WO2022206863A1 - 一种消息处理方法及装置 - Google Patents

一种消息处理方法及装置 Download PDF

Info

Publication number
WO2022206863A1
WO2022206863A1 PCT/CN2022/084210 CN2022084210W WO2022206863A1 WO 2022206863 A1 WO2022206863 A1 WO 2022206863A1 CN 2022084210 W CN2022084210 W CN 2022084210W WO 2022206863 A1 WO2022206863 A1 WO 2022206863A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
message
network device
ccs
channel
Prior art date
Application number
PCT/CN2022/084210
Other languages
English (en)
French (fr)
Inventor
张茜
刘烨
李秉肇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206863A1 publication Critical patent/WO2022206863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a message processing method and apparatus.
  • terminals can communicate with network devices in different cells.
  • the network device may configure multiple cells (cells) for the terminal, and at the same time configure one or more bandwidth parts (BWPs) in each cell, so that the terminal communicates with the network device through different BWPs.
  • BWPs bandwidth parts
  • the terminal can report the direct current (DC) location corresponding to the component carrier (CC) and the BWP to the network device, so that the network device can optimize the communication between the BWP and the terminal according to the DC location (DC location).
  • DC location DC location
  • the network device configures multiple cells for the terminal, and each cell is configured with multiple BWPs, for each cell in the multiple cells, the terminal may correspond to any BWP among the multiple BWPs in the cell.
  • the DC location is reported to the network device. So that during the communication process, the network device can determine the corresponding DC position according to the activated BWP, and optimize the corresponding data transmission.
  • the terminal can combine any BWP combination corresponding to the multiple BWP combinations corresponding to the two CCs.
  • the DC position is reported to the network device, so that during the communication process, the network device can determine the corresponding DC position according to the activated BWP combination, that is, a BWP pair composed of a BWP activated in each CC, and optimize the corresponding DC position. data transmission.
  • CA carrier aggregation
  • the present application provides a message processing method and device, which solves the problem in the prior art that when the terminal has multiple channels and the number of CCs associated with the DC location exceeds two CCs, the network device cannot determine the DC location of each channel in the current communication. question.
  • a first aspect provides a message processing method, the method comprising: a terminal sending a first message to a network device, where the first message is used to indicate the DC position of each channel when M channels of the terminal correspond to N component carrier CCs,
  • the DC position of each channel may include one or more DC positions, M is an integer greater than or equal to 2, and N is an integer greater than 2.
  • the terminal can report the DC position of each channel when M channels correspond to N CCs to the network device, which enables the network device to be able to report the DC position of each channel according to the one or more DC positions indicated by the first message.
  • the DC position of the current communication of each channel is determined, thereby providing a network device capable of determining the DC position of the current communication of each channel when the terminal has multiple channels and the number of CCs associated with the DC position exceeds two CCs Methods.
  • the network device can determine the leakage position of the local oscillator of the current communication of each channel, so as to perform targeted processing on the data of each channel and improve the quality of the entire data transmission.
  • the first message is further used to indicate the cell identity of the CC where the DC location is located. Based on this solution, the first message is also used to indicate the cell identifier of the DC position of each possible communication, so that the network device can more clearly determine the corresponding DC position of the current communication.
  • the M channels include a first channel, the first channel corresponds to multiple CCs, the first message is used to indicate that the first channel corresponds to the multiple CCs, and any one of the multiple CCs DC positions corresponding to any two bandwidth group BWPs in a CC pair composed of two CCs, where the any two BWPs are respectively located in different CCs in the CC pair; and/or, the M channels further include a second channel, the second The channel corresponds to one CC, and the first message is further used to indicate that the second channel corresponds to the CC, and the DC position corresponding to each BWP in the multiple BWPs of the CC.
  • the terminal can report the CC corresponding to each channel and the DC positions of possible communication of each channel under the correspondingly configured CC to the network device, so that the network device can obtain all possible DC positions, thereby The corresponding DC position of the current communication is determined based on the DC positions of all possible communication corresponding to each channel.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the terminal can report the CC corresponding to each channel and the DC positions that may be activated for each channel under the corresponding configured CC to the network device, so that the network device can obtain all the DC positions that may be activated. , so as to determine the corresponding DC position of the current communication based on all possible activated DC positions corresponding to each channel, so as to perform targeted processing on the data of each channel and improve the quality of the entire data transmission.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the terminal can report to the network device all the activated CCs corresponding to each channel and the DC positions of each channel that may be activated under the corresponding activated CCs, so that the network device can obtain all possible activated DCs.
  • DC position so as to determine the corresponding current communication DC position based on all possible activated DC positions corresponding to each channel.
  • the M channels are divided according to the power amplifier PA in the terminal; or, the M channels are divided according to the interval level of the terminal.
  • the terminal when the terminal has a phased array (that is, has multiple PAs) or performs millimeter-wave communication based on a phased array (that is, has multiple interval levels), it can connect one or more corresponding to each channel or Multiple DC locations are reported to the network device, so that the network device can determine the local oscillator leakage location of the current communication of each channel, so that the data of each channel can be processed in a targeted manner to improve the quality of the entire data transmission.
  • the method further includes: the terminal sending a second message to the network device, where the second message is used to indicate independent beam management information of multiple CCs corresponding to the aggregated carrier of the terminal;
  • the terminal receives a third message from the network device, where the third message is used to instruct the terminal to send the first message.
  • the network device can instruct the terminal to send the DC positions of all possible communications corresponding to each channel through a third message.
  • the first message may be a control element MAC CE entity message of the media access control layer, such as periodic MAC CE reporting, or MAC CE reporting triggered by an event, and the triggering event may be Including: activating cell, deactivating cell, handover of BWP, handover of cell, change of channel bandwidth, state change of discontinuous reception (DRX).
  • DRX state change of discontinuous reception
  • any one of the DC positions indicated by the first message is a resource element (RE) position.
  • the DC position may specifically be a frequency point position corresponding to the absolute frequency point number ARFCN, or may be a frequency point position corresponding to an offset from the reference frequency point position. Based on this solution, it can be ensured that the DC location of the current communication determined by the network device according to the first message is an available location.
  • a message processing method comprising: a network device receiving a first message from a terminal, where the first message is used to indicate the DC position of each channel when M channels of the terminal correspond to N component carrier CCs , M is an integer greater than or equal to 2, and N is an integer greater than 2; the network device determines the current communication DC position of each of the M channels according to the first message.
  • the terminal can report the DC position of each channel when M channels correspond to N CCs to the network device, which enables the network device to be able to report the DC position of each channel according to the one or more DC positions indicated by the first message.
  • the DC position of the current communication of each channel is determined, thereby providing a network device capable of determining the DC position of the current communication of each channel when the terminal has multiple channels and the number of CCs associated with the DC position exceeds two CCs Methods.
  • the network device can determine the leakage position of the local oscillator of the current communication of each channel, so as to perform targeted processing on the data of each channel and improve the quality of the entire data transmission.
  • the first message is further used to indicate the cell identity of the CC where the DC location is located. Based on this solution, the first message is also used to indicate the cell identifier of the DC position of each possible communication, so that the network device can more clearly determine the corresponding DC position of the current communication.
  • the M channels include a first channel, the first channel corresponds to multiple CCs, the first message is used to indicate that the first channel corresponds to the multiple CCs, and the multiple CCs DC positions corresponding to any two bandwidth group BWPs in a CC pair composed of any two CCs, the any two BWPs are respectively located in different CCs in the CC pair; and/or, the M channels further include a second channel, the first The two channels correspond to one CC, and the first message is further used to indicate that the second channel corresponds to the CC, and the DC position corresponding to each BWP in the multiple BWPs of the CC.
  • the terminal can report the CC corresponding to each channel and the DC positions of possible communication of each channel under the correspondingly configured CC to the network device, so that the network device can obtain all possible DC positions, thereby The corresponding DC position of the current communication is determined based on the DC positions of all possible communication corresponding to each channel.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the terminal can report the CC corresponding to each channel and the DC positions that may be activated for each channel under the corresponding configured CC to the network device, so that the network device can obtain all the DC positions that may be activated. , so as to determine the corresponding DC position of the current communication based on all possible activated DC positions corresponding to each channel, so as to perform targeted processing on the data of each channel and improve the quality of the entire data transmission.
  • the terminal can report the CC corresponding to each channel and the DC positions that may be activated for each channel under the corresponding configured CC to the network device, so that the network device can obtain all the DC positions that may be activated. , so as to determine the corresponding DC position of the current communication based on all possible activated DC positions corresponding to each channel, so as to perform targeted processing on the data of each channel and improve the quality of the entire data transmission.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the terminal can report to the network device all the activated CCs corresponding to each channel and the DC positions of each channel that may be activated under the corresponding activated CCs, so that the network device can obtain all possible activated DCs.
  • DC position so as to determine the corresponding current communication DC position based on all possible activated DC positions corresponding to each channel.
  • the network device determines, according to the first message, the DC position of the current communication of each of the M channels, including: for each of the M channels, if the There is only one CC corresponding to the channel, and the network device determines the DC position of the active BWP among the multiple BWPs of the CC as the DC position of the current communication on the channel, or determines the channel according to the reported DC position corresponding to the activated BWP.
  • the DC position of the current communication if the activated CC in the multiple CCs corresponding to the channel includes at least two CCs, the network device determines the DC position of the active BWP in the BWP combination configured on the multiple activated CCs as the channel or, if the activated CC in the multiple CCs corresponding to the channel includes at least two CCs, the network device determines the DC position on the channel according to the reported DC position corresponding to the activated BWP. Based on this solution, the network device may determine the DC position of the current communication corresponding to each channel according to the activated BWP in the current communication corresponding to each channel indicated by the first message.
  • the M channels are divided according to the power amplifier PA in the terminal; or, the M channels are divided according to the interval level of the terminal.
  • the terminal when the terminal has a phased array (that is, has multiple PAs) or performs millimeter-wave communication based on a phased array (that is, has multiple interval levels), it can connect one or more corresponding to each channel or Multiple DC locations are reported to the network device, so that the network device can determine the local oscillator leakage location of the current communication of each channel, so that the data of each channel can be processed in a targeted manner to improve the quality of the entire data transmission.
  • the method further includes: the network device receiving a second message from the terminal, where the second message is used to indicate independent beam management information of multiple CCs corresponding to the aggregated carrier of the terminal ; the network device sends a third message to the terminal, where the third message is used to instruct the terminal to send the first message.
  • the network device can instruct the terminal to send the DC positions of all possible communications corresponding to each channel through a third message.
  • the first message may be a control element MAC CE entity message of the media access control layer, such as periodic MAC CE reporting, or MAC CE reporting triggered by an event, and the triggering event may be Including: activating cell, deactivating cell, handover of BWP, handover of cell, change of channel bandwidth, state change of discontinuous reception (DRX).
  • DRX state change of discontinuous reception
  • any one of the DC positions indicated by the first message is a resource element (RE) position.
  • the DC position may specifically be a frequency point position corresponding to the absolute frequency point number ARFCN, or may be a frequency point position corresponding to an offset from the reference frequency point position. Based on this solution, it can be ensured that the DC location of the current communication determined by the network device according to the first message is an available location.
  • a message processing method comprising: a terminal sending a first message to a network device, where the first message is used to indicate whether the terminal supports a first capability, and the first capability is a local oscillator leaking self-calibration capability; The terminal supports the first capability, and the terminal determines whether to report the DC position to the network device.
  • the terminal supporting the local oscillator leakage self-calibration capability may mean that the terminal performs self-calibration optimization processing on the uplink data to be sent, so that the local oscillator leakage of the transmitted signal is lower than a certain threshold, and its impact on the data can be ignored;
  • the The terminal does not support the local oscillator leakage self-calibration capability may mean that the terminal cannot perform self-calibration optimization processing on the uplink data to be sent, so that the local oscillator leakage of the transmitted signal is lower than a certain threshold, and its impact on the data can be ignored.
  • the terminal can report whether it supports the local oscillator leakage self-calibration capability to the network device, so that when the terminal supports both the DC position reporting and the local oscillator leakage self-calibration capability, it can realize the DC position reporting and Compatibility of LO leakage self-calibration capability.
  • the terminal determines whether to report the DC position to the network device, including: if the terminal supports the first capability, the terminal determines not to report to the network The device reports the DC position; or, if the terminal supports the first capability and receives a second message indicating the calibration interval configured by the network device for the terminal, the terminal determines not to report the DC position to the network device; if the terminal The first capability is supported and the second message indicating the calibration interval configured by the network device for the terminal is not received, and the terminal determines to report the DC position to the network device.
  • the terminal when the terminal supports the first capability, the terminal can determine whether to report the DC position to the network device according to its own capability, or determine whether to report the DC position to the network device according to whether the network device configures a calibration interval, thereby further improving the DC position. Compatibility of reporting and LO leakage self-calibration capabilities.
  • the method further includes: the terminal receives an indication message from the network device, where the indication message is used to indicate whether the terminal reports the DC position; the terminal determines whether to report the DC position to the network device
  • the DC position includes: if the instruction message instructs the terminal to report the DC position, the terminal determines to report the DC position to the network device; if the instruction message indicates that the terminal does not report the DC position, the terminal determines not to report the DC position to the network device Location. Based on this solution, the terminal can determine whether to report the DC position to the network device according to the indication of the network device, thereby further improving the compatibility of the DC position reporting and the local oscillator leakage self-calibration capability.
  • the method further includes: if the terminal does not support the first capability, the terminal determines to report the DC location to the network device. Based on this solution, when the terminal does not support the first capability, the terminal can determine to report the DC position to the network device, so that the network device can perform the corresponding local oscillator leakage calibration related processing according to the reported DC position, thereby improving the quality of data transmission.
  • the method further includes: the terminal sending a third message to the network device, where the third message is used to indicate whether the terminal supports a second capability, and the second capability is to support a single carrier or
  • the enhanced DC location reporting capability of the aggregated carrier supports the enhanced DC location reporting under a single carrier and the enhanced DC location reporting that supports aggregated carriers can be carried in the same reporting information, or can be carried in different reporting information; when the terminal When it is determined to report the DC location to the network device, the terminal sends a fourth message to the network device, where the fourth message is used to indicate the DC location of the terminal.
  • the terminal when the terminal does not support the first capability, the terminal can report the DC location to the network device according to the DC location reporting method corresponding to the second capability supported by itself, so that the network device can perform the corresponding local oscillation according to the reported DC location. Leak calibration related processing, thereby improving the quality of data transmission.
  • the method further includes: if the terminal does not support the second capability, the terminal reports the DC location of the terminal to the network device according to a single-carrier DC location reporting manner.
  • the reported DC position may include the DC position of each BWP in the multiple BWPs of the single carrier; if the terminal communicates with the aggregated carrier and the terminal supports the second capability, the terminal shall follow the enhanced single-carrier and aggregated carrier DC
  • the location reporting method reports the DC location of the terminal to the network device.
  • the DC position includes: the DC position of each BWP in the multiple BWPs of the single carrier; and/or the DC position includes the CCs of the multiple component carriers of the aggregated carrier, and the CC pair composed of any two CCs is in the middle. DC positions corresponding to any two bandwidth group BWPs, where the any two BWPs are respectively located in different CCs in the CC pair.
  • the method further includes: the terminal sends a fifth message to the network device, where the fifth message is used to indicate whether the terminal supports a third capability, and the third capability is to support in-band aggregation The capability of reporting the DC location of the carrier; when the terminal determines to report the DC location to the network device, the terminal sends a sixth message to the network device, where the sixth message is used to indicate the DC location of the terminal.
  • the terminal reports the DC location of the terminal to the network device according to the DC location reporting method of intra-band UL CA.
  • the terminal when the terminal does not support the first capability, the terminal can report the DC location to the network device according to the DC location reporting method corresponding to the third capability supported by itself, so that the network device can perform the corresponding local oscillation according to the reported DC location. Leak calibration related processing, thereby improving the quality of data transmission.
  • a message processing method comprising: a network device receiving a first message from a terminal, where the first message is used to indicate whether the terminal supports a first capability, and the first capability is a local oscillator leaking self-calibration capability; The network device sends an indication message to the terminal, where the indication message is used to instruct the terminal to report the direct current DC position, or the indication message is used to instruct the terminal not to report the direct current DC position.
  • the terminal supporting the local oscillator leakage self-calibration capability may mean that the terminal performs self-calibration optimization processing on the uplink data to be sent, so that the local oscillator leakage of the transmitted signal is lower than a certain threshold, and its impact on the data can be ignored;
  • the The terminal does not support the local oscillator leakage self-calibration capability may mean that the terminal cannot perform self-calibration optimization processing on the uplink data to be sent, so that the local oscillator leakage of the transmitted signal is lower than a certain threshold, and its impact on the data can be ignored.
  • the terminal can report whether it supports the local oscillator leakage self-calibration capability to the network device, so that when the terminal supports both the DC position reporting and the local oscillator leakage self-calibration capability, it can realize the DC position reporting and Compatibility of LO leakage self-calibration capability.
  • the method when the indication message is used to instruct the terminal not to report the DC location, the method further includes: the network device sending a second message to the terminal, where the second message is used to instruct the terminal The calibration interval configured by the network device for this terminal. Based on this solution, the network device can configure a calibration interval for the terminal when the terminal supports the first capability, so that the terminal can perform local oscillator leakage self-calibration within the calibration interval, so as to improve the data transmission efficiency on the terminal side. quality.
  • the method further includes: the network device receives a third message from the terminal, where the third message is used to indicate whether the terminal supports a second capability, and the second capability is to support a single carrier or
  • the enhanced DC location reporting capability of the aggregated carrier supports the enhanced DC location reporting under a single carrier and the enhanced DC location reporting that supports aggregated carriers can be carried in the same reporting information, or can be carried in different reporting information; when the terminal When the second capability is supported, the network device receives a fourth message from the terminal, where the fourth message is used to indicate the DC location of the terminal.
  • the DC position includes: the DC position of each BWP in the multiple BWPs of the single carrier; and/or the DC position includes the CCs of the multiple component carriers of the aggregated carrier, and the CC pair composed of any two CCs is in the middle.
  • the method further includes: the network device receives a fifth message from the terminal, where the fifth message is used to indicate whether the terminal supports a third capability, and the third capability is to support in-band aggregation The capability of reporting the DC location of the carrier; when the terminal supports the third capability, the network device receives a sixth message from the terminal, where the sixth message is used to indicate the DC location of the terminal.
  • the terminal reports the DC location of the terminal to the network device according to the DC location reporting method of intra-band UL CA.
  • the terminal when the terminal does not support the first capability, the terminal can report the DC location to the network device according to the DC location reporting method corresponding to the third capability supported by itself, so that the network device can perform the corresponding local oscillation according to the reported DC location. Leak calibration related processing, thereby improving the quality of data transmission.
  • a message processing method comprising: a terminal sending an update message to a network device, where the update message is used to update the DC location of the terminal, for example, the terminal can report the update through the information UAI assisted by the user equipment UE The following DC location message is used to update the DC location reported by the terminal to the network device.
  • the terminal when the DC position of the terminal deviates, the terminal can send an update message for updating the DC position to the network device, so that the network device can determine the DC position of the current communication according to the update message, thereby based on The DC position of the current communication optimizes the data, so as to solve the problem of offset between the DC position reported by the terminal and the actual communication DC position, and also avoids the network device from optimizing the data in the wrong position and further Problems that lead to poor data performance.
  • the update message may be used to update one or more DC positions among the multiple DC positions reported by the terminal, wherein one DC position corresponds to the position where the current communication local oscillator leaks,
  • the multiple DC positions refer to the DC positions based on each CC pair corresponding to multiple configuration CCs and all corresponding BWP combinations, or the DC positions corresponding to each CC pair corresponding to multiple activated CCs and the corresponding all configured BWP combinations .
  • the update manner of each DC position in the update message may be the same as the reporting manner of the DC position reported by the terminal for the first time.
  • the update message when the DC location is reported by means of a single carrier or an inter-band aggregated carrier CA, the update message may be used to update one or more of the following information: The ID (activated CC servingcell ID), the ID of the activated BWP (activated BWP-ID), the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when the DC location is reported by means of a single carrier or an inter-band aggregated carrier CA, the update message may be used to update one or more of the following information: The ID (activated CC servingcell ID), the ID of the activated BWP (activated BWP-ID), the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message may be used to update one or more of the following information: channel and currently configured or activated Correspondence of CCs; for each channel, the currently activated CC list corresponding to the channel; for each channel, the currently activated BWP list corresponding to the channel; the position of the resource particle where the DC position is located (the specific range of the position Can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information can be represented by the number of REs.
  • a message processing method comprising: a network device receiving an update message from a terminal, where the update message is used to update the DC location of the terminal, for example, the update message may be user equipment UE-assisted information UAI .
  • the terminal when the DC position of the terminal deviates, the terminal can send an update message for updating the DC position to the network device, so that the network device can determine the DC position of the current communication according to the update message, thereby based on The DC position of the current communication optimizes the data, so as to solve the problem of offset between the DC position reported by the terminal and the actual communication DC position, and also avoids the network device from optimizing the data in the wrong position and further Problems that lead to poor data performance.
  • the update message may be used to update one or more DC positions among the multiple DC positions reported by the terminal, wherein one DC position corresponds to the position where the current communication local oscillator leaks,
  • the multiple DC positions refer to the DC positions based on each CC pair corresponding to multiple configuration CCs and all corresponding BWP combinations, or the DC positions corresponding to each CC pair corresponding to multiple activated CCs and the corresponding all configured BWP combinations .
  • the update manner of each DC position in the update message may be the same as the reporting manner of the DC position reported by the terminal for the first time.
  • the update message when the DC location is reported through a single carrier or an inter-band aggregated carrier CA, the update message may be used to update one or more of the following information: The ID (activated CC servingcell ID), the ID of the activated BWP (activated BWP-ID), the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when the DC location is reported through a single carrier or an inter-band aggregated carrier CA, the update message may be used to update one or more of the following information: The ID (activated CC servingcell ID), the ID of the activated BWP (activated BWP-ID), the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when the DC location is reported by means of in-band aggregated carrier CA, the update message may be used to update one or more of the following information: channel and currently configured or activated CC For each channel, the currently activated CC list corresponding to the channel; for each channel, the currently activated BWP list corresponding to the channel; the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be represented by the number of REs.
  • a message processing apparatus is provided, the apparatus is a terminal or a chip system applied to the terminal, the apparatus includes: a sending unit, configured to send a first message to a network device, where the first message is used to indicate the MMS of the terminal.
  • the first message is further used to indicate the cell identity of the CC where the DC location is located.
  • the M channels include a first channel, the first channel corresponds to multiple CCs, the first message is used to indicate that the first channel corresponds to the multiple CCs, and any one of the multiple CCs DC positions corresponding to any two bandwidth group BWPs in a CC pair composed of two CCs, where the any two BWPs are respectively located in different CCs in the CC pair; and/or, the M channels further include a second channel, the second The channel corresponds to one CC, and the first message is further used to indicate that the second channel corresponds to the CC, and the DC position corresponding to each BWP in the multiple BWPs of the CC.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the M channels are divided according to the power amplifier PA in the terminal; or, the M channels are divided according to the interval level of the terminal.
  • the apparatus further includes: a receiving unit; the sending unit is further configured to send a second message to the network device, where the second message is used to indicate the number of aggregated carriers corresponding to the terminal. independent beam management information of each CC; the receiving unit is configured to receive a third message from the network device, where the third message is used to instruct the terminal to send the first message.
  • a message processing apparatus is provided, the apparatus is a network device or a chip system applied to the network device, and the device includes: a receiving unit configured to receive a first message from a terminal, where the first message is used to indicate the terminal
  • the M channels correspond to the DC position of each channel when the N component carriers CC, M is an integer greater than or equal to 2, and N is an integer greater than 2; the processing unit is used to determine the current communication of the terminal according to the first message. DC location.
  • the first message is further used to indicate the cell identity of the CC where the DC location is located.
  • the M channels include a first channel, the first channel corresponds to multiple CCs, the first message is used to indicate that the first channel corresponds to the multiple CCs, and the multiple CCs DC positions corresponding to any two bandwidth group BWPs in a CC pair composed of any two CCs, the any two BWPs are respectively located in different CCs in the CC pair; and/or, the M channels further include a second channel, the first The two channels correspond to one CC, and the first message is further used to indicate that the second channel corresponds to the CC, and the DC position corresponding to each BWP in the multiple BWPs of the CC.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the first message is used to indicate the CC corresponding to each channel in the M channels; when there is only one CC corresponding to a channel in the M channels, the first message also It is used to indicate the DC position corresponding to the activated BWP in the CC; and/or, when a certain channel in the M channels corresponds to multiple CCs, the first message is also used to indicate any two of the current multiple activated CCs.
  • the processing unit is configured to: for each channel in the M channels, if the channel corresponds to only one CC, the DC of the BWP in the active state among the multiple BWPs of the CC The position is determined as the DC position of the current communication on the channel, or the DC position of the current communication on the channel is determined according to the DC position corresponding to the reported activated BWP; if the activated CC in the multiple CCs corresponding to the channel includes at least two CCs, Determine the DC position of the active BWP in the BWP combination configured on the multiple activated CCs as the DC position of the current communication on the channel; or, if the activated CC in the multiple CCs corresponding to the channel includes at least two CCs, The DC position on the channel is determined according to the reported DC position corresponding to the activated BWP.
