WO2022210502A1 - 樹脂組成物、樹脂成形体 - Google Patents

樹脂組成物、樹脂成形体 Download PDF

Info

Publication number
WO2022210502A1
WO2022210502A1 PCT/JP2022/014900 JP2022014900W WO2022210502A1 WO 2022210502 A1 WO2022210502 A1 WO 2022210502A1 JP 2022014900 W JP2022014900 W JP 2022014900W WO 2022210502 A1 WO2022210502 A1 WO 2022210502A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
silane coupling
coupling agent
resin
Prior art date
Application number
PCT/JP2022/014900
Other languages
English (en)
French (fr)
Inventor
真理子 若松
史朗 石川
宏昌 本城
Original Assignee
三菱マテリアル株式会社
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱電線工業株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN202280025561.XA priority Critical patent/CN117321144A/zh
Priority to US18/284,121 priority patent/US20240150578A1/en
Priority to EP22780713.8A priority patent/EP4317291A1/en
Publication of WO2022210502A1 publication Critical patent/WO2022210502A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a fire-resistant resin composition and a resin molding using the same.
  • This application claims priority based on Japanese Patent Application No. 2021-054780 filed in Japan on March 29, 2021, and the contents thereof are incorporated herein.
  • an exterior body of a lithium-ion secondary battery (hereinafter sometimes referred to as "battery”) is also often made of a resin material for weight reduction.
  • batteries become smaller and have higher energy densities (energy densities of 300 Wh/kg or more), there is a risk that they may heat up to high temperatures depending on how they are used. Therefore, the safety of batteries and battery packs has become more important.
  • a lithium-ion secondary battery may experience thermal runaway if it is overcharged or overdischarged, or if an unexpected shock is applied to cause an internal or external short circuit.
  • a lithium-ion secondary battery in which thermal runaway occurs generates gas and increases the internal pressure of the battery. If such a situation occurs, there is a possibility that the outer can may burst due to an increase in internal pressure. Therefore, these batteries are provided with an exhaust hole, a safety valve, and the like for venting gas.
  • Patent Document 1 discloses a flame-retardant material capable of suppressing fluidization in a high-temperature environment by adding a fibrous substance.
  • a resin composition is disclosed.
  • Patent Document 2 discloses a polyphenylene sulfide resin composition containing carbon fibers pretreated with a silane coupling agent.
  • the present invention has been made in view of such a background, and aims to provide a resin composition that can suppress melting, deformation, and fluidization due to injection of high-temperature gas or flame, and a resin molding using the same. aim.
  • the resin composition contains 2 parts by mass or more and 70 parts by mass or less of carbon fiber and 0.3 parts by mass or more and 7 parts by mass or less of a silane coupling agent with respect to 100 parts by mass of the thermoplastic resin. It has been found that the amount of melting deformation when exposed to a flame of 1000 W or more can be suppressed by adopting a configuration that includes the range.
  • the present invention proposes the following means. That is, the resin composition of the present invention contains 2 parts by mass or more and 70 parts by mass or less of the carbon fiber and 0.3 parts by mass or more and 7 parts by mass or less of the silane coupling agent with respect to 100 parts by mass of the thermoplastic resin. It is characterized by including in the range.
  • the carbon fiber is 2 parts by mass or more and 70 parts by mass or less
  • the silane coupling agent is 0.3 parts by mass or more and 7.0 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the content ratio of the silane coupling agent to the carbon fibers may be 0.01 or more.
  • the carbon fiber is 15 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, or the content ratio of the silane coupling agent to the carbon fiber (silane coupling agent / carbon fiber) may be 0.1 or more.
  • the thermoplastic resin may contain at least one of polyphenylene sulfide, polyamide, polybutylene terephthalate, modified polyphenylene ether, and polycarbonate.
  • the silane coupling agent may be at least one of an organosilicon compound and a siloxane compound.
  • the organosilicon compound may be at least one of an amine-based silane coupling agent and an epoxy-based silane coupling agent.
  • 1 part by mass or more and 50 parts by mass or less of fluororesin may be further included with respect to 100 parts by mass of the thermoplastic resin.
  • the resin molding of the present invention is a resin molding using the resin composition according to each of the above items, wherein at least the safety valve is attached to the outer periphery of one or more lithium ion secondary battery cells having a safety valve or an exhaust hole. Alternatively, it is attached so as to cover the exhaust hole.
  • FIG. 1 is a perspective view of a lithium ion secondary battery cell to which a resin molded body according to one embodiment of the present invention is attached.
  • FIG. 2 is a perspective view showing a lithium ion secondary battery cell to which a resin molded body according to one embodiment of the present invention is attached.
  • FIG. 3 is a perspective view of a lithium ion secondary battery cell to which the resin molded body of FIG. 2 is attached.
  • 4 is a cross-sectional view taken along the line AA of FIG. 3.
  • a resin composition according to one embodiment of the present invention comprises a mixture of a thermoplastic resin, carbon fibers, and a silane coupling agent.
  • This resin composition contains 2 parts by mass or more and 70 parts by mass or less of carbon fiber and 0.3 parts by mass or more and 7.0 parts by mass or less of a silane coupling agent with respect to 100 parts by mass of the thermoplastic resin. contains.
  • the carbon fiber contained in the resin composition may be 7 parts by mass or more, or the carbon fiber contained in the resin composition may be 23 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the silane coupling agent contained in the resin composition may be 0.7 parts by mass or more, and the silane coupling agent contained in the resin composition may be 2.3 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • this resin composition may further contain a fluorine resin in a range of 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. If the amount of carbon fiber is less than 2 parts by mass, sufficient flame retardancy cannot be ensured, and the carbon fiber may be easily melted and deformed by flames. Also, when the silane coupling agent is less than 0.3 parts by mass, sufficient flame retardancy cannot be ensured, and flames may easily melt and deform.
  • the content ratio of the silane coupling agent to the carbon fibers contained in the resin composition to 0.01 or more and 80 or less.
  • the carbon fiber contained in the resin composition is 15 parts by mass or more and 70 parts by mass or less, or the content ratio of the silane coupling agent to the carbon fiber (silane coupling agent / carbon fiber) is preferably 0.1 or more. That is, the mass ratio of the carbon fiber to 100 parts by mass of the thermoplastic resin is preferably 15 parts by mass or more and 70 parts by mass or less. It is also preferable that the mass ratio of the carbon fiber to 100 mass parts of the thermoplastic resin is 2 mass parts or more and 70 mass parts or less, and the content ratio of the silane coupling agent to the carbon fiber is 0.1 or more.
  • thermoplastic resin used in the resin composition examples include polyphenylene sulfide (PPS), polyamide (PA), polybutylene terephthalate (PBT), modified polyphenylene ether (mPPE), polycarbonate (PC), and polypropylene (PP).
  • PPS polyphenylene sulfide
  • PA polyamide
  • PBT polybutylene terephthalate
  • mPPE modified polyphenylene ether
  • PC polycarbonate
  • PP polypropylene
  • PPS is particularly preferable as a thermoplastic resin because it has a high melting point (278°C) and glass transition temperature (92-126°C).
  • PPS which is a thermoplastic resin suitable for the resin composition, includes oxidative cross-linked PPS that has been heat-treated in the presence of oxygen to increase the melt viscosity, and lithium chloride, an organic acid salt, water, etc., added to the polymerization sequence. Any linear PPS having an increased molecular weight while remaining in a chain form can be used. A mixture of oxidatively crosslinked PPS and linear PPS can also be used.
  • both PAN (polyacrylonitrile) carbon fibers using acrylic fibers and pitch-based carbon fibers using pitch can be used.
