape passage 45.
  • One end of the escape path 45 is arranged inside the second heat insulation space R3, and the other end of the escape path 45 is arranged outside the second heat insulation space R3.
  • the other end of escape path 45 is connected to other equipment.
  • Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like.
  • the pressure around the other end of the relief channel 45 is near atmospheric pressure.
  • the other end of the escape path 43 may be open to the atmosphere.
  • the relief valve 46 functions as a pressure regulator that regulates the pressure of the gas inside the second heat insulating space R3.
  • the relief valve 46 is an on-off valve.
  • relief valve 26 may be another type of valve, such as a pressure regulating valve.
  • the relief valve 46 is controlled by the controller 33, which will be described later.
  • the multi-shell tank 40A includes five thermometers 51, a pressure gauge 52, and a controller 33.
  • the five thermometers 51 (corresponding to the second thermometer) measure the temperature (corresponding to the second temperature) inside the first heat insulating space R2.
  • the five thermometers 51 are respectively provided at multiple locations in the first heat insulation space R2. Specifically, the five thermometers 51 are arranged in five areas when the first heat insulating space R2 is equally divided into five in the vertical direction.
  • the five thermometers 51 are communicably connected to the control device 33 . Information on temperatures measured by the five thermometers 51 is sent to the control device 33 .
  • the pressure gauge 52 measures the gas pressure in the second heat insulation space R3.
  • the pressure gauge 52 is communicably connected to the control device 33 . Information on the pressure measured by the pressure gauge 52 is sent to the control device 33 .
  • the arithmetic processing unit reads out and executes a predetermined gas pressure adjustment program stored in the storage unit, thereby adjusting the gas pressure for adjusting the gas pressure in the second heat insulating space R3. processing takes place.
  • a reference temperature T is a temperature determined based on temperatures measured by the five thermometers 51 . In this embodiment, the reference temperature T is the lowest temperature among the temperatures measured by the five thermometers 51 .
  • the storage space R1 is changed to the first heat insulation space R2
  • the heat insulation space R2 is changed to the second heat insulation space R3, and the exhaust device This can be explained by replacing 24 with the exhaust device 44, the relief valve 26 with the relief valve 46, the thermometer 31 with the thermometer 51, and the pressure gauge 32 with the pressure gauge 52. Therefore, detailed description of the gas pressure adjustment process in this embodiment is omitted.
  • the gas in the second heat insulating space R3 is maintained below the saturated vapor pressure Ps of the gas at the reference temperature T corresponding to the temperature of the first outer tank 12 or the temperature in the first heat insulating space R2. Therefore, the condensation temperature of the gas in the second heat insulating space R3 can be made lower than the reference temperature T. Therefore, condensation of gas in the second heat insulating space R3 between the first outer tank 12 and the second outer tank 41 can be suppressed.
  • FIG. 6 is a schematic configuration diagram showing the overall configuration of a multi-shell tank 40B according to the fourth embodiment. As shown in FIG. 6, the multi-shell tank 40B of this embodiment is a combination of the configurations of the first embodiment and the third embodiment.
  • the multi-shell tank 40B includes an inner tank 11, an outer tank 12, an introduction passage 21, an introduction valve 22, an exhaust passage 23, an exhaust device 24, a relief passage 25, a relief valve 26, and five It includes a thermometer 31 , a pressure gauge 32 and a controller 33 .
  • the multi-shell tank 40B also includes an outer tank 41, an exhaust passage 43, an exhaust device 44, a relief passage 45, a relief valve 46, five thermometers 51, and a pressure gauge 52, as in the third embodiment.
  • the type of gas filled in the first heat insulation space R2 is the same as the type of boil-off gas in the storage space R1, and is different from the type of gas filled in the second heat insulation space R3.
  • the storage space R1 stores liquefied hydrogen
  • the first heat insulating space R2 is filled with hydrogen gas
  • the second heat insulating space R3 is filled with nitrogen gas.
  • the type of gas filled in the first heat insulation space R2 and the type of boil-off gas in the storage space R1 may be different from each other.
  • the type of gas filled in the second heat insulating space R3 may be the same as the type of gas filling the first heat insulating space R2.
  • both the first heat insulating space R2 and the second heat insulating space R3 may be filled with hydrogen gas.
  • the arithmetic processing unit reads out and executes a predetermined gas pressure adjustment program stored in the storage unit, thereby adjusting the gas pressure for adjusting the gas pressure in the first heat insulation space R2. and a gas pressure adjustment process for adjusting the gas pressure in the second heat insulating space R3. That is, the gas pressure adjustment process for adjusting the gas pressure of the first heat insulation space R2 and the gas pressure adjustment process for adjusting the gas pressure of the second heat insulation space R3 are performed in the first embodiment and the third embodiment, respectively. Since it is the same as the gas pressure adjustment process of the embodiment, detailed description is omitted.
  • FIG. 7 is a schematic configuration diagram showing the overall configuration of a multi-shell tank 60 according to the fifth embodiment.
  • the multi-shell tank 60 is a membrane-type tank mounted on a ship.
  • the multi-shell tank 60 comprises a primary membrane 61 containing cryogenic liquid, a secondary membrane 62 covering it, and a hull hull 63 further covering the secondary membrane 62 .
  • Hull inner hull 63 is part of the hull.
  • a low temperature liquid is stored in the storage space R1 inside the primary membrane 61 .
  • a sealed first insulating space R2 (so-called Inter Barrier Space (IBS)) is formed.
  • IBS Inter Barrier Space
  • a heat insulating material is arranged in the first heat insulating space R2.
  • a sealed second heat insulating space R3 (so-called insulation space (IS)) is formed.
  • a heat insulating material is arranged in the second heat insulating space R3.
  • the primary membrane 61 functions as an inner tank in which a cryogenic liquid is stored
  • the secondary membrane 62 functions as an outer tank containing the primary membrane 61 as an inner tank
  • the hull inner shell 63 functions as an outer bath that further covers the secondary membrane 62 as an outer bath.
  • the primary membrane 61 and secondary membrane 62 do not themselves have the strength to support the pressure and weight of the cryogenic liquid within the primary membrane 61 .
  • the pressure and weight of the cryogenic liquid in the primary membrane 61 are supported by the hull via the heat insulating material in the first heat insulating space R2 and the heat insulating material in the second heat insulating space R3.
  • liquefied hydrogen is stored in the storage space R1
  • the first heat insulation space R2 is filled with hydrogen gas
  • the second heat insulation space R3 is filled with nitrogen gas.
  • the gas pressure in the first heat insulating space R2 which is one space outside the storage space R1 is adjusted.
  • the method for adjusting the gas pressure in the first heat insulating space R2 is substantially the same as the method for adjusting the gas pressure in the heat insulating space R2 in the first embodiment. That is, the multi-shell tank 60 includes an exhaust path 23, an exhaust device 24, a relief path 25, a relief valve 26, five thermometers 31, a pressure gauge 32 and a control device 33, as in the first embodiment. Since the gas pressure adjustment method is substantially the same as that of the first embodiment, the explanation is omitted.
  • the lowest temperature among the temperatures measured by the plurality of thermometers 31 (or 51) was determined as the reference temperature T, but the method of determining the reference temperature in the present disclosure is not limited to this.
  • an average temperature of temperatures measured by a plurality of thermometers may be determined as the reference temperature.
  • the lowest temperature on the outer surface of the inner tank 11 or 61 is estimated from the temperatures measured by the plurality of thermometers 31 using a predetermined calculation formula.
  • the estimated temperature may be used as the reference temperature T.
  • the lowest temperature on the outer surface of the first outer bath 12 is estimated using a predetermined calculation formula from the temperatures measured by the plurality of thermometers 51, and the estimated temperature is used as the reference temperature T. good too.
  • thermometers 31 are provided in the space inside the inner tank 11, but the number of thermometers is not limited to this.
  • one thermometer may be provided inside the inner bath 11 and the temperature measured by the thermometer may be used as the reference temperature.
  • the temperature measured by one predetermined thermometer for example, the lowest thermometer
  • one or more thermometers in the present disclosure may not measure the temperature inside the inner bath, and may measure the temperature of the inner bath (eg, the surface temperature of the inner bath).
  • the number of thermometers 51 provided in the first heat insulating space R1 is not limited to five. 12 surface temperature, etc.).
  • the first differential pressure ⁇ P1 may not be provided.
  • the set lower limit pressure P low may not be set based on the derived saturated vapor pressure Ps.
  • the lower set pressure P low may be a preset design pressure that is allowed from the structural strength of the multi-shell tank.
  • One or both of the first differential pressure ⁇ P1 and the second differential pressure ⁇ P2 may be a preset fixed value, or may be changed according to the derived saturated vapor pressure Ps.
  • the pressure around the other ends of the escape paths 25, 45 may not be near atmospheric pressure, and may be near a predetermined pressure deviating from atmospheric pressure. In this case, in step S6 in the gas adjustment process shown in FIG. 3, the control device 33 may determine whether or not the acquired pressure P is less than the predetermined pressure.
  • an exhaust device, a relief valve, and an introduction valve are shown as pressure regulating devices, but pressure regulating devices are not limited to these.
  • the multi-shell tank may be provided with only one of the exhaust device and the relief valve as a pressure regulating device for decompressing the heat insulating space.
  • the multi-shell tank may be provided with a gas supply device different from the introduction valve as a pressure regulating device for supplying gas to the heat insulating space to pressurize the heat insulating space.
  • a check valve may be provided in the exhaust path 23 and the escape path 25 so as to prevent backflow of gas to the (first) heat insulating space R2.
  • a check valve may be provided to prevent backflow of gas to the second heat insulating space R3.
  • the introduction path 21 may be provided with a check valve so as to prevent backflow of gas to the storage space R1.
  • the multi-shell tank of the present disclosure may not be equipped with the control device 33. That is, the gas pressure adjustment method in the present disclosure may not be electrically controlled by a computer, and may be performed by an operator or the like.
  • the pressure adjusting device for adjusting the pressure of the gas in the heat insulating space between the inner tank and the outer tank is manually operated by the operator. Alternatively, it may be a mechanical control valve that can be set by the operator.
  • the operator measures the temperature of the inner tank or the inner tank, determines the reference temperature based on the measured temperature, and determines the inner tank and the outer tank from the determined reference temperature.
  • the saturated vapor pressure of the gas filled in the adiabatic space between may be derived.
  • the operator may fill the heat insulating space with gas so that the gas pressure in the heat insulating space is maintained below the saturated vapor of the derived gas in the heat insulating space.
  • the pressure regulating device when the pressure regulating device is a manual type, when the pressure value of the gas in the insulated space measured by the pressure gauge exceeds the set upper limit pressure lower than the derived saturated vapor pressure by the first differential pressure, the operator Alternatively, the manual pressure regulator may be operated so that the pressure value of the gas in the adiabatic space is equal to or lower than the set upper limit pressure.
  • the operator may change the setting of the mechanical control valve so that the pressure is less than the saturated vapor pressure of the gas in the adiabatic space.
  • the relief valve 26 in the above embodiment is a mechanical control valve that opens according to the pressure of the gas in the adiabatic space
  • the operator sets the set pressure at which the relief valve 26 opens to less than the derived saturated vapor pressure (for example, It may be set to a set upper limit pressure lower than the derived saturated vapor pressure by the first differential pressure.
  • the gas pressure in the adiabatic space is adjusted in advance so that it can be maintained throughout the voyage at or below the set upper limit value lower than the saturated vapor pressure of the gas at the reference temperature at the time of gas filling by the first differential pressure.
  • the pressure adjusting device for adjusting the pressure of the gas in the heat insulating space between the first outer tank and the second outer tank may be manual, or It may be a mechanical control valve whose setting can be changed by an operator.
  • the configurations of the first to fifth embodiments can be appropriately combined.
  • the multi-shell tank 60 in which the gas pressure in the first insulated space R2 is regulated was shown, but the multi-shell tank 60 is arranged such that instead of adjusting the gas pressure in the first insulated space R2, or in addition, it may be configured such that the gas pressure in the second heat insulating space R3 is adjusted. That is, the multi-shell tank 60 is used in the third and fourth embodiments instead of or in addition to the exhaust passage 23, the exhaust device 24, the relief passage 25, the relief valve 26, the five thermometers 31, and the pressure gauges 32. may include an exhaust line 43, an exhaust device 44, a relief line 45, a relief valve 46, five thermometers 51 and a pressure gauge 52, shown in FIG.
  • the number of outer tanks provided in the multi-shell tank is not limited to that described in the above embodiment.
  • the "first outer tank” in the present disclosure may not be the outer tank closest to the inner tank, and may be the second outer tank from the inside or later.
  • the “second outer tank” may be the third outer tank from the inner side or later.
  • the low-temperature liquid stored in the inner tank is not limited to that described in the above embodiment.
  • the cryogenic liquid stored in the inner tank may be liquefied hydrogen, liquefied natural gas, liquefied nitrogen, liquefied helium, or the like.
  • the gas filled between the inner tank and the outer tank or between the two outer tanks can be hydrogen gas, natural gas, nitrogen gas, helium, dry air, and the like.
  • the type of gas filled in both the space where the temperature is measured and the space where the pressure is adjusted based on the reference temperature may be the same or different.
  • the multi-shell tank was provided on the ship, but the multi-shell tank may be installed on the ground.
  • ASICs Application Specific Integrated Circuits
  • a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
  • a circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
  • a multi-shell tank includes an inner tank in which a cryogenic liquid is stored, one or more outer tanks containing the inner tank, and between the inner tank and the outer tank and an insulating space filled with gas, wherein the pressure of the gas in the insulating space is a temperature determined based on the temperature of the inner tank or the temperature of the space inside the inner tank. It is maintained below the saturated vapor pressure of the gas in the adiabatic space at a reference temperature.
  • the gas in the adiabatic space between the inner tank and the outer tank is a saturated vapor of the gas in the adiabatic space at a reference temperature corresponding to the temperature of the inner tank or the temperature of the space inside the inner tank. maintained below pressure. Therefore, the condensation temperature of the gas in the heat insulating space between the inner tank and the outer tank can be made lower than the reference temperature. Therefore, condensation of gas in the heat insulating space between the inner tank and the outer tank can be suppressed.
  • a multi-shell tank includes an inner tank in which a cryogenic liquid is stored, a first outer tank containing the inner tank, and a second outer tank containing the first outer tank. a first heat insulating space provided between the inner tank and the first outer tank; and a space provided between the first outer tank and the second outer tank, wherein the gas is and a filled second heat insulating space, wherein the pressure of the gas in the second heat insulating space is a temperature determined based on the temperature of the first outer tank or the temperature of the first heat insulating space. maintained below the saturated vapor pressure of the gas in the second adiabatic space at temperature.
  • the gas pressure adjusting method includes an inner tank in which a cryogenic liquid is stored, one or more outer tanks containing the inner tank, the inner tank and the outer tank.
  • a gas pressure adjusting method for adjusting the pressure of a gas filled in the insulating space in a multi-shell tank provided between and filled with gas wherein the temperature of the inner tank or The temperature of the space inside the inner tank is measured, and the measured temperature or a temperature determined based on a plurality of measured temperatures is set as a reference temperature, and the gas in the adiabatic space is saturated at the reference temperature.
  • a vapor pressure is derived, and the pressure of the gas within the adiabatic space is maintained below the derived saturated vapor pressure.
  • the gas in the adiabatic space between the inner tank and the outer tank is a saturated vapor of the gas in the adiabatic space at a reference temperature corresponding to the temperature of the inner tank or the temperature of the space inside the inner tank. maintained below pressure. Therefore, the condensation temperature of the gas in the heat insulating space between the inner tank and the outer tank can be made lower than the reference temperature. Therefore, condensation of gas in the heat insulating space between the inner tank and the outer tank can be suppressed.
  • a gas pressure adjusting method includes an inner tank in which a cryogenic liquid is stored, a first outer tank containing the inner tank, and a second outer tank containing the first outer tank.
  • the measured temperature or a temperature determined based on a plurality of measured temperatures is set as a reference temperature, and the saturated vapor pressure of the gas in the second adiabatic space at the reference temperature is derived, and the second The pressure of the gas within the adiabatic space is maintained below the derived saturated vapor pressure.
  • the gas in the heat insulating space between the first outer tank and the second outer tank is heated to the second heat insulating space at a reference temperature corresponding to the temperature of the first outer tank or the temperature of the first heat insulating space. maintained below the saturated vapor pressure of the gas within. Therefore, the condensation temperature of the gas in the second heat insulating space between the first outer tank and the second outer tank can be made lower than the reference temperature. Therefore, condensation of gas in the second heat insulating space between the first outer tank and the second outer tank can be suppressed.
  • a plurality of vessels including an inner vessel having a cryogenic liquid stored therein, and at least one outer vessel containing the inner vessel; a heat insulating space filled with gas, which is a space between a first tank and a second tank that are adjacent to each other outward from the center of the inner tank among the plurality of tanks,
  • the pressure of the gas in the heat insulation space between the first tank and the second tank is the first tank which is closer to the center of the inner tank than the first tank and the second tank.
  • the temperature between the first tank and the second tank at a reference temperature that is a temperature determined based on the temperature of the tank or the temperature of the space inside the first tank facing the first tank
  • a multi-shell tank maintained below the saturated vapor pressure of the gas within the insulated space.
  • the multi-shell tank comprises one or more thermometers for measuring the temperature of the first tank or the temperature of the space inside the first tank facing the first tank, A multi-shell tank according to item 1, wherein the reference temperature is a temperature determined based on the temperature measured by the one thermometer or the temperatures measured by the plurality of thermometers.
  • the at least one outer tank includes a first outer tank and a second outer tank containing the first outer tank,
  • the heat insulating space is a first heat insulating space between the first outer tank and the inner tank,
  • the multi-shell tank includes a second insulating space filled with gas between the first outer tank and the second outer tank;
  • the reference temperature is a first reference temperature;
  • the pressure of the gas in the second heat insulating space is at a second reference temperature, which is a temperature determined based on the temperature of the first outer tank or the temperature of the first heat insulating space.
  • the condensation temperature of the gas in the second heat insulating space between the first outer tank and the second outer tank can be made lower than the reference temperature, and the condensation of the gas in the second heat insulating space can be suppressed. Therefore, it is possible to suppress condensation of gas in the second heat insulating space while suppressing condensation of gas in the first heat insulating space between the inner tank and the first outer tank.
  • the multi-shell tank comprises one or more second thermometers for measuring the temperature of the first outer tank or the temperature of the first heat insulating space, 5.
  • a pressure gauge for measuring the pressure of gas in the adiabatic space; a pressure regulating device for regulating the pressure of the gas in the adiabatic space; any one of items 1 to 6, further comprising a control device that controls the pressure adjustment device so that the pressure measured by the pressure gauge is less than the saturated vapor pressure of the gas in the adiabatic space at the reference temperature.
  • the plurality of thermometers are respectively provided at a plurality of locations inside the inner tank, 8.
  • the heat insulating space is filled with the same kind of gas as the gas inside the inner tank,
  • the multi-shell tank has an introduction path for introducing the gas inside the inner tank into the heat insulating space, 11.
  • the multi-shell tank according to any one of Items 7 to 10, wherein the pressure regulating device includes an introduction valve provided in the introduction passage. Thereby, the gas pressure in the heat insulation space can be adjusted using the gas inside the inner tank.
  • the control device controls the pressure measured by the pressure gauge to be less than the saturated vapor pressure of the gas in the adiabatic space at the reference temperature and equal to or higher than a set lower limit pressure lower than the saturated vapor pressure by a predetermined pressure.
  • a ship comprising a multi-shell tank according to any one of items 1-12.
  • a plurality of tanks including an inner tank having a cryogenic liquid stored therein, and at least one outer tank containing the inner tank;
  • a multi-shell tank comprising an insulating space filled with gas, which is a space between a first tank and a second tank adjacent to each other, the pressure of the gas filled in the insulating space is adjusted.
  • a gas pressure adjustment method comprising: The temperature of the first tank, which is closer to the center of the inner tank than the first tank and the second tank, or the temperature of the inner space of the first tank facing the first tank measure the temperature, A measured temperature or a temperature determined based on a plurality of measured temperatures is defined as a reference temperature, deriving the saturated vapor pressure of the gas in the adiabatic space at the reference temperature; A gas pressure adjustment method for maintaining the pressure of the gas in the adiabatic space below the derived saturated vapor pressure.
  • the at least one outer tank includes a first outer tank and a second outer tank containing the first outer tank,
  • the first tank is the inner tank
  • the second tank is the first outer tank
  • the heat insulating space is a first heat insulating space provided between the first outer tank and the inner tank
  • the multi-shell tank is provided between the first outer tank and the second outer tank.
  • the gas pressure adjustment method includes: measuring a second temperature that is the temperature of the first outer tank or the temperature of the first heat insulating space; The measured second temperature or a temperature determined based on a plurality of measured second temperatures is defined as a second reference temperature, deriving the saturated vapor pressure of the gas in the second adiabatic space at the second reference temperature; 15. The gas pressure adjustment method according to item 14, wherein the pressure of the gas in the second heat insulating space is maintained below the derived saturated vapor pressure of the gas in the second heat insulating space.
  • Measuring the temperature of the first tank or the temperature of the space inside the first tank facing the first tank is the temperature at a plurality of locations in the first tank or the temperature in the first tank. is to measure the temperature at a plurality of locations in the space in the direction of 16.
  • the gas pressure adjusting method according to item 14 or 15, wherein the lowest temperature among the plurality of measured temperatures is determined as the reference temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This multi-shell tank is provided with an inner tank with a low-temperature liquid stored therein, one or multiple outer tanks housing the inner tank, and a heat insulation space filled with gas and disposed between the inner tank and the outer tanks, wherein the pressure of the gas in the heat insulation space is maintained at less than the saturation vapor pressure of the gas in the heat insulation space at a reference temperature, which is a temperature determined on the basis of the temperature in the inner tank or the temperature of the space inside of the inner tank.