  • the M channels are divided according to the power amplifier PA in the terminal; or, the M channels are divided according to the interval level of the terminal.
  • the apparatus further includes: a sending unit; the receiving unit is further configured to receive a second message from the terminal, where the second message is used to indicate the number of aggregated carriers corresponding to the terminal. independent beam management information of the CCs; the sending unit is configured to send a third message to the terminal, where the third message is used to instruct the terminal to send the first message.
  • a message processing device is provided, the device is a terminal or a chip system applied to the terminal, the device includes: a sending unit and a processing unit; the sending unit is configured to send a first message to a network device, the first message is used to indicate whether the terminal supports the first capability, which is the local oscillator leakage self-calibration capability; the processing unit is used to determine whether to report the DC position to the network device if the terminal supports the first capability.
  • the processing unit is configured to: if the terminal supports the first capability, determine not to report the DC location to the network device; or, if the terminal supports the first capability Supports the first capability and receives a second message indicating the calibration interval configured by the network device for the terminal, and determines not to report the DC position to the network device; if the terminal supports the first capability and does not receive a message indicating the calibration interval The second message of the calibration interval configured by the network device for the terminal determines to report the DC position to the network device.
  • the apparatus further includes a receiving unit; the receiving unit is configured to receive an indication message from the network device, where the indication message is used to indicate whether the terminal reports the DC position; the processing unit Used for: if the instruction message instructs the terminal to report the DC position, determine to report the DC position to the network device; if the instruction message instructs the terminal not to report the DC position, determine not to report the DC position to the network device.
  • the processing unit is configured to: if the terminal does not support the first capability, determine to report the DC location to the network device.
  • the sending unit is further configured to: send a third message to the network device, where the third message is used to indicate whether the terminal supports a second capability, and the second capability is to support a single carrier or Enhanced DC location reporting capability of the aggregated carrier; when it is determined to report the DC location to the network device, a fourth message is sent to the network device, where the fourth message is used to indicate the DC location of the terminal.
  • the DC position includes: the DC position of each BWP in the multiple BWPs of the single carrier; and/or the DC position includes the CCs of the multiple component carriers of the aggregated carrier, and the CC pair composed of any two CCs is in the middle. DC positions corresponding to any two bandwidth group BWPs, where the any two BWPs are respectively located in different CCs in the CC pair.
  • the sending unit is further configured to send a fifth message to the network device, where the fifth message is used to indicate whether the terminal supports a third capability, and the third capability is to support in-band aggregation The capability of reporting the DC location of the carrier; when it is determined to report the DC location to the network device, a sixth message is sent to the network device, where the sixth message is used to indicate the DC location of the terminal.
  • the sending unit reports the DC location of the terminal to the network device according to the DC location reporting method of intra-band UL CA.
  • a message processing apparatus is provided, the apparatus is a network device or a chip system applied to the network device, the device includes: a receiving unit and a sending unit; the receiving unit is configured to receive a first message from a terminal, and the first A message is used to indicate whether the terminal supports the first capability, which is the LO leakage self-calibration capability; the sending unit is used to send an indication message to the terminal, and the indication message is used to instruct the terminal to report the DC position, Or the indication message is used to instruct the terminal not to report the direct current DC position.
  • the sending unit when the indication message is used to instruct the terminal not to report the DC location, the sending unit is further used to: send a second message to the terminal, where the second message is used to instruct the network The calibration interval configured by the device for this terminal.
  • the receiving unit is further configured to: receive a third message from the terminal, where the third message is used to indicate whether the terminal supports the second capability, and the second capability is to support single carrier or aggregation Enhanced DC location reporting capability of the carrier; when the terminal supports the second capability, receives a fourth message from the terminal, where the fourth message is used to indicate the DC location of the terminal.
  • the DC position includes: the DC position of each BWP in the multiple BWPs of the single carrier; and/or the DC position includes the CCs of the multiple component carriers of the aggregated carrier, and the CC pair composed of any two CCs is in the middle. DC positions corresponding to any two bandwidth group BWPs, where the any two BWPs are respectively located in different CCs in the CC pair.
  • the receiving unit is further configured to: receive a fifth message from the terminal, where the fifth message is used to indicate whether the terminal supports a third capability, and the third capability is to support in-band aggregated carriers The capability of reporting the DC location of the terminal; when the terminal supports the third capability, a sixth message is received from the terminal, and the sixth message is used to indicate the DC location of the terminal.
  • the DC location is reported according to the DC location reporting method of intra-band UL CA.
  • a message processing apparatus is provided, the apparatus is a terminal or a chip system applied to the terminal, and the apparatus includes: a sending unit configured to send an update message to a network device, where the update message is used to update the DC of the terminal.
  • the location for example, can report the updated DC location message through the information UAI assisted by the user equipment UE.
  • the update message may be used to update one or more DC positions among the multiple DC positions reported by the terminal, where one DC position corresponds to the position where the current communication local oscillator leaks , where multiple DC positions refer to the DC positions based on each CC pair corresponding to multiple configuration CCs and all corresponding BWP combinations, or the DC positions corresponding to each CC pair corresponding to multiple activated CCs and the corresponding all configured BWP combinations Location.
  • the update manner of each DC position in the update message may be the same as the reporting manner of the DC position reported by the terminal for the first time.
  • the update message when the DC location is reported by means of a single carrier or an inter-band aggregated carrier CA, the update message may be used to update one or more of the following information: the cell where the activated CC is located. ID (activated CC servingcell ID), ID of the activated BWP (activated BWP-ID), and the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when the DC location is reported by means of a single carrier or an inter-band aggregated carrier CA, the update message can be used to update one or more of the following information: where the activated CC is located The identity of the cell (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), and the location of the resource element where the DC location is located (the specific range of the location can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when the DC location is reported by means of in-band aggregated carrier CA, the update message may be used to update one or more of the following information: channel and currently configured or activated For each channel, the currently activated CC list corresponding to the channel; for each channel, the currently activated BWP list corresponding to the channel; the position of the resource particle where the DC position is located (the specific The range can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be represented by the number of REs.
  • a twelfth aspect provides a message processing apparatus, the apparatus is a network device or a chip system applied to the network device, the device includes: a receiving unit and a processing unit; the receiving unit is configured to receive an update message from a terminal, The update message is used to update the DC location of the terminal, for example, the update message may be information UAI assisted by the user equipment UE; the processing unit is used to update the DC location of the terminal according to the update information.
  • the terminal when the DC position of the terminal deviates, the terminal can send an update message for updating the DC position to the network device, so that the network device can determine the DC position of the current communication according to the update message, thereby based on The DC position of the current communication optimizes the data, so as to solve the problem of offset between the DC position reported by the terminal and the actual communication DC position, and also avoids the network device from optimizing the data in the wrong position and further Problems that lead to poor data performance.
  • the update message may be used to update one or more DC positions among multiple DC positions reported by the terminal, where one DC position corresponds to the position where the current communication local oscillator leaks , where multiple DC positions refer to the DC positions based on each CC pair corresponding to multiple configuration CCs and all corresponding BWP combinations, or the DC positions corresponding to each CC pair corresponding to multiple activated CCs and the corresponding all configured BWP combinations Location.
  • the update manner of each DC position in the update message may be the same as the reporting manner of the DC position reported by the terminal for the first time.
  • the update message may be used to update one or more of the following information: where the activated CC is located The identity of the cell (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), and the location of the resource element where the DC location is located (the specific range of the location can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information can be expressed by the number of REs.
  • the update message when the DC location is reported through a single carrier or an inter-band aggregated carrier CA, the update message may be used to update one or more of the following information: the cell where the activated CC is located. ID (activated CC servingcell ID), ID of the activated BWP (activated BWP-ID), and the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when the DC location is reported by means of in-band aggregated carrier CA, the update message may be used to update one or more of the following information: channel and currently configured or activated For each channel, the currently activated CC list corresponding to the channel; for each channel, the currently activated BWP list corresponding to the channel; the position of the resource particle where the DC position is located (the specific The range can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be represented by the number of REs.
  • a terminal in another aspect of the present application, includes a processor and a memory; the memory is coupled to the processor, and the memory stores computer instructions; when the processor executes the computer instructions, the terminal is made to execute The message processing method provided by any one of the first aspect and its possible designs is mentioned.
  • a network device in another aspect of the present application, includes a processor and a memory; the memory is coupled to the processor, and the memory stores computer instructions; when the processor executes the computer instructions, the processor causes the The network device executes the message processing method provided by the second aspect.
  • a terminal in another aspect of the present application, includes a processor and a memory; the memory is coupled to the processor, and the memory stores computer instructions; when the processor executes the computer instructions, the terminal is made to execute The message processing method as provided in any one of the third aspect and possible designs thereof.
  • a network device in another aspect of the present application, includes a processor and a memory; the memory is coupled to the processor, and the memory stores computer instructions; when the processor executes the computer instructions, the processor causes the The network device performs the message processing method as provided in any one of the fourth aspect and possible designs thereof.
  • a terminal in another aspect of the present application, includes a processor and a memory; the memory is coupled to the processor, and the memory stores computer instructions; when the processor executes the computer instructions, the terminal is made to execute The message processing method as provided in any one of the fifth aspect and possible designs thereof.
  • a network device in another aspect of the present application, includes a processor and a memory; the memory is coupled to the processor, and the memory stores computer instructions; when the processor executes the computer instructions, the processor causes the The network device performs the message processing method as provided in any one of the sixth aspect and possible designs thereof.
  • a chip system in yet another aspect of the present application, includes a processing circuit and an interface; the processing circuit is used to call and run a computer program stored in the storage medium from a storage medium to execute the first aspect and the message handling methods provided by any of its possible designs.
  • a chip system in yet another aspect of the present application, includes a processing circuit and an interface; the processing circuit is used to call and run a computer program stored in the storage medium from a storage medium to execute the second aspect The provided message handling method.
  • a chip system in yet another aspect of the present application, includes a processing circuit and an interface; the processing circuit is used to call and run a computer program stored in the storage medium from a storage medium to execute the third aspect and the message handling methods provided by any of its possible designs.
  • a chip system in yet another aspect of the present application, includes a processing circuit and an interface; the processing circuit is used to call and run a computer program stored in the storage medium from a storage medium to execute the fourth aspect and the message handling methods provided by any of its possible designs.
  • a chip system in yet another aspect of the present application, includes a processing circuit and an interface; the processing circuit is configured to call and run a computer program stored in the storage medium from a storage medium to execute the fifth aspect and the message handling methods provided by any of its possible designs.
  • a chip system in yet another aspect of the present application, includes a processing circuit and an interface; the processing circuit is used to call and run a computer program stored in the storage medium from a storage medium to execute the sixth aspect and the message handling methods provided by any of its possible designs.
  • a computer-readable storage medium comprising computer instructions, when the computer instructions are executed, perform as provided in any one of the first aspect and its possible designs message processing method.
  • a computer-readable storage medium includes computer instructions, and when the computer instructions are executed, executes the message processing method provided in the second aspect.
  • a computer-readable storage medium comprising computer instructions, when the computer instructions are executed, perform as provided in any one of the third aspect and its possible designs message processing method.
  • a computer-readable storage medium comprising computer instructions, when the computer instructions are executed, perform as provided in any one of the fourth aspect and its possible designs message processing method.
  • a computer-readable storage medium includes computer instructions, and when the computer instructions are executed, executes the message processing method provided in the fifth aspect.
  • a computer-readable storage medium comprising computer instructions, when the computer instructions are executed, perform as provided in any one of the sixth aspect and its possible designs message processing method.
  • a communication system in yet another aspect of the present application, includes one or more network devices and one or more terminals.
  • the communication system includes one or more network devices and one or more terminals.
  • a communication system in yet another aspect of the present application, includes one or more network devices and one or more terminals.
  • the communication system includes one or more network devices and one or more terminals.
  • a communication system in yet another aspect of the present application, includes one or more network devices and one or more terminals.
  • the communication system includes one or more network devices and one or more terminals.
  • a computer program product comprising instructions, which, when run on a computer, enables the computer to execute the above-mentioned first aspect or any possible design of the above-mentioned first aspect. message handling method.
  • a computer program product containing instructions, which, when run on a computer, enables the computer to execute the message processing method provided in the second aspect.
  • a computer program product comprising instructions which, when run on a computer, enables the computer to execute the third aspect or any of the possible designs of the third aspect. message handling method.
  • a computer program product comprising instructions which, when run on a computer, enables the computer to execute the above fourth aspect or any possible design of the above fourth aspect. message handling method.
  • a computer program product comprising instructions, which, when run on a computer, enables the computer to execute the above-mentioned fifth aspect or any possible design of the above-mentioned fifth aspect. message handling method.
  • a computer program product comprising instructions, which, when run on a computer, enables the computer to execute the above-mentioned sixth aspect or any possible design of the above-mentioned sixth aspect. message handling method.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a message processing method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of M PAs corresponding to N CCs according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a DC position indicated by a first message according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another M PA corresponding to N CCs provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another DC position indicated by the first message according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another message processing method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another message processing method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another message processing method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another terminal provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of a single item(s) or a plurality of items(s).
  • At least one (a) of a, b or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • words such as “first” and “second” do not limit the quantity and execution order.
  • the network device can determine the location of the local oscillator leakage (lo leakage) of the corresponding cell carrier in the frequency domain through the direct current (DC) position reported by the terminal during the communication process. , and then perform corresponding processing on the local oscillator leakage position, such as restoring or selectively discarding data blocks transmitted at the frequency corresponding to the local oscillator leakage position, so as to improve the quality of data transmission on the cell carrier.
  • corresponding processing such as restoring or selectively discarding data blocks transmitted at the frequency corresponding to the local oscillator leakage position, so as to improve the quality of data transmission on the cell carrier.
  • the default DC position is generally on the resource element (RE) at the center of the frequency domain of the corresponding cell carrier, that is, the frequency corresponding to the DC position corresponding to the cell is generally It is located at the center frequency point of the corresponding frequency domain bandwidth of the corresponding cell carrier.
  • the network device can determine the DC position according to the frequency domain bandwidth corresponding to the cell carrier, and perform targeted processing on it.
  • the frequency corresponding to the DC position can be set at any position on the frequency domain bandwidth of the corresponding cell carrier. It is necessary to report the DC position by the terminal to determine the local oscillator leakage position of the corresponding cell carrier, so as to perform corresponding processing and improve the quality of data transmission.
  • communication can be performed by dividing the frequency domain bandwidth corresponding to the cell carrier (or called the system working bandwidth (Carrier Bandwidth, CBW)) into multiple different Bandwidth Parts (BWP) for communication , the positions of different BWPs on the cell carrier can be flexibly configured.
  • Each BWP can correspond to a DC location. Therefore, when the terminal reports the DC position to the network device, the DC position corresponding to each BWP needs to be reported to the network device, so that the network device can determine the current communication DC position according to the BWP activated in the current communication process.
  • the BWP on the cell carrier may be referred to as the BWP of the cell.
  • the network device may send an indication message to the terminal to instruct the terminal to report the DC location of the BWP configured by the network device for the terminal.
  • the network equipment configured with two cells (such as cell 1 and cell 2) for the terminal, and each cell includes two BWPs (for example, cell 1 includes BWP11 and BWP12, and cell 2 includes BWP21 and BWP22) as an example.
  • the terminal may separately report the DC location of each BWP to the network device.
  • the DC position DC11 corresponding to BWP11, the DC position DC12 corresponding to BWP12, the DC position DC21 corresponding to BWP21, and the DC position DC22 corresponding to BWP22 are reported to the network device. So that when a corresponding BWP is activated, the network device can determine the frequency position of the current communication local oscillator leakage according to the corresponding DC position, and then optimize the data transmission accordingly.
  • CA carrier aggregation
  • intra-band CA intra-band CA
  • inter-band CA inter-band CA
  • a CA communication process only corresponds to one local oscillator leakage position, which corresponds to only one DC position.
  • the terminal can report the DC positions corresponding to any two BWPs in a CC pair (pair) composed of any two CCs among the multiple component carriers (CCs) configured by the network device, and any two BWPs are located in Different CCs in a CC pair, respectively. So that during the communication process, the network device can determine the corresponding DC position according to the activated BWP, and optimize the corresponding data transmission.
  • an embodiment of the present application provides a message processing method, which enables a network device to know the DC location corresponding to each channel in at least two channels, and then can actively manage the communication accordingly, for example, the DC The data block corresponding to the position is processed accordingly.
  • FIG. 1 is a schematic diagram of the composition of a communication system 100 according to an embodiment of the present application.
  • the communication system 100 may include a terminal 110 and a network device 120 .
  • other terminals other than 110 may also be included, for example, the communication system 100 may also include the terminal 130 shown in FIG. 1 .
  • This embodiment of the present application does not limit the number of terminals included in the communication system 100 .
  • a terminal in this embodiment of the present application may be a user equipment (user equipment, UE), a mobile phone, a tablet computer, a desktop, a laptop, a handheld computer, a notebook computer, a super mobile Personal computers (ultra-mobile personal computer, UMPC), netbooks, and cellular phones, personal digital assistant (personal digital assistant, PDA), augmented reality (augmented reality, AR) ⁇ virtual reality (virtual reality, VR) devices, media playback
  • PDA personal digital assistant
  • augmented reality augmented reality, AR
  • VR virtual reality
  • the network device 120 may be a 5G base station. It should be understood that, in other embodiments, the network device 120 may also be a third-generation mobile communication technology (3rd-Generation, 3G) or a fourth-generation mobile communication technology (the 4th generation) capable of providing support for 5G communication mobile communication technology, 4G) base station, or other communication equipment. Exemplarily, when the network device 120 is a 5G base station, a 5G new radio (NR) can be provided for 5G communication with other devices (such as the terminal 110 and/or the terminal 130). In some embodiments, the network device 120 may include a transmitter chain and a receiver chain, each of which may include multiple components related to signal transmission and reception (eg, processors, modulators, multiplexer, encoder, demultiplexer or antenna, etc.).
  • the terminal 110 may communicate with the network device 120 .
  • the network device 120 may transmit information to the terminal 110 via the forward link 110-1 (which may also be referred to as the downlink) and receive information from the terminal 110 via the reverse link 110-2 (which may also be referred to as the uplink). information.
  • the terminal 130 may also communicate with the network device 120 .
  • the network device 120 sends information to the terminal 130 through the forward link 130-1, and receives information from the terminal 130 through the reverse link 130-2.
  • the network device 120 may send a message A to the terminal 110 through the downlink 110-1, for instructing the terminal 110 to feed back the DC position corresponding to each BWP configured for the terminal 110 to the network device 120.
  • the terminal 110 may send the DC location corresponding to each BWP to the network device 120 via the uplink 110-2.
  • the network device may send a message B to the terminal 110 through the downlink 110-2, which is used to instruct the terminal 110 to feed back to the network device 120 that all possible any two BWPs of all BWPs configured for it are simultaneously Corresponds to the DC position of the communication when activated.
  • the terminal 110 may send all the DC positions of the communication corresponding to the activation of all possible pairs in all BWPs to the network device 120 through the uplink 110-2.
  • the communication system 100 may be a public land mobile network (Public Land Mobile Network, PLMN) or a device-to-device (D2D) network or a machine to machine (M2M) network or
  • PLMN Public Land Mobile Network
  • D2D device-to-device
  • M2M machine to machine
  • FIG. 1 is only a simplified schematic diagram of an example, and the network may also include other network devices, which are not shown in FIG. 1 .
  • FIG. 2 is a schematic flowchart of a message processing method provided by an embodiment of the present application.
  • the method can be applied to the communication system 100 shown in FIG. 1 and is used to solve the problem when at least two channels of a terminal correspond to at least three CCs.
  • the method may include the following steps.
  • S201 The terminal sends a first message to the network device, where the first message is used to indicate the DC position of each channel when M channels of the terminal correspond to N CCs, where M is an integer greater than or equal to 2, and N is an integer greater than 2 .
  • the first message may be a radio resource control (radio resource control, RRC) message, for example, the first message may be an RRC reconfiguration complete (RRCReconfigurationComplete) message, or an RRC recovery complete message (RRCResumeComplete) message.
  • RRC radio resource control
  • the first message can also be a control element (media access control control element, MAC CE) entity message of the media access control layer, such as periodic MAC CE reporting, and for example, an event-triggered MAC CE reporting, and the triggering event can include: activation Cell, deactivated cell, BWP handover, cell handover, channel bandwidth change, discontinuous reception (DRX) state change.
  • RRC radio resource control
  • RRCReconfigurationComplete RRC reconfiguration complete
  • RRCResumeComplete RRC recovery complete message
  • the first message can also be a control element (media access control control element, MAC CE) entity message of the media access control layer, such as periodic MAC CE reporting, and for example, an event-triggered MAC CE reporting
  • the DC position may specifically refer to a resource element (resource element, RE) position, and the center frequency of the frequency corresponding to the DC position is the frequency corresponding to the RE position of the resource element.
  • the DC position may be a frequency point position corresponding to an absolute frequency point number (absolute radio frequency channel number, ARFCN), or may be a frequency point position corresponding to an offset from the reference frequency point position.
  • the first message may be used to indicate a CC corresponding to each channel of the M channels.
  • the first message can also be used to indicate the DC location set corresponding to the configured BWP in the CC; when a certain channel among the M channels corresponds to multiple CCs , the first message can also be used to indicate the DC positions corresponding to any two configured BWPs in a CC pair composed of any two CCs in the multiple configured CCs, and the any two BWPs are respectively located in different CCs in the CC pair .
  • the M channels include 2 channels and are represented as PA1 and PA2 (PA1 corresponds to the local oscillator LO1, PA2 corresponds to the local oscillator LO2), and the N CCs include 4 CCs and are respectively Denoted as CC1, CC2, CC3 and CC4, the CCs corresponding to PA1 include CC1, CC2 and CC3, and the CCs corresponding to PA2 include CC4, then the first message can be used to indicate the following content: the CCs corresponding to PA1 include CC1, CC2 and CC3, and the CCs corresponding to PA2
  • the corresponding CC includes CC4; the DC position of PA1 includes the DC position corresponding to any two BWPs in the CC pair composed of any two CCs from CC1 to CC3, and the DC position of PA2 includes the DC position corresponding to the BWP in CC4.
  • the first message can be used to indicate that the CC pair composed of CC1 and CC2 corresponds to
  • the DC positions include DC 11-21 , DC 12-21 , DC 13-21 , DC 14-21 , DC 11-22 , DC 12-22 , DC 13-22 , DC 14-22 , DC 11-23 , DC 12-23 , DC 13-23 , DC 14-23 , DC 11-24 , DC 12-24 , DC 13-24 , DC 14-24 ;
  • DC positions corresponding to the CC pair composed of CC2 and CC3 include DC 21- 31 , DC 22-31 , DC 23-
  • the first message may be used to indicate a CC corresponding to each channel in the M channels.
  • the first message can also be used to indicate the DC position corresponding to the activated BWP in the CC; when a certain channel among the M channels corresponds to multiple CCs , the first message may also be used to indicate the DC positions corresponding to any two configured BWPs in the current multiple activated CCs, or the DC positions corresponding to the combination of activated BWPs in the current multiple activated CCs.
  • the M channels include 2 channels and are represented as PA1 and PA2 (PA1 corresponds to the local oscillator LO1, PA2 corresponds to the local oscillator LO2), and the N CCs include 6 CCs and are respectively Denoted as CC1 to CC6, the CCs corresponding to PA1 include CC1, CC2, CC3 and CC4, the CCs corresponding to PA2 include CC5 and CC6, the activated CCs in the CCs corresponding to PA1 in the current communication state are CC1, CC2 and CC3, and the CCs corresponding to PA2
  • the activated CC in the CC is CC5, and the first message can be used to indicate the following content: the CC corresponding to PA1 includes CC1, CC2 and CC3, the CC corresponding to PA2 includes CC5; the DC position of PA1 includes any two CCs from CC1 to CC3.
  • the DC positions corresponding to BWPs are configured in any two of the CC pairs of the PA2, and the DC positions of PA2 include the DC positions corresponding to the BWPs in CC5.
  • CC1 includes four BWPs (respectively denoted as 11, 12, 13 and 14)
  • CC2 includes four BWPs (respectively denoted as 21, 22, 23 and 14)
  • CC3 includes four BWPs (respectively represented as 31, 32, 33 and 34)
  • CC5 includes four BWPs (respectively represented as 51, 52, 53 and 54)
  • the first message can be used to indicate that the CC pair composed of CC1 and CC2 corresponds to
  • the DC positions include DC 11-21 , DC 12-21 , DC 13-21 , DC 14-21 , DC 11-22 , DC 12-22 , DC 13-22 , DC 14-22 , DC 11-23 , DC 12-23 , DC 13-23 , DC 14-23 , DC 11-24 , DC 12-24 , DC
  • the first message may be used to indicate the CC corresponding to each channel in the M channels.
  • the first message can also be used to indicate the DC position corresponding to the activated BWP in the CC; when a certain channel among the M channels corresponds to multiple CCs , the first message may also be used to indicate the DC positions corresponding to any two activated BWPs in the current multiple activated CCs, or the DC positions corresponding to the combination of activated BWPs in the current multiple activated CCs.
  • the N CCs include 4 CCs and are denoted as CC1, CC2, CC3 and CC4 respectively
  • the CCs corresponding to PA1 include CC1, CC2, CC3 and CC4
  • the CCs corresponding to PA2 include CC5 and CC6.
  • the activated CCs in the CCs corresponding to PA1 are CC1, CC2 and CC3
  • the activated CCs in the CCs corresponding to PA2 are CC5.
  • the first message can be used to indicate the following content: PA1
  • the corresponding CCs include CC1, CC2 and CC3, and the CCs corresponding to PA2 include CC5;
  • the DC position of PA1 is the DC position corresponding to the BWP combination composed of BWPs activated by each CC in CC1 to CC3, and the DC position of PA2 is the activation in CC5
  • the BWP corresponds to the DC position.
  • the terminal may send the DC location of the terminal in the first message according to an agreed structure.
  • an agreed structure For example, a schematic structure of a first message is shown below.
  • the first message is further used to indicate the cell identifier of the CC where the DC location of the terminal is located. That is, for each DC location in the multiple DC locations indicated by the first message, the first message is further used to indicate the cell identity of the CC where the DC location is located.
  • the M channels may be divided according to the number of power amplifiers (power amplifiers, PAs) included in the terminal, that is, each of the M channels corresponds to one PA.
  • PAs power amplifiers
  • the M channels may be divided according to the number of separation classes of the terminal, that is, each channel in the M channels corresponds to a separation class of the terminal.
  • the M channels may be divided according to the number of interval levels of the terminal.
  • the terminal can also report the beam management information of multiple CCs corresponding to the CA to the network device, so that the network device notifies the network device according to the beam management information reported by the terminal. How the terminal reports the DC location.
  • the beam management information reported by the terminal to the network equipment is independent beam management (independent beam management, IBM) information
  • the network equipment can instruct the terminal to report the DC position in the manner of the above-mentioned first message on time;
  • the network device may instruct the terminal to report the DC location in an intra-band carrier aggregation (intra-band CA) manner.