  • a pitch-based carbon fiber may be used as the carbon fiber.
  • Pitch-based carbon fibers include isotropic pitch-based carbon fibers and mesophase pitch-based carbon fibers, and either pitch-based carbon fibers can be used.
  • Examples of the shape of the carbon fibers used in the resin composition may include a single fiber diameter of 1 to 20 ⁇ m, an average fiber length of 0.01 to 10 mm, and an aspect ratio of about 1.5 to 1,300.
  • the silane coupling agent contained in the resin composition is a component that contributes to deformation resistance, and can suppress melt drop of the resin composition during combustion.
  • the silane coupling agent contained in the resin composition may be, for example, at least one of an organic silicon compound and a siloxane compound. At least one of an amine-based silane coupling agent and an epoxy-based silane coupling agent may be used as the silane coupling agent (organosilicon compound).
  • an amino-terminated amine-based silane coupling agent is more preferable.
  • Examples of amine-based silane coupling agents include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(amino Ethyl)-3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine and the like can be mentioned.
  • epoxy-based silane coupling agents include 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyl.
  • examples include methyldimethoxysilane and 2-(3,4 epoxycyclohexyl)ethyltrimethoxysilane.
  • the silane coupling agent contained in the resin composition includes acrylic (for example, 3-acryloxypropyltrimethoxysilane), vinyl, methacrylic, styryl, ureido, isocyanate, isocyanurate, mercapto
  • acrylic for example, 3-acryloxypropyltrimethoxysilane
  • vinyl methacrylic
  • styryl ureido
  • isocyanate isocyanurate
  • mercapto mercapto
  • silane coupling agents such as silanes can also be used.
  • silane coupling agent the above-mentioned amine-based silane coupling agent, epoxy-based silane coupling agent, acrylic, vinyl, methacrylic, styryl, ureide, isocyanate, isocyanurate, mercapto, etc.
  • a solid silane coupling agent can also be used in addition to the liquid silane coupling agent.
  • solid silane coupling agents include X-12-1273ES (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • liquid silane coupling agents are superior in that they have functional groups and can be expected to be reactive (in principle, high effects can be expected).
  • As a silane coupling agent it is excellent in that it is easy to handle.
  • the fluororesin examples include polytetrafluoroethylene (PTFE). It is preferable to use powdered PTFE. For example, PTFE powder having an average particle size of 10 to 30 ⁇ m and a specific surface area determined by the BET method of 0.5 to 5 m 2 /g can be used.
  • the fluororesin may be contained in an amount of 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • fluororesins include PTFE, PFA (perfluoroalkoxyalkane), FEP (perfluoroethylene propene copolymer), and the like.
  • the resin composition may further contain carbon black as a coloring agent, polyolefin wax, stearyl alcohol, etc. as a release agent, and hydrotalcite, zinc carbonate, etc. as a mold corrosion inhibitor.
  • a known production method may be applied to produce the resin composition as described above.
  • a thermoplastic resin, carbon fiber, a silane coupling agent, a mold corrosion inhibitor, and a release agent are introduced into a twin-screw extruder, and, for example, the kneading temperature is 270° C. or higher and 300° C. or lower, and the screw rotation speed is is controlled at 100 rpm or more and 300 rpm or less, and the kneading time is 30 minutes or more and 60 minutes or less for granulation, whereby a pellet-shaped resin composition can be formed.
  • thermoplastic resin and the silane coupling agent it is preferable to first blend the thermoplastic resin and the silane coupling agent, then add the carbon fiber, and knead after blending.
  • the silane coupling agent can be uniformly dispersed in the thermoplastic resin, and the function of suppressing flow and deformation due to flames can be enhanced.
  • a thermoplastic resin and a silane coupling agent were dry-blended, and then carbon fiber, a mold corrosion inhibitor, a mold release agent, and a colorant were dry-blended and then dry-blended from the main feeder of a twin-screw extruder. The raw material may be discharged and kneaded.
  • Another method is to dry blend a thermoplastic resin and a silane coupling agent, further dry blend a mold corrosion inhibitor, a release agent, and a colorant, and dry blend from the main feeder of a twin screw extruder.
  • the carbon fiber may be discharged from a side feeder and kneaded while discharging the raw material.
  • a resin molded body can be produced by molding the obtained resin composition by a known molding method such as extrusion molding with an extruder, press molding with a press machine, or injection molding with an injection molding machine.
  • the carbon fiber is 2 parts by mass or more and 70 parts by mass or less
  • the silane coupling agent is 0.3 parts by mass or more and 7.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • FIG. 1 is a perspective view of a lithium ion secondary battery cell to which a resin molded body according to one embodiment of the present invention is attached.
  • the lithium ion secondary battery cell 1 is, for example, a prismatic battery cell, and is provided with a positive electrode terminal 3 and a negative electrode terminal 4 on one end surface (upper surface in FIG. 1) of an outer can 2 which is a battery container, and between which a positive electrode terminal 3 and a negative electrode terminal 4 are provided. is provided with a safety valve 5.
  • the safety valve 5 is When the internal pressure of the lithium ion secondary battery cell 1 rises due to thermal runaway, it operates to eject high-temperature and high-pressure gas to prevent the outer can 2 from bursting.
  • FIGS. 2, 3, and FIG. 4 which is a cross-sectional view taken along line AA of FIG. It is attached to the outer periphery of the lithium ion secondary battery cell 1 via (sandwiching) the insulating sheet 7 so as to cover at least the safety valve 5 .
  • the resin molding 6 is made of an insulating material or if insulation is not required, the insulating sheet 7 may not be interposed.
  • the portion of the insulating sheet 7 that covers the safety valve 5 may or may not be in contact with the safety valve 5 .
  • the portion of the resin molding 6 covering the safety valve 5 may or may not be in contact with the safety valve 5 .
  • the insulating sheet 7 and the sheet-like resin molded body 6 are both rectangular and substantially the same size, and cover the upper surface of the rectangular parallelepiped lithium ion secondary battery cell 1 including the safety valve 5, It is attached so as to cover the upper part of the rear surface (left and right surfaces in FIG. 4).
  • the sizes of the resin molded body 6 and the insulating sheet 7 may not be the same. Both may be joined in advance.
  • the lead wires (not shown) connected to the positive electrode terminal 3 and the negative electrode terminal 4 of the lithium ion secondary battery cell 1 are drawn out using the side surfaces not covered by the insulating sheet 7 and the resin molding 6 .
  • the lithium-ion secondary battery cell 1 to which the insulating sheet 7 and the sheet-shaped resin molding 6 are attached is housed in an exterior case (not shown). Inside the outer case, the resin molded body 6 that covers the upper front and rear surfaces of the lithium ion secondary battery cell 1 is pressed by the inner wall surface of the outer case, thereby holding the resin molded body 6 .
  • the resin molded body 6 of this embodiment is obtained by molding and curing the resin composition of one embodiment described above.
  • the thermal conductivity (measurement temperature: 50° C.) measured by the method (SCHF) is less than 1.0 W/m ⁇ K.
  • the thermal conductivity is 1.0 W/m ⁇ K or more
  • the resin molded body 6 will be damaged by the high-temperature and high-pressure gas ejected from the safety valve and the discharge hole.
  • Heat is conducted to the outer case containing the lithium ion secondary battery cell 1 covered with the sheet-shaped resin molded body 6, for example, the member surrounding the resin molded body 6 via the heat, and the outer case is melted and deformed. I have concerns.
  • the resin molded body 6 is in the form of a sheet with a uniform thickness, and the thickness of the sheet-shaped resin molded body 6 may be 0.5 mm or more and 10.0 mm or less. It is preferably 7 mm or more and 5 mm or less, more preferably 1.0 mm or more and 2 mm or less. Although it is desirable that the thickness of the resin molded body 6 is uniform, the thickness of the portion of the resin molded body 6 that covers the safety valve 5 falls within the above range, and the thickness of the other portion does not have to fall within the above range. .