Description

多重殻タンク、船舶およびガス圧調整方法Multi-shell tank, vessel and gas pressure regulation method
 本開示は、多重殻タンク、船舶およびガス圧調整方法に関する。 The present disclosure relates to multi-shell tanks, ships and gas pressure regulation methods.
 内部に低温液体が貯蔵された内槽と当該内槽を収容する外槽とを有し、内槽と外槽との間の断熱空間にガスを充填した多重殻タンクが知られている。例えば特許文献1には、内槽と外槽とを有する二重殻タンクが開示されており、この二重殻タンクにおける内槽と外槽との間の断熱空間には、内槽から排出されたボイルオフガスが充填されている。 A multi-shell tank is known that has an inner tank in which a cryogenic liquid is stored and an outer tank that accommodates the inner tank, and in which a heat insulating space between the inner tank and the outer tank is filled with gas. For example, Patent Document 1 discloses a double-shell tank having an inner tank and an outer tank. filled with boil-off gas.
特開平11-82889号公報JP-A-11-82889
 内槽と外槽との間の断熱空間内のガスが内槽に接触して凝縮すると、その凝縮液は内槽から外槽へと落下し、その後蒸発する。このようなガスの液化と気化(潜熱の吸収と蒸発)が繰り返されるとヒートパイプ効果により内槽への入熱量が増加してしまう。このような現象は、二重殻タンクにおける内槽と外槽との間の空間だけでなく、三重以上の多重殻タンクにおける2つの外槽間でも同様に生じ得る。 When the gas in the adiabatic space between the inner tank and the outer tank contacts the inner tank and condenses, the condensed liquid falls from the inner tank to the outer tank and then evaporates. If such gas liquefaction and vaporization (absorption and evaporation of latent heat) are repeated, the amount of heat input to the inner tank increases due to the heat pipe effect. Such a phenomenon can occur not only in the space between the inner tank and the outer tank in a double-shell tank, but also between the two outer tanks in a multi-shell tank with three or more layers.
 そこで本開示は、低温液体が貯蔵された内槽の外側の空間においてガスが凝縮されるのを抑制することができる多重殻タンク、船舶およびガス圧調整方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a multi-shell tank, a vessel, and a gas pressure adjustment method that can suppress condensation of gas in the space outside the inner tank in which the cryogenic liquid is stored.
 上記の課題を解決するために、本開示の一態様に係る多重殻タンクは、内部に低温液体が貯蔵された内槽、および、前記内槽を収容する少なくとも1つの外槽を含む、複数の槽と、前記複数の槽のうちの、前記内槽の中心から外方に向かって隣接する第1槽と第2槽との間の空間であり、ガスが充填されている断熱空間と、を備え、前記第1槽と前記第2槽との間の前記断熱空間内のガスの圧力が、前記第1槽および前記第2槽のうちの前記内槽の中心に近い側の槽である前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度に基づいて決定された温度である基準温度における、前記第1槽と前記第2槽との間の前記断熱空間内の前記ガスの飽和蒸気圧未満に維持される。 In order to solve the above problems, a multi-shell tank according to one aspect of the present disclosure includes an inner tank in which a cryogenic liquid is stored, and at least one outer tank containing the inner tank. and a heat insulating space filled with a gas, which is a space between a first tank and a second tank that are adjacent to each other outward from the center of the inner tank among the plurality of tanks. The pressure of the gas in the heat insulating space between the first tank and the second tank is the tank closest to the center of the inner tank of the first tank and the second tank. The temperature of the first tank or the temperature of the inner space of the first tank facing the first tank at a reference temperature that is a temperature determined based on the temperature of the first tank and the second tank is maintained below the saturated vapor pressure of the gas within the adiabatic space between.
 また、本開示の一態様に係る船舶は、上記多重殻タンクを備える。 Further, a ship according to one aspect of the present disclosure includes the multi-shell tank.
 また、本開示の一態様に係るガス圧調整方法は、内部に低温液体が貯蔵された内槽、および、前記内槽を収容する少なくとも1つの外槽、を含む、複数の槽と、前記複数の槽のうちの、前記内槽の中心から外方に向かって隣接する第1槽と第2槽との間の空間であり、ガスが充填されている断熱空間と、を備えた多重殻タンクにおいて、前記断熱空間に充填されたガスの圧力を調整するガス圧調整方法であって、前記第1槽および前記第2槽のうちの前記内槽の中心に近い側の槽である前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度を計測し、計測した温度を、または、計測した複数の温度に基づいて決定した温度を、基準温度とし、前記基準温度における前記断熱空間内のガスの飽和蒸気圧を導出し、前記断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持する。 Further, a gas pressure adjusting method according to an aspect of the present disclosure includes a plurality of tanks including an inner tank in which a cryogenic liquid is stored, and at least one outer tank containing the inner tank; and a heat insulating space filled with gas, which is a space between the first tank and the second tank adjacent to each other outward from the center of the inner tank, of the tanks. In the above, the gas pressure adjusting method for adjusting the pressure of the gas filled in the heat insulating space, wherein the first tank is closer to the center of the inner tank than the first tank and the second tank. The temperature of the tank or the temperature of the space inside the first tank facing the first tank is measured, and the measured temperature or the temperature determined based on the plurality of measured temperatures is the reference temperature. , the saturated vapor pressure of the gas in the adiabatic space at the reference temperature is derived, and the pressure of the gas in the adiabatic space is maintained below the derived saturated vapor pressure.
 本開示によれば、低温液体が貯蔵された内槽の外側の空間においてガスが凝縮されるのを抑制することができる多重殻タンク、船舶およびガス圧調整方法を提供することができる。 According to the present disclosure, it is possible to provide a multi-shell tank, a vessel, and a gas pressure adjustment method capable of suppressing condensation of gas in the space outside the inner tank in which the cryogenic liquid is stored.
図1は、本開示の第1実施形態に係る多重殻タンクを含む船舶の概略側面図である。1 is a schematic side view of a vessel including a multi-shell tank according to a first embodiment of the present disclosure; FIG. 図2は、図1に示す多重殻タンクの全体的な構成を示す概略構成図である。2 is a schematic configuration diagram showing the overall configuration of the multi-shell tank shown in FIG. 1. FIG. 図3は、図1に示す多重殻タンクのガス圧調整の流れを示すフローチャートである。FIG. 3 is a flow chart showing the gas pressure adjustment flow of the multi-shell tank shown in FIG. 図4は、本開示の第2実施形態に係る多重殻タンクの全体的な構成を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the second embodiment of the present disclosure. 図5は、本開示の第3実施形態に係る多重殻タンクの全体的な構成を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the third embodiment of the present disclosure. 図6は、本開示の第4実施形態に係る多重殻タンクの全体的な構成を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the fourth embodiment of the present disclosure. 図7は、本開示の第5実施形態に係る多重殻タンクの全体的な構成を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing the overall configuration of a multi-shell tank according to the fifth embodiment of the present disclosure.
 以下、図面を参照しながら、本開示の実施形態について説明する。なお、本願明細書において、「内側」とは多重殻タンクの内槽内の空間の中心部分に近い側を意味し、「外側」とは多重殻タンクの内槽内の空間の中心部分から遠い側を意味する。また、多重殻タンクが含む内槽および少なくとも1つの外槽を、互いに区別せず単に「槽」とも称し得る。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the specification of the present application, the “inner side” means the side near the center of the space within the inner tank of the multi-shell tank, and the “outer side” means the side far from the center of the space within the inner tank of the multi-shell tank. means side. Also, the inner tank and at least one outer tank that a multi-shell tank comprises may be simply referred to as "tanks" without distinction from each other.
 <第1実施形態>
 図1は、第1実施形態に係る多重殻タンク10Aを含む船舶1の概略側面図である。船舶1は、低温液体を運搬する液化ガス運搬船である。船舶1は、多重殻タンク10Aを備える。多重殻タンク10Aは、内槽11と、内槽11を覆っている外槽12を備える。内槽11の内部の貯留空間R1に低温液体が貯蔵されている。外槽12が内槽11を覆うことによって、内槽11より外側で且つ外槽12より内側に密閉された断熱空間R2が形成されている。本実施形態において、内槽11は第1槽に対応し、外槽12は第2槽に対応する。
<First embodiment>
FIG. 1 is a schematic side view of a ship 1 including a multi-shell tank 10A according to the first embodiment. The vessel 1 is a liquefied gas carrier that carries cryogenic liquids. The ship 1 comprises a multi-hull tank 10A. The multi-shell tank 10A comprises an inner tank 11 and an outer tank 12 covering the inner tank 11 . A low-temperature liquid is stored in the storage space R1 inside the inner tank 11 . By covering the inner tank 11 with the outer tank 12, a sealed heat insulating space R2 is formed outside the inner tank 11 and inside the outer tank 12. - 特許庁In this embodiment, the inner tub 11 corresponds to the first tub, and the outer tub 12 corresponds to the second tub.
 本実施形態並びに後述する第2~第4実施形態において、内槽11および外槽12は、いずれも球形である。内槽11および外槽12は、必ずしも球形でなくてもよい。例えば内槽11および外槽12は、上半球体とした半球体との間に短い筒状体が挟まれた形状であってもよいし、横置き円筒状であってもよいし、方形状であってもよい。あるいは、例えば、内槽11および外槽12は、内槽11の中心から上45度の角度方向および/または下45度の角度方向が膨らんだ形状であってもよい。内槽11の形状および外槽12の形状は、互いに相似であってもよいし非相似であってもよい。内槽11の中心と外槽12の中心とが互いに一致していてもよいし、内槽11の中心と外槽12の中心とが互いに一致していなくてもよい。例えば内槽11の中心が外槽12の中心に対して偏心していてもよい。 In this embodiment and second to fourth embodiments described later, both the inner tank 11 and the outer tank 12 are spherical. The inner tub 11 and the outer tub 12 do not necessarily have to be spherical. For example, the inner tank 11 and the outer tank 12 may have a shape in which a short cylindrical body is sandwiched between the upper hemispheres, may have a horizontal cylindrical shape, or may have a rectangular shape. may be Alternatively, for example, the inner bath 11 and the outer bath 12 may have a shape that bulges in an upward 45-degree angle direction and/or downward 45-degree angle direction from the center of the inner bath 11 . The shape of the inner tank 11 and the shape of the outer tank 12 may be similar or non-similar to each other. The center of the inner tub 11 and the center of the outer tub 12 may be aligned with each other, or the center of the inner tub 11 and the center of the outer tub 12 may not be aligned with each other. For example, the center of the inner tub 11 may be eccentric with respect to the center of the outer tub 12 .
 外槽12の上側部分は、タンクカバー13により覆われており、外槽12の残りの部分は、保持壁14により覆われている。保持壁14は、例えば船体2の一部である。すなわち、保持壁14は、外槽12の船幅方向両側で船長方向にそれぞれ延びる一対の縦通隔壁や、外槽12の下方で且つ船体2の船底外板の上方で船長方向に延びるインナーボトムプレートなどを含む。 The upper portion of the outer tub 12 is covered with a tank cover 13, and the remaining portion of the outer tub 12 is covered with a retaining wall 14. The retaining wall 14 is for example part of the hull 2 . That is, the retaining wall 14 includes a pair of longitudinal bulkheads extending in the longitudinal direction on both sides of the outer tank 12 in the transverse direction, and an inner bottom extending in the longitudinal direction below the outer tank 12 and above the bottom shell plate of the hull 2 . Including plates, etc.
 タンクカバー13および保持壁14は、外槽12を収容する1つの収容構造15として構成されている。タンクカバー13および保持壁14が外槽12を覆っていることによって、タンクカバー13および保持壁14の内側で且つ外槽12の外側に、密閉空間が形成されている。言い換えれば、タンクカバー13と保持壁14とは、外槽12を更に覆う1つの外槽として機能している。本願明細書および特許請求の範囲において、多重殻タンクの外槽には、タンクカバーおよび保持壁により構成される収容構造15など、内側の外槽との間に密閉空間を形成する最外槽として機能するものも含まれるものとする。 The tank cover 13 and the retaining wall 14 are configured as one housing structure 15 that houses the outer tank 12 . A closed space is formed inside the tank cover 13 and the holding wall 14 and outside the outer tank 12 by covering the outer tank 12 with the tank cover 13 and the holding wall 14 . In other words, the tank cover 13 and the holding wall 14 function as one outer tank that further covers the outer tank 12 . In the specification and claims of the present application, the outer tank of the multi-shell tank includes a storage structure 15 composed of a tank cover and a retaining wall, etc., as the outermost tank forming a sealed space between the outer tank and the inner tank. It should also include what works.
 多重殻タンク10Aは、必ずしも船舶1にカーゴタンクとして搭載される必要はなく、燃料タンクとして搭載されてもよい。また、図1では、1つの多重殻タンク10Aを備えた船舶1を示したが、船舶1が複数の多重殻タンク10Aを備えてもよい。なお、船舶1が複数の多重殻タンク10Aを備える場合、隣接する2つの多重殻タンク10Aの間に設けられた隔壁も、外槽12を覆う収容構造15に含まれる。 The multi-shell tank 10A does not necessarily have to be mounted on the ship 1 as a cargo tank, and may be mounted as a fuel tank. Moreover, although FIG. 1 shows the ship 1 provided with one multi-shell tank 10A, the ship 1 may be provided with a plurality of multi-shell tanks 10A. When the ship 1 is equipped with a plurality of multi-shell tanks 10A, the partition wall provided between two adjacent multi-shell tanks 10A is also included in the housing structure 15 covering the outer tank 12.
 図2は、図1に示す多重殻タンク10Aの全体的な構成を示す概略構成図である。図2には、内槽11および外槽12の断面図を含む。ただし、図2において、タンクカバー13および保持壁14は省略している。図2に示すように、内槽11は、低温液体が収容された内槽11より内側の貯留空間R1と、内槽11より外側で且つ外槽12より内側の断熱空間R2とを仕切っている。貯留空間R1の上部の気層は、貯留空間R1内の低温流体が気化したボイルオフガスで満たされている。 FIG. 2 is a schematic configuration diagram showing the overall configuration of the multi-shell tank 10A shown in FIG. FIG. 2 includes cross-sectional views of the inner tub 11 and the outer tub 12 . However, in FIG. 2, the tank cover 13 and the holding wall 14 are omitted. As shown in FIG. 2, the inner tank 11 partitions a storage space R1 inside the inner tank 11 containing the low-temperature liquid and a heat insulating space R2 outside the inner tank 11 and inside the outer tank 12. . The gas layer above the storage space R1 is filled with the boil-off gas that is obtained by vaporizing the cryogenic fluid in the storage space R1.
 断熱空間R2には、断熱材が配置されている。例えば、断熱材は、パーライトなどの粒状体であってもよいし、内槽11の表面などに張り付けられた防熱パネルであってもよい。また、断熱空間R2には、ガスが充填されている。本実施形態では、断熱空間R2に充填されているガスの種類は、貯留空間R1のボイルオフガスの種類と同じである。例えば、貯留空間R1の低温液体は、液化水素であり、断熱空間R2のガスは、水素ガスである。 A heat insulating material is placed in the heat insulating space R2. For example, the heat insulating material may be a granular material such as perlite, or may be a heat insulating panel attached to the surface of the inner tank 11 or the like. Further, the heat insulating space R2 is filled with gas. In this embodiment, the type of gas filled in the heat insulation space R2 is the same as the type of boil-off gas in the storage space R1. For example, the low-temperature liquid in the storage space R1 is liquefied hydrogen, and the gas in the heat insulating space R2 is hydrogen gas.
 多重殻タンク10Aは、内槽11内のボイルオフガス、すなわち貯留空間R1におけるボイルオフガスを、断熱空間R2内へ導入する導入路21を備えている。導入路21には、導入弁22が設けられている。導入弁22は、断熱空間R2内のガスの圧力を調整する圧力調整装置として機能する。例えば導入弁22は、開閉弁である。ただし、導入弁22は、圧力調整弁など別の種類の弁でもよい。本実施形態では、導入弁22は、後述の制御装置33により制御される。 The multi-shell tank 10A has an introduction passage 21 for introducing the boil-off gas in the inner tank 11, that is, the boil-off gas in the storage space R1, into the heat insulation space R2. An introduction valve 22 is provided in the introduction path 21 . The introduction valve 22 functions as a pressure regulator that regulates the pressure of the gas within the heat insulating space R2. For example, the introduction valve 22 is an on-off valve. However, the inlet valve 22 may be another type of valve such as a pressure regulating valve. In this embodiment, the introduction valve 22 is controlled by a control device 33, which will be described later.