  • the method may further include: the terminal may also send a second message to the network device, where the second message is used to indicate a plurality of aggregation carriers corresponding to the terminal. Beam management mode information of the CC; when the network device receives the second message, the network device may send a third message to the terminal, where the third message is used to instruct the terminal to send the first message. In this way, when the terminal receives the third message from the network device, the terminal can send the first message to the network device through the above S201, so as to report the DC location of the terminal to the network device.
  • S202 The network device receives the first message. It should be noted that, for the relevant description of the first message in S202, reference may be made to the description in the foregoing S201, and details are not described herein again in this embodiment of the present application.
  • S203 The network device determines, according to the first message, the DC position of the current communication of each of the M channels.
  • the network device may determine the DC position of the active BWP among the multiple BWPs of the CC as the DC position of the current communication of the channel . If the activated CC in the multiple CCs corresponding to the channel includes at least two CCs, and the first CC with the lowest carrier frequency and the second CC with the highest carrier frequency form the first CC pair, the first CC pair is currently activated If the BWPs in the state form the first BWP combination, the network device can query and obtain the DC location corresponding to the first BWP combination in the first CC pair from the multiple DC locations corresponding to the channel as the DC location of the current communication on the channel. The network device may determine the DC position of the current communication on each of the M channels according to the above rules.
  • the network device determines the DC position of the BWP in the active state among the multiple BWPs of the CC as the current communication on the channel The DC position of the current communication on the channel is determined according to the DC position corresponding to the reported activated BWP; if the activated CCs in the multiple CCs corresponding to the channel include at least two CCs, the network device will activate the multiple CCs.
  • the DC position of the active BWP in the BWP combination configured on the CC is determined as the DC position of the current communication on the channel; or, if the activated CC in the multiple CCs corresponding to the channel includes at least two CCs, the network device will report The DC position corresponding to the activated BWP is used to determine the DC position on the channel.
  • the terminal when the terminal has M channels and corresponds to N CCs, the terminal can use the first message to send the CC corresponding to each channel in the M channels, and a certain channel in the M channels.
  • the DC position corresponding to the BWP in the CC When one channel corresponds to only one CC, the DC position corresponding to the BWP in the CC, and when one of the M channels corresponds to multiple CCs, any two BWPs in the CC pair composed of any two CCs in the multiple CCs
  • the corresponding DC position is reported to the network device, so that the network device can know the DC position of each channel in the M channels, and then query and determine the DC position of the channel used by the terminal for current communication from the DC positions of the M channels , so as to optimize the data transmission accordingly.
  • FIG. 7 is a schematic flowchart of another message processing method provided by an embodiment of the present application.
  • the method can be applied to the communication system 100 shown in FIG. 1 above to solve the problem that the terminal supports the local oscillator leakage self-calibration capability and/or How to coexist in the network when the DC location is reported, the method may include the following steps.
  • S301 The terminal sends a first message to a network device, where the first message is used to indicate whether the terminal supports a first capability, and the first capability is a local oscillator leaking self-calibration capability.
  • S301a the network device receives the first message.
  • whether the terminal supports the first capability may also be referred to as whether the terminal has the first capability, and specifically refers to whether the terminal has the local oscillator leakage self-calibration capability.
  • a terminal having the local oscillator leakage self-calibration capability may mean that the terminal performs self-calibration optimization on the uplink data to be sent so that the local oscillator leakage of the transmitted signal is lower than a certain threshold, and its impact on the data can be ignored.
  • a terminal does not have the self-calibration capability of local oscillator leakage may mean that the terminal cannot perform self-calibration optimization processing on the uplink data to be sent, so that the local oscillator leakage of the transmitted signal is lower than a certain threshold, and its impact on the data can be ignored.
  • the terminal When the terminal supports the first capability, the terminal can directly determine whether to report the DC location to the network device, or determine whether to report the DC location to the network device according to the message or information sent by the network device.
  • the first to fourth methods are described in detail.
  • the terminal determines not to report the DC location to the network device.
  • the terminal sends a first message to the network device, where the first message is used to indicate that the terminal supports the first capability, and the terminal may directly determine not to report the DC location to the network device.
  • the network device receives the first message indicating that the terminal supports the first capability
  • the network device does not send the first indication message to the terminal device, where the first indication message is used to instruct the terminal to report the DC location to the network ; or the terminal device does not expect to receive the first indication message for instructing the terminal to report the DC location to the network.
  • the terminal can optimize the local oscillator leakage through the first capability (ie, the local oscillator leakage self-calibration capability), and then send the uplink data to the network device.
  • the terminal may directly perform optimization processing on the uplink data to be sent through the first capability after sending the first message to the network device for indicating that the terminal supports the first capability, S302 is not executed, that is, the terminal does not execute the step of determining whether to report the DC location to the network device.
  • the terminal may determine not to report the DC to the network device.
  • the terminal sends a first message to the network device, where the first message is used to indicate that the terminal supports the first capability; when the network device receives the first message, the network device sends a second message to the terminal, the first message is The second message is used to indicate the calibration interval configured by the network device for the terminal; when the terminal receives the second message, the terminal may determine not to report the DC position to the network device.
  • the network device will not send the first indication message to the terminal, where the first indication message is used to instruct the terminal device to report the DC location to the network.
  • the terminal may optimize the uplink data through the first capability (ie, the local oscillator leakage self-calibration capability) within the calibration interval, and then send the uplink data to the network device.
  • the terminal may send a first message to the network device to indicate that the terminal supports the first capability, and receive a message sent by the network device to indicate that the network device is the terminal.
  • the uplink data to be sent is directly optimized through the first capability without performing S302, that is, the terminal does not perform the step of determining whether to report the DC location to the network device.
  • the terminal may determine to report the DC location to the network device.
  • the terminal sends a first message to the network device, where the first message is used to indicate that the terminal supports the first capability; if the terminal does not receive a calibration for instructing the network device to configure the terminal within a preset time period the second message at the interval, the terminal may determine to report the DC location to the network device. Afterwards, the terminal may report the DC location to the network device, so that the network device may perform optimization processing on the uplink data sent by the terminal after receiving the DC location reported by the terminal.
  • the terminal may send a first message indicating that the terminal supports the first capability to the network device, and does not receive a message indicating that the network device is After the second message of the calibration interval configured by the terminal, the terminal directly reports the DC position to the network device without performing S302, that is, the terminal does not perform the step of determining whether to report the DC position to the network device.
  • the second indication message is used to instruct the terminal to report the DC position or not to report the DC position.
  • the second indication message determines whether to report the DC location to the network device.
  • the terminal sends a first message to the network device, where the first message is used to indicate that the terminal supports the first capability; the terminal receives a second indication message from the network device; if the second indication is used to instruct the terminal to report the DC location, the terminal determines to report the DC location to the network device, and if the second indication message is used to instruct the terminal not to report the DC location, the terminal determines not to report the DC location to the network device.
  • the terminal may send a first message indicating that the terminal supports the first capability to the network device, and after receiving the second indication message from the network device, the terminal According to the second indication message, the DC location may be reported to the network device or not, and S302 is not performed, that is, the terminal does not perform the step of determining whether to report the DC location to the network device.
  • the method may further include S302a: if the first message received by the network device is used to indicate that the terminal supports the first capability, that is, the terminal supports the self-calibration capability leaked by the local oscillator, the network device determines whether to report to the terminal device Send a second indication message for instructing the terminal to report the DC location.
  • the network device determines not to send a second indication message to the terminal device for instructing the terminal to report the DC location .
  • the first message received by the network device is used to indicate that the terminal supports the first capability, and the network device may directly determine not to send the second indication message to the terminal device.
  • the network device determines whether the first message received by the network device is used to indicate that the terminal supports the self-calibration capability of local oscillator leakage, and the network device sends a second message to the terminal that is used to indicate a calibration gap. If the first message received by the network device is used to indicate that the terminal supports the self-calibration capability of local oscillator leakage, and the network device does not send the second message to the terminal for indicating a calibration gap, then the The network device determines to send a second indication message to the terminal for instructing the terminal to report the DC location.
  • the terminal may directly determine to report the DC location to the network device.
  • the terminal can transmit the uplink data to the network device through the first capability (that is, the local oscillator leaks from the source). calibration capability) after optimizing the uplink data, and then sending the uplink data to the network device. If the terminal determines to report the DC location to the network device, the terminal may report the DC location to the network device according to the indication of the network device or the DC location reporting capability supported by itself. Correspondingly, as shown in FIG. 8 , the method may further include: S304-S305; and/or S306-S307.
  • the terminal sends a third message to the network device, where the third message is used to indicate whether the terminal supports the second capability.
  • the second capability is the ability to support the enhanced DC location reporting of a single carrier or an aggregated carrier.
  • the enhanced DC location reporting that supports a single carrier and the enhanced DC location reporting that supports aggregated carriers can be carried in the same reporting information, or can be carried in different in the report information.
  • the network device receives the third message.
  • the capability of the terminal to support single-carrier enhanced DC location reporting may refer to: the terminal may perform DC location reporting according to the scheme described in FIG. 9 provided below, and the terminal may use MAC CE or physical layer channel to report the DC location reported to the network device.
  • the capability of the terminal to support enhanced DC location reporting of aggregated carriers may refer to: the terminal may report multiple DC locations of the aggregated carriers according to the DC location reporting method of intra-band carrier aggregation or the DC location reporting method of inter-band carrier aggregation.
  • the DC positions corresponding to any two BWPs in the CC pair composed of any two CCs in the CC are reported to the network device.
  • the terminal may report the DC location according to the solution described in FIG. 2 above or FIG. 9 below.
  • the terminal supporting the second capability may mean that the terminal can report the DC position to the network device according to the above-mentioned single-carrier DC position reporting method and the aggregated carrier DC position reporting method.
  • the terminal supporting or not supporting the second capability may mean that the terminal cannot report the DC position to the network device according to the above single-carrier DC position reporting method and the aggregated carrier DC position reporting method.
  • the third message sent by the terminal to the network device may be used to indicate that the terminal supports the second capability; when the terminal does not support In the case of single-carrier enhanced DC location reporting and aggregated carrier enhanced DC location reporting, the third message sent by the terminal to the network device may be used to indicate that the terminal does not support the second capability.
  • the terminal When the terminal determines to report the DC location to the network device, the terminal sends a fourth message to the network device, where the fourth message is used to indicate the DC location of the terminal.
  • the network device may receive the fourth message.
  • the terminal may report the DC location of the terminal to the network device according to a single-carrier DC location reporting manner.
  • the reported DC position may include the DC position of each BWP in the multiple BWPs of the single carrier.
  • the terminal may report the DC location of the terminal to the network device according to the enhanced single-carrier and aggregated carrier DC location reporting method .
  • the DC position includes the DC positions corresponding to any two BWPs in a CC pair composed of any two CCs in the multiple CCs of the aggregated carrier, and any two BWPs are respectively located in different CCs in the CC pair.
  • the terminal may report, to the network device, the DC position of each channel when M channels of the terminal correspond to N CCs according to the method provided in FIG. 2 .
  • the terminal sends a fifth message to the network device, where the fifth message is used to indicate whether the terminal supports a third capability, where the third capability is a capability of supporting DC location reporting of in-band aggregated carriers.
  • the network device may receive the fifth message.
  • the capability of the terminal to support the reporting of the DC location of the in-band aggregated carrier may refer to: the terminal may correspond to any two BWPs in the CC pair composed of two CCs of the aggregated carrier according to the DC location reporting method of the in-band carrier aggregation.
  • the DC location is reported to the network device.
  • the terminal not supporting the third capability may mean that the terminal cannot report the DC position in the above-mentioned manner.
  • the fifth message sent by the terminal to the network device is used to indicate that the terminal supports the third capability; when the terminal does not support the above-mentioned in-band carrier aggregation When reporting the DC location, the fifth message sent by the terminal to the network device is used to indicate that the terminal does not support the third capability.
  • the terminal When the terminal determines to report the DC location to the network device, the terminal sends a sixth message to the network device, where the sixth message is used to indicate the DC location of the terminal.
  • the network device may receive the sixth message.
  • the terminal may report the DC location of the terminal to the network device according to the DC location reporting method of intra-band uplink carrier aggregation (intra-band UL CA).
  • the method can refer to the description in the relevant protocol.
  • the aggregated carrier includes two CCs, and the reported DC positions include DC positions corresponding to any two BWPs in the two CCs, and any two BWPs are respectively located in different CCs in the two CCs.
  • the network device may send a third indication message to the terminal, and the third indication message is used for Refers to the manner in which the terminal reports the DC location, so that when the terminal receives the third indication message, the terminal can report the DC location in the manner indicated by the third indication message.
  • the third indication message sent by the network device may be used to instruct the terminal to report the DC position of a single carrier, or to report the DC position of an aggregated carrier, Or at the same time report the DC position of the single carrier and the DC position of the aggregated carrier; when the terminal supports the third capability, the third indication message sent by the network device can be used to instruct the terminal according to in-band carrier aggregation.
  • the method of reporting the DC location of may correspondingly, the terminal may report the DC location corresponding to the terminal according to the manner indicated by the third indication message sent by the network device.
  • the terminal when the terminal supports the local oscillator leakage self-calibration capability and/or supports DC position reporting with different capabilities, the terminal can determine whether to correspondingly determine whether to Report the DC position to the network device, and complete the reporting of the DC position according to the corresponding reporting method when the DC position is determined to be reported, thus solving how the terminal supports the local oscillator leakage self-calibration capability and/or supports the DC position reporting. How to coexist in the network The problem.
  • FIG. 9 is a schematic flowchart of another message processing method provided by an embodiment of the present application. This method can be applied to the communication system 100 shown in FIG. 1 above, and is used to solve the difference between the DC position reported by the terminal and the actual communication DC position. There is an offset problem between the two, the method can include the following steps.
  • S401 The terminal sends an update message to the network device, where the update message is used to update the DC location of the terminal.
  • the terminal Before the terminal and the network device perform data transmission, the terminal will report all possible DC locations of the terminal to the network device, and after the network device establishes a communication link with the terminal and receives the uplink data from the terminal, the terminal will The network device may obtain the DC position of the current communication from the DC position reported by the terminal, and perform data optimization processing on the uplink data of the terminal based on the DC position of the current communication.
  • the DC position of the terminal will shift, for example, Due to the change of the temperature of the terminal, the working environment or the transmission schedule, the DC position of the terminal is shifted, and the DC position reported by the terminal received by the network device is unchanged, so the network device accordingly There may be an offset between the determined DC position of the current communication and the DC position of the actual communication of the terminal.
  • the terminal can report the updated DC location message through the information (UE assistance information, UAI) assisted by the user equipment (UE), which is used to update the terminal to the terminal.
  • the DC location reported by the network device for example, the update message may be an RRC message.
  • the update message can be used to update one or more DC positions among the multiple DC positions reported by the terminal, where one DC position corresponds to the position where the current communication local oscillator leaks, and the multiple DC positions refer to Based on the DC position of each CC pair corresponding to multiple configuration CCs and all corresponding BWP combinations, or the DC position of each CC pair corresponding to multiple activated CCs and the corresponding all configured BWP combinations.
  • the update manner of each DC position in the update message may be the same as the reporting manner of the DC position reported by the terminal for the first time, which is not specifically limited in this embodiment of the present application.
  • the update message can be used to update one or more of the following information: the identity of the cell where the activated CC is located (the activated CC serving cell). ID), the identifier of the activated BWP (activated BWP-ID), the position of the resource particle where the DC position is located (the specific range of the position may be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be expressed by the number of REs.
  • the update message when reporting the DC location by means of in-band aggregated carrier CA, can be used to update one or more of the following information: the correspondence between the channel and the currently configured or activated CC; for each channel, The currently activated CC list corresponding to the channel; for each channel, the currently activated BWP list corresponding to the channel; the position of the resource particle where the DC position is located (the specific range of the position can be 0-3301).
  • the update message may be used to update one or more of the following information: the identity of the cell where the activated CC is located (activated CC servingcell ID), the identity of the activated BWP (activated BWP-ID), the DC location compared to the previous DC
  • the offset of the location reporting information The offset can be represented by the number of REs.
  • the channel may be divided according to the PA in the terminal, or may be divided according to the interval level of the terminal.
  • the terminal may update the DC location of the terminal in the update message according to the agreed structure.
  • the agreed structure For example, a schematic structure of an update message is shown below.
  • the above structure provides an update method for reporting a corresponding DC position in the current communication.
  • the terminal may also update the DC positions of all possible BWP combinations on each CC pair corresponding to all configuration CCs.
  • S402 The network device receives the update message. It should be noted that the update message is consistent with the update message in S401 , and for a specific description of the update message, reference may be made to the relevant description in the foregoing S401 , which is not repeated in this embodiment of the present application.
  • S403 The network device determines, according to the update message, the DC location of the current communication of the terminal.
  • the network device can re-determine the DC position of the current communication of the terminal according to the update message, so as to optimize the received uplink data of the terminal based on the DC position of the current communication.
  • the terminal when the DC position of the terminal is offset, the terminal can send an update message for updating the DC position to the network device, so that the network device can determine the current communication according to the update message Therefore, the data is optimized based on the DC position of the current communication, so as to solve the problem of offset between the DC position reported by the terminal and the actual communication DC position, and also avoid the network equipment to the wrong position.
  • the data is optimized, which further leads to the problem of poor data performance.
  • the foregoing mainly introduces the solutions provided by the embodiments of the present application from the perspective of interaction between various network elements.
  • the above-mentioned terminals and network devices, etc. include corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal and the network device can be divided into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 10 shows a possible schematic structural diagram of the message processing apparatus involved in the embodiment of the present application.
  • the apparatus can be used as a terminal or a built-in chip system in the terminal, and the apparatus includes: sending Unit 501, receiving unit 502 and processing unit 503.
  • the sending unit 501 may be configured to support the apparatus to perform S201 in the method embodiment described in FIG. 2 and one or more steps in sending the second message; the receiving unit 502 is configured to execute The step of receiving the third message in the method embodiment described in FIG. 2 above.
  • the sending unit 501 may be configured to support the apparatus to perform one or more steps of S301, S304 to S307 in the method embodiments described in FIG. 7-FIG. 8; the receiving unit 502 uses is used to perform one or more steps of receiving the second message and different indication messages in the method embodiments described above in FIGS. 7-8 ; the processing unit 503 is configured to execute the method embodiments described in the above-mentioned FIGS. 7-8 One or more steps in S302 and S303 in the above.
  • the sending unit 501 may be configured to support the apparatus to perform S401 in the method embodiment described in FIG. 9 above.
  • the processing unit 503 in this embodiment of the present application may be the processor of the device, the sending unit 501 may be the transmitter of the device, the receiving unit 502 may be the receiver of the device, and the transmitter usually It can be integrated with the receiver as a transceiver, and the specific transceiver can also be called a communication interface or an interface circuit.
  • the apparatus may be used as a terminal or a built-in chip system of the terminal, and the apparatus includes: a processor 511 , It may also include a memory 512 , a communication interface 513 and a bus 514 through which the processor 511 , the memory 512 and the communication interface 513 are connected.
  • the processor 511 is used to control and manage the actions of the device.
  • the processor 511 may be configured to support the apparatus to perform one or more steps of generating and parsing different messages in the method embodiment described in FIG. 2 , and send or receive different messages through the communication interface 513 message steps.
  • the processor 511 may be configured to support the apparatus to perform one or more of the steps in S302 and S303 in the method embodiments described in FIG. 7 to FIG. 8 , sending or Steps of receiving different messages, and/or other steps described herein.
  • the processor 511 may be configured to support the apparatus to perform one or more steps of generating and parsing different messages in the method embodiment described in FIG. 9 , and send or receive through the communication interface 513 Steps for different messages.
  • the communication interface 513 is used to support the apparatus to communicate, for example, to support the apparatus to communicate with a network device.
  • the processor 511 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or other programmable logic devices. random combination. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that performs computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • peripheral component interconnect standard peripheral component interconnect, PCI
  • extended industry standard architecture extended industry standard architecture, EISA
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For convenience of presentation, only one thick line is used in the above-mentioned FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • FIG. 12 shows a possible schematic structural diagram of the message processing apparatus involved in the embodiment of the present application.
  • the apparatus can be used as a network device or a built-in chip system of the network device, and the device includes : receiving unit 601 , sending unit 602 and processing unit 603 .
  • the receiving unit 601 may be configured to support the apparatus to perform S202 in the method embodiment described above in FIG. 2 ; the sending unit 602 may be configured to support the apparatus to perform the method embodiment described in FIG. 2 above.
  • the step of sending the second message; the processing unit 603 is configured to support the apparatus to perform S203 in the method embodiment described in FIG. 2 above.
  • the receiving unit 601 may be configured to support the apparatus to perform one or more steps of receiving different messages in S301, S304 to S307 in the method embodiments described in the foregoing FIG. 7-FIG. 8; sending The unit 602 is configured to perform the steps of sending different indication messages in the method embodiments described in the above-mentioned FIG. 7-FIG.
  • the processing unit 603 is configured to perform the method embodiments described in the above-mentioned FIG. 7-FIG. 8 to determine the DC of the current communication of the terminal A step of.
  • the receiving unit 601 may be configured to support the apparatus to perform S402 in the method embodiment described above in FIG. 9 ; the processing unit 603 may be configured to support the apparatus to perform the method embodiment described above in FIG. 9 . in S403.
  • the processing unit 603 in this embodiment of the present application may be the processor of the device, the sending unit 601 may be the transmitter of the device, the receiving unit 602 may be the receiver of the device, and the transmitter usually It can be integrated with the receiver as a transceiver, and the specific transceiver can also be called a communication interface or an interface circuit.
  • the apparatus can be used as a network device or a built-in chip system of the network device, and the apparatus includes: a processor
  • the processor 611 may also include a memory 612 , a communication interface 613 and a bus 614 , and the processor 611 , the memory 612 and the communication interface 613 are connected through the bus 614 .
  • the processor 611 is used to control and manage the actions of the device.
  • the processor 611 may be configured to support the apparatus to perform S203 in the method embodiment described above in FIG. Steps to send or receive different messages.
  • the processor 611 may be configured to support the apparatus to perform one or more steps of generating and parsing different messages in the method embodiments described in FIG. 7 to FIG. 613 Steps of sending or receiving different messages.
  • the processor 611 may be configured to support the apparatus to perform S403 in the method embodiment described in FIG. 9 , one or more steps of generating and parsing different messages, and using the communication interface 613 Steps of sending or receiving different messages.
  • the communication interface 613 is used to support the device to communicate, for example, to support the device to communicate with the terminal.
  • the processor 611 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or other programmable logic devices. random combination. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that performs computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the bus 614 in the above-mentioned FIG. 13 may be a peripheral component interconnection standard PCI bus or an extended industry standard structure EISA bus or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like. For convenience of presentation, only one thick line is used in the above-mentioned FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • An embodiment of the present application further provides a communication system, and the communication system may include one or more network devices and one or more terminals.
  • the one or more network devices and one or more terminals may be used to implement any one of the message processing methods provided in the foregoing embodiments.
  • each device (such as a terminal and/or a network device) provided in the embodiments of the present application is used to perform the functions of the corresponding devices in the above-mentioned embodiments, and thus can achieve the same effect as the above-mentioned communication method.
  • each module of the present application can also be divided into different message processing apparatuses.
  • the description of the function module of the network device for generating and sending messages can be divided into that the first network device generates the second message, and sends it directly or indirectly to the terminal via the second network device; or the second network device, sent directly or indirectly to the terminal.
  • the receiving function performed by the network device it can be performed by different network devices.
  • the functions or actions or operations or steps in the above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program When implemented using a software program, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium includes computer instructions, when the computer instructions are executed, the steps of the terminal in the method embodiment described in FIG. 2 are executed.
  • a computer-readable storage medium includes computer instructions.
  • the computer instructions When the computer instructions are executed, the steps of the network device in the method embodiment described in FIG. 2 are executed. .
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium includes computer instructions.
  • the computer instructions When the computer instructions are executed, the terminal in the method embodiment described in FIG. 7 or FIG. 8 is executed. A step of.
  • a computer-readable storage medium includes computer instructions, when the computer instructions are executed, the network in the method embodiment described in FIG. 7 or FIG. 8 is executed. equipment steps.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium includes computer instructions, when the computer instructions are executed, the steps of the terminal in the method embodiment described in FIG. 9 are executed.
  • a computer-readable storage medium includes computer instructions.
  • the computer instructions When the computer instructions are executed, the steps of the network device in the method embodiment described in FIG. 9 are executed. .
  • a computer program product containing instructions is provided, which, when executed on a computer, enables the computer to execute the steps of the terminal in the method embodiment described above in FIG. 2 .
  • a computer program product containing instructions is provided, which, when executed on a computer, enables the computer to execute the steps of the network device in the method embodiment described in FIG. 2 above.
  • a computer program product containing instructions, which, when run on a computer, enables the computer to execute the steps of the terminal in the method embodiment described in FIG. 7 or FIG. 8 .
  • a computer program product containing instructions, which, when run on a computer, enables the computer to execute the steps of the network device in the method embodiment described in FIG. 7 or FIG. 8 .
  • a computer program product containing instructions is provided, which, when executed on a computer, enables the computer to execute the steps of the terminal in the method embodiment described in FIG. 9 above.
  • a computer program product containing instructions, which, when executed on a computer, enable the computer to execute the steps of the network device in the method embodiment described in FIG. 9 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种消息处理方法及装置,涉及通信技术领域,用于解决当终端具有多个通道且关联DC位置的CC数量超过两个CC时网络设备无法确定每个通道在当前通信中的DC位置的问题。该方法包括:终端向网络设备发送第一消息,第一消息用于指示该终端的M个通道对应N个成员载波CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数;当网络设备接收到第一消息时,网络设备可以根据第一消息,确定该终端的M个通信中每个通道对应的当前通信的DC位置。