  • the high-temperature, high-pressure gas ejected from the safety valve 5 forms a through hole in the resin molding 6, and the high-temperature, high-pressure gas is ejected from the through hole, and the insulating sheet 7 and There is a concern that the fire may spread and burn to members outside the lithium ion secondary battery cell 1 covered with the sheet-like resin molding 6 .
  • the through-hole serves as an air (oxygen) supply port, and there is a concern that the lithium-ion secondary battery cell 1 itself covered with the insulating sheet 7 and the sheet-like resin molded body 6 may expand fire spread and burnout. .
  • the thickness of the sheet-shaped resin molded body 6 exceeds 10.0 mm, high-temperature and high-pressure gas can be blocked, that is, no through holes are formed, but the resin molded body 6 becomes large and the molding process becomes complicated. Become. In addition, it becomes difficult to house the lithium-ion secondary battery cell 1 in an existing exterior case.
  • the hardness of the surface of the resin molded body 6 is preferably 50 or more when measured with a type D durometer using a sheet with a thickness of 2 mm of the resin molded body based on JIS K7215. If the hardness of this surface is less than 50, there is concern that the resin molding 6 may be damaged or a through hole may be formed due to the high-temperature/high-pressure gas ejected from the safety valve 5 (in particular, the influence of the pressure (ejection force)). There is The upper limit of the hardness of the surface is 90 as the appropriate upper limit in the above standard, but it may exceed 90 as long as it is within the moldable range.
  • a general measuring device can measure up to about 100, and the surface hardness of the resin molding 6 displayed by the measuring device may be 100 or less.
  • the resin molded body 6 of the present embodiment is formed using the resin composition described above so as to cover the safety valve 5 of the lithium ion secondary battery cell 1, so that the lithium ion secondary battery is prevented from thermal runaway. Even if this occurs, the high-temperature, high-pressure gas ejected from the safety valve 5 does not form a through-hole in the resin molding 6, and the spread of fire and burnout due to the ejection of the high-temperature, high-pressure gas can be suppressed.
  • flame retardant evaluation 1 the type of silane coupling agent, the mixed amount of PTFE, carbon fiber, silane coupling agent, release agent, coloring agent and mold corrosion inhibitor with respect to 100 parts by mass of thermoplastic resin (composition Resin compositions (samples) of Examples 1 to 19 of the present invention and Comparative Examples 1 to 3 with different ratios were prepared. Table 1 shows the composition ratio (parts by mass) of each sample. Each component shown in Table 1 was weighed, dry-blended, and then granulated using a twin-screw extruder to granulate each resin composition of Inventive Examples 1 to 19 and Comparative Examples 1 to 3. . Using this granulated product, injection molding was performed to obtain a sample.
  • the raw materials used for producing the resin composition are as follows.
  • PPS polyphenylene sulfide
  • silane coupling agent (2-1) Amine system: liquid silane coupling agent (2-2) Epoxy system: liquid silane coupling agent (2-3) Acrylic system: liquid silane coupling agent (2-4) Solid system: solid silane Coupling agent (3) carbon fiber: pitch-based carbon fiber, average fiber length 0.36 mm, fiber diameter 13 ⁇ m, aspect ratio 28 (4) Fluorine resin (PTFE): powdery, average particle size 18 ⁇ m, BET specific surface area 2 m 2 /g (5) Colorant: Carbon black (6) Mold release agent: Polyolefin wax (7) Mold corrosion inhibitor: Zinc carbonate (ZnCO 3 )
  • the test method for flame retardancy evaluation 1 is to fix a burner with an output of 5580 W vertically downward, prepare a resin composition (sample) of 100 mm ⁇ 120 mm ⁇ 2 mm, and place each sample on the floor at a position 170 mm from the crater of the burner. and placed horizontally. Then, the burner was ignited to apply a flame to each sample. Table 1 shows the results of this flame retardancy evaluation 1.
  • the evaluation criterion for flame retardancy evaluation 1 was the time required for the amount of deformation to reach 10 mm (the longer the time, the higher the flame retardancy).
  • the carbon fiber is 2 parts by mass or more and 70 parts by mass or less
  • the silane coupling agent is 0.3 parts by mass or more and 7 parts by mass with respect to 100 parts by mass of the thermoplastic resin. It has been confirmed that the resin compositions of Examples 1 to 19 of the present invention containing the amount of 10 mm deformation are at least 49 seconds or more, and that good flame retardancy can be ensured.
  • thermoplastic resin (Flame retardant evaluation 2) Next, as flame retardancy evaluation 2, the mixture amount (composition ratio) of carbon fiber, silane coupling agent, mold release agent, colorant and mold corrosion inhibitor with respect to 100 parts by mass of thermoplastic resin was constant, and heat was applied. Resin compositions (samples) of Examples 7 and 20 to 24 were prepared by changing only the type of plastic resin. In addition, resin compositions (samples) of Comparative Examples 4 to 7 were prepared using only a thermoplastic resin. Table 2 shows the composition ratio (parts by mass) of each sample. Each component shown in Table 2 was weighed, dry-blended, and then granulated using a twin-screw extruder to granulate each resin composition of Examples 7 and 20 to 24 of the present invention. Using this granule, injection molding was performed to obtain a sample. Further, thermoplastic resins of Comparative Examples 4 to 7 were prepared.
  • the raw materials used for producing the resin composition are as follows. (1) PPS: Polyphenylene sulfide (2) PBT: Polybutylene terephthalate (3) PA6: Polyamide 6, a type of polyamide (4) mPPE: modified polyphenylene ether (5) PC: polycarbonate (6) PP: polypropylene (7) Carbon fiber pitch-based carbon fiber, average fiber length 0.36 mm, fiber diameter 13 ⁇ m, aspect ratio 28 (8) PTFE: fluororesin powder, average particle size 18 ⁇ m, BET specific surface area 2 m 2 /g (9) Coloring agent: carbon black (10) Release agent: polyolefin wax (11) Mold corrosion inhibitor: zinc carbonate ( ZnCO3 )
  • the test method for flame retardancy evaluation 2 is to fix a burner with an output of 5580 W vertically downward, prepare a resin composition (sample) of 100 mm ⁇ 120 mm ⁇ 2 mm, and place each sample on the floor at a position of 200 mm from the crater of the burner. and placed horizontally. Then, the burner was ignited to apply a flame to each sample. Table 2 shows the results of this flame retardancy evaluation 2.
  • the evaluation criteria for flame retardancy evaluation 2 were performed by measuring the amount of deformation of each sample 40 seconds after the start of combustion in the burner. Good: The amount of deformation of the sample is less than 2 mm after 40 seconds from the start of burner combustion. Acceptable: Deformation of the sample is 2 mm or more and less than 20 mm after 40 seconds from the start of burner combustion. Impossible: Deformation of sample is 20 mm or more at 40 seconds after the start of burner combustion, or dripping of molten resin occurs.
  • thermoplastic resins are used as thermoplastic resins, and 2 parts by mass or more and 70 parts by mass or less of carbon fiber and a silane coupling agent are added to 100 parts by mass of the thermoplastic resin. It was confirmed that Inventive Examples 7, 20, and 21 containing in the range of 0.3 parts by mass or more and 7 parts by mass or less were most excellent in flame retardancy. Further, mPPE, PC, and PP are used as thermoplastic resins, and 2 parts by mass or more and 70 parts by mass or less of carbon fiber and 0.3 parts by mass or more of a silane coupling agent are used with respect to 100 parts by mass of the thermoplastic resin.
  • the respective contents of the mold corrosion inhibitor, the mold release agent, and the colorant in the flame retardant evaluations 1 and 2 described above are examples, and the respective contents of the mold corrosion inhibitor, the mold release agent, and the colorant
  • the content can be increased or decreased as desired, and the content is not limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本発明の樹脂組成物は、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含むことを特徴とする。