 また、多重殻タンク10Aは、断熱空間R2内のガスを断熱空間R2の外部へ導く排気路23と、排気路23に設けられた排気装置24とを含む。排気路23の一端部は、断熱空間R2内に配置され、排気路23の他端部は、断熱空間R2の外部に配置されている。排気路23の他端部は、他の機器に接続されている。他の機器は、例えば、推進用エンジン、発電用エンジン、再液化装置、焼却装置、燃料電池などである。ただし、排気路23の他端部は、大気開放されていてもよい。 The multi-shell tank 10A also includes an exhaust path 23 that guides the gas in the heat insulating space R2 to the outside of the heat insulating space R2, and an exhaust device 24 provided in the exhaust path 23. One end of the exhaust path 23 is arranged inside the heat insulation space R2, and the other end of the exhaust path 23 is arranged outside the heat insulation space R2. The other end of the exhaust path 23 is connected to other equipment. Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like. However, the other end of the exhaust path 23 may be open to the atmosphere.
 排気装置24は、断熱空間R2内のガスの圧力を調整する圧力調整装置として機能する。排気装置24としては、例えば、圧縮機や、真空ポンプなどの排気ポンプが例示される。本実施形態では、排気装置24は、後述の制御装置33により制御される。 The exhaust device 24 functions as a pressure regulating device that regulates the pressure of the gas inside the heat insulating space R2. Examples of the exhaust device 24 include a compressor and an exhaust pump such as a vacuum pump. In this embodiment, the exhaust device 24 is controlled by a control device 33, which will be described later.
 また、多重殻タンク10Aは、断熱空間R2内のガスを断熱空間R2の外部へ導く逃し路25と、逃し路25に設けられた逃し弁26とを含む。逃し路25の一端部は、断熱空間R2内に配置され、逃し路25の他端部は、断熱空間R2の外部に配置されている。逃し路25の他端部は、他の機器に接続されている。他の機器は、例えば、推進用エンジン、発電用エンジン、再液化装置、焼却装置、燃料電池などである。逃し路25の他端部の周りの圧力は、大気圧付近にある。逃し路25の他端部は、大気開放されていてもよい。 In addition, the multi-shell tank 10A includes an escape passage 25 that guides the gas inside the heat insulation space R2 to the outside of the heat insulation space R2, and an escape valve 26 provided in the escape passage 25. One end of the escape path 25 is arranged inside the heat insulation space R2, and the other end of the escape path 25 is arranged outside the heat insulation space R2. The other end of escape path 25 is connected to other equipment. Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like. The pressure around the other end of the escape channel 25 is near atmospheric pressure. The other end of escape path 25 may be open to the atmosphere.
 逃し弁26は、断熱空間R2内のガスの圧力を調整する圧力調整装置として機能する。例えば逃し弁26は、開閉弁である。ただし、逃し弁26は、圧力調整弁など別の種類の弁でもよい。本実施形態では、逃し弁26は、後述の制御装置33により制御される。なお、逃し路25には、逃し弁26を設ける代わりに、制御を伴わないラプチャーディスクなどが設けられてもよい。 The relief valve 26 functions as a pressure regulator that regulates the pressure of the gas inside the heat insulating space R2. For example, the relief valve 26 is an on-off valve. However, relief valve 26 may be another type of valve, such as a pressure regulating valve. In this embodiment, the relief valve 26 is controlled by a controller 33, which will be described later. In addition, instead of providing the relief valve 26, the relief path 25 may be provided with a rupture disk or the like that does not involve control.
 多重殻タンク10Aは、5つの温度計31と、圧力計32と、制御装置33を含む。 The multi-shell tank 10A includes five thermometers 31, a pressure gauge 32, and a controller 33.
 5つの温度計31は、貯留空間R1の温度を計測する。5つの温度計31は、それぞれ、貯留空間R1内の複数箇所に設けられている。具体的には、5つの温度計31は、内槽11内の貯留空間R1を上下方向に5等分した場合の5つの領域にそれぞれ配置されている。より具体的には、5つの温度計31は、不図示のパイプタワー内部に配置されている。例えば5つの温度計31のうち最も上に配置された温度計31は、内槽11内の気層中に配置されて、ボイルオフガスの温度を計測し、それ以外の4つの温度計31は、内槽11内の液層中に配置され、低温液体の温度を計測する。5つの温度計31は、制御装置33に通信可能に接続されている。5つの温度計31により計測された温度の情報は、制御装置33に送られる。 The five thermometers 31 measure the temperature of the storage space R1. The five thermometers 31 are respectively provided at multiple locations within the storage space R1. Specifically, the five thermometers 31 are respectively arranged in five areas when the storage space R1 in the inner tank 11 is vertically divided into five areas. More specifically, five thermometers 31 are arranged inside a pipe tower (not shown). For example, the thermometer 31 placed at the top of the five thermometers 31 is placed in the air layer in the inner tank 11 to measure the temperature of the boil-off gas, and the other four thermometers 31 are It is arranged in the liquid layer in the inner tank 11 and measures the temperature of the low-temperature liquid. The five thermometers 31 are communicatively connected to the controller 33 . Information on temperatures measured by the five thermometers 31 is sent to the control device 33 .
 圧力計32は、断熱空間R2内のガスの圧力を計測する。圧力計32は、制御装置33に通信可能に接続されている。圧力計32により計測された圧力の情報は、制御装置33に送られる。 The pressure gauge 32 measures the gas pressure in the heat insulation space R2. The pressure gauge 32 is communicably connected to the control device 33 . Information on the pressure measured by the pressure gauge 32 is sent to the control device 33 .
 制御装置33は、いわゆるコンピュータであって、CPU等の演算処理部、ROM、RAM等の記憶部を有している(いずれも図示せず)。記憶部には、演算処理部が実行するプログラム、各種固定データ等が記憶されている。演算処理部は、外部装置とのデータ送受信を行う。制御装置33では、記憶部に記憶された所定のガス圧調整プログラムを演算処理部が読み出して実行することにより、断熱空間R2のガス圧を調整するためのガス圧調整処理が行われる。記憶部には、圧力を調整する対象となるガスに関する温度と飽和蒸気圧との関係を示す対応関係情報が予め記憶されている。 The control device 33 is a so-called computer, and has an arithmetic processing unit such as a CPU, and a storage unit such as ROM and RAM (none of which are shown). The storage unit stores programs executed by the arithmetic processing unit, various fixed data, and the like. The arithmetic processing unit transmits and receives data to and from an external device. In the control device 33, the gas pressure adjustment process for adjusting the gas pressure in the heat insulation space R2 is performed by the arithmetic processing section reading out and executing a predetermined gas pressure adjustment program stored in the storage section. Correspondence information indicating the relationship between the temperature and the saturated vapor pressure of the gas whose pressure is to be adjusted is pre-stored in the storage unit.
 断熱空間R2内のガスの圧力は、基準温度Tにおける断熱空間R2内のガスの飽和蒸気圧Ps未満に維持されている。基準温度Tは、5つの温度計31により計測された温度に基づいて決定された温度である。本実施形態では、5つの温度計31により計測された温度のうち最低温度を、基準温度Tとしている。 The pressure of the gas in the heat insulating space R2 is maintained below the saturated vapor pressure Ps of the gas in the heat insulating space R2 at the reference temperature T. A reference temperature T is a temperature determined based on temperatures measured by the five thermometers 31 . In this embodiment, the reference temperature T is the lowest temperature among the temperatures measured by the five thermometers 31 .
 制御装置33は、基準温度Tにおける断熱空間R2内のガスの飽和蒸気圧Ps未満に維持されるよう、断熱空間R2内のガスの圧力を調整する。具体的には、制御装置33は、圧力計32により計測される圧力Pが基準温度Tにおける断熱空間R2内のガスの飽和蒸気圧Ps未満となるように、排気装置24および/または逃し弁26を制御する。より詳しくは、制御装置33は、圧力計32により計測される圧力Pが、飽和蒸気圧Psより第1差圧ΔP1だけ低い設定上限圧Pup(=Ps-ΔP1)以下となるように、排気装置24および/または逃し弁26を制御する。 The control device 33 adjusts the pressure of the gas in the heat insulating space R2 so that the pressure of the gas in the heat insulating space R2 at the reference temperature T is maintained below the saturated vapor pressure Ps of the gas in the heat insulating space R2. Specifically, the control device 33 controls the exhaust device 24 and/or the relief valve 26 so that the pressure P measured by the pressure gauge 32 is less than the saturated vapor pressure Ps of the gas in the adiabatic space R2 at the reference temperature T. to control. More specifically, the control device 33 controls the exhaust so that the pressure P measured by the pressure gauge 32 is equal to or lower than the set upper limit pressure P up (=Ps−ΔP1) lower than the saturated vapor pressure Ps by the first differential pressure ΔP1. Control device 24 and/or relief valve 26 .
 また、制御装置33は、圧力計32により計測される圧力Pが飽和蒸気圧Psより第2差圧ΔP2だけ低い設定下限圧Plow(=Ps-ΔP2)以上となるように、導入弁22を制御する。第2差圧ΔP2は、第1差圧ΔP1より大きい。設定下限圧は、好ましくは1kPa以上に設定される。 In addition, the control device 33 operates the introduction valve 22 so that the pressure P measured by the pressure gauge 32 is equal to or higher than the set lower limit pressure P low (=Ps−ΔP2) which is lower than the saturated vapor pressure Ps by the second differential pressure ΔP2. Control. The second differential pressure ΔP2 is greater than the first differential pressure ΔP1. The set lower limit pressure is preferably set to 1 kPa or more.
 第1差圧ΔP1は、好ましくは3kPa以上で70kPa以下の範囲内に設定される。第2差圧ΔP2は、好ましくは10kPa以上で100kPa以下の範囲内に設定される。設定上限圧Pupと設定下限圧Plowの差、すなわち、第2差圧ΔP2から第1差圧ΔP1を減算した差圧は、好ましくは0kPa以上で30kPa以下の範囲内に設定される。 The first differential pressure ΔP1 is preferably set within a range of 3 kPa or more and 70 kPa or less. The second differential pressure ΔP2 is preferably set within a range of 10 kPa or more and 100 kPa or less. The difference between the set upper limit pressure P up and the set lower limit pressure P low , that is, the differential pressure obtained by subtracting the first differential pressure ΔP1 from the second differential pressure ΔP2 is preferably set within the range of 0 kPa or more and 30 kPa or less.
 図3は、図1に示す多重殻タンク10Aにおける断熱空間R2のガス圧調整処理の流れを示すフローチャートである。 FIG. 3 is a flow chart showing the flow of gas pressure adjustment processing for the heat insulating space R2 in the multi-shell tank 10A shown in FIG.
 ガス圧調整処理では、制御装置33は、まず5つの温度計31から、5つの温度計31により計測された温度を取得する(ステップS1)。 In the gas pressure adjustment process, the controller 33 first acquires temperatures measured by the five thermometers 31 (step S1).
 制御装置33は、5つの温度計31により計測された温度のうち最低温度を、基準温度Tとして決定する(ステップS2)。 The control device 33 determines the lowest temperature among the temperatures measured by the five thermometers 31 as the reference temperature T (step S2).
 制御装置33は、決定した基準温度Tにおける断熱空間R2内のガスの飽和蒸気圧Psを算出する(ステップS3)。制御装置33の記憶部には、断熱空間R2内のガス(本例では水素)に関する温度と飽和蒸気圧との関係を示す対応関係情報が予め記憶されている。制御装置33の演算処理部は、記憶部に記憶された対応関係情報を用いて、ステップS2で決定した基準温度Tに対応する飽和蒸気圧を導出する。 The control device 33 calculates the saturated vapor pressure Ps of the gas within the heat insulating space R2 at the determined reference temperature T (step S3). Correspondence information indicating the relationship between the temperature and the saturated vapor pressure of the gas (hydrogen in this example) in the heat insulating space R2 is stored in advance in the storage unit of the control device 33 . The arithmetic processing unit of the control device 33 uses the correspondence information stored in the storage unit to derive the saturated vapor pressure corresponding to the reference temperature T determined in step S2.
 制御装置33は、圧力計32から、圧力計32により計測された圧力P、すなわち断熱空間R2のガス圧Pを取得する(ステップS4)。 The control device 33 acquires the pressure P measured by the pressure gauge 32, that is, the gas pressure P in the heat insulating space R2 (step S4).
 制御装置33は、取得した圧力Pが、飽和蒸気圧Psから予め設定した第1差圧ΔP1を減算した圧力より大きいか否かを判定する(ステップS5)。具体的には、制御装置33は、ステップS3で導出した飽和蒸気圧Psから予め設定した第1差圧ΔP1を減算して、設定上限圧Pupを算出する。そして、制御装置33は、取得した圧力Pが、設定上限圧Pupより大きいか否かを判定する。 The control device 33 determines whether or not the acquired pressure P is greater than the pressure obtained by subtracting the preset first differential pressure ΔP1 from the saturated vapor pressure Ps (step S5). Specifically, the control device 33 subtracts a preset first differential pressure ΔP1 from the saturated vapor pressure Ps derived in step S3 to calculate the set upper limit pressure Pup. Then, the control device 33 determines whether or not the acquired pressure P is higher than the set upper limit pressure Pup .
 取得した圧力Pが設定上限圧Pupより大きいと判定した場合(ステップS5:YES)、制御装置33は、取得した圧力Pが負圧か否かを判定する(ステップS6)。 When determining that the acquired pressure P is higher than the set upper limit pressure P up (step S5: YES), the control device 33 determines whether or not the acquired pressure P is a negative pressure (step S6).
 取得した圧力Pが負圧であると判定した場合(ステップS6:YES)、制御装置33は、断熱空間R2内のガス圧が低減されるよう排気装置24を稼働させる(ステップS7)。 When determining that the acquired pressure P is a negative pressure (step S6: YES), the control device 33 operates the exhaust device 24 so as to reduce the gas pressure in the heat insulating space R2 (step S7).
 取得した圧力Pが負圧でないと判定した場合(ステップS6:NO)、制御装置33は、断熱空間R2内のガス圧が低減されるよう逃し弁26を開く(ステップS8)。 When determining that the acquired pressure P is not a negative pressure (step S6: NO), the control device 33 opens the relief valve 26 so as to reduce the gas pressure in the heat insulating space R2 (step S8).
 取得した圧力Pが設定上限圧Pupより大きくないと判定した場合(ステップS5:NO)、制御装置33は、排気装置24を停止し、逃し弁26が閉じる(ステップS9)。既に排気装置24が停止した状態にある場合、制御装置33は、排気装置24を停止したままにする。また、既に逃し弁26が閉じた状態にある場合、制御装置33は、逃し弁26を閉じたままにする。 When determining that the acquired pressure P is not higher than the set upper limit pressure P up (step S5: NO), the control device 33 stops the exhaust device 24 and closes the relief valve 26 (step S9). If the evacuation device 24 is already stopped, the control device 33 keeps the evacuation device 24 stopped. If the relief valve 26 is already closed, the controller 33 keeps the relief valve 26 closed.
 ステップS7,S8,S9の後に、制御装置33は、取得した圧力Pが、飽和蒸気圧Psから予め設定した第2差圧ΔP2を減算した圧力未満であるか否かを判定する(ステップS10)。具体的には、制御装置33は、ステップS3で導出した飽和蒸気圧Psから予め設定した第2差圧ΔP2を減算して、設定下限圧Plowを算出する。そして、制御装置33は、取得した圧力Pが、設定下限圧Plow未満であるか否かを判定する。 After steps S7, S8, and S9, the control device 33 determines whether or not the acquired pressure P is less than the pressure obtained by subtracting a preset second differential pressure ΔP2 from the saturated vapor pressure Ps (step S10). . Specifically, the control device 33 subtracts a preset second differential pressure ΔP2 from the saturated vapor pressure Ps derived in step S3 to calculate the set lower limit pressure P low . Then, the control device 33 determines whether or not the acquired pressure P is less than the set lower limit pressure P low .
 取得した圧力Pが設定下限圧Plow未満であると判定した場合(ステップS10:YES)、制御装置33は、断熱空間R2内のガス圧が上昇するよう導入弁22を開き(ステップS11)、ガス圧調整処理を終了する。取得した圧力Pが設定下限圧Plow未満でないと判定した場合(ステップS10:NO)、制御装置33は、導入弁22を閉じて(ステップS12)、ガス圧調整処理を終了する。既に導入弁22が閉じた状態にある場合、制御装置33は、導入弁22を閉じたままにする。 When determining that the acquired pressure P is less than the set lower limit pressure P low (step S10: YES), the control device 33 opens the introduction valve 22 so as to increase the gas pressure in the heat insulation space R2 (step S11), End the gas pressure adjustment process. When determining that the acquired pressure P is not less than the set lower limit pressure P low (step S10: NO), the control device 33 closes the introduction valve 22 (step S12) and ends the gas pressure adjustment process. If the introduction valve 22 is already closed, the controller 33 keeps the introduction valve 22 closed.
 制御装置33は、以上のステップS1~S12のガス圧調整処理を繰り返して、断熱空間R2のガス圧を設定下限圧Plow以上で且つ設定上限圧Pup以下の範囲内に維持する。 The control device 33 repeats the gas pressure adjustment process of steps S1 to S12 described above to maintain the gas pressure in the heat insulating space R2 within the range of the set lower limit pressure P low or higher and the set upper limit pressure P up or lower.
 以上に説明したように、本実施形態では、断熱空間R2内のガスが、内槽11の温度または内槽11内の温度に対応する基準温度Tにおける断熱空間R2内のガスの飽和蒸気圧Ps未満に維持される。このため、断熱空間R2内のガスの凝縮温度を基準温度Tより低くすることができる。従って、内槽11と外槽12との間の断熱空間R2内のガスの凝縮を抑制することができる。 As described above, in the present embodiment, the gas in the heat insulating space R2 is at the temperature of the inner tank 11 or the saturated vapor pressure Ps maintained below Therefore, the condensation temperature of the gas in the heat insulating space R2 can be made lower than the reference temperature T. Therefore, condensation of gas in the heat insulating space R2 between the inner tank 11 and the outer tank 12 can be suppressed.