Description

一种消息处理方法及装置
本申请要求于2021年04月02日提交国家知识产权局、申请号为202110363850.8、申请名称为“一种消息处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种消息处理方法及装置。
背景技术
在第五代移动网络(5th generation mobile networks,5G)通信中,终端可以在不同小区上与网络设备进行通信。示例性的,网络设备可以为终端配置多个小区(cell),同时在每个小区中配置一个或多个带宽组(bandwidth part,BWP),以便终端通过不同的BWP与网络设备进行通信。
目前,终端可以将成员载波(component carrier,CC)和BWP对应的直流(direct current,DC)位置上报给网络设备,以便网络设备根据该DC位置(DC location),优化通过该BWP与终端进行的数据传输。具体的,当网络设备为终端配置了多个小区,每个小区都配置有多个BWP时,对于该多个小区中的每个小区,终端可以将该小区的多个BWP中任意BWP对应的DC位置上报给网络设备。以便在通信过程中,网络设备可以根据被激活的BWP确定对应的DC位置,优化对应的数据传输。进一步的,在带内(intra-band)上行载波聚合(carrier aggregation,CA)下,对于该组合中的两个CC,终端可以将这两个CC对应的多个BWP组合中任意BWP组合对应的DC位置上报给网络设备,以便在通信过程中,网络设备可以根据被激活的BWP组合,即每个CC中激活的一个BWP组成的BWP对(BWP pair)来确定对应的DC位置,优化对应的数据传输。
但是,在载波聚合(carrier aggregation,CA)通信场景下,当终端具有多个通道,且关联DC位置的CC数量超过两个CC时,网络设备无法知晓该多个通道与DC位置之间的关系,从而无法知晓每个通道在当前通信中的DC位置,进而也就无法据此进行数据传输的优化。
发明内容
本申请提供一种消息处理方法及装置,解决了现有技术中当终端具有多个通道且关联DC位置的CC数量超过两个CC时网络设备无法确定每个通道在当前通信中的DC位置的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种消息处理方法,该方法包括:终端向网络设备发送第一消息,第一消息用于指示该终端的M个通道对应N个成员载波CC时每个通道的DC位置,每个通道的DC位置可以包括一个或者多个DC位置,M为大于或等于2的整数,N为大于2的整数。
基于该方案,该终端能够将M个通道对应N个CC时每个通道的DC位置上报给网络设备,这样可以使得网络设备能够根据第一消息所指示的每个通道的一个或者多个DC位 置中,确定每个通道当前通信的DC位置,由此提供了一种当终端具有多个通道且关联DC位置的CC数量超过两个CC时,网络设备能够确定每个通道的当前通信的DC位置的方法。进而使得网络设备能够确定每个通道的当前通信的本振泄露位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。
在第一方面的一种可能的设计中,第一消息还用于指示该DC位置所在CC的小区标识。基于该方案,第一消息中还还用于指示每个可能的通信的DC位置的小区标识,以便网络设备能够更加清楚地确定对应的当前通信的DC位置。
在第一方面的一种可能的设计中,M个通道包括第一通道,第一通道对应多个CC,第一消息用于指示第一通道对应该多个CC,以及该多个CC中任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC;和/或,该M个通道还包括第二通道,第二通道对应一个CC,第一消息还用于指示第二通道对应该CC,以及该CC的多个BWP中每个BWP对应的DC位置。基于该方案,该终端可以将每个通道对应的CC、以及每个通道在对应配置的CC下可能的通信的DC位置全部上报给网络设备,以使网络设备获取到所有可能的DC位置,从而基于每个通道对应的所有可能的通信的DC位置确定对应的当前通信的DC位置。
在第一方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个配置的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。基于该方案,该终端可以将每个通道对应的CC、以及每个通道在对应配置的CC下可能被激活的DC位置全部上报给网络设备,以使网络设备获取到所有可能被激活的DC位置,从而基于每个通道对应的所有可能被激活的DC位置确定对应的当前通信的DC位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。
在第一方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个激活的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。基于该方案,该终端可以将每个通道对应的激活的CC、以及每个通道在对应激活的CC下可能被激活的DC位置全部上报给网络设备,以使网络设备获取到所有可能被激活的DC位置,从而基于每个通道对应的所有可能被激活的DC位置确定对应的当前通信的DC位置。
在第一方面的一种可能的设计中,该M个通道是按照该终端中的功率放大器PA划分的;或者,该M个通道是按照该终端的间隔等级划分的。基于该方案,该终端能够在具有相控阵(即具有多个PA)或者基于相控阵进行毫米波通信(即具有多个间隔等级)的情况下,均可以将每个通道对应的一个或者多个DC位置上报给网络设备,以使网络设备能够确定每个通道的当前通信的本振泄露位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。
在第一方面的一种可能的设计中,该方法还包括:该终端向该网络设备发送第二消息, 第二消息用于指示该终端的聚合载波对应的多个CC的独立波束管理信息;该终端接收来自该网络设备的第三消息,第三消息用于指示该终端发送第一消息。基于该方案,当终端的聚合载波对应的多个CC为独立波束管理信息时,网络设备可以通过第三消息指示终端发送每个通道对应的所有可能的通信的DC位置。
在第一方面的一种可能的设计中,第一消息可以为媒体访问控制层的控制元素MAC CE实体消息,例如周期性的MAC CE上报,又例如由事件触发的MAC CE上报,触发事件可以包括:激活小区,去激活小区,BWP的切换,小区的切换,信道带宽的改变,非连续接收DRX)的状态改变。
在第一方面的一种可能的设计中,第一消息所指示的DC位置中任意一个DC位置为资源粒子(RE)位置。可选的,该DC位置具体可以是绝对频点编号ARFCN所对应的频点位置,也可以是通过距离参考频点位置的偏移所对应的频点位置。基于该方案,能够保证网络设备根据第一消息确定的当前通信的DC位置为可用的位置。
第二方面,提供一种消息处理方法,该方法包括:网络设备接收来自终端的第一消息,第一消息用于指示该终端的M个通道对应N个成员载波CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数;该网络设备根据第一消息,确定该M个通道中每个通道的当前通信的DC位置。
基于该方案,该终端能够将M个通道对应N个CC时每个通道的DC位置上报给网络设备,这样可以使得网络设备能够根据第一消息所指示的每个通道的一个或者多个DC位置中,确定每个通道当前通信的DC位置,由此提供了一种当终端具有多个通道且关联DC位置的CC数量超过两个CC时,网络设备能够确定每个通道的当前通信的DC位置的方法。进而使得网络设备能够确定每个通道的当前通信的本振泄露位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。
在第二方面的一种可能的设计中,第一消息还用于指示该DC位置所在CC的小区标识。基于该方案,第一消息中还还用于指示每个可能的通信的DC位置的小区标识,以便网络设备能够更加清楚地确定对应的当前通信的DC位置。
在第二方面的一种可能的设计中,该M个通道包括第一通道,第一通道对应多个CC,第一消息用于指示第一通道对应该多个CC,以及该多个CC中任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC;和/或,该M个通道还包括第二通道,第二通道对应一个CC,第一消息还用于指示第二通道对应该CC,以及该CC的多个BWP中每个BWP对应的DC位置。基于该方案,该终端可以将每个通道对应的CC、以及每个通道在对应配置的CC下可能的通信的DC位置全部上报给网络设备,以使网络设备获取到所有可能的DC位置,从而基于每个通道对应的所有可能的通信的DC位置确定对应的当前通信的DC位置。
在第二方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个配置的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。基于该方案,该终端可以将每个通道对应的CC、以及每个通道在对应配置的CC下可能被激活的DC位置全部上报给网络设备,以使 网络设备获取到所有可能被激活的DC位置,从而基于每个通道对应的所有可能被激活的DC位置确定对应的当前通信的DC位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。基于该方案,该终端可以将每个通道对应的CC、以及每个通道在对应配置的CC下可能被激活的DC位置全部上报给网络设备,以使网络设备获取到所有可能被激活的DC位置,从而基于每个通道对应的所有可能被激活的DC位置确定对应的当前通信的DC位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。
在第二方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个激活的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。基于该方案,该终端可以将每个通道对应的激活的CC、以及每个通道在对应激活的CC下可能被激活的DC位置全部上报给网络设备,以使网络设备获取到所有可能被激活的DC位置,从而基于每个通道对应的所有可能被激活的DC位置确定对应的当前通信的DC位置。
在第二方面的一种可能的设计中,该网络设备根据第一消息,确定该M个通道中每个通道的当前通信的DC位置,包括:对于M个通道中的每个通道,若该通道对应只有一个CC,网络设备将该CC的多个BWP中处于激活状态的BWP的DC位置确定为该通道上当前通信的DC位置,或根据上报的激活BWP对应的DC位置来确定该通道上当前通信的DC位置;若该通道对应多个CC中被激活CC包括至少两个CC,则网络设备将该多个激活CC上配置的BWP组合中处于激活状态的BWP的DC位置确定为该通道上当前通信的DC位置;或者,若该通道对应多个CC中被激活CC包括至少两个CC,则网络设备根据上报的激活BWP对应的DC位置来确定该通道上的DC位置。基于该方案,网络设备可以根据第一消息所指示的每个通道对应的当前通信中被激活的BWP中,确定每个通道对应的当前通信的DC位置。
在第二方面的一种可能的设计中,该M个通道是按照该终端中的功率放大器PA划分的;或者,该M个通道是按照该终端的间隔等级划分的。基于该方案,该终端能够在具有相控阵(即具有多个PA)或者基于相控阵进行毫米波通信(即具有多个间隔等级)的情况下,均可以将每个通道对应的一个或者多个DC位置上报给网络设备,以使网络设备能够确定每个通道的当前通信的本振泄露位置,以便对每个通道的数据进行针对性的处理,提升整个数据传输的质量。
在第二方面的一种可能的设计中,该方法还包括:该网络设备接收来自该终端的第二消息,第二消息用于指示该终端的聚合载波对应的多个CC的独立波束管理信息;该网络设备向该终端发送第三消息,第三消息用于指示该终端发送第一消息。基于该方案,当终端的聚合载波对应的多个CC为独立波束管理信息时,网络设备可以通过第三消息指示终端发送每个通道对应的所有可能的通信的DC位置。
在第二方面的一种可能的设计中,第一消息可以为媒体访问控制层的控制元素MAC CE实体消息,例如周期性的MAC CE上报,又例如由事件触发的MAC CE上报,触发事件可以包括:激活小区,去激活小区,BWP的切换,小区的切换,信道带宽的改变,非连 续接收DRX)的状态改变。
在第二方面的一种可能的设计中,第一消息所指示的DC位置中任意一个DC位置为资源粒子(RE)位置。可选的,该DC位置具体可以是绝对频点编号ARFCN所对应的频点位置,也可以是通过距离参考频点位置的偏移所对应的频点位置。基于该方案,能够保证网络设备根据第一消息确定的当前通信的DC位置为可用的位置。
第三方面,提供一种消息处理方法,该方法包括:终端向网络设备发送第一消息,第一消息用于指示该终端是否支持第一能力,第一能力为本振泄露自校准能力;若该终端支持第一能力,该终端确定是否向该网络设备上报直流DC位置。其中,该终端支持本振泄露自校准能力可以是指该终端对待发送的上行数据做自校准的优化处理使得发射信号的本振泄露低于某个阈值,可以忽略其对数据造成的影响;该终端不支持本振泄露自校准能力可以是指该终端无法对待发送的上行数据做自校准的优化处理使得发射信号的本振泄露低于某个阈值,可以忽略其对数据造成的影响。
基于该方案,该终端能够将自身是否支持本振泄露自校准能力上报给网络设备,这样当终端同时支持DC位置的上报、以及本振泄露自校准能力时,能够根据该方案实现DC位置上报和本振泄露自校准能力的兼容性。
在第三方面的一种可能的设计中,若该终端支持第一能力,该终端确定是否向该网络设备上报直流DC位置,包括:若该终端支持第一能力,该终端确定不向该网络设备上报DC位置;或者,若该终端支持第一能力且接收到用于指示该网络设备为该终端配置的校准间隔的第二消息,该终端确定不向该网络设备上报DC位置;若该终端支持第一能力且未接收到用于指示该网络设备为该终端配置的校准间隔的第二消息,该终端确定向该网络设备上报DC位置。基于该方案,该终端可以在支持第一能力时,根据自身的能力确定是否向网络设备上报DC位置,或者根据网络设备是否配置校准间隔来确定是否向网络设备上报DC位置,从而进一步提高DC位置上报和本振泄露自校准能力的兼容性。
在第三方面的一种可能的设计中,该方法还包括:该终端接收来自该网络设备的指示消息,该指示消息用于指示该终端是否上报DC位置;该终端确定是否向该网络设备上报DC位置,包括:若该指示消息指示该终端上报DC位置,该终端确定向该网络设备上报直流DC位置;若该指示消息指示该终端不上报DC位置,该终端确定不向该网络设备上报DC位置。基于该方案,该终端可以根据网络设备的指示确定是否向网络设备上报DC位置,从而进一步提高DC位置上报和本振泄露自校准能力的兼容性。
在第三方面的一种可能的设计中,该方法还包括:若该终端不支持第一能力,该终端确定向该网络设备上报DC位置。基于该方案,该终端可以在不支持第一能力时,该终端可以确定向该网络设备上报DC位置,以使网络设备能够根据上报的DC位置进行对应的本振泄露校准的相关处理,从而提升数据传输的质量。
在第三方面的一种可能的设计中,该方法还包括:该终端向该网络设备发送第三消息,第三消息用于指示该终端是否支持第二能力,第二能力为支持单载波或聚合载波的增强DC位置上报的能力,支持单载波下的增强DC位置上报和支持聚合载波的增强DC位置上报可以携带在同一个上报信息中,也可以携带在不同的上报信息中;当该终端确定向该网络设备上报DC位置时,该终端向该网络设备发送第四消息,第四消息用于指示该终端的DC位置。基于该方案,该终端可以在不支持第一能力时,根据自身支持的第二能力对应 的DC位置上报方式向网络设备上报DC位置,以使网络设备能够根据上报的DC位置进行对应的本振泄露校准的相关处理,从而提升数据传输的质量。
在第三方面的一种可能的设计中,该方法还包括:若该终端不支持第二能力,该终端按照单载波的DC位置上报方式将该终端的DC位置上报给该网络设备。其中,上报的DC位置可以包括该单载波的多个BWP中每个BWP的DC位置;若该终端为聚合载波通信且该终端支持第二能力,该终端按照增强的单载波和聚合载波的DC位置上报方式将该终端的DC位置上报给该网络设备。可选的,该DC位置包括:单载波的多个BWP中每个BWP的DC位置;和/或,该DC位置包括聚合载波的多个成员载波CC中,任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC。
在第三方面的一种可能的设计中,该方法还包括:该终端向该网络设备发送第五消息,第五消息用于指示该终端是否支持第三能力,第三能力为支持带内聚合载波的DC位置上报的能力;当该终端确定向该网络设备上报DC位置时,该终端向该网络设备发送第六消息,第六消息用于指示该终端的DC位置。可选的,该终端按照带内上行载波聚合(intra-band UL CA)的DC位置上报方式将该终端的DC位置上报给该网络设备。基于该方案,该终端可以在不支持第一能力时,根据自身支持的第三能力对应的DC位置上报方式向网络设备上报DC位置,以使网络设备能够根据上报的DC位置进行对应的本振泄露校准的相关处理,从而提升数据传输的质量。
第四方面,提供一种消息处理方法,该方法包括:网络设备接收来自终端的第一消息,第一消息用于指示该终端是否支持第一能力,第一能力为本振泄露自校准能力;该网络设备向该终端发送指示消息,该指示消息用于指示该终端上报直流DC位置,或者该指示消息用于指示该终端不上报直流DC位置。其中,该终端支持本振泄露自校准能力可以是指该终端对待发送的上行数据做自校准的优化处理使得发射信号的本振泄露低于某个阈值,可以忽略其对数据造成的影响;该终端不支持本振泄露自校准能力可以是指该终端无法对待发送的上行数据做自校准的优化处理使得发射信号的本振泄露低于某个阈值,可以忽略其对数据造成的影响。基于该方案,该终端能够将自身是否支持本振泄露自校准能力上报给网络设备,这样当终端同时支持DC位置的上报、以及本振泄露自校准能力时,能够根据该方案实现DC位置上报和本振泄露自校准能力的兼容性。
在第四方面的一种可能的设计中,当该指示消息用于指示该终端不上报DC位置时,该方法还包括:该网络设备向该终端发送第二消息,第二消息用于指示该网络设备为该终端配置的校准间隔。基于该方案,该网络设备可以在该终端支持第一能力时,为该终端配置的校准间隔,以便该终端能够在该校准间隔内进行本振泄露自校准,以在该终端侧提升数据传输的质量。
在第四方面的一种可能的设计中,该方法还包括:该网络设备接收来自终端的第三消息,第三消息用于指示该终端是否支持第二能力,第二能力为支持单载波或聚合载波的增强DC位置上报的能力,支持单载波下的增强DC位置上报和支持聚合载波的增强DC位置上报可以携带在同一个上报信息中,也可以携带在不同的上报信息中;当该终端支持第二能力时,该网络设备接收来自终端的第四消息,第四消息用于指示该终端的DC位置。可选的,该DC位置包括:单载波的多个BWP中每个BWP的DC位置;和/或,该DC位 置包括聚合载波的多个成员载波CC中,任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC。基于该方案,该终端可以在不支持第一能力时,根据自身支持的第二能力对应的DC位置上报方式向网络设备上报DC位置,以使网络设备能够根据上报的DC位置进行对应的本振泄露校准的相关处理,从而提升数据传输的质量。
在第四方面的一种可能的设计中,该方法还包括:该网络设备接收来自终端的第五消息,第五消息用于指示该终端是否支持第三能力,第三能力为支持带内聚合载波的DC位置上报的能力;当该终端支持第三能力时,该网络设备接收来自终端的第六消息,第六消息用于指示该终端的DC位置。可选的,该终端按照带内上行载波聚合(intra-band UL CA)的DC位置上报方式将该终端的DC位置上报给该网络设备。基于该方案,该终端可以在不支持第一能力时,根据自身支持的第三能力对应的DC位置上报方式向网络设备上报DC位置,以使网络设备能够根据上报的DC位置进行对应的本振泄露校准的相关处理,从而提升数据传输的质量。
第五方面,提供一种消息处理方法,该方法包括:终端向网络设备发送更新消息,该更新消息用于更新该终端的DC位置,比如,该终端可以通过用户设备UE辅助的信息UAI上报更新后的DC位置消息,用于更新该终端向该网络设备上报的DC位置。
基于该方案,当该终端的DC位置发生偏移时,该终端可以通过向网络设备发送用于更新DC位置的更新消息,以使网络设备可以根据该更新消息确定当前通信的DC位置,从而基于该当前通信的DC位置对数据做优化处理,从而解决终端上报的DC位置与实际通信的DC位置之间存在偏移的问题,同时也避免了该网络设备对错误位置的数据做优化处理而进一步导致数据性能较差的问题。
在第五方面的一种可能的设计中,该更新消息可用于更新该终端上报的多个DC位置中的一个或者多个DC位置,其中一个DC位置对应的是当前通信本振泄露的位置,其中多个DC位置是指基于多个配置CC对应的每个CC pair以及对应的所有BWP组合的DC位置,或者多个激活CC对应的每个CC pair以及对应的所有配置的BWP组合的DC位置。关于该更新消息中每个DC位置的更新方式可以与该终端首次上报的DC位置的上报方式相同。
在第五方面的一种可能的设计中,当通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第五方面的一种可能的设计中,当通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP 的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第五方面的一种可能的设计中,当该通过带内聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:通道和当前配置的或激活的CC的对应关系;对于每一个通道,该通道对应的当前被激活的CC列表;对于每一个通道,该通道对应的当前被激活的BWP列表;DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表示。
第六方面,提供一种消息处理方法,该方法包括:网络设备接收来自终端的更新消息,该更新消息用于更新该终端的DC位置,比如,该更新消息可以为用户设备UE辅助的信息UAI。
基于该方案,当该终端的DC位置发生偏移时,该终端可以通过向网络设备发送用于更新DC位置的更新消息,以使网络设备可以根据该更新消息确定当前通信的DC位置,从而基于该当前通信的DC位置对数据做优化处理,从而解决终端上报的DC位置与实际通信的DC位置之间存在偏移的问题,同时也避免了该网络设备对错误位置的数据做优化处理而进一步导致数据性能较差的问题。
在第六方面的一种可能的设计中,该更新消息可用于更新该终端上报的多个DC位置中的一个或者多个DC位置,其中一个DC位置对应的是当前通信本振泄露的位置,其中多个DC位置是指基于多个配置CC对应的每个CC pair以及对应的所有BWP组合的DC位置,或者多个激活CC对应的每个CC pair以及对应的所有配置的BWP组合的DC位置。关于该更新消息中每个DC位置的更新方式可以与该终端首次上报的DC位置的上报方式相同。
在第六方面的一种可能的设计中,当通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第六方面的一种可能的设计中,当通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第六方面的一种可能的设计中,当通过带内聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:通道和当前配置的或激活的CC的对 应关系;对于每一个通道,该通道对应的当前被激活的CC列表;对于每一个通道,该通道对应的当前被激活的BWP列表;DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表示。