Description

樹脂組成物、樹脂成形体
 本発明は、耐火性の樹脂組成物、およびこれを用いた樹脂成形体に関する。
 本願は、2021年3月29日に、日本に出願された特願2021-054780号に基づき優先権を主張し、それらの内容をここに援用する。
 近年、各種装置の軽量化のため、従来は金属で形成されていた構成部材の外装体などを樹脂材料で形成することが多くなっている。例えば、リチウムイオン2次電池(以下、「電池」ということもある)の外装体なども、軽量化のために樹脂材料によって形成することが多くなっている。こうした電池は、小型化とともに高エネルギー密度化が進む(エネルギー密度が300Wh/kg以上)のにともなって、利用の仕方によっては発熱によって高温になるなどの虞がある。このため、電池や電池パックにおける安全性がより重要となっている。
 例えば、リチウムイオン2次電池は、過充電や過放電されたり、あるいは予期せぬ衝撃が加わって内部短絡や外部短絡が生じると熱暴走を起こす虞がある。熱暴走が起こったリチウムイオン2次電池は、ガスが発生して電池の内圧を上昇させる。このような状況が起こると、内圧上昇で外装缶が破裂するなどの可能性があるため、これら電池においては、ガス抜きのための排気孔や安全弁などが設けられている。
 しかしながら、熱暴走を起こしたリチウムイオン2次電池に設けられたガス抜きのための排気孔や安全弁からは、高温の火炎や高温・高圧のガスが噴出し、その温度は最高温度が999℃を超えるケースもあり、これによる樹脂材料の変形や溶融が生じる懸念があった。また、自動車火災などではリチウムイオン2次電池が外部火炎にさらされることで、外部からの熱によってリチウムイオン2次電池から高温高圧の火炎が噴射し、乗員や周辺部品に二次被害が生じるおそれがあった。
 このような火炎や高温ガスの噴出による変形や溶融を抑制可能な樹脂材料として、例えば、特許文献1には、繊維状物質を添加することによって、高温環境での流動化を抑制可能な難燃樹脂組成物が開示されている。
 また、特許文献2には、シランカップリング剤で前処理を行った炭素繊維を含むポリフェニレンスルフィド樹脂組成物が開示されている。
日本国特開2014-208802号公報(A) 日本国特開平06-49362号公報(A)
 しかしながら、近年の電池の高エネルギー密度化により、熱暴走時に生じる火炎の出力が格段に大きくなった。近年急速に普及したリチウムイオン二次電池の発火時には、その火炎の出力は1000W程度になるとされている。火炎による溶融変形の評価は、アメリカ保険業者安全試験所が策定する製品安全規格(UL規格)であっても出力500Wの火炎でしか実施されておらず、出力1000Wを超えるような条件では、特許文献1や特許文献2に開示された樹脂組成物であっても溶融、流動化する虞があった。
 本発明は、このような背景に鑑みてなされたものであり、高温ガスや火炎の噴射による溶融、変形、流動化を抑制できる樹脂組成物、およびこれを用いた樹脂成形体を提供することを目的とする。
 本発明者は、樹脂組成物を、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含む構成にすることで、1000W以上の火炎に接炎した際の溶融変形量を抑制できることを見出した。
 上記課題を解決するために、この発明は以下の手段を提案している。
 即ち、本発明の樹脂組成物は、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含むことを特徴とする。
 本発明によれば、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7.0質量部以下の割合で含有することによって、例えば、1000W程度の火炎の放射を行っても、溶融変形や流動化を抑制することが可能な樹脂組成物を得ることができる。
 また、本発明では、前記炭素繊維に対する前記シランカップリング剤の含有割合(シランカップリング剤/炭素繊維)が0.01以上であってもよい。
 また、本発明では、前記熱可塑性樹脂100質量部に対して、前記炭素繊維が15質量部以上かつ70質量部以下、または、前記炭素繊維に対する前記シランカップリング剤の含有割合(シランカップリング剤/炭素繊維)が0.1以上であってもよい。
 また、本発明では、前記熱可塑性樹脂は、ポリフェニレンサルファイド、ポリアミド、ポリブチレンテレフタレート、変性ポリフェニレンエーテル、ポリカーボネートのうち、少なくとも1つを含んでいてもよい。
 また、本発明では、前記シランカップリング剤は、有機ケイ素化合物およびシロキサン化合物の少なくとも一方であってもよい。
 また、本発明では、前記有機ケイ素化合物は、アミン系シランカップリング剤およびエポキシ系シランカップリング剤の少なくとも一方であってもよい。
 また、本発明では、熱可塑性樹脂100質量部に対して、更にフッ素樹脂を1質量部以上かつ50質量部以下の範囲で含んでいてもよい。
 本発明の樹脂成形体は、前記各項に記載の樹脂組成物を用いた樹脂成形体であって、安全弁または排気孔を有する1個以上のリチウムイオン2次電池セルの外周に、少なくとも前記安全弁または前記排気孔を覆うように付設されることを特徴とする。
 以上のように本発明によれば、高温ガスや火炎の噴射による溶融、変形、流動化を抑制できる樹脂組成物、およびこれを用いた樹脂成形体を提供することができる。
図1は本発明の一実施形態に係る樹脂成形体が付設されるリチウムイオン2次電池セルの斜視図である。 図2は本発明の一実施形態に係る樹脂成形体が付設されるリチウムイオン2次電池セルを示す斜視図である。 図3は図2の樹脂成形体が付設されたリチウムイオン2次電池セルの斜視図である。 図4は図3のA-A線断面図である。
 以下、本発明の一実施形態の樹脂組成物およびこれを用いた樹脂成形体について、図面を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。
(樹脂組成物)
 本発明の一実施形態の樹脂組成物は、熱可塑性樹脂と、炭素繊維と、シランカップリング剤とを混合したものから構成されている。この樹脂組成物は、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7.0質量部以下の割合で含有している。
 なお、熱可塑性樹脂100質量部に対して、樹脂組成物に含まれる炭素繊維を7質量部以上としてもよく、樹脂組成物に含まれる炭素繊維を23質量部以下としてもよい。
 また、熱可塑性樹脂100質量部に対して、樹脂組成物に含まれるシランカップリング剤を0.7質量部以上としてもよく、樹脂組成物に含まれるシランカップリング剤を2.3質量部以下としてもよい。
 また、この樹脂組成物は、熱可塑性樹脂100質量部に対して、更にフッ素樹脂を1質量部以上かつ50質量部以下の範囲で含有していてもよい。
 なお、炭素繊維が2質量部未満の場合は、難燃性を十分に確保できず、火炎によって容易に溶融変形してしまう場合がある。また、シランカップリング剤が0.3質量部未満の場合も難燃性を十分に確保できず、火炎によって容易に溶融変形してしまう場合がある。
 また、樹脂組成物に含まれる炭素繊維に対するシランカップリング剤の含有割合(シランカップリング剤/炭素繊維)を0.01以上かつ80以下にすることも好ましい。
 また、熱可塑性樹脂100質量部に対して、樹脂組成物に含まれる炭素繊維を15質量部以上かつ70質量部以下、または、炭素繊維に対するシランカップリング剤の含有割合(シランカップリング剤/炭素繊維)を0.1以上にすることも好ましい。
 すなわち、熱可塑性樹脂100質量部に対する炭素繊維の質量比率を、15質量部以上かつ70質量部以下とすることが好ましい。
 また、熱可塑性樹脂100質量部に対する炭素繊維の質量比率を、2質量部以上かつ70質量部以下とし、かつ炭素繊維に対するシランカップリング剤の含有割合を0.1以上とすることも好ましい。
 樹脂組成物に用いる熱可塑性樹脂としては、例えば、ポリフェニレンサルファイド(PPS)、ポリアミド(PA)、ポリブチレンテレフタレート(PBT)、変性ポリフェニレンエーテル(mPPE)、ポリカーボネート(PC)、ポリプロピレン(PP)のいずれか一種または二種以上の混合物が挙げられる。
 このうち、PPSは、融点(278℃)およびガラス転移温度(92~126℃)が高いため、熱可塑性樹脂として特に好ましい。樹脂組成物に好適な熱可塑性樹脂であるPPSとしては、酸素存在下で熱処理を行い溶融粘度を高めた酸化架橋型PPS、重合系列中に塩化リチウム、有機酸塩、水などを添加して直鎖状のまま分子量を高めた直鎖型PPSのいずれも用いることができる。また、酸化架橋型PPSと直鎖型PPSを混合して用いることもできる。
 樹脂組成物に好適な炭素繊維としては、アクリル繊維を使ったPAN(polyacrylonitrile)系炭素繊維、ピッチを使ったピッチ系炭素繊維のいずれも用いることができる。本実施形態では、炭素繊維としてピッチ系炭素繊維を用いてもよい。