 また、本実施形態では、断熱空間R2内のガス圧Pが、飽和蒸気圧Psより第1差圧ΔP1だけ低い設定上限圧Pup以下に維持される。このように、飽和蒸気圧Psに対して第1差圧ΔP1のマージンを設けることによって、基準温度Tが低下した直後など、基準温度Tが変動した場合でも、断熱空間R2内のガスの凝縮を抑制できる。 Further, in the present embodiment, the gas pressure P in the heat insulating space R2 is maintained at or below the set upper limit pressure P up which is lower than the saturated vapor pressure Ps by the first differential pressure ΔP1. In this way, by providing a margin of the first differential pressure ΔP1 with respect to the saturated vapor pressure Ps, even if the reference temperature T fluctuates, such as immediately after the reference temperature T drops, condensation of the gas in the heat insulating space R2 can be prevented. can be suppressed.
 また、本実施形態では、制御装置33が、圧力計32により計測される圧力Pが基準温度Tにおける断熱空間R2内のガスの飽和蒸気圧Ps未満となるように各種圧力調整装置を制御する。このため、断熱空間R2内のガスの圧力をリアルタイムで監視および調整が可能である。 In addition, in this embodiment, the control device 33 controls various pressure regulators so that the pressure P measured by the pressure gauge 32 is less than the saturated vapor pressure Ps of the gas in the heat insulating space R2 at the reference temperature T. Therefore, it is possible to monitor and adjust the gas pressure in the heat insulating space R2 in real time.
 また、本実施形態では、複数の温度計31により計測された温度のうち最低温度を、基準温度Tとして決定する。内槽11の外表面における最低温度を精度よく予測でき、その結果、断熱空間R2のガスの凝縮を抑制するのに適切な断熱空間R2のガス圧範囲を導出できる。 Also, in this embodiment, the lowest temperature among the temperatures measured by the plurality of thermometers 31 is determined as the reference temperature T. The minimum temperature on the outer surface of the inner tank 11 can be accurately predicted, and as a result, the gas pressure range of the heat insulating space R2 suitable for suppressing condensation of gas in the heat insulating space R2 can be derived.
 また、本実施形態では、排気装置24によって、断熱空間R2内のガスを断熱空間R2の外部へ排気することができるため、断熱空間R2内のガス圧Pが負圧である場合でも断熱空間R2内を減圧できる。 Further, in the present embodiment, the exhaust device 24 can exhaust the gas in the heat insulating space R2 to the outside of the heat insulating space R2. Therefore, even when the gas pressure P in the heat insulating space R2 is negative, You can reduce the pressure inside.
 また、本実施形態では、断熱空間R2内のガス圧Pが正圧である場合に、逃し弁26によって、断熱空間R2内のガスを断熱空間R2の外部へ排気することができる。このため、少ない動力で断熱空間R2内を減圧できる。 Further, in this embodiment, when the gas pressure P in the heat insulation space R2 is positive, the escape valve 26 can exhaust the gas in the heat insulation space R2 to the outside of the heat insulation space R2. Therefore, the pressure in the heat insulating space R2 can be reduced with a small amount of power.
 また、本実施形態では、断熱空間R2内のガスが、内槽11の温度または内槽11内の温度に対応する基準温度Tにおけるガスの飽和蒸気圧Psより所定圧力(第2差圧ΔP2)だけ低い設定下限圧Plow以上となるよう維持される。このため、断熱空間R2のガスの凝縮を抑制しつつ、内槽11内の貯留空間R1と断熱空間R2との圧力差を小さく保つことができる。従って、多重殻タンク10Aに要求される強度を低減することができる。 Further, in the present embodiment, the gas in the heat insulating space R2 has a predetermined pressure (second differential pressure ΔP2) from the saturated vapor pressure Ps of the gas at the reference temperature T corresponding to the temperature of the inner tank 11 or the temperature in the inner tank 11. is maintained to be equal to or higher than the set lower limit pressure P low . Therefore, the pressure difference between the storage space R1 and the heat insulation space R2 in the inner tank 11 can be kept small while suppressing the condensation of the gas in the heat insulation space R2. Therefore, the strength required for the multi-shell tank 10A can be reduced.
 <第2実施形態>
 図4は、第2実施形態に係る多重殻タンク10Bの全体的な構成を示す概略構成図である。なお、本実施形態および後述する第3~第5実施形態において、上記の第1実施形態と同一または類似の部材には図面に同一の符号を付して、詳細な説明を省略する。
<Second embodiment>
FIG. 4 is a schematic configuration diagram showing the overall configuration of a multi-shell tank 10B according to the second embodiment. In this embodiment and third to fifth embodiments to be described later, members that are the same as or similar to those of the first embodiment are denoted by the same reference numerals in the drawings, and detailed description thereof will be omitted.
 図4に示す多重殻タンク10Bでは、断熱空間R2に充填されているガスの種類が、貯留空間R1のボイルオフガスの種類と異なる。例えば、貯留空間R1の低温液体は、液化水素であり、断熱空間R2のガスは、窒素ガスである。 In the multi-shell tank 10B shown in FIG. 4, the type of gas filled in the heat insulation space R2 is different from the type of boil-off gas in the storage space R1. For example, the low-temperature liquid in the storage space R1 is liquefied hydrogen, and the gas in the heat insulating space R2 is nitrogen gas.
 また、断熱空間R2に充填されているガスの種類と貯留空間R1のボイルオフガスの種類とが互いに異なるため、多重殻タンク10Bは、貯留空間R1におけるボイルオフガスを断熱空間R2内へ導入する導入路21、および導入路21に設けられた導入弁22を備えていない。 In addition, since the type of gas filled in the heat insulating space R2 and the type of boil-off gas in the storage space R1 are different from each other, the multi-shell tank 10B has an introduction path for introducing the boil-off gas in the storage space R1 into the heat insulating space R2. 21 and the introduction valve 22 provided in the introduction path 21 are not provided.
 また、制御装置33の記憶部には、圧力を調整する対象となるガス(本例では窒素ガス)に関する温度と飽和蒸気圧との関係を示す対応関係情報が予め記憶されている。本実施形態のガス調整処理では、ステップS10~S12が省略されること以外は第1実施形態で説明されたガス調整処理と同じであるため、説明を省略する。 In addition, the storage unit of the control device 33 stores in advance correspondence information indicating the relationship between the temperature and the saturated vapor pressure of the gas (nitrogen gas in this example) whose pressure is to be adjusted. The gas adjustment process of the present embodiment is the same as the gas adjustment process described in the first embodiment except that steps S10 to S12 are omitted, so the description is omitted.
 本実施形態でも、第1実施形態と同様の効果が得られる。 The same effects as in the first embodiment can be obtained in this embodiment as well.
 <第3実施形態>
 図5は、第3実施形態に係る多重殻タンク40Aの全体的な構成を示す断面図である。図5に示す多重殻タンク40Aでは、内槽11を覆う外槽12を、更に別の外槽41が覆っている。なお、外槽41は、上述したタンクカバー13および保持壁14により構成された収容構造15であってもよいし、外槽12の外側で且つタンクカバー13および保持壁14の内側に配置された、タンクカバー13および保持壁14とは別の部材であってもよい。以下の説明において、外槽12およびそれを覆う外槽41を、それぞれ、第1外槽12および第2外槽41と称することとする。
<Third Embodiment>
FIG. 5 is a cross-sectional view showing the overall configuration of a multi-shell tank 40A according to the third embodiment. In the multi-shell tank 40A shown in FIG. 5, the outer tank 12 covering the inner tank 11 is further covered by another outer tank 41 . The outer tank 41 may be the housing structure 15 configured by the tank cover 13 and the retaining wall 14 described above, or may be a housing structure 15 arranged outside the outer tank 12 and inside the tank cover 13 and the retaining wall 14 . , the tank cover 13 and the holding wall 14 may be separate members. In the following description, the outer tub 12 and the outer tub 41 covering it are referred to as the first outer tub 12 and the second outer tub 41, respectively.
 第2外槽41が第1外槽12を覆うことによって、第1外槽12より外側で且つ第2外槽41より内側に密閉された断熱空間R3が形成されている。すなわち、第1外槽12は、第1外槽12より内側の断熱空間R2と、第1外槽12より外側で且つ第2外槽41より内側の断熱空間R3とを仕切っている。以下の説明において、内槽11と第1外槽12との間の断熱空間R2、および、第1外槽12と第2外槽41との間の断熱空間R3を、それぞれ、第1断熱空間R2および第2断熱空間R3と称することとする。 By covering the first outer tank 12 with the second outer tank 41 , a sealed heat insulating space R3 is formed outside the first outer tank 12 and inside the second outer tank 41 . That is, the first outer tank 12 partitions a heat insulating space R2 inside the first outer tank 12 and a heat insulating space R3 outside the first outer tank 12 and inside the second outer tank 41 . In the following description, the heat insulation space R2 between the inner tank 11 and the first outer tank 12 and the heat insulation space R3 between the first outer tank 12 and the second outer tank 41 are referred to as the first heat insulation space. Let us call it R2 and the second adiabatic space R3.
 第1断熱空間R2および第2断熱空間R3には、断熱材が配置されている。また、第1断熱空間R2および第2断熱空間R3には、ガスが充填されている。本実施形態では、第1および第2実施形態と異なり、内槽11と第1外槽12との間の第1断熱空間R2のガス圧ではなく、第1外槽12と第2外槽41との間の第2断熱空間R3のガス圧が調整される。本実施形態において、第1外槽12は第1槽に対応し、第2外槽41は第2槽に対応する。 A heat insulating material is arranged in the first heat insulating space R2 and the second heat insulating space R3. Further, the first heat insulating space R2 and the second heat insulating space R3 are filled with gas. In this embodiment, unlike the first and second embodiments, the gas pressure in the first heat insulating space R2 between the inner tank 11 and the first outer tank 12 is not measured, but the gas pressure is measured between the first outer tank 12 and the second outer tank 41. The gas pressure of the second heat insulation space R3 between is adjusted. In this embodiment, the first outer tub 12 corresponds to the first tub, and the second outer tub 41 corresponds to the second tub.
 本実施形態では、第2断熱空間R3に充填されているガスの種類は、第1断熱空間R2に充填されたガスの種類と異なる。本実施形態では、例えば貯留空間R1に液化水素が貯留されており、第1断熱空間R2に水素ガスが充填されており、第2断熱空間R3に窒素ガスが充填されている。ただし、第2断熱空間R3に充填されているガスの種類は、第1断熱空間R2に充填されたガスの種類と同じでもよい。例えば、第1断熱空間R2と第2断熱空間R3のいずれにも水素ガスが充填されてもよい。 In this embodiment, the type of gas that fills the second heat insulating space R3 is different from the type of gas that fills the first heat insulating space R2. In this embodiment, for example, the storage space R1 stores liquefied hydrogen, the first heat insulating space R2 is filled with hydrogen gas, and the second heat insulating space R3 is filled with nitrogen gas. However, the type of gas filling the second heat insulating space R3 may be the same as the type of gas filling the first heat insulating space R2. For example, both the first heat insulating space R2 and the second heat insulating space R3 may be filled with hydrogen gas.
 多重殻タンク40Aは、第2断熱空間R3内のガスを第2断熱空間R3の外部へ導く排気路43と、排気路43に設けられた排気装置44とを含む。排気路43の一端部は、第2断熱空間R3内に配置され、排気路43の他端部は、第2断熱空間R3の外部に配置されている。排気路43の他端部は、他の機器に接続されている。他の機器は、例えば、推進用エンジン、発電用エンジン、再液化装置、焼却装置、燃料電池などである。排気路43の他端部は、大気開放されていてもよい。 The multi-shell tank 40A includes an exhaust path 43 that guides the gas in the second heat insulating space R3 to the outside of the second heat insulating space R3, and an exhaust device 44 provided in the exhaust path 43. One end of the exhaust path 43 is arranged inside the second heat insulating space R3, and the other end of the exhaust path 43 is arranged outside the second heat insulating space R3. The other end of the exhaust path 43 is connected to other equipment. Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like. The other end of the exhaust path 43 may be open to the atmosphere.
 排気装置44は、第2断熱空間R3内のガスの圧力を調整する圧力調整装置として機能する。排気装置44としては、例えば、圧縮機や、真空ポンプなどの排気ポンプが例示される。本実施形態では、排気装置44は、後述の制御装置33により制御される。 The exhaust device 44 functions as a pressure regulator that regulates the pressure of the gas inside the second heat insulating space R3. Examples of the exhaust device 44 include a compressor and an exhaust pump such as a vacuum pump. In this embodiment, the exhaust device 44 is controlled by a control device 33 which will be described later.
 また、多重殻タンク40Aは、第2断熱空間R3内のガスを第2断熱空間R3の外部へ導く逃し路45と、逃し路45に設けられた逃し弁46とを含む。逃し路45の一端部は、第2断熱空間R3内に配置され、逃し路45の他端部は、第2断熱空間R3の外部に配置されている。逃し路45の他端部は、他の機器に接続されている。他の機器は、例えば、推進用エンジン、発電用エンジン、再液化装置、焼却装置、燃料電池などである。逃し路45の他端部の周りの圧力は、大気圧付近にある。逃し路43の他端部は、大気開放されていてもよい。 In addition, the multi-shell tank 40A includes an escape passage 45 that guides the gas in the second heat insulation space R3 to the outside of the second heat insulation space R3, and an escape valve 46 provided in the escape passage 45. One end of the escape path 45 is arranged inside the second heat insulation space R3, and the other end of the escape path 45 is arranged outside the second heat insulation space R3. The other end of escape path 45 is connected to other equipment. Other devices are, for example, propulsion engines, power generation engines, reliquefaction plants, incinerators, fuel cells, and the like. The pressure around the other end of the relief channel 45 is near atmospheric pressure. The other end of the escape path 43 may be open to the atmosphere.
 逃し弁46は、第2断熱空間R3内のガスの圧力を調整する圧力調整装置として機能する。例えば逃し弁46は、開閉弁である。ただし、逃し弁26は、圧力調整弁など別の種類の弁でもよい。本実施形態では、逃し弁46は、後述の制御装置33により制御される。 The relief valve 46 functions as a pressure regulator that regulates the pressure of the gas inside the second heat insulating space R3. For example, the relief valve 46 is an on-off valve. However, relief valve 26 may be another type of valve, such as a pressure regulating valve. In this embodiment, the relief valve 46 is controlled by the controller 33, which will be described later.
 多重殻タンク40Aは、5つの温度計51と、圧力計52と、制御装置33を含む。 The multi-shell tank 40A includes five thermometers 51, a pressure gauge 52, and a controller 33.
 5つの温度計51(第2温度計に対応)は、第1断熱空間R2内の温度(第2温度に対応)を計測する。5つの温度計51は、それぞれ、第1断熱空間R2内の複数箇所に設けられている。具体的には、5つの温度計51は、第1断熱空間R2を上下方向に5等分した場合の5つの領域にそれぞれ配置されている。5つの温度計51は、制御装置33に通信可能に接続されている。5つの温度計51により計測された温度の情報は、制御装置33に送られる。 The five thermometers 51 (corresponding to the second thermometer) measure the temperature (corresponding to the second temperature) inside the first heat insulating space R2. The five thermometers 51 are respectively provided at multiple locations in the first heat insulation space R2. Specifically, the five thermometers 51 are arranged in five areas when the first heat insulating space R2 is equally divided into five in the vertical direction. The five thermometers 51 are communicably connected to the control device 33 . Information on temperatures measured by the five thermometers 51 is sent to the control device 33 .
 圧力計52は、第2断熱空間R3内のガスの圧力を計測する。圧力計52は、制御装置33に通信可能に接続されている。圧力計52により計測された圧力の情報は、制御装置33に送られる。 The pressure gauge 52 measures the gas pressure in the second heat insulation space R3. The pressure gauge 52 is communicably connected to the control device 33 . Information on the pressure measured by the pressure gauge 52 is sent to the control device 33 .
 本実施形態では、制御装置33において、記憶部に記憶された所定のガス圧調整プログラムを演算処理部が読み出して実行することにより、第2断熱空間R3のガス圧を調整するためのガス圧調整処理が行われる。 In the present embodiment, in the control device 33, the arithmetic processing unit reads out and executes a predetermined gas pressure adjustment program stored in the storage unit, thereby adjusting the gas pressure for adjusting the gas pressure in the second heat insulating space R3. processing takes place.
 第2断熱空間R3内のガスの圧力は、基準温度Tにおける第2断熱空間R3内のガスの飽和蒸気圧Ps未満に維持されている。基準温度Tは、5つの温度計51により計測された温度に基づいて決定された温度である。本実施形態では、5つの温度計51により計測された温度のうち最低温度を、基準温度Tとしている。 The pressure of the gas in the second heat insulating space R3 is maintained below the saturated vapor pressure Ps of the gas in the second heat insulating space R3 at the reference temperature T. A reference temperature T is a temperature determined based on temperatures measured by the five thermometers 51 . In this embodiment, the reference temperature T is the lowest temperature among the temperatures measured by the five thermometers 51 .