第七方面,提供一种消息处理装置,该装置为终端或者应用于终端的芯片系统,该装置包括:发送单元,用于向网络设备发送第一消息,第一消息用于指示该终端的M个通道对应N个成员载波CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数。
在第七方面的一种可能的设计中,第一消息还用于指示该DC位置所在CC的小区标识。
在第七方面的一种可能的设计中,M个通道包括第一通道,第一通道对应多个CC,第一消息用于指示第一通道对应该多个CC,以及该多个CC中任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC;和/或,该M个通道还包括第二通道,第二通道对应一个CC,第一消息还用于指示第二通道对应该CC,以及该CC的多个BWP中每个BWP对应的DC位置。
在第七方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个配置的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。
在第七方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个激活的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。
在第七方面的一种可能的设计中,该M个通道是按照该终端中的功率放大器PA划分的;或者,该M个通道是按照该终端的间隔等级划分的。
在第七方面的一种可能的设计中,该装置还包括:接收单元;该发送单元,还用于向该网络设备发送第二消息,第二消息用于指示该终端的聚合载波对应的多个CC的独立波束管理信息;该接收单元,用于接收来自该网络设备的第三消息,第三消息用于指示该终端发送第一消息。
第八方面,提供一种消息处理装置,该装置为网络设备或者应用于网络设备的芯片系统,该装置包括:接收单元,用于接收来自终端的第一消息,第一消息用于指示该终端的M个通道对应N个成员载波CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数;处理单元,用于根据第一消息,确定该终端当前通信的DC位置。
在第八方面的一种可能的设计中,第一消息还用于指示该DC位置所在CC的小区标识。
在第八方面的一种可能的设计中,该M个通道包括第一通道,第一通道对应多个CC, 第一消息用于指示第一通道对应该多个CC,以及该多个CC中任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC;和/或,该M个通道还包括第二通道,第二通道对应一个CC,第一消息还用于指示第二通道对应该CC,以及该CC的多个BWP中每个BWP对应的DC位置。
在第八方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个配置的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。
在第八方面的一种可能的设计中,第一消息用于指示该M个通道中每个通道对应的CC;当该M个通道中的某一通道对应只有一个CC时,第一消息还用于指示该CC中的激活的BWP对应的DC位置;和/或,当该M个通道中的某一通道对应多个CC时,第一消息还用于指示当前多个激活CC中任意两个激活的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。
在第八方面的一种可能的设计中,处理单元用于:对于M个通道中的每个通道,若该通道对应只有一个CC,将该CC的多个BWP中处于激活状态的BWP的DC位置确定为该通道上当前通信的DC位置,或根据上报的激活BWP对应的DC位置来确定该通道上当前通信的DC位置;若该通道对应多个CC中被激活CC包括至少两个CC,将该多个激活CC上配置的BWP组合中处于激活状态的BWP的DC位置确定为该通道上当前通信的DC位置;或者,若该通道对应多个CC中被激活CC包括至少两个CC,根据上报的激活BWP对应的DC位置来确定该通道上的DC位置。
在第八方面的一种可能的设计中,该M个通道是按照该终端中的功率放大器PA划分的;或者,该M个通道是按照该终端的间隔等级划分的。
在第八方面的一种可能的设计中,该装置还包括:发送单元;该接收单元,还用于接收来自该终端的第二消息,第二消息用于指示该终端的聚合载波对应的多个CC的独立波束管理信息;该发送单元,用于向该终端发送第三消息,第三消息用于指示该终端发送第一消息。
第九方面,提供一种消息处理装置,该装置为终端或者应用于终端的芯片系统,该装置包括:发送单元和处理单元;该发送单元,用于向网络设备发送第一消息,第一消息用于指示该终端是否支持第一能力,第一能力为本振泄露自校准能力;该处理单元,用于若该终端支持第一能力,确定是否向该网络设备上报直流DC位置。
在第九方面的一种可能的设计中,该若该终端支持第一能力,该处理单元用于:若该终端支持第一能力,确定不向该网络设备上报DC位置;或者,若该终端支持第一能力且接收到用于指示该网络设备为该终端配置的校准间隔的第二消息,确定不向该网络设备上报DC位置;若该终端支持第一能力且未接收到用于指示该网络设备为该终端配置的校准间隔的第二消息,确定向该网络设备上报DC位置。
在第九方面的一种可能的设计中,该装置还包括接收单元;该接收单元,用于接收来自该网络设备的指示消息,该指示消息用于指示该终端是否上报DC位置;该处理单元用于:若该指示消息指示该终端上报DC位置,确定向该网络设备上报直流DC位置;若该 指示消息指示该终端不上报DC位置,确定不向该网络设备上报DC位置。
在第九方面的一种可能的设计中,该处理单元用于:若该终端不支持第一能力,确定向该网络设备上报DC位置。
在第九方面的一种可能的设计中,该发送单元还用于:向该网络设备发送第三消息,第三消息用于指示该终端是否支持第二能力,第二能力为支持单载波或聚合载波的增强DC位置上报的能力;当确定向该网络设备上报DC位置时,向该网络设备发送第四消息,第四消息用于指示该终端的DC位置。可选的,该DC位置包括:单载波的多个BWP中每个BWP的DC位置;和/或,该DC位置包括聚合载波的多个成员载波CC中,任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC。
在第九方面的一种可能的设计中,该发送单元还用于:向该网络设备发送第五消息,第五消息用于指示该终端是否支持第三能力,第三能力为支持带内聚合载波的DC位置上报的能力;当确定向该网络设备上报DC位置时,向该网络设备发送第六消息,第六消息用于指示该终端的DC位置。可选的,该发送单元按照带内上行载波聚合(intra-band UL CA)的DC位置上报方式将该终端的DC位置上报给该网络设备。
第十方面,提供一种消息处理装置,该装置为网络设备或者应用于网络设备的芯片系统,该装置包括:接收单元和发送单元;该接收单元,用于接收来自终端的第一消息,第一消息用于指示该终端是否支持第一能力,第一能力为本振泄露自校准能力;该发送单元,用于向该终端发送指示消息,该指示消息用于指示该终端上报直流DC位置,或者该指示消息用于指示该终端不上报直流DC位置。
在第十方面的一种可能的设计中,当该指示消息用于指示该终端不上报DC位置时,该发送单元还用于:向该终端发送第二消息,第二消息用于指示该网络设备为该终端配置的校准间隔。
在第十方面的一种可能的设计中,该接收单元还用于:接收来自终端的第三消息,第三消息用于指示该终端是否支持第二能力,第二能力为支持单载波或聚合载波的增强DC位置上报的能力;当该终端支持第二能力时,接收来自终端的第四消息,第四消息用于指示该终端的DC位置。可选的,该DC位置包括:单载波的多个BWP中每个BWP的DC位置;和/或,该DC位置包括聚合载波的多个成员载波CC中,任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC。
在第十方面的一种可能的设计中,该接收单元还用于:接收来自终端的第五消息,第五消息用于指示该终端是否支持第三能力,第三能力为支持带内聚合载波的DC位置上报的能力;当该终端支持第三能力时,接收来自终端的第六消息,第六消息用于指示该终端的DC位置。可选的,该DC位置是按照带内上行载波聚合(intra-band UL CA)的DC位置上报方式上报的。
第十一方面,提供一种消息处理装置,该装置为终端或者应用于终端的芯片系统,该装置包括:发送单元,用于向网络设备发送更新消息,该更新消息用于更新该终端的DC位置,比如,可以通过用户设备UE辅助的信息UAI上报更新后的DC位置消息。
在第十一方面的一种可能的设计中,该更新消息可用于更新该终端上报的多个DC位 置中的一个或者多个DC位置,其中一个DC位置对应的是当前通信本振泄露的位置,其中多个DC位置是指基于多个配置CC对应的每个CC pair以及对应的所有BWP组合的DC位置,或者多个激活CC对应的每个CC pair以及对应的所有配置的BWP组合的DC位置。关于该更新消息中每个DC位置的更新方式可以与该终端首次上报的DC位置的上报方式相同。
在第十一方面的一种可能的设计中,当通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第十一方面的一种可能的设计中,当该通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第十一方面的一种可能的设计中,当该通过带内聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:通道和当前配置的或激活的CC的对应关系;对于每一个通道,该通道对应的当前被激活的CC列表;对于每一个通道,该通道对应的当前被激活的BWP列表;DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表示。
第十二方面,提供一种消息处理装置,该该装置为网络设备或者应用于网络设备的芯片系统,该装置包括:接收单元和处理单元;该接收单元,用于接收来自终端的更新消息,该更新消息用于更新该终端的DC位置,比如,该更新消息可以为用户设备UE辅助的信息UAI;该处理单元,用于根据该更新信息更新该终端的DC位置。
基于该方案,当该终端的DC位置发生偏移时,该终端可以通过向网络设备发送用于更新DC位置的更新消息,以使网络设备可以根据该更新消息确定当前通信的DC位置,从而基于该当前通信的DC位置对数据做优化处理,从而解决终端上报的DC位置与实际通信的DC位置之间存在偏移的问题,同时也避免了该网络设备对错误位置的数据做优化处理而进一步导致数据性能较差的问题。
在第十二方面的一种可能的设计中,该更新消息可用于更新该终端上报的多个DC位置中的一个或者多个DC位置,其中一个DC位置对应的是当前通信本振泄露的位置,其中多个DC位置是指基于多个配置CC对应的每个CC pair以及对应的所有BWP组合的DC位置,或者多个激活CC对应的每个CC pair以及对应的所有配置的BWP组合的DC 位置。关于该更新消息中每个DC位置的更新方式可以与该终端首次上报的DC位置的上报方式相同。
在第十二方面的一种可能的设计中,当该通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第十二方面的一种可能的设计中,当通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
在第十二方面的一种可能的设计中,当该通过带内聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:通道和当前配置的或激活的CC的对应关系;对于每一个通道,该通道对应的当前被激活的CC列表;对于每一个通道,该通道对应的当前被激活的BWP列表;DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表示。
在本申请的另一方面,提供一种终端,该终端包括处理器和存储器;该存储器与该处理器耦合,该存储器存储有计算机指令;当该处理器执行该计算机指令时,使得该终端执行提如第一方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的另一方面,供一种网络设备,该网络设备包括处理器和存储器;该存储器与该处理器耦合,该存储器存储有计算机指令;当该处理器执行该计算机指令时,使得该网络设备执行如第二方面所提供的消息处理方法。
在本申请的另一方面,提供一种终端,该终端包括处理器和存储器;该存储器与该处理器耦合,该存储器存储有计算机指令;当该处理器执行该计算机指令时,使得该终端执行如第三方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的另一方面,提供一种网络设备,该网络设备包括处理器和存储器;该存储器与该处理器耦合,该存储器存储有计算机指令;当该处理器执行该计算机指令时,使得该网络设备执行如第四方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的另一方面,提供一种终端,该终端包括处理器和存储器;该存储器与该处理器耦合,该存储器存储有计算机指令;当该处理器执行该计算机指令时,使得该终端执行如第五方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的另一方面,提供一种网络设备,该网络设备包括处理器和存储器;该存储 器与该处理器耦合,该存储器存储有计算机指令;当该处理器执行该计算机指令时,使得该网络设备执行如第六方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种芯片系统,该芯片系统包括处理电路和接口;该处理电路用于从存储介质中调用并运行该存储介质中存储的计算机程序,以执行如第一方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种芯片系统,该芯片系统包括处理电路和接口;该处理电路用于从存储介质中调用并运行该存储介质中存储的计算机程序,以执行如第二方面所提供的消息处理方法。
在本申请的又一方面,提供一种芯片系统,该芯片系统包括处理电路和接口;该处理电路用于从存储介质中调用并运行该存储介质中存储的计算机程序,以执行如第三方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种芯片系统,该芯片系统包括处理电路和接口;该处理电路用于从存储介质中调用并运行该存储介质中存储的计算机程序,以执行如第四方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种芯片系统,该芯片系统包括处理电路和接口;该处理电路用于从存储介质中调用并运行该存储介质中存储的计算机程序,以执行如第五方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种芯片系统,该芯片系统包括处理电路和接口;该处理电路用于从存储介质中调用并运行该存储介质中存储的计算机程序,以执行如第六方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行如第一方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行如第二方面所提供的消息处理方法。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行如第三方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行如第四方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行如第五方面所提供的消息处理方法。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行如第六方面及其可能的设计中任一项所提供的消息处理方法。
在本申请的又一方面,提供一种通信系统,该通信系统中包括一个或多个网络设备,以及一个或多个终端。该通信系统在运行时,能够实现上述第一方面及其任一种可能的设计中所述的消息处理方法以及上述第二方面所提供的消息处理方法。
在本申请的又一方面,提供一种通信系统,该通信系统中包括一个或多个网络设备,以及一个或多个终端。该通信系统在运行时,能够实现上述第三方面及其任一种可能的设计中所述的消息处理方法以及上述第四方面所提供的消息处理方法。
在本申请的又一方面,提供一种通信系统,该通信系统中包括一个或多个网络设备,以及一个或多个终端。该通信系统在运行时,能够实现上述第五方面及其任一种可能的设计中所述的消息处理方法以及上述第六方面所提供的消息处理方法。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述第一方面的任一种可能的设计中所提供的消息处理方法。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面所提供的消息处理方法。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面或者上述第三方面的任一种可能的设计中所提供的消息处理方法。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第四方面或者上述第四方面的任一种可能的设计中所提供的消息处理方法。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第五方面或者上述第五方面的任一种可能的设计中所提供的消息处理方法。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第六方面或者上述第六方面的任一种可能的设计中所提供的消息处理方法。
应当理解的是,上述提供的任一种消息处理装置、芯片系统、计算机可读存储介质、通信系统和计算机程序产品的有益效果均可以对应参考上文对应方面提供的方法实施例的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种消息处理方法的流程示意图;
图3为本申请实施例提供的一种M个PA对应N个CC的示意图;
图4为本申请实施例提供的一种第一消息指示的DC位置的示意图;
图5为本申请实施例提供的另一种M个PA对应N个CC的示意图;
图6为本申请实施例提供的另一种第一消息指示的DC位置的示意图;
图7为本申请实施例提供的另一种消息处理方法的流程示意图;
图8为本申请实施例提供的又一种消息处理方法的流程示意图;
图9为本申请实施例提供的另一种消息处理方法的流程示意图;
图10为本申请实施例提供的一种终端的结构示意图;
图11为本申请实施例提供的另一种终端的结构示意图;
图12为本申请实施例提供的一种网络设备的结构示意图;
图13为本申请实施例提供的另一种网络设备的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下中的至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a、b、c、a-b、a-c、b-c、或a-b-c,其中a、b、c可以是单个,也可以是多个。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在通信过程中,网络设备可以通过终端上报的直流(direct current,DC)位置,确定通信过程中,对应小区(cell)载波的本振泄露(local oscillator leakage,lo leakage)在频域上的位置,进而据此对本振泄露位置进行相应的处理,例如对本振泄露位置对应频率传输的数据块进行恢复或选择性丢弃,以便提升在该小区载波上数据传输的质量。
在长期演进(long term evolution,LTE)系统中,一般默认DC位置处于对应小区载波的频域中心处的资源粒子(resource element,RE)上,也就是说,小区对应的DC位置对应频率一般都处于对应小区载波对应频域带宽的中心频点上。网络设备可以根据小区载波对应的频域带宽确定DC位置,并对其进行针对性的处理。
与LTE系统不同的是,在第五代移动通信技术(5th generation mobile networks,5G)系统中,DC位置对应的频率可以被设置在对应小区载波的频域带宽上的任意位置,因此,网络设备就需要通过终端上报DC位置,来确定对应小区载波的本振泄露位置,以便据此进行相应的处理,提升数据传输的质量。
需要说明的是,在5G系统中,可以通过将小区载波对应的频域带宽(或称为系统工作带宽(carrier bandwidth,CBW))划分为多个不同的带宽组(bandwidth part,BWP)进行通信,不同BWP在小区载波上的位置可以是灵活配置的。每个BWP都可以对应一个DC位置。因此,在终端向网络设备上报DC位置时,需要将每个BWP对应的DC位置都上报给网络设备,以便网络设备根据当前通信过程中激活的BWP,确定当前通信的DC位置。本申请实施例中,可以将小区载波上的BWP称为小区的BWP。
示例性的,网络设备可以向终端发送指示消息,用于指示终端上报网络设备为终端配置的BWP的DC位置。以网络设备为终端配置了2个小区(如cell 1以及cell 2),每个小区中包括2个BWP(如cell 1包括BWP11和BWP12,cell 2包括BWP21和BWP22)为例。在接收到网络设备发送的上报DC位置的指示消息后,终端可以将每个BWP的DC位置分别上报给网络设备。例如,将BWP11对应的DC位置DC11、BWP12对应的DC位置DC12、BWP21对应的DC位置DC21和BWP22对应的DC位置DC22,上报给网络设 备。以便在激活一个对应的BWP时,网络设备可以根据对应的DC位置确定当前通信本振泄露的频率位置,进而据此进行数据传输的优化。
此外,在5G系统的数据传输中,还存在大量的在同时激活多个BWP进行数据传输的场景。例如,在载波聚合(carrier aggregation,CA)通信场景下,如带内CA(intra band CA)通信或带间CA(inter band CA)通信,在网络设备为终端配置的多个小区中,可能会存在两个或多个小区中都各自可以存在一个被激活的BWP。而作为一个整体的传输过程,一个CA通信过程存在只对应一个本振泄露位置的情况,也就只对应一个DC位置。此时,终端可以将网络设备配置的多个成员载波(component carrier,CC)中,任意两个CC组成的CC对(pair)中任意两个BWP对应的DC位置进行上报,任意两个BWP位于分别位于CC对中的不同CC。以便在通信过程中,网络设备可以根据被激活的BWP确定对应的DC位置,优化对应的数据传输。
但是,当终端具有至少两个通道且聚合载波数为至少三个CC时,网络设备无法知晓该多个通道与CC的映射关系,从而无法知晓每个通道对应的DC位置,从而无法知晓每个通道在当前通信中的DC位置,进而也就无法据此进行数据传输的优化。为了解决上述问题,本申请实施例提供一种消息处理方法,能够使得网络设备知晓至少两个通道中每个通道对应的DC位置,进而能够据此对该通信进行主动管理,例如,对该DC位置对应的数据块进行相应处理。
以下结合附图对本申请实施例提供的消息处理方法进行详细说明。
请参考图1,为本申请实施例提供的一种通信系统100的组成示意图。如图1所示,该通信系统100可以包括终端110以及网络设备120。在该通信系统100中,还可以包括除110之外的其他终端,例如,该通信系统100中还可以包括如图1所示的终端130。本申请实施例对于通信系统100中包括的终端的数量不做限制。示例性的,本申请实施例中的终端(也可以称为终端设备)可以是用户设备(user equipment,UE)、手机、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、媒体播放器等能够支持5G通信的电子设备,本申请实施例对该设备的具体形态不作特殊限制。