 ピッチ系炭素繊維としては、等方性ピッチ系炭素繊維と、メソフェーズピッチ系炭素繊維があるが、いずれのピッチ系炭素繊維も用いることができる。
 樹脂組成物に用いる炭素繊維の形状例としては、単繊維の繊維径が1~20μm、平均繊維長が0.01~10mm、アスペクト比が1.5~1300程度であってもよい。
 樹脂組成物に含まれるシランカップリング剤は、耐変形性に寄与する成分であり、燃焼時の樹脂組成物の溶融落下を抑制させることができる。
 樹脂組成物に含まれるシランカップリング剤としては、例えば、有機ケイ素化合物およびシロキサン化合物の少なくとも一方であればよい。また、シランカップリング剤(有機ケイ素化合物)としては、アミン系シランカップリング剤およびエポキシ系シランカップリング剤の少なくとも一方であればよい。アミン系シランカップリング剤とエポキシ系シランカップリング剤とを比較した場合、アミノ末端を有するアミン系シランカップリング剤がより好ましい。
 アミン系シランカップリング剤としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンなどを例示することができる。
 また、エポキシ系シランカップリング剤としては、例えば、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどを例示することができる。
 更に、樹脂組成物に含まれるシランカップリング剤としては、アクリル系(例えば、3-アクリロキシプロピルトリメトキシシラン)、ビニル系、メタクリル系、スチリル系、ウレイド系、イソシアネート系、イソシアヌレート系、メルカプト系などの各種シランカップリング剤を用いることもできる。
 また、シランカップリング剤として、上述したアミン系シランカップリング剤、エポキシ系シランカップリング剤、アクリル系、ビニル系、メタクリル系、スチリル系、ウレイド系、イソシアネート系、イソシアヌレート系、メルカプト系等の液状シランカップリング剤以外に、固形状シランカップリング剤を用いることもできる。
 固形状シランカップリング剤としては、例えば、X-12-1273ES(信越化学工業株式会社製)等が挙げられる。
 液状シランカップリング剤と固形状シランカップリング剤を比較した場合、液状シランカップリング剤としては、官能基があり反応性が望める(原理的に高い効果が期待できる)という点で優れ、固形状シランカップリング剤としては、扱いが簡便という点で優れている。
 樹脂組成物にフッ素樹脂を含ませる場合、フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)が挙げられる。PTFEは、粉末状態のものを用いることが好ましい。例えば、平均粒子径が10~30μm、BET法による比表面積が0.5~5m/gのPTFE粉末を用いることができる。フッ素樹脂は、熱可塑性樹脂100質量部に対して、フッ素樹脂を1質量部以上かつ50質量部以下の範囲で含んでもよい。フッ素樹脂としては、例えば、PTFE、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペンコポリマー)等が挙げられる。
 樹脂組成物には、更に着色剤としてカーボンブラック、離型剤としてポリオレフィンワックスやステアリルアルコールなど、および金型腐食防止剤としてハイドロタルサイトや炭酸亜鉛などが含まれていてもよい。
 以上の様な樹脂組成物の作製は、公知の製造方法を適用すればよい。
 例えば、二軸押出機に、熱可塑性樹脂、炭素繊維、シランカップリング剤、金型腐食防止剤、離型剤を投入し、例えば、混練加工温度を270℃以上かつ300℃以下、スクリュー回転数を100rpm以上かつ300rpm以下に管理しつつ、混練加工時間を30分以上かつ60分以下として造粒することで、ペレット状の樹脂組成物を形成することができる。
 なお、こうした混練加工の際に、まず、熱可塑性樹脂とシランカップリング剤とをブレンドしてから、次に炭素繊維を加えてブレンド後に混錬することが好ましい。これにより、熱可塑性樹脂に対してシランカップリング剤を均一に分散させることができ、火炎による流動及び変形の抑制機能を高めることができる。
 具体的には、熱可塑性樹脂、シランカップリング剤をドライブレンドし、更に炭素繊維、金型腐食防止剤、離型剤、着色剤をドライブレンドし、二軸押出機のメインフィーダーからドライブレンドした原料を吐出し混錬してもよい。また、別の方法としては、熱可塑性樹脂、シランカップリング剤をドライブレンドし、更に金型腐食防止剤、離型剤、着色剤をドライブレンドし、二軸押出機のメインフィーダーからドライブレンドした原料を吐出しながら、サイドフィーダーから炭素繊維を吐出して混錬してもよい。このサイドフィーダーから炭素繊維を供給する方法で製造することで、ドライブレンドする際に炭素繊維の繊維長が短くなることも防止できる。
 そして、得られた樹脂組成物を押出機による押出し成形やプレス機によるプレス成形、射出成形機による射出成形等の公知の成形方法で成形することにより、樹脂成形体を作製することができる。
 本実施形態の樹脂組成物によれば、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7.0質量部以下の割合で含有することによって、例えば、1000W程度の火炎の放射を行っても、溶融変形や流動化を抑制することが可能になる。
(樹脂成形体)
 図1は、本発明の一実施形態に係る樹脂成形体が付設されるリチウムイオン2次電池セルの斜視図である。
 このリチウムイオン2次電池セル1は、例えば角型の電池セルであり、電池容器である外装缶2の一端面(図1では上面)に、正極端子3及び負極端子4が設けられると共に、その間に安全弁5が設けられている。
 安全弁5は、
リチウムイオン2次電池セル1が熱暴走して内圧が上昇した場合に作動して、高温・高圧のガスを噴出して外装缶2が破裂するのを防止する。
 リチウムイオン2次電池セル1の熱暴走が発生した場合には、過熱によって、発火する虞があり、安全弁5から噴出する高温・高圧ガスが一気に広範囲に広がると、延焼、焼損を防止するのが困難となる。
 そこで、この実施形態では、図2、図3、及び、図3のA-A線断面図である図4に示されるように、可撓性を有するシート状の樹脂成形体6を、直接または絶縁シート7を介して(挟んで)リチウムイオン2次電池セル1の外周に、少なくとも安全弁5を覆うように付設している。なお、樹脂成形体6が絶縁材料である場合や、絶縁性が必要ない場合は、絶縁シート7を介さなくてもよい。絶縁シート7がある場合、絶縁シート7の安全弁5を覆う部分は、安全弁5に当接していてもよいが、当接していなくてもよい。絶縁シート7がない場合、樹脂成形体6の安全弁5を覆う部分は、安全弁5に当接していてもよいが、当接していなくてもよい。
 この実施形態では、絶縁シート7及びシート状の樹脂成形体6は、いずれも矩形の略同じサイズであって、直方体のリチウムイオン2次電池セル1の安全弁5を含む上面を覆うと共に、正面及び背面(図4の左右の面)の上部を覆うように付設される。ただし、樹脂成形体6と絶縁シート7のサイズは同じでなくてもよく、樹脂成形体6が絶縁シート7より大きくても、絶縁シート7が樹脂成形体6より大きくてもよい。両者は、あらかじめ接合されていてもよい。
 リチウムイオン2次電池セル1の正極端子3及び負極端子4にそれぞれ接続される図示しないリード線は、絶縁シート7及び樹脂成形体6によって覆われていない側面を利用して引出される。
 絶縁シート7及びシート状の樹脂成形体6が付設されたリチウムイオン2次電池セル1は、図示しない外装ケースに収容される。この外装ケース内では、リチウムイオン2次電池セル1の正面及び背面の上部を覆う樹脂成形体6が、外装ケースの内壁面によって押圧されることによって樹脂成形体6が保持される。
 この実施形態の樹脂成形体6は、前述した一実施形態の樹脂組成物を成形硬化したものであって、この樹脂成形体6は、例えば、JIS H7903:2008に準じて、一方向熱流定常比較法(SCHF)で測定した熱伝導度(測定温度:50℃)が、1.0W/m・K未満である。
 この熱伝導度が、1.0W/m・K以上であると、リチウムイオン2次電池が熱暴走を起こした場合、安全弁や排出孔から噴出する高温・高圧のガスによって、樹脂成形体6を介して樹脂成形体6の外周の部材、例えば、シート状の樹脂成形体6によって覆われたリチウムイオン2次電池セル1を収容した外装ケースに熱が伝導し、外装ケースを溶融変形させてしまう懸念がある。
 この熱伝導度は、低い程好ましいのであるが、その下限は、例えば、0.1W/m・Kである。
 この実施形態では、樹脂成形体6は、均一な厚さのシート状であり、このシート状の樹脂成形体6の厚さが、0.5mm以上かつ10.0mm以下であればよく、0.7mm以上かつ5mm以下であるのが好ましく、1.0mm以上かつ2mm以下であるのがより好ましい。樹脂成形体6の厚さは均一であることが望ましいが、樹脂成形体6の安全弁5を覆う部分の厚さが上記範囲に入り、他の部分の厚さが上記範囲に入らなくてもよい。