 制御装置33は、基準温度Tにおける第2断熱空間R3内のガスの飽和蒸気圧Ps未満に維持されるよう、第2断熱空間R3内のガスの圧力を調整する。具体的には、制御装置33は、圧力計52により計測される圧力Pが基準温度Tにおける第2断熱空間R3内のガスの飽和蒸気圧Ps未満となるように、排気装置44および/または逃し弁46を制御する。より詳しくは、制御装置33は、圧力計52により計測される圧力Pが、飽和蒸気圧Psより第1差圧ΔP1だけ低い設定上限圧Pup(=Ps-ΔP1)以下となるように、排気装置44および/または逃し弁46を制御する。 The control device 33 adjusts the pressure of the gas in the second heat insulating space R3 so that the pressure of the gas in the second heat insulating space R3 at the reference temperature T is maintained below the saturated vapor pressure Ps of the gas in the second heat insulating space R3. Specifically, the control device 33 controls the exhaust device 44 and/or the escape device so that the pressure P measured by the pressure gauge 52 is less than the saturated vapor pressure Ps of the gas in the second heat insulating space R3 at the reference temperature T. Control valve 46 . More specifically, the control device 33 controls the exhaust so that the pressure P measured by the pressure gauge 52 is equal to or lower than the set upper limit pressure P up (=Ps−ΔP1) lower than the saturated vapor pressure Ps by the first differential pressure ΔP1. Control device 44 and/or relief valve 46 .
 本実施形態におけるガス圧調整処理は、第1実施形態におけるガス圧調整処理のステップS1~S9において、貯留空間R1を第1断熱空間R2に、断熱空間R2を第2断熱空間R3に、排気装置24を排気装置44に、逃し弁26を逃し弁46に、温度計31を温度計51に、圧力計32を圧力計52に読み替えることによって説明できる。このため、本実施形態におけるガス圧調整処理の詳しい説明は省略する。 In the gas pressure adjustment process of the present embodiment, in steps S1 to S9 of the gas pressure adjustment process of the first embodiment, the storage space R1 is changed to the first heat insulation space R2, the heat insulation space R2 is changed to the second heat insulation space R3, and the exhaust device This can be explained by replacing 24 with the exhaust device 44, the relief valve 26 with the relief valve 46, the thermometer 31 with the thermometer 51, and the pressure gauge 32 with the pressure gauge 52. Therefore, detailed description of the gas pressure adjustment process in this embodiment is omitted.
 本実施形態では、第2断熱空間R3内のガスが、第1外槽12の温度または第1断熱空間R2内の温度に対応する基準温度Tにおけるガスの飽和蒸気圧Ps未満に維持される。このため、第2断熱空間R3内のガスの凝縮温度を基準温度Tより低くすることができる。従って、第1外槽12と第2外槽41との間の第2断熱空間R3内のガスの凝縮を抑制することができる。 In this embodiment, the gas in the second heat insulating space R3 is maintained below the saturated vapor pressure Ps of the gas at the reference temperature T corresponding to the temperature of the first outer tank 12 or the temperature in the first heat insulating space R2. Therefore, the condensation temperature of the gas in the second heat insulating space R3 can be made lower than the reference temperature T. Therefore, condensation of gas in the second heat insulating space R3 between the first outer tank 12 and the second outer tank 41 can be suppressed.
 <第4実施形態>
 図6は、第4実施形態に係る多重殻タンク40Bの全体的な構成を示す概略構成図である。図6に示すように、本実施形態の多重殻タンク40Bは、第1実施形態と第3実施形態の構成を組み合わせたものである。
<Fourth Embodiment>
FIG. 6 is a schematic configuration diagram showing the overall configuration of a multi-shell tank 40B according to the fourth embodiment. As shown in FIG. 6, the multi-shell tank 40B of this embodiment is a combination of the configurations of the first embodiment and the third embodiment.
 すなわち、多重殻タンク40Bは、第1実施形態と同様に、内槽11、外槽12、導入路21、導入弁22、排気路23、排気装置24、逃し路25、逃し弁26、5つの温度計31、圧力計32および制御装置33を含む。また、多重殻タンク40Bは、第3実施形態と同様に、外槽41、排気路43、排気装置44、逃し路45、逃し弁46、5つの温度計51、および圧力計52を含む。 That is, as in the first embodiment, the multi-shell tank 40B includes an inner tank 11, an outer tank 12, an introduction passage 21, an introduction valve 22, an exhaust passage 23, an exhaust device 24, a relief passage 25, a relief valve 26, and five It includes a thermometer 31 , a pressure gauge 32 and a controller 33 . The multi-shell tank 40B also includes an outer tank 41, an exhaust passage 43, an exhaust device 44, a relief passage 45, a relief valve 46, five thermometers 51, and a pressure gauge 52, as in the third embodiment.
 本実施形態では、第1断熱空間R2に充填されているガスの種類は、貯留空間R1のボイルオフガスの種類と同じで、第2断熱空間R3に充填されているガスの種類とは異なる。本実施形態では、例えば貯留空間R1に液化水素が貯留されており、第1断熱空間R2に水素ガスが充填されており、第2断熱空間R3に窒素ガスが充填されている。ただし、第1断熱空間R2に充填されているガスの種類と貯留空間R1のボイルオフガスの種類とが互いに異なってもよい。また、第2断熱空間R3に充填されているガスの種類は、第1断熱空間R2に充填されたガスの種類と同じでもよい。例えば、第1断熱空間R2と第2断熱空間R3のいずれにも水素ガスが充填されてもよい。 In the present embodiment, the type of gas filled in the first heat insulation space R2 is the same as the type of boil-off gas in the storage space R1, and is different from the type of gas filled in the second heat insulation space R3. In this embodiment, for example, the storage space R1 stores liquefied hydrogen, the first heat insulating space R2 is filled with hydrogen gas, and the second heat insulating space R3 is filled with nitrogen gas. However, the type of gas filled in the first heat insulation space R2 and the type of boil-off gas in the storage space R1 may be different from each other. Also, the type of gas filled in the second heat insulating space R3 may be the same as the type of gas filling the first heat insulating space R2. For example, both the first heat insulating space R2 and the second heat insulating space R3 may be filled with hydrogen gas.
 本実施形態では、制御装置33において、記憶部に記憶された所定のガス圧調整プログラムを演算処理部が読み出して実行することにより、第1断熱空間R2のガス圧を調整するためのガス圧調整処理と、第2断熱空間R3のガス圧を調整するためのガス圧調整処理とが行われる。すなわち、第1断熱空間R2のガス圧を調整するためのガス圧調整処理と、第2断熱空間R3のガス圧を調整するためのガス圧調整処理とは、それぞれ、第1実施形態と第3実施形態のガス圧調整処理と同じであるため、詳細な説明を省略する。 In the present embodiment, in the control device 33, the arithmetic processing unit reads out and executes a predetermined gas pressure adjustment program stored in the storage unit, thereby adjusting the gas pressure for adjusting the gas pressure in the first heat insulation space R2. and a gas pressure adjustment process for adjusting the gas pressure in the second heat insulating space R3. That is, the gas pressure adjustment process for adjusting the gas pressure of the first heat insulation space R2 and the gas pressure adjustment process for adjusting the gas pressure of the second heat insulation space R3 are performed in the first embodiment and the third embodiment, respectively. Since it is the same as the gas pressure adjustment process of the embodiment, detailed description is omitted.
 本実施形態でも、第1実施形態および第3実施形態と同様の効果が得られる。 The same effects as in the first and third embodiments can be obtained in this embodiment as well.
 <第5実施形態>
 図7は、第5実施形態に係る多重殻タンク60の全体的な構成を示す概略構成図である。本実施形態において、多重殻タンク60は、船舶に搭載されたメンブレン方式のタンクである。
<Fifth Embodiment>
FIG. 7 is a schematic configuration diagram showing the overall configuration of a multi-shell tank 60 according to the fifth embodiment. In this embodiment, the multi-shell tank 60 is a membrane-type tank mounted on a ship.
 多重殻タンク60は、低温液体を収容する一次メンブレン61と、それを覆う二次メンブレン62と、二次メンブレン62を更に覆っている船体内殻63とを備える。船体内殻63は、船体の一部である。 The multi-shell tank 60 comprises a primary membrane 61 containing cryogenic liquid, a secondary membrane 62 covering it, and a hull hull 63 further covering the secondary membrane 62 . Hull inner hull 63 is part of the hull.
 一次メンブレン61の内部の貯留空間R1に低温液体が貯蔵されている。一次メンブレン61と二次メンブレン62との間には、密閉された第1断熱空間R2(いわゆる、防壁間空間(IBS:Inter Barrier Space))が形成されている。当該第1断熱空間R2に断熱材が配置されている。また、二次メンブレン62と船体内殻63との間には、密閉された第2断熱空間R3(いわゆる防熱空間(IS:Insulation Space))が形成されている。当該第2断熱空間R3に断熱材が配置されている。本実施形態において、一次メンブレン61は、内部に低温液体が貯蔵された内槽として機能し、二次メンブレン62は、内槽としての一次メンブレン61を収容する外槽として機能し、船体内殻63は、外槽としての二次メンブレン62を更に覆う外槽として機能する。 A low temperature liquid is stored in the storage space R1 inside the primary membrane 61 . Between the primary membrane 61 and the secondary membrane 62, a sealed first insulating space R2 (so-called Inter Barrier Space (IBS)) is formed. A heat insulating material is arranged in the first heat insulating space R2. Between the secondary membrane 62 and the hull inner shell 63, a sealed second heat insulating space R3 (so-called insulation space (IS)) is formed. A heat insulating material is arranged in the second heat insulating space R3. In this embodiment, the primary membrane 61 functions as an inner tank in which a cryogenic liquid is stored, the secondary membrane 62 functions as an outer tank containing the primary membrane 61 as an inner tank, and the hull inner shell 63 functions as an outer bath that further covers the secondary membrane 62 as an outer bath.
 一次メンブレン61および二次メンブレン62は、それら自体に一次メンブレン61内の低温液体の圧力や重量を支持する強度を備えていない。一次メンブレン61内の低温液体の圧力や重量は、第1断熱空間R2内の断熱材や第2断熱空間R3内の断熱材を介して船体に支持されている。 The primary membrane 61 and secondary membrane 62 do not themselves have the strength to support the pressure and weight of the cryogenic liquid within the primary membrane 61 . The pressure and weight of the cryogenic liquid in the primary membrane 61 are supported by the hull via the heat insulating material in the first heat insulating space R2 and the heat insulating material in the second heat insulating space R3.
 本実施形態では、例えば貯留空間R1に液化水素が貯留されており、第1断熱空間R2に水素ガスが充填されており、第2断熱空間R3に窒素ガスが充填されている。 In this embodiment, for example, liquefied hydrogen is stored in the storage space R1, the first heat insulation space R2 is filled with hydrogen gas, and the second heat insulation space R3 is filled with nitrogen gas.
 本実施形態では、第1実施形態と同様、貯留空間R1の1つ外側の第1断熱空間R2のガス圧が調整される。第1断熱空間R2のガス圧の調整方法は、第1実施形態における断熱空間R2のガス圧の調整方法とほぼ同じである。すなわち、多重殻タンク60は、第1実施形態と同様に、排気路23、排気装置24、逃し路25、逃し弁26、5つの温度計31、圧力計32および制御装置33を備える。ガス圧調整方法は、第1実施形態とほぼ同様であるため、説明を省略する。 In the present embodiment, as in the first embodiment, the gas pressure in the first heat insulating space R2, which is one space outside the storage space R1, is adjusted. The method for adjusting the gas pressure in the first heat insulating space R2 is substantially the same as the method for adjusting the gas pressure in the heat insulating space R2 in the first embodiment. That is, the multi-shell tank 60 includes an exhaust path 23, an exhaust device 24, a relief path 25, a relief valve 26, five thermometers 31, a pressure gauge 32 and a control device 33, as in the first embodiment. Since the gas pressure adjustment method is substantially the same as that of the first embodiment, the explanation is omitted.
 本実施形態でも第1実施形態と同様の効果が得られる。 The same effects as in the first embodiment can be obtained in this embodiment as well.
 <その他の実施形態>
 本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の変形が可能である。
<Other embodiments>
The present disclosure is not limited to the embodiments described above, and various modifications are possible without departing from the gist of the present disclosure.
 例えば上記実施形態では、複数の温度計31(または51)により計測された温度のうち最低温度を、基準温度Tとして決定したが、本開示における基準温度の決定方法はこれに限定されない。例えば、複数の温度計により計測された温度の平均温度を基準温度として決定してもよい。例えば、第1、第2、第4および第5実施形態において、複数の温度計31により計測された温度から、内槽11または61の外表面における最低温度を所定の算出式を用いて推定し、推定した温度を基準温度Tとしてもよい。例えば、第3実施形態において、複数の温度計51により計測された温度から、第1外槽12の外表面における最低温度を所定の算出式を用いて推定し、推定した温度を基準温度Tとしてもよい。 For example, in the above embodiment, the lowest temperature among the temperatures measured by the plurality of thermometers 31 (or 51) was determined as the reference temperature T, but the method of determining the reference temperature in the present disclosure is not limited to this. For example, an average temperature of temperatures measured by a plurality of thermometers may be determined as the reference temperature. For example, in the first, second, fourth and fifth embodiments, the lowest temperature on the outer surface of the inner tank 11 or 61 is estimated from the temperatures measured by the plurality of thermometers 31 using a predetermined calculation formula. , the estimated temperature may be used as the reference temperature T. For example, in the third embodiment, the lowest temperature on the outer surface of the first outer bath 12 is estimated using a predetermined calculation formula from the temperatures measured by the plurality of thermometers 51, and the estimated temperature is used as the reference temperature T. good too.
 上記第1、第2、第4および第5実施形態では、内槽11の内部の空間に5つの温度計31を設けたが、温度計の数はこれに限定されない。例えば内槽11の内部に1つの温度計を設けて、その温度計により計測された温度を基準温度としてもよい。また、内槽11の内部に複数の温度計を設けた場合でも、予め定めた1つの温度計(例えば最も下方に位置する温度計)により計測された温度だけを基準温度の決定に使用してもよい。また、本開示における1つまたは複数の温度計は、内槽の内部の温度を計測しなくてもよく、内槽の温度(例えば内槽の表面温度など)を計測するものでもよい。また、同様に、第3実施形態でも、第1断熱空間R1に設ける温度計51の数は5つに限定されず、また、温度計51は第1外槽12の温度(例えば第1外槽12の表面温度など)を計測するものであってもよい。 In the first, second, fourth and fifth embodiments, five thermometers 31 are provided in the space inside the inner tank 11, but the number of thermometers is not limited to this. For example, one thermometer may be provided inside the inner bath 11 and the temperature measured by the thermometer may be used as the reference temperature. Further, even when a plurality of thermometers are provided inside the inner bath 11, only the temperature measured by one predetermined thermometer (for example, the lowest thermometer) is used for determining the reference temperature. good too. Also, one or more thermometers in the present disclosure may not measure the temperature inside the inner bath, and may measure the temperature of the inner bath (eg, the surface temperature of the inner bath). Similarly, in the third embodiment, the number of thermometers 51 provided in the first heat insulating space R1 is not limited to five. 12 surface temperature, etc.).
 上記実施形態では、第1差圧ΔP1、第2差圧ΔP2、設定上限圧Pupと設定下限圧Plowの差について、好ましい数値範囲が示されたが、本開示は、これら数値範囲に限定されるものではない。また、例えば第1差圧ΔP1を設けなくてもよい。また、例えば、設定下限圧Plowは、導出された飽和蒸気圧Psに基づいて設定されるものでなくてもよい。例えば設定下限圧Plowは、多重殻タンクの構造強度から許容される予め設定された設計圧であってもよい。第1差圧ΔP1および第2差圧ΔP2の一方または双方は、予め設定した固定値でもよいし、導出した飽和蒸気圧Psに応じて変えてもよい。 In the above embodiment, preferred numerical ranges are shown for the first differential pressure ΔP1, the second differential pressure ΔP2, and the difference between the set upper limit pressure P up and the set lower limit pressure P low , but the present disclosure is limited to these numerical ranges. not to be Further, for example, the first differential pressure ΔP1 may not be provided. Also, for example, the set lower limit pressure P low may not be set based on the derived saturated vapor pressure Ps. For example, the lower set pressure P low may be a preset design pressure that is allowed from the structural strength of the multi-shell tank. One or both of the first differential pressure ΔP1 and the second differential pressure ΔP2 may be a preset fixed value, or may be changed according to the derived saturated vapor pressure Ps.