在该通信系统100中,网络设备120可以为5G基站。应当理解的是,在另一些实施例中,该网络设备120也可以是能够为5G通信提供支持的第三代移动通信技术(3rd-Generation,3G)或第四代移动通信技术(the 4th generation mobile communication technology,4G)基站,或其他通信设备。示例性的,当该网络设备120为5G基站时,能够提供5G新空口(new radio,NR)用于与其他设备(如终端110和/或终端130)进行5G通信。在一些实施例中,该网络设备120可以包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、编码器、解复用器或天线等)。
如图1所示,终端110可以与网络设备120进行通信。其中网络设备120可以通过前向链路110-1(也可称为下行链路)向终端110发送信息,并通过反向链路110-2(也可称为上行链路)从终端110接收信息。类似的,终端130也可以与网络设备120进行通信。其中,网络设备120通过前向链路130-1向终端130发送信息,并通过反向链路130-2从 终端130接收信息。作为一种示例,以网络设备120与终端110进行数据通信为例。在一些实施例中,网络设备120可以通过下行链路110-1向终端110发送消息A,用于指示终端110向网络设备120反馈为其配置的每个BWP对应的DC位置。作为对该消息A的响应,终端110可以将每个BWP对应的DC位置通过上行链路110-2发送给网络设备120。在另一些实施例中,网络设备可以通过下行链路110-2向终端110发送消息B,用于指示终端110向网络设备120反馈为其配置的所有BWP中所有可能的任意两个BWP同时被激活时对应通信的DC位置。作为对该消息B的响应,终端110可以通过上行链路110-2将所有BWP中,所有可能的两两为一组被激活时对应的通信的DC位置全部发送给网络设备120。
需要说明的是,该通信系统100可以是公共陆地移动网络(Public Land Mobile Network,PLMN)或者设备与设备(device-to-device,D2D)网络或者机器与机器(machine to machine,M2M)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图2为本申请实施例提供的一种消息处理方法的流程示意图,该方法可以应用于上述图1所示的通信系统100中,用于解决终端的至少两个通道对应至少三个CC时的DC位置的上报问题,该方法可以包括以下步骤。
S201:终端向网络设备发送第一消息,第一消息用于指示该终端的M个通道对应N个CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数。
其中,第一消息可以是无线资源控制(radio resource control,RRC)消息,例如,第一消息可以为RRC重配置完成(RRCReconfigurationComplete)消息,或者RRC恢复完成消息(RRCResumeComplete)消息。第一消息也可以是媒体访问控制层的控制元素(media access control control element,MAC CE)实体消息,例如周期性的MAC CE上报,又例如由事件触发的MAC CE上报,触发事件可以包括:激活小区,去激活小区,BWP的切换,小区的切换,信道带宽的改变,非连续接收(discontinuous reception,DRX)的状态改变。
另外,该DC位置具体可以是指资源粒子(resource element,RE)位置,该DC位置对应频率的中心频率为该资源粒子RE位置对应频率。该DC位置具体也可以是绝对频点编号(absolute radio frequency channel number,ARFCN)所对应的频点位置,也可以是通过距离参考频点位置的偏移所对应的频点位置。
在一种实施例中,第一消息可用于指示该M个通道中每个通道对应的CC。当该M个通道中的某一通道对应只有一个CC时,第一消息还可用于指示该CC中的配置的BWP对应的DC位置集合;当该M个通道中的某一通道对应多个CC时,第一消息还可用于指示该多个配置的CC中任意两个CC组成的CC对中任意两个配置的BWP对应的DC位置,该任意两个BWP分别位于该CC对中的不同CC。
示例性的,如图3所示,假设该M个通道包括2个通道且分别表示为PA1和PA2(PA1对应本振LO1、PA2对应本振LO2),该N个CC包括4个CC且分别表示为CC1、CC2、CC3和CC4,PA1对应的CC包括CC1、CC2和CC3,PA2对应的CC包括CC4,则第一消息可用于指示以下内容:PA1对应的CC包括CC1、CC2和CC3,PA2对应的CC包括CC4;PA1的DC位置包括CC1至CC3中任意两个CC组成的CC对中任意两个BWP对应的DC位置,PA2的DC位置包括CC4中的BWP对应的DC位置。示例性的,如图4 所示,若CC1包括四个BWP(分别表示为11、12、13和14)、CC2包括四个BWP(分别表示为21、22、23和14)、CC3包括四个BWP(分别表示为31、32、33和34),CC4包括四个BWP(分别表示为41、42、43和44),则第一消息可用于指示:CC1和CC2组成的CC对所对应的DC位置包括DC 11-21、DC 12-21、DC 13-21、DC 14-21、DC 11-22、DC 12-22、DC 13-22、DC 14-22、DC 11-23、DC 12-23、DC 13-23、DC 14-23、DC 11-24、DC 12-24、DC 13-24、DC 14-24;CC2和CC3组成的CC对所对应的DC位置包括DC 21-31、DC 22-31、DC 23-31、DC 24-31、DC 21-32、DC 22-32、DC 23-32、DC 24-32、DC 21-33、DC 22-33、DC 23-33、DC 24-33、DC 21-34、DC 22-34、DC 23-34、DC 24-34;CC1和CC3组成的CC对所对应的DC位置包括DC 11-31、DC 12-31、DC 13-31、DC 14-31、DC 11-32、DC 12-32、DC 13-32、DC 14-32、DC 11-33、DC 12-33、DC 13-33、DC 14-33、DC 11-34、DC 12-34、DC 13-34、DC 14-34;CC4所对应的DC位置包括DC 41、DC 42、DC 43和DC 44
进一步的,在另一种实施例中,第一消息可用于指示该M个通道中每个通道对应的CC。当该M个通道中的某一通道对应只有一个CC时,第一消息还可用于指示该CC中的激活的BWP对应的DC位置;当该M个通道中的某一通道对应多个CC时,第一消息还可用于指示当前多个激活CC中任意两个配置的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。
示例性的,如图5所示,假设该M个通道包括2个通道且分别表示为PA1和PA2(PA1对应本振LO1、PA2对应本振LO2),该N个CC包括6个CC且分别表示为CC1至CC6,PA1对应的CC包括CC1、CC2、CC3和CC4,PA2对应的CC包括CC5和CC6,当前通信状态下PA1对应的CC中激活的CC为CC1、CC2和CC3,PA2对应的CC中激活的CC为CC5,则第一消息可用于指示以下内容:PA1对应的CC包括CC1、CC2和CC3,PA2对应的CC包括CC5;PA1的DC位置包括CC1至CC3中任意两个CC组成的CC对中任意两个配置BWP对应的DC位置,PA2的DC位置包括CC5中的BWP对应的DC位置。示例性的,如图6所示,若CC1包括四个BWP(分别表示为11、12、13和14)、CC2包括四个BWP(分别表示为21、22、23和14)、CC3包括四个BWP(分别表示为31、32、33和34),CC5包括四个BWP(分别表示为51、52、53和54),则第一消息可用于指示:CC1和CC2组成的CC对所对应的DC位置包括DC 11-21、DC 12-21、DC 13-21、DC 14-21、DC 11-22、DC 12-22、DC 13-22、DC 14-22、DC 11-23、DC 12-23、DC 13-23、DC 14-23、DC 11-24、DC 12-24、DC 13-24、DC 14-24;CC2和CC3组成的CC对所对应的DC位置包括DC 21-31、DC 22-31、DC 23-31、DC 24-31、DC 21-32、DC 22-32、DC 23-32、DC 24-32、DC 21-33、DC 22-33、DC 23-33、DC 24-33、DC 21-34、DC 22-34、DC 23-34、DC 24-34;CC1和CC3组成的CC对所对应的DC位置包括DC 11-31、DC 12-31、DC 13-31、DC 14-31、DC 11-32、DC 12-32、DC 13-32、DC 14-32、DC 11-33、DC 12-33、DC 13-33、DC 14-33、DC 11-34、DC 12-34、DC 13-34、DC 14-34;CC5所对应的DC位置包括DC 51、DC 52、DC 53和DC 54
进一步的,在又一种实施例中,第一消息可用于指示该M个通道中每个通道对应的CC。当该M个通道中的某一通道对应只有一个CC时,第一消息还可用于指示该CC中的激活的BWP对应的DC位置;当该M个通道中的某一通道对应多个CC时,第一消息还可用于指示当前多个激活CC中任意两个激活的BWP所对应的DC位置,或者当前多个激活CC中激活BWP组合所对应的DC位置。假设该M个通道包括2个通道且分别表示为PA1和PA2,该N个CC包括4个CC且分别表示为CC1、CC2、CC3和CC4,PA1对应的CC包括CC1、CC2、CC3和CC4,PA2对应的CC包括CC5和CC6,当前通信状态下 PA1对应的CC中激活的CC为CC1,CC2和CC3,PA2对应的CC中激活的CC为CC5,则第一消息可用于指示以下内容:PA1对应的CC包括CC1、CC2和CC3,PA2对应的CC包括CC5;PA1的DC位置为CC1至CC3中每个CC激活的BWP组成的BWP组合对应的DC位置,PA2的DC位置为CC5中的激活的BWP对应的DC位置。
作为一种示例,终端可以依照约定的结构,在第一消息中发送该终端的DC位置。例如,以下示出了一种第一消息的结构示意。
Figure PCTCN2022084210-appb-000001
在一种可能的实现方式中,第一消息还用于指示该终端的DC位置所在CC的小区标识。也即是,对于第一消息所指示的多个DC位置中的每个DC位置,第一消息还用于指示该DC位置所在CC的小区标识。
可选的,该M个通道可以是按照该终端中包括的功率放大器(power amplifier,PA) 的数量划分的,即该M个通道中的每个通道对应一个PA。
或者,该M个通道可以是按照该终端的间隔等级(separation class)的数量划分的,即该M个通道中的每个通道对应该终端的一个间隔等级。比如,该终端的射频前端部分采用了多PA的相控阵,或者该终端用于毫米波通信时,该M个通道可以是按照该终端的间隔等级的数量划分的。
进一步的,对于毫米波的带间(inter-band)CA通信,该终端还可以向网络设备上报CA对应的多个CC的波束管理信息,以使网络设备根据该终端上报的波束管理信息通知该终端如何上报DC位置。可选的,当该终端向网络设备上报的波束管理信息为独立波束管理(independent beam management,IBM)信息时,网络设备可以指示该终端按时上述第一消息的方式上报DC位置;当该终端向网络设备上报的波束管理信息为公共波束管理(common beam management,CBM)信息时,网络设备可以指示该终端按带内载波聚合(intra-band CA)的方式上报DC位置。
示例性的,在该终端向网络设备发送第一消息之前,该方法还可以包括:该终端还可以向该网络设备发送第二消息,第二消息用于指示该终端的聚合载波对应的多个CC的波束管理模式信息;当该网络设备接收到第二消息时,该网络设备可以向该终端发送第三消息,第三消息用于指示该终端发送第一消息。这样,当该终端接收到来自该网络设备的第三消息时,该终端可以通过上述S201向该网络设备发送第一消息,以将该终端的DC位置上报给该网络设备。
S202:该网络设备接收第一消息。需要说明的是,S202中的第一消息的相关描述可以参考上述S201中的描述,本申请实施例在此不再赘述。
S203:该网络设备根据第一消息,确定该M个通道中每个通道的当前通信的DC位置。
具体的,对于M个通道中的每个通道,若该通道对应只有一个CC,该网络设备可以将该CC的多个BWP中处于激活状态的BWP的DC位置确定为该通道当前通信的DC位置。若该通道对应多个CC中被激活CC包括至少两个CC,且载波频点最低的第一CC和载波频点最高的第二CC组成第一CC对,第一CC对中当前处于被激活状态的BWP组成第一BWP组合,则该网络设备可以从该通道对应的多个DC位置中查询获取第一CC对中第一BWP组合对应的DC位置作为该通道当前通信的DC位置。网络设备可以根据以上规则确定该M个通道中每个通道上当前通信的DC位置。
在一种实施例中,对于M个通道中的每个通道,若该通道对应只有一个CC,网络设备将该CC的多个BWP中处于激活状态的BWP的DC位置确定为该通道上当前通信的DC位置,或根据上报的激活BWP对应的DC位置来确定该通道上当前通信的DC位置;若该通道对应多个CC中被激活CC包括至少两个CC,则网络设备将该多个激活CC上配置的BWP组合中处于激活状态的BWP的DC位置确定为该通道上当前通信的DC位置;或者,若该通道对应多个CC中被激活CC包括至少两个CC,则网络设备根据上报的激活BWP对应的DC位置来确定该通道上的DC位置。
在本申请实施例提供的方法,当该终端具有M个通道且对应N个CC时,该终端可以通过第一消息将该M个通道中每个通道对应的CC,该M个通道中的某一通道对应只有一个CC时该CC中的BWP对应的DC位置,以及该M个通道中的某一通道对应多个CC时该多个CC中任意两个CC组成的CC对中任意两个BWP对应的DC位置上报给网络设 备,以使网络设备可以知悉该M个通道中每个通道的DC位置,进而从该M个通道的DC位置中查询确定该终端当前通信所使用的通道的DC位置,从而据此进行数据传输的优化。
图7为本申请实施例提供的另一种消息处理方法的流程示意图,该方法可以应用于上述图1所示的通信系统100中,用于解决终端支持本振泄露自校准能力和/或支持DC位置上报时如何在网络中共存的问题,该方法可以包括以下步骤。
S301:终端向网络设备发送第一消息,第一消息用于指示该终端是否支持第一能力,第一能力为本振泄露自校准能力。相应的,S301a:网络设备接收第一消息。
其中,该终端是否支持第一能力也可以称为该终端是否具有第一能力,具体是指该终端是否具有本振泄露自校准能力。一个终端具有本振泄露自校准能力可以是指该终端对待发送的上行数据做自校准的优化处理使得发射信号的本振泄露低于某个阈值,可以忽略其对数据造成的影响。一个终端不具有本振泄露自校准能力可以是指该终端无法对待发送的上行数据做自校准的优化处理使得发射信号的本振泄露低于某个阈值,可以忽略其对数据造成的影响。
S302:若该终端支持第一能力,该终端确定是否向该网络设备上报DC位置。
当该终端支持第一能力时,该终端可以直接确定是否向该网络设备上报DC位置,也可以根据该网络设备下发的消息或者信息,确定是否向该网络设备上报DC位置,下面分别通过第一种至第四种方式进行详细介绍说明。
第一种方式,若该终端支持第一能力,则该终端确定不向该网络设备上报DC位置。示例性的,该终端向网络设备发送第一消息,第一消息用于指示该终端支持第一能力,该终端可以直接确定不向该网络设备上报DC位置。或者,当网络设备接收到用于指示该终端支持第一能力的第一消息时,网络设备不向该终端设备发送第一指示消息,该第一指示消息用于指示该终端向网络上报DC位置;或者该终端设备不期望接收到用于指示该终端向网络上报DC位置的第一指示消息。之后,在该终端向该网络设备发送上行数据之前,该终端可以通过第一能力(即本振泄露自校准能力)对本振泄露优化处理后,再将该上行数据发送给该网络设备。
可选的,若该终端支持第一能力,该终端可以在向网络设备发送用于指示该终端支持第一能力的第一消息之后,直接通过第一能力对需要发送的上行数据进行优化处理,而不执行S302,即该终端不执行确定是否向该网络设备上报DC位置的步骤。
第二种方式,若该终端支持第一能力且该终端接收到用于指示网络设备为该终端配置的校准间隔(calibration gap)的第二消息,则该终端可以确定不向该网络设备上报DC位置。示例性的,该终端向网络设备发送第一消息,第一消息用于指示该终端支持第一能力;当该网络设备接收到第一消息时,该网络设备向该终端发送第二消息,第二消息用于指示该网络设备为该终端配置的校准间隔;当该终端接收到第二消息时,该终端可以确定不向该网络设备上报DC位置。或者,当该网络设备向该终端发送第二消息后,该网络设备不会向该终端发送第一指示消息,该第一指示消息用于指示终端设备向网络上报DC位置。之后,在该终端向该网络设备发送上行数据之前,该终端可以在该校准间隔内通过第一能力(即本振泄露自校准能力)对该上行数据进行优化处理后,再将该上行数据发送给该网络设备。
可选的,若该终端支持第一能力,该终端可以在向网络设备发送用于指示该终端支持 第一能力的第一消息,以及接收到网络设备发送的用于指示该网络设备为该终端配置的校准间隔的第二消息之后,直接通过第一能力对需要发送的上行数据进行优化处理,而不执行S302,即该终端不执行确定是否向该网络设备上报DC位置的步骤。
第三种方式,若该终端支持第一能力且未接收到用于指示该网络设备为该终端配置的校准间隔的第二消息,则该终端可以确定向该网络设备上报DC位置。示例性的,该终端向网络设备发送第一消息,第一消息用于指示该终端支持第一能力;若该终端在预设时长内未接收到用于指示该网络设备为该终端配置的校准间隔的第二消息,该终端可以确定向该网络设备上报DC位置。之后,该终端可以向该网络设备上报DC位置,以使该网络设备在接收到该终端上报的DC位置后,可以对该终端发送的上行数据进行优化处理。
可选的,若该终端支持第一能力,该终端可以在向网络设备发送用于指示该终端支持第一能力的第一消息,且在预设时长内未接收到用于指示该网络设备为该终端配置的校准间隔的第二消息之后,直接向该网络设备上报DC位置,而不执行S302,即该终端不执行确定是否向该网络设备上报DC位置的步骤。
第四种方式,若该终端支持第一能力,则该终端可以在接收到来自网络设备的第二指示消息后,该第二指示消息用于指示该终端上报DC位置或者不上报DC位置,根据第二指示消息确定是否向该网络设备上报DC位置。示例性的,该终端向网络设备发送第一消息,第一消息用于指示该终端支持第一能力;该终端接收来自网络设备的第二指示消息;若第二指示用于指示该终端上报DC位置,则终端确定向该网络设备上报DC位置,若第二指示消息用于指示该终端不上报DC位置,则终端确定不向该网络设备上报DC位置。
可选的,若该终端支持第一能力,该终端可以在向网络设备发送用于指示该终端支持第一能力的第一消息,以及在接收到来自网络设备的第二指示消息后,该终端可以根据第二指示消息对应向该网络设备上报DC位置或者不上报DC位置,而不执行S302,即该终端不执行确定是否向该网络设备上报DC位置的步骤。
进一步的,该方法还可以包括S302a:若网络设备接收到的第一消息用于指示该终端支持第一能力,即该终端支持本振泄露的自校准能力,该网络设备确定是否向该终端设备发送用于指示该终端上报DC位置的第二指示消息。
具体的,若网络设备接收到的第一消息用于指示该终端支持本振泄露的自校准能力,则该网络设备确定不向该终端设备发送用于指示该终端上报DC位置的第二指示消息。示例性的,网络设备接收到的第一消息用于指示该终端支持第一能力,该网络设备可以直接确定不向终端设备发送第二指示消息。或者,若网络设备接收到的第一消息用于指示该终端支持本振泄露的自校准能力,且网络设备向终端发送了用于指示校准间隔(calibration gap)的第二消息,则该网络设备确定不向该终端设备发送用于指示该终端上报DC位置的第二指示消息。或者,若网络设备接收到的第一消息用于指示该终端支持本振泄露的自校准能力,且网络设备未向该终端发送用于指示校准间隔(calibration gap)的第二消息,则则该网络设备确定向该终端发送用于指示该终端上报DC位置的第二指示消息。
S303:若该终端不支持第一能力,该终端确定向该网络设备上报DC位置。
示例性的,若该终端不支持第一能力,则该终端在向网络设备发送用于指示该终端不支持第一能力的第一消息之后,该终端可以直接确定向该网络设备上报DC位置。
进一步的,在上述S302或S303之后,若该终端支持第一能力且确定不向该网络设备 上报DC位置,该终端可以向该网络设备发送上行数据之前,通过第一能力(即本振泄露自校准能力)对该上行数据进行优化处理后,再将该上行数据发送给该网络设备。若该终端确定向该网络设备上报DC位置,则该终端可以根据该网络设备的指示或者自身支持的DC位置上报的能力向该网络设备上报DC位置。相应的,如图8所示,该方法还可以包括:S304-S305;和/或S306-S307。
S304:该终端向该网络设备发送第三消息,第三消息用于指示该终端是否支持第二能力。第二能力为支持单载波或聚合载波的增强DC位置上报的能力,支持单载波下的增强DC位置上报和支持聚合载波的增强DC位置上报可以携带在同一个上报信息中,也可以携带在不同的上报信息中。相应的,该网络设备接收第三消息。
其中,该终端支持单载波的增强DC位置上报的能力可以是指:该终端可以按照下文中提供的图9所描述的方案进行DC位置上报,该终端可以使用MAC CE或物理层信道将DC位置上报给网络设备。
另外,该终端支持聚合载波的增强DC位置上报的能力可以是指:该终端可以按照带内载波聚合的DC位置上报方式,或者按照带间载波聚合的DC位置上报方式,将聚合载波的多个CC中任意两个CC组成的CC对中任意两个BWP对应的DC位置上报给该网络设备。比如,该终端可以按照上文中图2或下文中图9所描述的方案进行DC位置上报。
该终端支持第二能力可以是指该终端能够按照上述单载波的DC位置上报方式和聚合载波的DC位置上报方式向该网络设备上报DC位置。该终端支持不支持第二能力可以是指该终端无法按照上述单载波的DC位置上报方式和聚合载波的DC位置上报方式向该网络设备上报DC位置。
具体的,当该终端支持单载波的增强DC位置上报和聚合载波的增强DC位置上报时,该终端向该网络设备发送的第三消息可用于指示该终端支持第二能力;当该终端不支持单载波的增强DC位置上报和聚合载波的增强DC位置上报时,该终端向该网络设备发送的第三消息可用于指示该终端不支持第二能力。
S305:当该终端确定向该网络设备上报DC位置时,该终端向该网络设备发送第四消息,第四消息用于指示该终端的DC位置。相应的,该网络设备可以接收第四消息。
在一种示例中,若该终端不支持第二能力,则该终端可以按照单载波的DC位置上报方式将该终端的DC位置上报给该网络设备。其中,上报的DC位置可以包括该单载波的多个BWP中每个BWP的DC位置。
在另一种示例中,若该终端为聚合载波通信且该终端支持第二能力,则该终端可以按照增强的单载波和聚合载波的DC位置上报方式将该终端的DC位置上报给该网络设备。其中,该DC位置包括聚合载波的多个CC中,任意两个CC组成的CC对中任意两个BWP对应的DC位置,任意两个BWP分别位于CC对中的不同CC。示例性的,该终端可以按照上述图2所提供的方法,将该终端的M个通道对应N个CC时每个通道的DC位置上报给该网络设备。