 この厚さが、0.5mm未満であると、安全弁5より噴出する高温・高圧のガスで樹脂成形体6に貫通孔が生じ、貫通孔から高温・高圧のガスが噴出し、絶縁シート7及びシート状の樹脂成形体6によって覆われたリチウムイオン2次電池セル1より外の部材に延焼、焼損させてしまう懸念がある。また、貫通孔が、空気(酸素)の供給口となり、絶縁シート7及びシート状の樹脂成形体6によって覆われたリチウムイオン2次電池セル1自体の延焼・焼損を拡大させてしまう懸念がある。
 シート状の樹脂成形体6の厚さが、10.0mmを超えると、高温・高圧のガスは遮断できる、すなわち、貫通孔は生じないが、樹脂成形体6が大型化し、成形加工が煩雑になる。また、リチウムイオン2次電池セル1を収容する既存の外装ケースに収容するのが困難となる。
 樹脂成形体6の表面の硬さは、JIS K7215に基づいて、樹脂成形体の厚さが2mmのシートを用いてタイプDデュロメータで測定した値が、50以上であることが好ましい。この表面の硬さが、50未満であると安全弁5より噴出する高温・高圧のガス(特に、圧力(噴出力)の影響)で樹脂成形体6が破損したり、貫通孔が生じたりする懸念がある。この表面の硬さの上限値は、上記規格における適正値上限としては90であるが、成形可能な範囲であれば90を超えてもよい。なお、一般的な測定装置では、100程度まで測定でき、測定装置で表示される樹脂成形体6の表面の硬さとして100以下であってもよい。
 以上のように本実施形態の樹脂成形体6は、前述した樹脂組成物を用いて、リチウムイオン2次電池セル1の安全弁5を覆うように形成されるので、リチウムイオン2次電池が熱暴走を起こしても、安全弁5から噴出する高温・高圧のガスによって、樹脂成形体6に貫通孔が生じることがなく、高温・高圧のガスの噴出による延焼、焼損を抑制することができる。
(難燃性評価1)
 以下、難燃性評価1として、シランカップリング剤の種類、熱可塑性樹脂100質量部に対するPTFE、炭素繊維、シランカップリング剤、離型剤、着色料および金型腐食防止剤の混合量(組成割合)を変えた本発明例1~19および比較例1~3の樹脂組成物(試料)を作成した。それぞれの試料の組成割合(質量部)を表1に示す。表1に示す各成分を秤取ってドライブレンドし、その後、二軸押出機を用いて造粒することにより、本発明例1~19および比較例1~3の各樹脂組成物を造粒した。この造粒物を用いて射出成型を実施し、試料を得た。
Figure JPOXMLDOC01-appb-T000001
 樹脂組成物の製造に使用した原料は以下の通りである。
(1)PPS:ポリフェニレンサルファイド
(2)シランカップリング剤:
 (2-1)アミン系:液状シランカップリング剤
 (2-2)エポキシ系:液状シランカップリング剤
 (2-3)アクリル系:液状シランカップリング剤
 (2-4)固体系:固形状シランカップリング剤
(3)炭素繊維:ピッチ系炭素繊維、平均繊維長0.36mm、繊維径13μm、アスペクト比28
(4)フッ素樹脂(PTFE):粉末状、平均粒子径18μm、BET比表面積2m/g
(5)着色剤:カーボンブラック
(6)離型剤:ポリオレフィンワックス
(7)金型腐食防止剤:炭酸亜鉛(ZnCO
 そして、本発明例1~19および比較例1~3のそれぞれの樹脂組成物について、難燃性評価(難燃性評価1)を行った。難燃性評価1の試験方法は、出力5580Wのバーナーを垂直下向きに固定し、100mm×120mm×2mmの樹脂組成物(試料)を用意し、それぞれの試料をバーナーの火口から170mmの位置に床と水平に配置した。そして、バーナーに点火して、それぞれの試料に対して火炎を当てることによって行った。この難燃性評価1の結果を表1に示す。
 試料とバーナーの火口との距離:170mm
 ドラフトによる局所排気
 火力:5580W
 気温:18℃
 湿度:55%RH
 天候:晴れ
 試験は試料の一部が溶融して床面に落下した時点で終了とした。
 難燃性評価1の評価基準は、変形量が10mmに達する時間(長いほど難燃性が高い)によって行った。
 A:113秒以上
 B:74秒以上かつ113秒未満
 C:63秒以上かつ74秒未満
 D:49秒以上かつ63秒未満
 E:49秒未満
 表1に示す難燃性評価1によれば、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含む本発明例1~19の樹脂組成物は、10mm変形量が少なくとも49秒以上であり、良好な難燃性を確保できることが確認できた。
 一方、炭素繊維かシランカップリング剤のいずれか一方を含まない、あるいは両方を含まない比較例1~3の樹脂組成物は、10mm変形量が49秒未満であり、難燃性を確保できず、火炎によって容易に溶融変形してしまうことが確認された。
(難燃性評価2)
 次に、難燃性評価2として、熱可塑性樹脂100質量部に対する炭素繊維、シランカップリング剤、離型剤、着色料および金型腐食防止剤の混合量(組成割合)を一定にして、熱可塑性樹脂の種類だけを変えた本発明例7、20~24の樹脂組成物(試料)を作成した。また、熱可塑性樹脂だけの比較例4~7の樹脂組成物(試料)を作成した。それぞれの試料の組成割合(質量部)を表2に示す。表2に示す各成分を秤取ってドライブレンドし、その後二軸押出機を用いて造粒することにより、本発明例7、20~24の各樹脂組成物を造粒した。この造粒物を用いて射出成形を実施し、試料を得た。また、比較例4~7の各熱可塑性樹脂を用意した。
Figure JPOXMLDOC01-appb-T000002
 樹脂組成物の製造に使用した原料は以下の通りである。
(1)PPS:ポリフェニレンサルファイド
(2)PBT:ポリブチレンテレフタレート
(3)PA6:ポリアミドの一種であるポリアミド6
(4)mPPE:変性ポリフェニレンエーテル
(5)PC:ポリカーボネート
(6)PP:ポリプロピレン
(7)炭素繊維ピッチ系炭素繊維、平均繊維長0.36mm、繊維径13μm、アスペクト比28
(8)PTFE:フッ素樹脂粉末状、平均粒子径18μm、BET比表面積2m/g(9)着色剤:カーボンブラック
(10)離型剤:ポリオレフィンワックス
(11)金型腐食防止剤:炭酸亜鉛(ZnCO
 そして、本発明例7、20~24および比較例4~7のそれぞれの樹脂組成物について、難燃性評価(難燃性評価2)を行った。難燃性評価2の試験方法は、出力5580Wのバーナーを垂直下向きに固定し、100mm×120mm×2mmの樹脂組成物(試料)を用意し、それぞれの試料をバーナーの火口から200mmの位置に床と水平に配置した。そして、バーナーに点火して、それぞれの試料に対して火炎を当てることによって行った。この難燃性評価2の結果を表2に示す。
 試料とバーナーの火口との距離:200mm
 ドラフトによる局所排気
 火力:5580W
 気温:18℃
 湿度:55%RH
 天候:晴れ
 難燃性評価2の評価基準は、バーナーの燃焼開始後40秒経過時点での各試料の変形量を測定することで行った。
 良:バーナー燃焼開始後40秒経過時点での試料の変形量が2mm未満。
 可:バーナー燃焼開始後40秒経過時点での試料の変形量が2mm以上かつ20mm未満。
 不可:バーナー燃焼開始後40秒経過時点での試料の変形量が20mm以上、または溶融樹脂の滴下発生。
 表2に示す結果によれば、熱可塑性樹脂としてPPS、PBT、PA6をそれぞれ用い、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含む本発明例7、20、21が最も難燃性に優れていることが確認された。また、熱可塑性樹脂としてmPPE、PC、PPをそれぞれ用い、熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含む本発明例22~24に関しても、優れた難燃性を示すことが確認された。
 一方、熱可塑性樹脂だけで炭素繊維やシランカップリング剤を含まない比較例4~7は、いずれも40秒経過以前に変形量が20mm以上か溶融樹脂の滴下が発生しており、難燃性樹脂として用いることは困難であることが確認された。
 なお、上述した難燃性評価1、2では、それぞれ金型腐食防止剤、離型剤、および着色剤を含んでいる試料があるが、本発明の樹脂成形体を構成する樹脂組成物は、これら金型腐食防止剤、離型剤、着色剤は必須な成分ではない。これら金型腐食防止剤、離型剤、着色剤を含まなくても、優れた難燃性を有する樹脂成形物を得ることができる。
 また、上述した難燃性評価1、2における金型腐食防止剤、離型剤、および着色剤のそれぞれの含有量は一例であり、金型腐食防止剤、離型剤、着色剤のそれぞれの含有量は、必要に応じて任意の量に増減することができ、含有量が限定されるものではない。
 1…リチウムイオン2次電池セル
 2…外装缶
 3…正極端子
 4…負極端子
 5…安全弁
 6…樹脂成形体
 7…絶縁シート