 逃し路25,45の他端部の周りの圧力は、大気圧付近になくてもよく、大気圧から逸脱した所定圧力付近であってもよい。この場合、図3に示したガス調整処理におけるステップS6では、制御装置33は、取得した圧力Pが所定圧力未満か否かを判定してもよい。 The pressure around the other ends of the escape paths 25, 45 may not be near atmospheric pressure, and may be near a predetermined pressure deviating from atmospheric pressure. In this case, in step S6 in the gas adjustment process shown in FIG. 3, the control device 33 may determine whether or not the acquired pressure P is less than the predetermined pressure.
 上記実施形態では、圧力調整装置として、排気装置、逃し弁、導入弁が示されたが、圧力調整装置はこれに限定されない。多重殻タンクは、断熱空間を減圧するための圧力調整装置として、排気装置および逃し弁のいずれか1つのみ備えていてもよい。また、多重殻タンクは、断熱空間にガスを供給して断熱空間を昇圧するための圧力調整装置として、導入弁とは異なるガス供給装置を備えてもよい。 In the above embodiment, an exhaust device, a relief valve, and an introduction valve are shown as pressure regulating devices, but pressure regulating devices are not limited to these. The multi-shell tank may be provided with only one of the exhaust device and the relief valve as a pressure regulating device for decompressing the heat insulating space. Moreover, the multi-shell tank may be provided with a gas supply device different from the introduction valve as a pressure regulating device for supplying gas to the heat insulating space to pressurize the heat insulating space.
 また、排気路23、逃し路25には、(第1)断熱空間R2へのガスの逆流が防止されるよう逆止弁が設けられていてもよく、排気路43、逃し路25には、第2断熱空間R3へのガスの逆流が防止されるよう逆止弁が設けられていてもよい。また、導入路21には、貯留空間R1へのガスの逆流が防止されるよう逆止弁を設けてもよい。 In addition, a check valve may be provided in the exhaust path 23 and the escape path 25 so as to prevent backflow of gas to the (first) heat insulating space R2. A check valve may be provided to prevent backflow of gas to the second heat insulating space R3. In addition, the introduction path 21 may be provided with a check valve so as to prevent backflow of gas to the storage space R1.
 本開示の多重殻タンクは、制御装置33を備えなくてもよい。すなわち、本開示におけるガス圧調整方法は、コンピュータによって電気的に制御されなくてもよく、作業者などによって行われてもよい。この場合、上記第1、第2、第4および第5実施形態において、内槽と外槽との間の断熱空間のガスの圧力を調整する圧力調整装置は、作業者によって手動式であってもよいし、あるいは、作業者によって設定変更可能な機械式制御弁であってもよい。 The multi-shell tank of the present disclosure may not be equipped with the control device 33. That is, the gas pressure adjustment method in the present disclosure may not be electrically controlled by a computer, and may be performed by an operator or the like. In this case, in the first, second, fourth and fifth embodiments, the pressure adjusting device for adjusting the pressure of the gas in the heat insulating space between the inner tank and the outer tank is manually operated by the operator. Alternatively, it may be a mechanical control valve that can be set by the operator.
 例えば、船舶1が出港する前に、作業者は、内槽または内槽内の温度を計測し、計測した温度に基づいて基準温度を決定し、その決定した基準温度から内槽と外槽との間の断熱空間に充填されるガスの飽和蒸気圧を導出してもよい。そして、作業者は、断熱空間のガス圧が、導出した断熱空間のガスの飽和蒸気未満に維持されるように、断熱空間にガスを充填してもよい。 For example, before the ship 1 leaves port, the operator measures the temperature of the inner tank or the inner tank, determines the reference temperature based on the measured temperature, and determines the inner tank and the outer tank from the determined reference temperature. The saturated vapor pressure of the gas filled in the adiabatic space between may be derived. Then, the operator may fill the heat insulating space with gas so that the gas pressure in the heat insulating space is maintained below the saturated vapor of the derived gas in the heat insulating space.
 例えば、圧力調整装置が手動式である場合、圧力計により計測された断熱空間のガスの圧力値が、導出した飽和蒸気圧より第1差圧だけ低い設定上限圧を超えたときに、作業者は、断熱空間のガスの圧力値が設定上限圧以下となるよう、手動式圧力調整装置を操作してもよい。 For example, when the pressure regulating device is a manual type, when the pressure value of the gas in the insulated space measured by the pressure gauge exceeds the set upper limit pressure lower than the derived saturated vapor pressure by the first differential pressure, the operator Alternatively, the manual pressure regulator may be operated so that the pressure value of the gas in the adiabatic space is equal to or lower than the set upper limit pressure.
 あるいは、例えば、圧力調整装置が機械式制御弁である場合、作業者は、断熱空間内のガスの飽和蒸気圧未満となるように機械式制御弁の設定を変更してもよい。例えば、上記実施形態における逃し弁26が、断熱空間のガスの圧力に応じて開く機械式制御弁である場合、作業者は、逃し弁26が開く設定圧力を、導出した飽和蒸気圧未満(例えば導出した飽和蒸気圧より第1差圧だけ低い設定上限圧以下)に設定してもよい。 Alternatively, for example, if the pressure regulating device is a mechanical control valve, the operator may change the setting of the mechanical control valve so that the pressure is less than the saturated vapor pressure of the gas in the adiabatic space. For example, if the relief valve 26 in the above embodiment is a mechanical control valve that opens according to the pressure of the gas in the adiabatic space, the operator sets the set pressure at which the relief valve 26 opens to less than the derived saturated vapor pressure (for example, It may be set to a set upper limit pressure lower than the derived saturated vapor pressure by the first differential pressure.
 船舶が出港した後は、断熱空間内のガス圧調整を行わなくてもよい。例えば、ガス充填時において、断熱空間のガス圧を、ガス充填時の基準温度におけるガスの飽和蒸気圧より第1差圧だけ低い設定上限値以下に航海中にわたって維持できるようにあらかじめ調整しておくことで、船舶航行中に内槽内の温度が変動しても、断熱空間のガスが凝縮されるのを抑制するという効果を奏する。 After the ship leaves port, it is not necessary to adjust the gas pressure in the insulation space. For example, at the time of gas filling, the gas pressure in the adiabatic space is adjusted in advance so that it can be maintained throughout the voyage at or below the set upper limit value lower than the saturated vapor pressure of the gas at the reference temperature at the time of gas filling by the first differential pressure. As a result, even if the temperature in the inner tank fluctuates while the ship is sailing, the effect of suppressing condensation of the gas in the heat insulating space is achieved.
 2つの外槽間の断熱空間の圧力調整においても、上述した内槽と外槽との間の断熱空間の圧力調整と同様に、コンピュータによって行われなくてもよく、作業者などによって行われてもよい。例えば、上記第3および第4実施形態において、第1外槽と第2外槽との間の断熱空間のガスの圧力を調整する圧力調整装置は、手動式であってもよいし、あるいは、作業者によって設定変更可能な機械式制御弁であってもよい。 The adjustment of the pressure in the adiabatic space between the two outer tanks does not have to be performed by a computer, just like the above-described pressure adjustment in the adiabatic space between the inner and outer tanks. good too. For example, in the above third and fourth embodiments, the pressure adjusting device for adjusting the pressure of the gas in the heat insulating space between the first outer tank and the second outer tank may be manual, or It may be a mechanical control valve whose setting can be changed by an operator.
 第1~第5実施形態の構成は、適宜組み合わせ可能である。例えば第5実施形態では、第1断熱空間R2のガス圧が調整される多重殻タンク60が示されたが、多重殻タンク60は、第1断熱空間R2のガス圧が調整される代わりにまたは加えて、第2断熱空間R3のガス圧が調整されるように構成されてもよい。すなわち、多重殻タンク60は、排気路23、排気装置24、逃し路25、逃し弁26、5つの温度計31、圧力計32の代わりにまたは加えて、第3実施形態および第4実施形態にて示された、排気路43、排気装置44、逃し路45、逃し弁46、5つの温度計51、圧力計52を備えてもよい。 The configurations of the first to fifth embodiments can be appropriately combined. For example, in the fifth embodiment, the multi-shell tank 60 in which the gas pressure in the first insulated space R2 is regulated was shown, but the multi-shell tank 60 is arranged such that instead of adjusting the gas pressure in the first insulated space R2, or In addition, it may be configured such that the gas pressure in the second heat insulating space R3 is adjusted. That is, the multi-shell tank 60 is used in the third and fourth embodiments instead of or in addition to the exhaust passage 23, the exhaust device 24, the relief passage 25, the relief valve 26, the five thermometers 31, and the pressure gauges 32. may include an exhaust line 43, an exhaust device 44, a relief line 45, a relief valve 46, five thermometers 51 and a pressure gauge 52, shown in FIG.
 多重殻タンクが備える外槽の数は、上記実施形態で説明されたものに限定されない。例えば3つ以上の外槽を備える多重殻タンクにおいて、本開示における「第1外槽」は、内槽に最も近い外槽でなくてもよく、内側から2番目以降の外槽であってもよく、「第2外槽」は、内側から3番目以降の外槽であってもよい。 The number of outer tanks provided in the multi-shell tank is not limited to that described in the above embodiment. For example, in a multi-shell tank having three or more outer tanks, the "first outer tank" in the present disclosure may not be the outer tank closest to the inner tank, and may be the second outer tank from the inside or later. The "second outer tank" may be the third outer tank from the inner side or later.
 内槽に貯留される低温液体は、上記実施形態で説明されたものに限定されない。例えば内槽に貯留される低温液体は、液化水素、液化天然ガス、液化窒素、液化ヘリウムなどであり得る。例えば内槽と外槽との間または2つの外槽間に充填されているガスは、水素ガス、天然ガス、窒素ガス、ヘリウム、乾燥空気などであり得る。温度が計測される空間と基準温度に基づき圧力が調整される空間の双方に充填されるガスの種類は互いに同じでもよいし、異なってもよい。 The low-temperature liquid stored in the inner tank is not limited to that described in the above embodiment. For example, the cryogenic liquid stored in the inner tank may be liquefied hydrogen, liquefied natural gas, liquefied nitrogen, liquefied helium, or the like. For example, the gas filled between the inner tank and the outer tank or between the two outer tanks can be hydrogen gas, natural gas, nitrogen gas, helium, dry air, and the like. The type of gas filled in both the space where the temperature is measured and the space where the pressure is adjusted based on the reference temperature may be the same or different.
 上記実施形態では、多重殻タンクが船舶に備えられていたが、多重殻タンクは、地上に設置されてもよい。 In the above embodiment, the multi-shell tank was provided on the ship, but the multi-shell tank may be installed on the ground.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。 The functionality of the elements disclosed herein may be extended to general purpose processors, special purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, and/or those configured or programmed to perform the disclosed functions. can be implemented using a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions. The hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions. A circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
 本開示の第1態様に係る多重殻タンクは、内部に低温液体が貯蔵された内槽と、前記内槽を収容する1つまたは複数の外槽と、前記内槽と前記外槽の間に設けられ、ガスが充填されている断熱空間と、を備え、前記断熱空間内のガスの圧力が、前記内槽の温度または前記内槽の内部の空間の温度に基づいて決定された温度である基準温度における、前記断熱空間内の前記ガスの飽和蒸気圧未満に維持される。 A multi-shell tank according to a first aspect of the present disclosure includes an inner tank in which a cryogenic liquid is stored, one or more outer tanks containing the inner tank, and between the inner tank and the outer tank and an insulating space filled with gas, wherein the pressure of the gas in the insulating space is a temperature determined based on the temperature of the inner tank or the temperature of the space inside the inner tank. It is maintained below the saturated vapor pressure of the gas in the adiabatic space at a reference temperature.
 上記の構成によれば、内槽と外槽との間の断熱空間内のガスが、内槽の温度または内槽の内部の空間の温度に対応する基準温度における断熱空間内のガスの飽和蒸気圧未満に維持される。このため、内槽と外槽との間の断熱空間内のガスの凝縮温度を基準温度より低くすることができる。従って、内槽と外槽との間の断熱空間内のガスの凝縮を抑制することができる。 According to the above configuration, the gas in the adiabatic space between the inner tank and the outer tank is a saturated vapor of the gas in the adiabatic space at a reference temperature corresponding to the temperature of the inner tank or the temperature of the space inside the inner tank. maintained below pressure. Therefore, the condensation temperature of the gas in the heat insulating space between the inner tank and the outer tank can be made lower than the reference temperature. Therefore, condensation of gas in the heat insulating space between the inner tank and the outer tank can be suppressed.
 また、本開示の第2態様に係る多重殻タンクは、内部に低温液体が貯蔵された内槽と、前記内槽を収容する第1外槽と、前記第1外槽を収容する第2外槽とを含む外槽と、前記内槽と前記第1外槽との間に設けられた第1断熱空間と、前記第1外槽と前記第2外槽との間に設けられ、ガスが充填されている第2断熱空間と、を備え、前記第2断熱空間内のガスの圧力が、前記第1外槽の温度または前記第1断熱空間の温度に基づいて決定された温度である基準温度における、前記第2断熱空間内のガスの飽和蒸気圧未満に維持される。 A multi-shell tank according to a second aspect of the present disclosure includes an inner tank in which a cryogenic liquid is stored, a first outer tank containing the inner tank, and a second outer tank containing the first outer tank. a first heat insulating space provided between the inner tank and the first outer tank; and a space provided between the first outer tank and the second outer tank, wherein the gas is and a filled second heat insulating space, wherein the pressure of the gas in the second heat insulating space is a temperature determined based on the temperature of the first outer tank or the temperature of the first heat insulating space. maintained below the saturated vapor pressure of the gas in the second adiabatic space at temperature.
 また、本開示の第1態様に係るガス圧調整方法は、内部に低温液体が貯蔵された内槽と、前記内槽を収容する1つまたは複数の外槽と、前記内槽と前記外槽の間に設けられ、ガスが充填されている断熱空間とを備えた多重殻タンクにおいて、前記断熱空間に充填されたガスの圧力を調整するガス圧調整方法であって、前記内槽の温度または前記内槽の内部の空間の温度を計測し、計測した温度を、または、計測した複数の温度に基づいて決定された温度を、基準温度とし、前記基準温度における前記断熱空間内のガスの飽和蒸気圧を導出し、前記断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持する。 Further, the gas pressure adjusting method according to the first aspect of the present disclosure includes an inner tank in which a cryogenic liquid is stored, one or more outer tanks containing the inner tank, the inner tank and the outer tank. A gas pressure adjusting method for adjusting the pressure of a gas filled in the insulating space in a multi-shell tank provided between and filled with gas, wherein the temperature of the inner tank or The temperature of the space inside the inner tank is measured, and the measured temperature or a temperature determined based on a plurality of measured temperatures is set as a reference temperature, and the gas in the adiabatic space is saturated at the reference temperature. A vapor pressure is derived, and the pressure of the gas within the adiabatic space is maintained below the derived saturated vapor pressure.
 上記の方法によれば、内槽と外槽との間の断熱空間内のガスが、内槽の温度または内槽の内部の空間の温度に対応する基準温度における断熱空間内のガスの飽和蒸気圧未満に維持される。このため、内槽と外槽との間の断熱空間内のガスの凝縮温度を基準温度より低くすることができる。従って、内槽と外槽との間の断熱空間内のガスの凝縮を抑制することができる。 According to the above method, the gas in the adiabatic space between the inner tank and the outer tank is a saturated vapor of the gas in the adiabatic space at a reference temperature corresponding to the temperature of the inner tank or the temperature of the space inside the inner tank. maintained below pressure. Therefore, the condensation temperature of the gas in the heat insulating space between the inner tank and the outer tank can be made lower than the reference temperature. Therefore, condensation of gas in the heat insulating space between the inner tank and the outer tank can be suppressed.