S306:该终端向该网络设备发送第五消息,第五消息用于指示该终端是否支持第三能力,第三能力为支持带内聚合载波的DC位置上报的能力。相应的,该网络设备可以接收第五消息。
其中,该终端支持带内聚合载波的DC位置上报的能力可以是指:该终端可以按照带 内载波聚合的DC位置上报方式,将聚合载波的两个CC组成的CC对中任意两个BWP对应的DC位置上报给该网络设备。该终端不支持第三能力可以是指该终端无法按照上述方式上报DC位置。
具体的,当该终端支持上述带内载波聚合的DC位置上报时,该终端向该网络设备发送的第五消息用于指示该终端支持第三能力;当该终端不支持上述带内载波聚合的DC位置上报时,该终端向该网络设备发送的第五消息用于指示该终端不支持第三能力。
S307:当该终端确定向该网络设备上报DC位置时,该终端向该网络设备发送第六消息,第六消息用于指示该终端的DC位置。相应的,该网络设备可以接收第六消息。
在一种示例中,若该终端支持第三能力,则该终端可以按照带内上行载波聚合(intra-band UL CA)的DC位置上报方式将该终端的DC位置上报给该网络设备,具体上报方式可以参见相关协议中的描述。比如,该聚合载波包括两个CC,上报的DC位置包括这两个CC中任意两个BWP对应的DC位置,任意两个BWP分别位于这两个CC中的不同CC。
进一步的,当该终端同时支持不同能力的DC位置上报方式时,该终端在向该网络设备上报自身支持的能力之后,该网络设备可以向该终端发送第三指示消息,第三指示消息用于指该终端上报DC位置的方式,这样当该终端接收到第三指示消息时,该终端可以按照第三指示消息所指示的方式上报DC位置。
示例性的,当该终端支持第二能力时,该网络设备发送的第三指示消息可用于指示该终端按照单载波的DC位置上报的方式上报,或者按照聚合载波的DC位置上报的方式上报,或者同时按照单载波的DC位置上报的方式和聚合载波的DC位置上报的方式上报;当该终端支持第三能力时,该网络设备发送的第三指示消息可用于指示该终端按照带内载波聚合的DC位置上报的方式上报。相应的,该终端可以按照该网络设备发送的第三指示消息所指示的方式上报对应上报该终端的DC位置。
在本申请实施例提供的方法中,当该终端支持本振泄露自校准能力,和/或支持不同能力的DC位置上报时,该终端可以根据自身支持的能力或者网络设备的指示,对应确定是否向网络设备上报DC位置,并在确定上报DC位置时按照相应的上报方式完成DC位置的上报,从而解决了该终端支持本振泄露自校准能力和/或支持DC位置上报时如何在网络中共存的问题。
图9为本申请实施例提供的又一种消息处理方法的流程示意图,该方法可以应用于上述图1所示的通信系统100中,用于解决终端上报的DC位置与实际通信的DC位置之间存在偏移的问题,该方法可以包括以下步骤。
S401:终端向网络设备发送更新消息,该更新消息用于更新该终端的DC位置。
其中,该终端与网络设备进行数据传输之前,该终端会将该终端所有可能的DC位置上报给网络设备,该网络设备与该终端建立通信链路且接收到来自该终端的上行数据之后,该网络设备可以从该终端上报的DC位置中获取当前通信的DC位置,并基于该当前通信的DC位置,对该终端的上行数据做数据优化处理。
在该终端与该网络设备进行数据传输的过程中,虽然该终端对应的配置的CC和BWP,以及被激活CC和BWP没有发生切换,但该终端的DC位置会发生偏移的情况,比如,由于该终端的温度或所处工作环境或传输调度的变化,导致该终端的DC位置发生偏移,而 该网络设备接收到的该终端上报的DC位置是不变的,这样该网络设备据此确定的当前通信的DC位置与该终端实际通信的DC位置之间会存在偏移。
基于此,当该终端的DC发生偏移时,该终端可以通过用户设备(user equipment,UE)辅助的信息(UE assistance information,UAI)上报更新后的DC位置消息,用于更新该终端向该网络设备上报的DC位置,比如,该更新消息可以为RRC消息。
需要说明的是,该更新消息可用于更新该终端上报的多个DC位置中的一个或者多个DC位置,其中一个DC位置对应的是当前通信本振泄露的位置,其中多个DC位置是指基于多个配置CC对应的每个CC pair以及对应的所有BWP组合的DC位置,或者多个激活CC对应的每个CC pair以及对应的所有配置的BWP组合的DC位置。关于该更新消息中每个DC位置的更新方式可以与该终端首次上报的DC位置的上报方式相同,本申请实施例对此不作具体限。
可选的,当该终端通过单载波或者带间聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表达。
或者,当该通过带内聚合载波CA的方式上报DC位置时,该更新消息可用于更新以下信息中的一个或者多个:通道和当前配置的或激活的CC的对应关系;对于每一个通道,该通道对应的当前被激活的CC列表;对于每一个通道,该通道对应的当前被激活的BWP列表;DC位置所在资源粒子的位置(该位置的具体范围可以为0-3301)。或者,更新消息可用于更新以下信息中的一个或者多个:激活的CC所在小区的标识(激活的CC servingcell ID),激活的BWP的标识(激活的BWP-ID),DC位置相较之前DC位置上报信息的偏移量,偏移量可通过RE数来表示。
其中,该通道可以是按照该终端中的PA划分的,也可以是按照该终端的间隔等级划分的。
作为一种示例,终端可以依照约定的结构,在更新消息中更新该终端的DC位置。例如,以下示出了一种更新消息的结构示意。
Figure PCTCN2022084210-appb-000002
Figure PCTCN2022084210-appb-000003
对于intra-band CA组合下,上述结构体提供了一种上报当前通信中对应的一个DC位置的更新方法。另一种实现方式中,该终端也可以更新所有配置CC对应的每个CC pair上所有可能BWP组合的DC位置。
S402:网络设备接收该更新消息。需要说明的是,该更新消息与S401中的更新消息一致,具体关于该更新消息的描述可以参见上述S401中的相关描述,本申请实施例在此不再赘述。
S403:该网络设备根据该更新消息,确定该终端当前通信的DC位置。
当该网络设备接收到该更新消息时,该网络设备可以根据该更新消息重新确定该终端当前通信的DC位置,从而基于该当前通信的DC位置对接收到的该终端的上行数据做优化处理。
在本申请实施例提供的方法中,当该终端的DC位置发生偏移时,该终端可以通过向网络设备发送用于更新DC位置的更新消息,以使网络设备可以根据该更新消息确定当前通信的DC位置,从而基于该当前通信的DC位置对数据做优化处理,从而解决终端上报的DC位置与实际通信的DC位置之间存在偏移的问题,同时也避免了该网络设备对错误位置的数据做优化处理而进一步导致数据性能较差的问题。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述终端和网络设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能模块的划分,例如, 可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图10示出了本申请实施例中所涉及的消息处理装置的一种可能的结构示意图,该装置可以作为终端或者终端内置的芯片系统,该装置包括:发送单元501,接收单元502和处理单元503。
在一种可能的实现方式中,发送单元501可用于支持该装置执行上述图2所描述的方法实施例中的S201、以及发送第二消息中的一个或者多个步骤;接收单元502用于执行上述图2所描述的方法实施例中接收第三消息的步骤。在另一种可能的实施例中,发送单元501可用于支持该装置执行上述图7-图8所描述的方法实施例中的S301、S304至S307中的一个或者多个步骤;接收单元502用于执行上述图7-图8所描述的方法实施例中的接收第二消息和不同指示消息中的一个或者多个步骤;处理单元503用于执行上述图7-图8所描述的方法实施例中的S302和S303中的一个或者多个步骤。在又一种可能的实施例中,发送单元501可用于支持该装置执行上述图9所描述的方法实施例中的S401。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请实施例中的处理单元503可以为该装置的处理器,发送单元501可以为该装置的发送器,接收单元502可以为该装置的接收器,发送器通常可以和接收器集成在一起用作收发器,具体的收发器还可以称为通信接口或接口电路。
如图11所示,为本申请实施例提供的上述实施例所涉及的消息处理的另一种可能的结构示意图,该装置可以作为终端或者终端内置的芯片系统,该装置包括:处理器511,还可以包括存储器512、通信接口513和总线514,处理器511、存储器512和通信接口513通过总线514连接。
其中,处理器511用于对该装置的动作进行控制管理。在一种可能的实施例中,处理器511可用于支持该装置执行上述图2所描述的方法实施例中不同消息的生成和解析的一个或者多个步骤,以及通过通信接口513发送或接收不同消息的步骤。在另一种可能的实施例中,处理器511可用于支持该装置执行上述图7-图8所描述的方法实施例中的S302和S303中的一个或者多个步骤,通过通信接口513发送或接收不同消息的步骤,和/或本文所描述的其他步骤。在又一种可能的实施例中,处理器511可用于支持该装置执行上述图9所描述的方法实施例中不同消息的生成和解析的一个或者多个步骤,以及通过通信接口513发送或接收不同消息的步骤。通信接口513用于支持该装置进行通信,比如支持该装置与网络设备进行通信。
在本申请实施例中,处理器511可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。上述图11中的总线514可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended  industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,上述图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用集成的单元的情况下,图12示出了本申请实施例中所涉及的消息处理装置的一种可能的结构示意图,该装置可以作为网络设备或者网络设备内置的芯片系统,该装置包括:接收单元601,发送单元602和处理单元603。
在一种可能的实现方式中,接收单元601可用于支持该装置执行上述图2所描述的方法实施例中的S202;发送单元602用于支持该装置执行上述图2所描述的方法实施例中的发送第二消息的步骤;处理单元603用于支持该装置执行上述图2所描述的方法实施例中的S203。在另一种可能的实施例中,接收单元601可用于支持该装置执行上述图7-图8所描述的方法实施例中接收S301、S304至S307中发送不同消息的一个或者多个步骤;发送单元602用于执行上述图7-图8所描述的方法实施例中发送不同指示消息的步骤;处理单元603用于执行上述图7-图8所描述的方法实施例中确定终端当前通信的DC的步骤。在又一种可能的实施例中,接收单元601可用于支持该装置执行上述图9所描述的方法实施例中的S402;处理单元603可用于支持该装置执行上述图9所描述的方法实施例中的S403。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请实施例中的处理单元603可以为该装置的处理器,发送单元601可以为该装置的发送器,接收单元602可以为该装置的接收器,发送器通常可以和接收器集成在一起用作收发器,具体的收发器还可以称为通信接口或接口电路。
如图13所示,为本申请实施例提供的上述实施例所涉及的消息处理的另一种可能的结构示意图,该装置可以作为网络设备或者网络设备内置的芯片系统,该装置包括:处理器611,还可以包括存储器612、通信接口613和总线614,处理器611、存储器612和通信接口613通过总线614连接。
其中,处理器611用于对该装置的动作进行控制管理。在一种可能的实施例中,处理器611可用于支持该装置执行上述图2所描述的方法实施例中的S203、对于不同消息的生成和解析的一个或者多个步骤,以及通过通信接口613发送或接收不同消息的步骤。在另一种可能的实施例中,处理器611可用于支持该装置执行上述图7-图8所描述的方法实施例中对于不同消息的生成和解析的一个或者多个步骤,以及通过通信接口613发送或接收不同消息的步骤。在又一种可能的实施例中,处理器611可用于支持该装置执行上述图9所描述的方法实施例中的S403、对于不同消息的生成和解析的一个或者多个步骤,以及通过通信接口613发送或接收不同消息的步骤。通信接口613用于支持该装置进行通信,比如支持该装置与终端进行通信。
在本申请实施例中,处理器611可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。上述图13中的总线614可以是外设 部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,上述图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种通信系统,该通信系统中可以包括一个或多个网络设备,以及一个或多个终端。该一个或多个网络设备以及一个或多个终端可以用于实现上述实施例中提供的任意一种消息处理方法。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。本申请实施例提供的各个设备(如终端和/或网络设备),用于执行上述实施例中对应设备的功能,因此可以达到与上述通信方法相同的效果。
应理解,本申请的各个模块也可以拆分为不同的消息处理装置。例如,对于网络设备的生成和发送消息的功能模块的描述,可以拆分为由第一网络设备生成第二消息,经由第二网络设备,直接或间接发送至终端;或由第二网络设备,直接或间接发送至终端。对于网络设备完成的接收的功能,可以由不同网络设备完成。
在上述实施例中的功能或动作或操作或步骤等,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
基于此,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行上述图2所描述的方法实施例中的终端的步骤。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行上述图2所描述的方法实施例中的网络设备的步骤。
基于此,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行上述图7或图8所描述的方法实施例中的终端的步骤。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行上述图7或图8所描述的方法实施例中的网络设备的步骤。
基于此,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行上述图9所描述的方法实施例中的终端的步骤。
在本申请的又一方面,提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当该计算机指令运行时,执行上述图9所描述的方法实施例中的网络设备的步骤。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述图2所描述的方法实施例中的终端的步骤。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述图2所描述的方法实施例中的网络设备的步骤。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述图7或图8所描述的方法实施例中的终端的步骤。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述图7或图8所描述的方法实施例中的网络设备的步骤。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述图9所描述的方法实施例中的终端的步骤。
在本申请的又一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述图9所描述的方法实施例中的网络设备的步骤。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种消息处理方法,其特征在于,所述方法包括:
    终端向网络设备发送第一消息,所述第一消息用于指示所述终端的M个通道对应N个成员载波CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息还用于指示所述DC位置所在CC的小区标识。
  3. 根据权利要求1或2所述的方法,其特征在于,所述M个通道包括第一通道,所述第一通道对应多个CC,所述第一消息用于指示所述第一通道对应所述多个CC,以及所述多个CC中任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,所述任意两个BWP分别位于所述CC对中的不同CC。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述M个通道还包括第二通道,所述第二通道对应一个CC,所述第一消息还用于指示所述第二通道对应所述CC,以及所述CC的多个BWP中每个BWP对应的DC位置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述M个通道是按照所述终端中的功率放大器PA划分的;或者,所述M个通道是按照所述终端的间隔等级划分的。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送第二消息,所述第二消息用于指示所述终端的聚合载波对应的多个CC的独立波束管理信息;
    所述终端接收来自所述网络设备的第三消息,所述第三消息用于指示所述终端发送所述第一消息。
  7. 一种消息处理方法,其特征在于,所述方法包括:
    网络设备接收来自终端的第一消息,所述第一消息用于指示所述终端的M个通道对应N个成员载波CC时每个通道的DC位置,M为大于或等于2的整数,N为大于2的整数;
    所述网络设备根据所述第一消息,确定所述M个通道中每个通道的当前通信的DC位置。
  8. 根据权利要求7所述的方法,其特征在于,所述第一消息还用于指示所述DC位置所在CC的小区标识。
  9. 根据权利要求7或8所述的方法,其特征在于,所述M个通道包括第一通道,所述第一通道对应多个CC,所述第一消息用于指示所述第一通道对应所述多个CC,以及所述多个CC中任意两个CC组成的CC对中任意两个带宽组BWP对应的DC位置,所述任意两个BWP分别位于所述CC对中的不同CC。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述M个通道还包括第二通道,所述第二通道对应一个CC,所述第一消息还用于指示所述第二通道对应所述CC,以及所述CC的多个BWP中每个BWP对应的DC位置。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述M个通道是按照所述终端中的功率放大器PA划分的;或者,所述M个通道是按照所述终端的间隔等级划分的。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端的第二消息,所述第二消息用于指示所述终端的聚合 载波对应的多个CC的独立波束管理信息;
    所述网络设备向所述终端发送第三消息,所述第三消息用于指示所述终端发送所述第一消息。
  13. 一种消息处理方法,其特征在于,所述方法包括:
    终端向网络设备发送第一消息,所述第一消息用于指示所述终端是否支持第一能力,所述第一能力为本振泄露自校准能力;
    若所述终端支持所述第一能力,所述终端确定是否向所述网络设备上报直流DC位置。
  14. 根据权利要求13所述的方法,其特征在于,所述若所述终端支持所述第一能力,所述终端确定是否向所述网络设备上报直流DC位置,包括:
    若所述终端支持所述第一能力,所述终端确定不向所述网络设备上报DC位置;或者,
    若所述终端支持所述第一能力且接收到用于指示所述网络设备为所述终端配置的校准间隔的第二消息,所述终端确定不向所述网络设备上报DC位置;
    若所述终端支持所述第一能力且未接收到用于指示所述网络设备为所述终端配置的校准间隔的第二消息,所述终端确定向所述网络设备上报DC位置。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述网络设备的指示消息,所述指示消息用于指示所述终端上报DC位置,或者所述指示消息用于指示所述终端不上报直流DC位置;
    所述终端确定是否向所述网络设备上报DC位置,包括:
    若所述指示消息指示所述终端上报DC位置,所述终端确定向所述网络设备上报直流DC位置;
    若所述指示消息指示所述终端不上报DC位置,所述终端确定不向所述网络设备上报DC位置。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    若所述终端不支持所述第一能力,所述终端确定向所述网络设备上报DC位置。
  17. 一种消息处理方法,其特征在于,所述方法包括:
    网络设备接收来自终端的第一消息,所述第一消息用于指示所述终端是否支持第一能力,所述第一能力为本振泄露自校准能力;
    所述网络设备向所述终端发送指示消息,所述指示消息用于指示所述终端上报直流DC位置,或者所述指示消息用于指示所述终端不上报直流DC位置。
  18. 根据权利要求17所述的方法,其特征在于,当所述指示消息用于指示所述终端不上报DC位置时,所述方法还包括:
    所述网络设备向所述终端发送第二消息,所述第二消息用于指示所述网络设备为所述终端配置的校准间隔。
  19. 一种消息处理装置,其特征在于,所述装置为终端或者应用于终端的芯片系统,包括处理器和存储器,所述存储器与所述处理器耦合,所述存储器存储有计算机指令,当所述处理器执行所述计算机指令时,使得所述装置执行如权利要求1-6任一项所述的消息处理方法,或者,执行如权利要求13-16中任一项所述的消息处理方法。
  20. 一种消息处理装置,其特征在于,所述装置为网络设备或者应用于网络设备的芯片系统,包括处理器和存储器,所述存储器与所述处理器耦合,所述存储器存储有计算机 指令,当所述处理器执行所述计算机指令时,使得所述装置执行如权利要求7-12任一项所述的消息处理方法,或者,执行如权利要求17或18所述的消息处理方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储的指令,当所述指令在设备上运行时,使得所述设备执行如权利要求1-6任一项所述的消息处理方法,或者,执行如权利要求13-16中任一项所述的消息处理方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储的指令,当所述指令在设备上运行时,使得所述设备执行如权利要求7-12任一项所述的消息处理方法,或者,执行如权利要求17或18所述的消息处理方法。
PCT/CN2022/084210 2021-04-02 2022-03-30 一种消息处理方法及装置 WO2022206863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363850.8 2021-04-02
CN202110363850.8A CN115190608A (zh) 2021-04-02 2021-04-02 一种消息处理方法及装置