Claims (9)

  1.  熱可塑性樹脂100質量部に対して、炭素繊維を2質量部以上かつ70質量部以下、シランカップリング剤を0.3質量部以上かつ7質量部以下の範囲で含むことを特徴とする樹脂組成物。
  2.  前記炭素繊維に対する前記シランカップリング剤の含有割合(シランカップリング剤/炭素繊維)が0.01以上であることを特徴とする請求項1に記載の樹脂組成物。
  3.  前記熱可塑性樹脂100質量部に対して、前記炭素繊維が15質量部以上かつ70質量部以下であることを特徴とする請求項1に記載の樹脂組成物。
  4.  前記炭素繊維に対する前記シランカップリング剤の含有割合(シランカップリング剤/炭素繊維)が0.1以上であることを特徴とする請求項1または2のいずれかに記載の樹脂組成物。
  5.  前記熱可塑性樹脂は、ポリフェニレンサルファイド、ポリアミド、ポリブチレンテレフタレート、変性ポリフェニレンエーテル、ポリカーボネートのうち、少なくとも1つを含むことを特徴とする請求項1から4のいずれか一項に記載の樹脂組成物。
  6.  前記シランカップリング剤は、有機ケイ素化合物、およびシロキサン化合物の少なくとも一方であることを特徴とする請求項1から5のいずれか一項に記載の樹脂組成物。
  7.  前記有機ケイ素化合物は、アミン系シランカップリング剤、およびエポキシ系シランカップリング剤の少なくとも一方であることを特徴とする請求項6に記載の樹脂組成物。
  8.  熱可塑性樹脂100質量部に対して、更にフッ素樹脂を1質量部以上かつ50質量部以下の範囲で含むことを特徴とする請求項1から7のいずれか一項に記載の樹脂組成物。
  9.  請求項1から8のいずれか一項に記載の樹脂組成物を用いた樹脂成形体であって、
     安全弁または排気孔を有する1個以上のリチウムイオン2次電池セルの外周に、少なくとも前記安全弁または前記排気孔を覆うように付設されることを特徴とする樹脂成形体。
PCT/JP2022/014900 2021-03-29 2022-03-28 樹脂組成物、樹脂成形体 WO2022210502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025561.XA CN117321144A (zh) 2021-03-29 2022-03-28 树脂组合物及树脂成型体
US18/284,121 US20240150578A1 (en) 2021-03-29 2022-03-28 Resin composition and resin molded body
EP22780713.8A EP4317291A1 (en) 2021-03-29 2022-03-28 Resin composition and resin molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054780A JP2022152125A (ja) 2021-03-29 2021-03-29 樹脂組成物、樹脂成形体
JP2021-054780 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210502A1 true WO2022210502A1 (ja) 2022-10-06