 また、本開示の第2態様に係るガス圧調整方法は、内部に低温液体が貯蔵された内槽と、前記内槽を収容する第1外槽と、前記第1外槽を収容する第2外槽と、前記内槽と前記第1外槽との間に設けられた第1断熱空間と、前記第1外槽と前記第2外槽との間に設けられ、ガスが充填されている第2断熱空間と多重殻タンクにおいて、前記第2断熱空間に充填されたガスの圧力を調整するガス圧調整方法であって、前記第1外槽の温度または前記第1断熱空間の温度を計測し、計測した温度を、または、計測した複数の温度に基づいて決定された温度を、基準温度とし、前記基準温度における前記第2断熱空間内のガスの飽和蒸気圧を導出し、前記第2断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持する。 Further, a gas pressure adjusting method according to a second aspect of the present disclosure includes an inner tank in which a cryogenic liquid is stored, a first outer tank containing the inner tank, and a second outer tank containing the first outer tank. An outer tank, a first heat insulating space provided between the inner tank and the first outer tank, and a space provided between the first outer tank and the second outer tank, filled with gas. In a second heat insulating space and a multi-shell tank, a gas pressure adjusting method for adjusting the pressure of gas filled in the second heat insulating space, wherein the temperature of the first outer tank or the temperature of the first heat insulating space is measured. Then, the measured temperature or a temperature determined based on a plurality of measured temperatures is set as a reference temperature, and the saturated vapor pressure of the gas in the second adiabatic space at the reference temperature is derived, and the second The pressure of the gas within the adiabatic space is maintained below the derived saturated vapor pressure.
 上記の方法によれば、第1外槽と第2外槽との間の断熱空間内のガスが、第1外槽の温度または第1断熱空間の温度に対応する基準温度における第2断熱空間内のガスの飽和蒸気圧未満に維持される。このため、第1外槽と第2外槽との間の第2断熱空間内のガスの凝縮温度を基準温度より低くすることができる。従って、第1外槽と第2外槽との間の第2断熱空間内のガスの凝縮を抑制することができる。 According to the above method, the gas in the heat insulating space between the first outer tank and the second outer tank is heated to the second heat insulating space at a reference temperature corresponding to the temperature of the first outer tank or the temperature of the first heat insulating space. maintained below the saturated vapor pressure of the gas within. Therefore, the condensation temperature of the gas in the second heat insulating space between the first outer tank and the second outer tank can be made lower than the reference temperature. Therefore, condensation of gas in the second heat insulating space between the first outer tank and the second outer tank can be suppressed.
 [開示項目]
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
 [項目1]
 内部に低温液体が貯蔵された内槽、および、前記内槽を収容する少なくとも1つの外槽を含む、複数の槽と、
 前記複数の槽のうちの、前記内槽の中心から外方に向かって隣接する第1槽と第2槽との間の空間であり、ガスが充填されている断熱空間と、を備え、
 前記第1槽と前記第2槽との間の前記断熱空間内のガスの圧力が、前記第1槽および前記第2槽のうちの前記内槽の中心に近い側の槽である前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度に基づいて決定された温度である基準温度における、前記第1槽と前記第2槽との間の前記断熱空間内の前記ガスの飽和蒸気圧未満に維持される、多重殻タンク。
[Item 1]
a plurality of vessels, including an inner vessel having a cryogenic liquid stored therein, and at least one outer vessel containing the inner vessel;
a heat insulating space filled with gas, which is a space between a first tank and a second tank that are adjacent to each other outward from the center of the inner tank among the plurality of tanks,
The pressure of the gas in the heat insulation space between the first tank and the second tank is the first tank which is closer to the center of the inner tank than the first tank and the second tank. The temperature between the first tank and the second tank at a reference temperature that is a temperature determined based on the temperature of the tank or the temperature of the space inside the first tank facing the first tank A multi-shell tank maintained below the saturated vapor pressure of the gas within the insulated space.
 [項目2]
 前記多重殻タンクは、前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度を計測する1つまたは複数の温度計を備え、
 前記基準温度は、前記1つの温度計により計測された温度または前記複数の温度計により計測された温度に基づいて決定された温度である、項目1に記載の多重殻タンク。
[Item 2]
The multi-shell tank comprises one or more thermometers for measuring the temperature of the first tank or the temperature of the space inside the first tank facing the first tank,
A multi-shell tank according to item 1, wherein the reference temperature is a temperature determined based on the temperature measured by the one thermometer or the temperatures measured by the plurality of thermometers.
 [項目3]
 前記第1槽は、前記内槽であり、前記第2槽は、前記内槽の中心から外方に向かって隣接する前記外槽である、項目1または2に記載の多重殻タンク。
[Item 3]
3. The multi-shell tank according to item 1 or 2, wherein the first tank is the inner tank, and the second tank is the outer tank that is adjacent to the inner tank from the center toward the outside.
 [項目4]
 前記少なくとも1つの外槽は、第1外槽と、前記第1外槽を収容する第2外槽とを含み、
 前記断熱空間は、前記第1外槽と前記内槽との間にある第1断熱空間であり、
 前記多重殻タンクは、前記第1外槽と前記第2外槽との間にある、ガスが充填されている第2断熱空間を含み、
 前記基準温度は第1基準温度であり、
 前記第2断熱空間内のガスの圧力が、前記第1外槽の温度または前記第1断熱空間の温度に基づいて決定された温度である第2基準温度における、前記第2断熱空間内の前記ガスの飽和蒸気圧未満に維持される、項目3に記載の多重殻タンク。
 これにより、第1外槽と第2外槽との間の第2断熱空間内のガスの凝縮温度を基準温度より低くすることができ、第2断熱空間内のガスの凝縮を抑制できる。従って、内槽と第1外槽との間の第1断熱空間内のガスの凝縮を抑制しつつ、第2断熱空間内のガスの凝縮を抑制できる。
[Item 4]
The at least one outer tank includes a first outer tank and a second outer tank containing the first outer tank,
The heat insulating space is a first heat insulating space between the first outer tank and the inner tank,
the multi-shell tank includes a second insulating space filled with gas between the first outer tank and the second outer tank;
the reference temperature is a first reference temperature;
The pressure of the gas in the second heat insulating space is at a second reference temperature, which is a temperature determined based on the temperature of the first outer tank or the temperature of the first heat insulating space. 4. A multi-shell tank according to item 3, maintained below the saturated vapor pressure of the gas.
Thereby, the condensation temperature of the gas in the second heat insulating space between the first outer tank and the second outer tank can be made lower than the reference temperature, and the condensation of the gas in the second heat insulating space can be suppressed. Therefore, it is possible to suppress condensation of gas in the second heat insulating space while suppressing condensation of gas in the first heat insulating space between the inner tank and the first outer tank.
 [項目5]
 前記多重殻タンクは、前記第1外槽の温度または前記第1断熱空間の温度を計測する1つまたは複数の第2温度計を備え、
 前記第2基準温度は、前記1つの第2温度計により計測された温度または前記複数の第2温度計により計測された温度に基づいて決定された温度である、項目4に記載の多重殻タンク。
[Item 5]
The multi-shell tank comprises one or more second thermometers for measuring the temperature of the first outer tank or the temperature of the first heat insulating space,
5. The multi-shell tank according to item 4, wherein the second reference temperature is a temperature determined based on the temperature measured by the one second thermometer or the temperatures measured by the plurality of second thermometers. .
 [項目6]
 前記少なくとも1つの外槽は、前記第1槽である第1外槽と、前記第2槽である第2外槽とを含む、項目1または2に記載の多重殻タンク。
[Item 6]
3. The multi-shell tank according to item 1 or 2, wherein the at least one outer tank includes a first outer tank, which is the first tank, and a second outer tank, which is the second tank.
 [項目7]
 前記断熱空間内のガスの圧力を計測する圧力計と、
 前記断熱空間内のガスの圧力を調整する圧力調整装置と、
 前記圧力計により計測される圧力が前記基準温度における前記断熱空間内のガスの飽和蒸気圧未満となるように前記圧力調整装置を制御する制御装置と、を更に備える、項目1~6のいずれか1項に記載の多重殻タンク。
 これにより、断熱空間内のガスの圧力をリアルタイムで監視および調整が可能である。
[Item 7]
a pressure gauge for measuring the pressure of gas in the adiabatic space;
a pressure regulating device for regulating the pressure of the gas in the adiabatic space;
any one of items 1 to 6, further comprising a control device that controls the pressure adjustment device so that the pressure measured by the pressure gauge is less than the saturated vapor pressure of the gas in the adiabatic space at the reference temperature. Multi-shell tank according to paragraph 1.
This allows real-time monitoring and adjustment of the gas pressure in the insulated space.
 [項目8]
 前記複数の温度計は、それぞれ、前記内槽の内部の複数箇所に設けられており、
 前記制御装置は、前記複数の温度計により計測された温度のうち最低温度を、前記基準温度として決定する、項目7に記載の多重殻タンク。
 これにより、断熱空間のガスの凝縮を抑制するのに適切な断熱空間のガス圧範囲を導出できる。
[Item 8]
The plurality of thermometers are respectively provided at a plurality of locations inside the inner tank,
8. The multi-shell tank according to item 7, wherein the controller determines the lowest temperature among the temperatures measured by the plurality of thermometers as the reference temperature.
As a result, it is possible to derive the gas pressure range of the heat insulating space suitable for suppressing the condensation of the gas in the heat insulating space.
 [項目9]
 前記断熱空間内のガスを前記断熱空間の外部へ導く排気路を備え、
 前記圧力調整装置は、前記排気路に設けられた排気装置を含む、項目7または8に記載の前記多重殻タンク。
 これにより、断熱空間内のガス圧が負圧である場合でも断熱空間内を減圧できる。
[Item 9]
An exhaust path for guiding the gas in the heat insulating space to the outside of the heat insulating space,
9. The multi-shell tank according to item 7 or 8, wherein the pressure regulating device comprises an exhaust device provided in the exhaust passage.
Thereby, even when the gas pressure in the heat insulation space is negative pressure, the pressure in the heat insulation space can be reduced.
 [項目10]
 前記断熱空間内のガスを前記断熱空間の外部へ導く逃し路を備え、
 前記圧力調整装置は、前記逃し路に設けられた逃し弁を含む、項目7~9のいずれか1項に記載の多重殻タンク。
 これにより、断熱空間内のガス圧が正圧である場合に、断熱空間内を容易に減圧できる。
[Item 10]
An escape path for guiding the gas in the heat insulating space to the outside of the heat insulating space,
10. A multi-shell tank according to any one of Items 7 to 9, wherein the pressure regulating device includes a relief valve provided in the relief passage.
As a result, when the gas pressure in the heat insulating space is positive, the pressure in the heat insulating space can be easily reduced.
 [項目11]
 前記断熱空間内には、前記内槽の内部のガスと同じ種類のガスが充填されており、
 前記多重殻タンクは、前記内槽の内部のガスを前記断熱空間内へ導入する導入路を備え、
 前記圧力調整装置は、前記導入路に設けられた導入弁を含む、項目7~10のいずれか1項に記載の多重殻タンク。
 これにより、内槽の内部のガスを利用して断熱空間内のガス圧を調整できる。
[Item 11]
The heat insulating space is filled with the same kind of gas as the gas inside the inner tank,
The multi-shell tank has an introduction path for introducing the gas inside the inner tank into the heat insulating space,
11. The multi-shell tank according to any one of Items 7 to 10, wherein the pressure regulating device includes an introduction valve provided in the introduction passage.
Thereby, the gas pressure in the heat insulation space can be adjusted using the gas inside the inner tank.
 [項目12]
 前記制御装置は、前記圧力計により計測される圧力が前記基準温度における前記断熱空間内のガスの飽和蒸気圧未満で、且つ、前記飽和蒸気圧より所定圧力だけ低い設定下限圧以上となるように前記圧力調整装置を制御する、項目7~11のいずれか1項に記載の多重殻タンク。
 これにより、断熱空間のガスの凝縮を抑制しつつ、内槽の内部と断熱空間との差圧を小さく保つことができる。従って、多重殻タンクに要求される強度を低減することができる。
[Item 12]
The control device controls the pressure measured by the pressure gauge to be less than the saturated vapor pressure of the gas in the adiabatic space at the reference temperature and equal to or higher than a set lower limit pressure lower than the saturated vapor pressure by a predetermined pressure. Multi-shell tank according to any one of items 7 to 11, for controlling the pressure regulating device.
As a result, the pressure difference between the inside of the inner tank and the heat insulating space can be kept small while suppressing the condensation of the gas in the heat insulating space. Therefore, the strength required for multi-shell tanks can be reduced.
 [項目13]
 項目1~12のいずれか1項に記載の多重殻タンクを備える、船舶。
[Item 13]
A ship comprising a multi-shell tank according to any one of items 1-12.
 [項目14]
 内部に低温液体が貯蔵された内槽、および、前記内槽を収容する少なくとも1つの外槽、を含む、複数の槽と、前記複数の槽のうちの、前記内槽の中心から外方に向かって隣接する第1槽と第2槽との間の空間であり、ガスが充填されている断熱空間と、を備えた多重殻タンクにおいて、前記断熱空間に充填されたガスの圧力を調整するガス圧調整方法であって、
 前記第1槽および前記第2槽のうちの前記内槽の中心に近い側の槽である前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度を計測し、
 計測した温度を、または、計測した複数の温度に基づいて決定した温度を、基準温度とし、
 前記基準温度における前記断熱空間内のガスの飽和蒸気圧を導出し、
 前記断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持する、ガス圧調整方法。
[Item 14]
a plurality of tanks, including an inner tank having a cryogenic liquid stored therein, and at least one outer tank containing the inner tank; In a multi-shell tank comprising an insulating space filled with gas, which is a space between a first tank and a second tank adjacent to each other, the pressure of the gas filled in the insulating space is adjusted. A gas pressure adjustment method comprising:
The temperature of the first tank, which is closer to the center of the inner tank than the first tank and the second tank, or the temperature of the inner space of the first tank facing the first tank measure the temperature,
A measured temperature or a temperature determined based on a plurality of measured temperatures is defined as a reference temperature,
deriving the saturated vapor pressure of the gas in the adiabatic space at the reference temperature;
A gas pressure adjustment method for maintaining the pressure of the gas in the adiabatic space below the derived saturated vapor pressure.
 [項目15]
 前記少なくとも1つの外槽は、第1外槽と、前記第1外槽を収容する第2外槽とを含み、
 前記第1槽は、前記内槽であり、前記第2槽は、前記第1外槽であり、
 前記断熱空間は、前記第1外槽と前記内槽との間に設けられた第1断熱空間であり、前記多重殻タンクは、前記第1外槽と前記第2外槽との間に設けられ、ガスが充填されている第2断熱空間を含み、前記基準温度は第1基準温度であり、
 前記ガス圧調整方法は、
 前記第1外槽の温度または前記第1断熱空間の温度である第2温度を計測し、
 計測した第2温度を、または、計測した複数の第2温度に基づいて決定した温度を、第2基準温度とし、
 前記第2基準温度における前記第2断熱空間内の前記ガスの飽和蒸気圧を導出し、
 前記第2断熱空間内のガスの圧力を、導出した前記第2断熱空間内の前記ガスの飽和蒸気圧未満に維持する、項目14に記載のガス圧調整方法。
[Item 15]
The at least one outer tank includes a first outer tank and a second outer tank containing the first outer tank,
The first tank is the inner tank, the second tank is the first outer tank,
The heat insulating space is a first heat insulating space provided between the first outer tank and the inner tank, and the multi-shell tank is provided between the first outer tank and the second outer tank. a second insulated space filled with gas, wherein the reference temperature is a first reference temperature;
The gas pressure adjustment method includes:
measuring a second temperature that is the temperature of the first outer tank or the temperature of the first heat insulating space;
The measured second temperature or a temperature determined based on a plurality of measured second temperatures is defined as a second reference temperature,
deriving the saturated vapor pressure of the gas in the second adiabatic space at the second reference temperature;
15. The gas pressure adjustment method according to item 14, wherein the pressure of the gas in the second heat insulating space is maintained below the derived saturated vapor pressure of the gas in the second heat insulating space.
 [項目16]
 前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の前記空間の温度を計測することは、前記第1槽の複数箇所の温度または前記第1槽の内方の前記空間の複数箇所の温度を計測することであり、
 計測した複数の温度のうち最低温度を、前記基準温度として決定する、項目14または15に記載のガス圧調整方法。
[Item 16]
Measuring the temperature of the first tank or the temperature of the space inside the first tank facing the first tank is the temperature at a plurality of locations in the first tank or the temperature in the first tank. is to measure the temperature at a plurality of locations in the space in the direction of
16. The gas pressure adjusting method according to item 14 or 15, wherein the lowest temperature among the plurality of measured temperatures is determined as the reference temperature.
 [項目17]
 前記断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持し、且つ、前記飽和蒸気圧より所定圧力だけ低い設定下限圧以上に維持する、項目14~16のいずれか1項に記載のガス圧調整方法。
 