Publications (1)

Publication Number Publication Date
WO2022206863A1 true WO2022206863A1 (zh) 2022-10-06

Family

ID=83458009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084210 WO2022206863A1 (zh) 2021-04-02 2022-03-30 一种消息处理方法及装置

Country Status (2)

Country Link
CN (1) CN115190608A (zh)
WO (1) WO2022206863A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294803A (zh) * 2019-04-26 2020-06-16 展讯通信(上海)有限公司 直流分量的频域位置的确定方法及装置、存储介质、终端、基站
CN111954994A (zh) * 2018-04-10 2020-11-17 高通股份有限公司 新无线电(nr)中的直流(dc)频调位置的上行链路信令
CN112738893A (zh) * 2018-09-21 2021-04-30 华为技术有限公司 用户终端的能力信息传输方法和相关装置
CN114430312A (zh) * 2020-10-29 2022-05-03 中国移动通信有限公司研究院 一种直流分量载波的位置上报、接收方法、终端及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954994A (zh) * 2018-04-10 2020-11-17 高通股份有限公司 新无线电(nr)中的直流(dc)频调位置的上行链路信令
CN112738893A (zh) * 2018-09-21 2021-04-30 华为技术有限公司 用户终端的能力信息传输方法和相关装置
CN111294803A (zh) * 2019-04-26 2020-06-16 展讯通信(上海)有限公司 直流分量的频域位置的确定方法及装置、存储介质、终端、基站
CN114430312A (zh) * 2020-10-29 2022-05-03 中国移动通信有限公司研究院 一种直流分量载波的位置上报、接收方法、终端及设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE INC: "Dynamic Reporting of Tx DC Location for UL CA", 3GPP DRAFT; R2-2009518, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942471 *
HUAWEI HISILICON: "Clarification on DC location reporting for intra-band UL CA", 3GPP DRAFT; RP-202617, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic meeting; 20201207 - 20201211, 30 November 2020 (2020-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051963180 *
HUAWEI, HISILICON: "On the signalling for additional DC location reporting", 3GPP DRAFT; R2-2101910, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974769 *
NOKIA, NOKIA SHANGHAI BELL: "Signalling of UL CA DC location", 3GPP DRAFT; R2-2100955, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974015 *

Also Published As

Publication number Publication date
CN115190608A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
US20220287124A1 (en) Method, apparatus and computer program related to secondary cell group reactivation in multi-radio access technology-dual connectivity
JP2021503834A (ja) マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
JP2015526998A (ja) コンポーネント・キャリア設定の方法、基地局、およびユーザ装置
WO2020192782A1 (zh) 一种上报srs能力的方法、装置及系统
WO2020143490A1 (zh) 通信方法及装置
JP7532553B2 (ja) メッセージ処理方法および装置
US10708765B2 (en) Method and apparatus for indicating restricted resources of wireless terminal
EP4280756A1 (en) Switching of search space set group of target cell, and control method and apparatus therefor
KR20240015681A (ko) 통신 방법 및 관련 통신 장치
JP2023503666A (ja) グループページングのためのpdcch拡張
WO2021190445A1 (zh) 广播多播业务传输方法、广播多播业务传输指示方法及设备
WO2022205376A1 (en) Dynamic measurement period for wireless communications in a high-speed mode
CN113676304B (zh) 一种消息处理方法和设备
WO2022000146A1 (zh) 通信方法及终端设备
WO2022206863A1 (zh) 一种消息处理方法及装置
CN117460007A (zh) 一种小区状态切换方法及装置
US20230164681A1 (en) Access control method and apparatus, terminal, and network device
US12075524B2 (en) User equipment capability information for carrier grouping in dual connectivity
WO2022194026A1 (zh) 传输上行mcs指示信息的方法, 终端及网络侧设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
KR20220047328A (ko) 정보를 전송하기 위한 방법 및 장치
WO2021043386A1 (en) Communication of terminal with multiple access nodes
WO2022022135A1 (zh) 一种数据传输方法、装置及存储介质
WO2019245881A1 (en) Methods and apparatus for indicating restricted resources of wireless terminal and for indicating access node capability to support connection with a wireless terminal with restricted capabilities
US20230156673A1 (en) Method and apparatus for determining target resource type, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779045

Country of ref document: EP

Kind code of ref document: A1