Family

ID=83456289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014900 WO2022210502A1 (ja) 2021-03-29 2022-03-28 樹脂組成物、樹脂成形体

Country Status (6)

Country Link
US (1) US20240150578A1 (ja)
EP (1) EP4317291A1 (ja)
JP (1) JP2022152125A (ja)
CN (1) CN117321144A (ja)
TW (1) TW202300635A (ja)
WO (1) WO2022210502A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649362A (ja) 1992-07-31 1994-02-22 Showa Denko Kk 樹脂組成物
JPH06220323A (ja) * 1993-01-26 1994-08-09 Dainippon Ink & Chem Inc 導電性樹脂組成物および電子部品収納容器
JPH06287438A (ja) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd 熱可塑性樹脂組成物
JP2012062335A (ja) * 2010-09-14 2012-03-29 Unitika Ltd ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法および該ポリアミド樹脂組成物を用いてなる成形体
WO2014024434A1 (ja) * 2012-08-09 2014-02-13 三洋電機株式会社 電源装置及びこれを備える電動車両並びに蓄電装置
JP2014139300A (ja) * 2012-12-19 2014-07-31 Toray Ind Inc 炭素繊維強化熱可塑性樹脂組成物、それを成形してなるペレットおよび薄肉成形品
CN104017335A (zh) * 2014-06-10 2014-09-03 上海电力学院 一种碳纤导电增强pet/聚酯合金及其制备方法
JP2014208802A (ja) 2013-03-29 2014-11-06 日本ポリプロ株式会社 繊維強化ポリプロピレン系難燃樹脂組成物及びそれを用いた成形体
JP2016141809A (ja) * 2015-02-02 2016-08-08 現代自動車株式会社Hyundai Motor Company 炭素繊維強化熱可塑性樹脂組成物及びこれによって製造された成形品
JP2020166992A (ja) * 2019-03-28 2020-10-08 三洋電機株式会社 電池パック
JP2021054780A (ja) 2019-09-26 2021-04-08 デボン エルエス,リミテッド イオン性液体を媒介としたエフィナコナゾールの新規製造方法
WO2022044981A1 (ja) * 2020-08-27 2022-03-03 出光興産株式会社 熱可塑性樹脂組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649362A (ja) 1992-07-31 1994-02-22 Showa Denko Kk 樹脂組成物
JPH06220323A (ja) * 1993-01-26 1994-08-09 Dainippon Ink & Chem Inc 導電性樹脂組成物および電子部品収納容器
JPH06287438A (ja) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd 熱可塑性樹脂組成物
JP2012062335A (ja) * 2010-09-14 2012-03-29 Unitika Ltd ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法および該ポリアミド樹脂組成物を用いてなる成形体
WO2014024434A1 (ja) * 2012-08-09 2014-02-13 三洋電機株式会社 電源装置及びこれを備える電動車両並びに蓄電装置
JP2014139300A (ja) * 2012-12-19 2014-07-31 Toray Ind Inc 炭素繊維強化熱可塑性樹脂組成物、それを成形してなるペレットおよび薄肉成形品
JP2014208802A (ja) 2013-03-29 2014-11-06 日本ポリプロ株式会社 繊維強化ポリプロピレン系難燃樹脂組成物及びそれを用いた成形体
CN104017335A (zh) * 2014-06-10 2014-09-03 上海电力学院 一种碳纤导电增强pet/聚酯合金及其制备方法
JP2016141809A (ja) * 2015-02-02 2016-08-08 現代自動車株式会社Hyundai Motor Company 炭素繊維強化熱可塑性樹脂組成物及びこれによって製造された成形品
JP2020166992A (ja) * 2019-03-28 2020-10-08 三洋電機株式会社 電池パック
JP2021054780A (ja) 2019-09-26 2021-04-08 デボン エルエス,リミテッド イオン性液体を媒介としたエフィナコナゾールの新規製造方法
WO2022044981A1 (ja) * 2020-08-27 2022-03-03 出光興産株式会社 熱可塑性樹脂組成物

Also Published As

Publication number Publication date
CN117321144A (zh) 2023-12-29
TW202300635A (zh) 2023-01-01
US20240150578A1 (en) 2024-05-09
EP4317291A1 (en) 2024-02-07
JP2022152125A (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
KR102528809B1 (ko) 연소에 대해 개선된 안전성을 갖는 li-이온 배터리
JP7120783B2 (ja) 熱伝導性熱膨張性部材
CA2938316C (en) Intumescent battery housing
EP1585181B1 (en) Fire shielding battery case
JP7168323B2 (ja) 熱膨張性耐火シート及び該熱膨張性耐火シートのバッテリーにおける使用
JP7410635B2 (ja) 熱膨張性耐火樹脂組成物、熱膨張性耐火シート及び該熱膨張性耐火シートを備えたバッテリーセル
US20180358592A1 (en) Battery module
EP0906639A2 (en) Flame-retardant battery casing
US20130130075A1 (en) Electrode assembly for secondary battery and lithium secondary battery including the same
WO1997045884A9 (en) Flame-retardant battery casing
CN113785432A (zh) 电池包装材料、制造方法、及其用途
WO2022210502A1 (ja) 樹脂組成物、樹脂成形体
EP4088925A1 (en) Flame-retardant composite pad, method for manufacturing same, and secondary battery module and secondary battery pack comprising such composite pad
WO2023190715A1 (ja) 樹脂組成物、樹脂成形体、樹脂組成物の製造方法
WO2022138430A1 (ja) 樹脂成形体、電池パック
CN113710748A (zh) 橡胶成型体及电池组
JP6152640B2 (ja) 密閉型電池用ゴム製弁体、安全弁装置及びアルカリ蓄電池
JP2022103086A (ja) 樹脂成形体、電池パック
CN116648482A (zh) 树脂成型体及电池组
US20040198893A1 (en) Container for alkaline solution
KR102671110B1 (ko) 열전도성 개량제, 열전도성 개량 방법, 열전도성 수지 조성물 및 열전도성 수지 성형체
CN104347826B (zh) 铅蓄电池用电槽、使用了该铅蓄电池用电槽的铅蓄电池和铅蓄电池用外壳
JP5647935B2 (ja) 電動自転車用バッテリー装置
CN116885349A (zh) 涂层、壳体、电池单体、储能装置和用电装置
WO2023061958A1 (en) Flame resistant heat-transfer tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284121

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280025561.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780713

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780713

Country of ref document: EP

Effective date: 20231030