 
[Item 17]
17. The method according to any one of items 14 to 16, wherein the pressure of the gas in the adiabatic space is maintained below the derived saturated vapor pressure and above a set lower limit pressure lower than the saturated vapor pressure by a predetermined pressure. The gas pressure adjustment method described.

Claims (17)

  1.  内部に低温液体が貯蔵された内槽、および、前記内槽を収容する少なくとも1つの外槽を含む、複数の槽と、
     前記複数の槽のうちの、前記内槽の中心から外方に向かって隣接する第1槽と第2槽との間の空間であり、ガスが充填されている断熱空間と、を備え、
     前記第1槽と前記第2槽との間の前記断熱空間内のガスの圧力が、前記第1槽および前記第2槽のうちの前記内槽の中心に近い側の槽である前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度に基づいて決定された温度である基準温度における、前記第1槽と前記第2槽との間の前記断熱空間内の前記ガスの飽和蒸気圧未満に維持される、多重殻タンク。
    a plurality of vessels, including an inner vessel having a cryogenic liquid stored therein, and at least one outer vessel containing the inner vessel;
    a heat insulating space filled with gas, which is a space between a first tank and a second tank that are adjacent to each other outward from the center of the inner tank among the plurality of tanks,
    The pressure of the gas in the heat insulation space between the first tank and the second tank is the first tank which is closer to the center of the inner tank than the first tank and the second tank. The temperature between the first tank and the second tank at a reference temperature that is a temperature determined based on the temperature of the tank or the temperature of the space inside the first tank facing the first tank A multi-shell tank maintained below the saturated vapor pressure of the gas within the insulated space.
  2.  前記多重殻タンクは、前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度を計測する1つまたは複数の温度計を備え、
     前記基準温度は、前記1つの温度計により計測された温度または前記複数の温度計により計測された温度に基づいて決定された温度である、請求項1に記載の多重殻タンク。
    The multi-shell tank comprises one or more thermometers for measuring the temperature of the first tank or the temperature of the space inside the first tank facing the first tank,
    2. The multi-shell tank according to claim 1, wherein said reference temperature is a temperature determined based on the temperature measured by said one thermometer or the temperatures measured by said plurality of thermometers.
  3.  前記第1槽は、前記内槽であり、前記第2槽は、前記内槽の中心から外方に向かって隣接する前記外槽である、請求項1または2に記載の多重殻タンク。 The multi-shell tank according to claim 1 or 2, wherein the first tank is the inner tank, and the second tank is the outer tank adjacent to the center of the inner tank toward the outside.
  4.  前記少なくとも1つの外槽は、第1外槽と、前記第1外槽を収容する第2外槽とを含み、
     前記断熱空間は、前記第1外槽と前記内槽との間にある第1断熱空間であり、
     前記多重殻タンクは、前記第1外槽と前記第2外槽との間にある、ガスが充填されている第2断熱空間を含み、
     前記基準温度は第1基準温度であり、
     前記第2断熱空間内のガスの圧力が、前記第1外槽の温度または前記第1断熱空間の温度に基づいて決定された温度である第2基準温度における、前記第2断熱空間内の前記ガスの飽和蒸気圧未満に維持される、請求項3に記載の多重殻タンク。
    The at least one outer tank includes a first outer tank and a second outer tank containing the first outer tank,
    The heat insulating space is a first heat insulating space between the first outer tank and the inner tank,
    the multi-shell tank includes a second insulating space filled with gas between the first outer tank and the second outer tank;
    the reference temperature is a first reference temperature;
    The pressure of the gas in the second heat insulating space is at a second reference temperature, which is a temperature determined based on the temperature of the first outer tank or the temperature of the first heat insulating space. 4. A multi-shell tank according to claim 3, maintained below the saturated vapor pressure of the gas.
  5.  前記多重殻タンクは、前記第1外槽の温度または前記第1断熱空間の温度を計測する1つまたは複数の第2温度計を備え、
     前記第2基準温度は、前記1つの第2温度計により計測された温度または前記複数の第2温度計により計測された温度に基づいて決定された温度である、請求項4に記載の多重殻タンク。
    The multi-shell tank comprises one or more second thermometers for measuring the temperature of the first outer tank or the temperature of the first heat insulating space,
    5. The multi-shell according to claim 4, wherein the second reference temperature is a temperature determined based on the temperature measured by the one second thermometer or the temperatures measured by the plurality of second thermometers. tank.
  6.  前記少なくとも1つの外槽は、前記第1槽である第1外槽と、前記第2槽である第2外槽とを含む、請求項1または2に記載の多重殻タンク。 The multi-shell tank according to claim 1 or 2, wherein said at least one outer tank includes a first outer tank, which is said first tank, and a second outer tank, which is said second tank.
  7.  前記断熱空間内のガスの圧力を計測する圧力計と、
     前記断熱空間内のガスの圧力を調整する圧力調整装置と、
     前記圧力計により計測される圧力が前記基準温度における前記断熱空間内のガスの飽和蒸気圧未満となるように前記圧力調整装置を制御する制御装置と、を更に備える、請求項1~6のいずれか1項に記載の多重殻タンク。
    a pressure gauge for measuring the pressure of gas in the adiabatic space;
    a pressure regulating device for regulating the pressure of the gas in the adiabatic space;
    A control device that controls the pressure adjustment device so that the pressure measured by the pressure gauge is less than the saturated vapor pressure of the gas in the adiabatic space at the reference temperature. or a multi-shell tank according to claim 1.
  8.  前記複数の温度計は、それぞれ、前記内槽の内部の複数箇所に設けられており、
     前記制御装置は、前記複数の温度計により計測された温度のうち最低温度を、前記基準温度として決定する、請求項7に記載の多重殻タンク。
    The plurality of thermometers are respectively provided at a plurality of locations inside the inner tank,
    8. The multi-shell tank according to claim 7, wherein said controller determines the lowest temperature among the temperatures measured by said plurality of thermometers as said reference temperature.
  9.  前記断熱空間内のガスを前記断熱空間の外部へ導く排気路を備え、
     前記圧力調整装置は、前記排気路に設けられた排気装置を含む、請求項7または8に記載の前記多重殻タンク。
    An exhaust path for guiding the gas in the heat insulating space to the outside of the heat insulating space,
    9. The multi-shell tank according to claim 7 or 8, wherein said pressure regulating device includes an exhaust device provided in said exhaust passage.
  10.  前記断熱空間内のガスを前記断熱空間の外部へ導く逃し路を備え、
     前記圧力調整装置は、前記逃し路に設けられた逃し弁を含む、請求項7~9のいずれか1項に記載の多重殻タンク。
    An escape path for guiding the gas in the heat insulating space to the outside of the heat insulating space,
    A multi-shell tank according to any one of claims 7 to 9, wherein said pressure regulating device includes a relief valve provided in said relief passage.
  11.  前記断熱空間内には、前記内槽の内部のガスと同じ種類のガスが充填されており、
     前記多重殻タンクは、前記内槽の内部のガスを前記断熱空間内へ導入する導入路を備え、
     前記圧力調整装置は、前記導入路に設けられた導入弁を含む、請求項7~10のいずれか1項に記載の多重殻タンク。
    The heat insulating space is filled with the same kind of gas as the gas inside the inner tank,
    The multi-shell tank has an introduction path for introducing the gas inside the inner tank into the heat insulating space,
    The multi-shell tank according to any one of claims 7 to 10, wherein said pressure regulating device includes an introduction valve provided in said introduction passage.
  12.  前記制御装置は、前記圧力計により計測される圧力が前記基準温度における前記断熱空間内のガスの飽和蒸気圧未満で、且つ、前記飽和蒸気圧より所定圧力だけ低い設定下限圧以上となるように前記圧力調整装置を制御する、請求項7~11のいずれか1項に記載の多重殻タンク。 The control device controls the pressure measured by the pressure gauge to be less than the saturated vapor pressure of the gas in the adiabatic space at the reference temperature and equal to or higher than a set lower limit pressure lower than the saturated vapor pressure by a predetermined pressure. Multi-shell tank according to any one of claims 7 to 11, for controlling the pressure regulator.
  13.  請求項1~12のいずれか1項に記載の多重殻タンクを備える、船舶。 A ship comprising the multi-shell tank according to any one of claims 1-12.
  14.  内部に低温液体が貯蔵された内槽、および、前記内槽を収容する少なくとも1つの外槽、を含む、複数の槽と、前記複数の槽のうちの、前記内槽の中心から外方に向かって隣接する第1槽と第2槽との間の空間であり、ガスが充填されている断熱空間と、を備えた多重殻タンクにおいて、前記断熱空間に充填されたガスの圧力を調整するガス圧調整方法であって、
     前記第1槽および前記第2槽のうちの前記内槽の中心に近い側の槽である前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の空間の温度を計測し、
     計測した温度を、または、計測した複数の温度に基づいて決定した温度を、基準温度とし、
     前記基準温度における前記断熱空間内のガスの飽和蒸気圧を導出し、
     前記断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持する、ガス圧調整方法。
    a plurality of tanks, including an inner tank having a cryogenic liquid stored therein, and at least one outer tank containing the inner tank; In a multi-shell tank comprising an insulating space filled with gas, which is a space between a first tank and a second tank adjacent to each other, the pressure of the gas filled in the insulating space is adjusted. A gas pressure adjustment method comprising:
    The temperature of the first tank, which is closer to the center of the inner tank than the first tank and the second tank, or the temperature of the inner space of the first tank facing the first tank measure the temperature,
    A measured temperature or a temperature determined based on a plurality of measured temperatures is defined as a reference temperature,
    deriving the saturated vapor pressure of the gas in the adiabatic space at the reference temperature;
    A gas pressure adjustment method for maintaining the pressure of the gas in the adiabatic space below the derived saturated vapor pressure.
  15.  前記少なくとも1つの外槽は、第1外槽と、前記第1外槽を収容する第2外槽とを含み、
     前記第1槽は、前記内槽であり、前記第2槽は、前記第1外槽であり、
     前記断熱空間は、前記第1外槽と前記内槽との間に設けられた第1断熱空間であり、前記多重殻タンクは、前記第1外槽と前記第2外槽との間に設けられ、ガスが充填されている第2断熱空間を含み、前記基準温度は第1基準温度であり、
     前記ガス圧調整方法は、
     前記第1外槽の温度または前記第1断熱空間の温度である第2温度を計測し、
     計測した第2温度を、または、計測した複数の第2温度に基づいて決定した温度を、第2基準温度とし、
     前記第2基準温度における前記第2断熱空間内の前記ガスの飽和蒸気圧を導出し、
     前記第2断熱空間内のガスの圧力を、導出した前記第2断熱空間内の前記ガスの飽和蒸気圧未満に維持する、請求項14に記載のガス圧調整方法。
    The at least one outer tank includes a first outer tank and a second outer tank containing the first outer tank,
    The first tank is the inner tank, the second tank is the first outer tank,
    The heat insulating space is a first heat insulating space provided between the first outer tank and the inner tank, and the multi-shell tank is provided between the first outer tank and the second outer tank. a second insulated space filled with gas, wherein the reference temperature is a first reference temperature;
    The gas pressure adjustment method includes:
    measuring a second temperature that is the temperature of the first outer tank or the temperature of the first heat insulating space;
    The measured second temperature or a temperature determined based on a plurality of measured second temperatures is defined as a second reference temperature,
    deriving the saturated vapor pressure of the gas in the second adiabatic space at the second reference temperature;
    15. The gas pressure adjustment method according to claim 14, wherein the pressure of the gas in the second heat insulating space is maintained below the saturated vapor pressure of the derived gas in the second heat insulating space.
  16.  前記第1槽の温度、または、前記第1槽に面する前記第1槽の内方の前記空間の温度を計測することは、前記第1槽の複数箇所の温度または前記第1槽の内方の前記空間の複数箇所の温度を計測することであり、
     計測した複数の温度のうち最低温度を、前記基準温度として決定する、請求項14または15に記載のガス圧調整方法。
    Measuring the temperature of the first tank or the temperature of the space inside the first tank facing the first tank is the temperature at a plurality of locations in the first tank or the temperature in the first tank. is to measure the temperature at a plurality of locations in the space in the direction of
    16. The gas pressure regulating method according to claim 14 or 15, wherein the lowest temperature among the plurality of measured temperatures is determined as said reference temperature.
  17.  前記断熱空間内のガスの圧力を、導出した前記飽和蒸気圧未満に維持し、且つ、前記飽和蒸気圧より所定圧力だけ低い設定下限圧以上に維持する、請求項14~16のいずれか1項に記載のガス圧調整方法。
     
    Any one of claims 14 to 16, wherein the pressure of the gas in the adiabatic space is maintained below the derived saturated vapor pressure and above a set lower limit pressure lower than the saturated vapor pressure by a predetermined pressure. Gas pressure adjustment method according to.
PCT/JP2022/016849 2021-03-31 2022-03-31 Multi-shell tank, ship, and gas pressure adjustment method WO2022211088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237037143A KR20230162683A (en) 2021-03-31 2022-03-31 Multi-angle tank, vessel and gas pressure adjustment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062167A JP2022157754A (en) 2021-03-31 2021-03-31 Multiple shell tank, ship, and gas pressure adjustment method
JP2021-062167 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211088A1 true WO2022211088A1 (en) 2022-10-06

Family

ID=83459661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016849 WO2022211088A1 (en) 2021-03-31 2022-03-31 Multi-shell tank, ship, and gas pressure adjustment method

Country Status (3)

Country Link
JP (1) JP2022157754A (en)
KR (1) KR20230162683A (en)
WO (1) WO2022211088A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684198U (en) * 1979-12-03 1981-07-07
JPH06159598A (en) * 1992-11-25 1994-06-07 Mitsubishi Heavy Ind Ltd Storage facility for liquefied gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182889A (en) 1997-09-10 1999-03-26 I H I Plantec:Kk Vertical type heat insulating low temperature tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684198U (en) * 1979-12-03 1981-07-07
JPH06159598A (en) * 1992-11-25 1994-06-07 Mitsubishi Heavy Ind Ltd Storage facility for liquefied gas

Also Published As

Publication number Publication date
KR20230162683A (en) 2023-11-28
JP2022157754A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
US12012883B2 (en) Systems and methods for backhaul transportation of liquefied gas and CO2 using liquefied gas carriers
US10006588B2 (en) Argon recondensing apparatus
JP2019151291A (en) Liquefied hydrogen carrier vessel and vessel protection method
US11299242B2 (en) U-tank active roll dampening system for and method for active roll dampening of a vessel
WO2022211088A1 (en) Multi-shell tank, ship, and gas pressure adjustment method
WO2020138016A1 (en) Ship
KR100899997B1 (en) Sloshing free cargo tank by re-liquefaction of boil off gas
JP2015535915A (en) Sealed insulation tank for containing pressurized cryogenic fluid
JPS6225917B2 (en)
WO2022211090A1 (en) Multi-wall tank, ship, and gas pressure adjustment method
US20230098469A1 (en) Method and system for computing a transition parameter of a liquefied gas storage medium
KR101751841B1 (en) Leakage Liquefied Gas of Storage Tank Treatment System and Method
US5964094A (en) Method and apparatus for mixing liquefied gases
JP2021160619A (en) Ship
CN207421773U (en) A kind of foam insulation and mounting structure of single hull low-temperature pressure container
KR101551797B1 (en) Lng cargocontainment and its insulation capability enhancing method
KR101637415B1 (en) Pressure control method and system for liquid cargo tank
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
JP2011529003A (en) Dynamic self-supporting navigation hull
JP6316606B2 (en) Gas holder
KR20190078923A (en) Lng fueled ship
KR20160131471A (en) Pressure control method and system for liquid cargo tank
KR102305885B1 (en) Gas treatment system and ship having the same
WO2024069967A1 (en) Liquid hydrogen tank and method for operating same
JPH1182889A (en) Vertical type heat insulating low temperature tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237037143

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781297

Country of ref document: EP

Kind code of ref document: A1