WO2022203074A1 - 含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液、非水系二次電池 - Google Patents

含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液、非水系二次電池 Download PDF

Info

Publication number
WO2022203074A1
WO2022203074A1 PCT/JP2022/014660 JP2022014660W WO2022203074A1 WO 2022203074 A1 WO2022203074 A1 WO 2022203074A1 JP 2022014660 W JP2022014660 W JP 2022014660W WO 2022203074 A1 WO2022203074 A1 WO 2022203074A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
compound
general formula
aqueous
solvent
Prior art date
Application number
PCT/JP2022/014660
Other languages
English (en)
French (fr)
Inventor
慎 伊藤
直樹 松岡
開史 堀
和輝 前田
信之 植松
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020237032198A priority Critical patent/KR20230146646A/ko
Priority to JP2023509346A priority patent/JPWO2022203074A1/ja
Priority to US18/283,573 priority patent/US20240194948A1/en
Priority to CN202280024482.7A priority patent/CN117121258A/zh
Priority to EP22775855.4A priority patent/EP4317129A1/en
Publication of WO2022203074A1 publication Critical patent/WO2022203074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/80Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/84Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a fluorine-containing cyclic sulfonylimide salt useful as an antistatic agent, an ion-conducting material such as an organic electrolyte, or a flame retardant, a method for producing the same, a non-aqueous electrolytic solution, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion batteries are characterized by their light weight, high energy and long life, and are widely used as power sources for various portable electronic devices.
  • non-aqueous electrolytes have been widely used in industrial applications such as power tools, electric vehicles, and electric bicycles. It is also attracting attention in the field.
  • a non-aqueous electrolyte for lithium-ion batteries is generally exemplified by a combination of a high dielectric solvent such as a cyclic carbonate and a low-viscosity solvent such as a chain carbonate.
  • a high dielectric solvent such as a cyclic carbonate
  • a low-viscosity solvent such as a chain carbonate.
  • an electrode protecting additive such as vinylene carbonate in order to form an SEI (Solid Electrolyte Interface) on the surface of the negative electrode, thereby suppressing reductive decomposition of the non-aqueous solvent.
  • Patent Document 1 reports a non-aqueous electrolytic solution that does not corrode electrodes and maintains high ionic conductivity by using a fluorine-containing cyclic sulfonylimide salt.
  • Patent Document 2 reports a non-aqueous secondary battery in which a non-aqueous electrolytic solution containing a fluorine-containing cyclic sulfonylimide salt is combined with a positive electrode in which the amount of cobalt used is reduced.
  • Fluorine-containing sulfonylimide salts such as N,N-bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)imide, and derivatives thereof, are known to be compounds useful as ion-conducting materials and flame retardants ( For example, see Non-Patent Document 1 below).
  • FO 2 SCF 2 CF 2 SO 2 F synthesized by electrolytic coupling reaction of FSO 2 CF 2 COOH is reacted with ammonia to obtain a fluorine-containing cyclic sulfonylimide ammonium salt.
  • an alkali metal hydroxide or carbonate (cation exchange reaction) after it has undergone a cyclization reaction see Patent Document 3 below.
  • Patent Document 3 describes that the reaction crude product containing FO 2 SCF 2 CF 2 SO 2 F synthesized by the electrolytic coupling reaction may be purified by post-treatment such as distillation. A specific post-treatment for reducing the content of a specific by-product contained in compound (1A), which is a substance, and enhancing heat resistance (low mass reduction rate at high temperatures) is not described. , is not even suggested.
  • (hereinafter also referred to as compound (1A) in this document) is produced by the following general formula (2): H(CR2) m - SO2NHM2 ( 2 ) ⁇ wherein each R may be the same or different and is a fluorine atom or a trifluoromethyl group, m is 1 or 2, and M 2 is Li, Na, K, H or NH4 .
  • (hereinafter also referred to as compound (2)) is mixed in the final product as a by-product (impurity), resulting in the desired heat resistance of compound (1A).
  • Patent Document 4 describes a lithium salt in a mixed solvent of 1,4-dioxane as a poor solvent and acetonitrile as a good solvent. Examples of crystallization purification of are described.
  • Patent Documents 1 to 3 have problems with sufficient suppression of metal corrosion of non-aqueous secondary battery members, or initial charge/discharge efficiency and cycle performance.
  • the problem to be solved by the present invention is to provide a fluorine-containing cyclic sulfonylimide salt and a non-aqueous electrolytic solution with excellent heat resistance and reduced metal corrosiveness.
  • an alkali metal salt of a fluorine-containing cyclic sulfonimide with reduced specific impurities has excellent heat resistance and reduces metal corrosiveness. was unexpectedly discovered, and the present invention was completed.
  • a non-aqueous electrolytic solution containing a non-aqueous electrolytic solvent and a lithium salt the non-aqueous solvent comprises a carbonate solvent;
  • the lithium salt has the following general formula (1): ⁇ Wherein, each R f may be the same or different and represents a fluorine atom or a perfluoro group having 4 or less carbon atoms ⁇ and containing a fluorine-containing cyclic sulfonylimide salt represented by the following general formula (2): H(CR2) m - SO2NHM2 ( 2 ) ⁇ wherein each R, which may be the same or different, is a fluorine atom or a trifluoromethyl group, M2 is Li, Na, K, H or NH4 , and m is , is 1 or 2 ⁇
  • the fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) is represented by the following formulas (1-1) to (1-5):
  • non-aqueous electrolyte Any one of items 1 to 6, wherein the content of the fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) is 0.8 mol or more and 1.5 mol or less with respect to 1 L of the non-aqueous solvent. 1.
  • the lithium salt contains a fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) and LiPF 6
  • the non-aqueous solvent contains vinylene carbonate and/or fluoroethylene carbonate
  • the content of the fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) is 2.5 or more in molar ratio to the content of the LiPF 6
  • the content of the LiPF 6 is vinylene 9.
  • the non-aqueous electrolytic solution according to any one of items 1 to 8, wherein the molar ratio to the content of carbonate and fluoroethylene carbonate is 0.01 or more and 4 or less.
  • the content of the fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) is greater than 10 in terms of molar ratio with respect to the content of the LiPF 6 .
  • Aqueous electrolyte. ⁇ 11> A non-aqueous secondary battery comprising the non-aqueous electrolytic solution according to any one of Items 1 to 10. ⁇ 12> Item 11. The non-aqueous secondary battery according to item 11, wherein the non-aqueous secondary battery includes a battery exterior, and the battery exterior contains aluminum in at least a portion of a positive electrode side wetted layer with the non-aqueous electrolyte. .
  • Producing a fluorine cyclic sulfonylimide salt The fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) obtained after the cation exchange step is dissolved in a monodentate chain ether solvent and then crystallized to obtain a purified fluorine-containing solution.
  • a crystallization step to obtain a cyclic sulfonylimide salt; 11.
  • the mixing step of mixing the fluorine-containing cyclic sulfonylimide salt represented by the general formula (1) obtained in the crystallization step and a non-aqueous solvent according to any one of items 1 to 10.
  • a method for producing a non-aqueous electrolytic solution is a method for producing a non-aqueous electrolytic solution.
  • each R may be the same or different and is a fluorine atom or a trifluoromethyl group
  • n is an integer of 1 to 4
  • M 1 is Li, Na
  • a fluorine-containing cyclic sulfonylimide salt composition containing a fluorine-containing cyclic sulfonylimide salt represented by K or NH 4 A fluorine-containing cyclic sulfonylimide salt composition having a temperature of 385° C. or higher at which the mass reduction rate becomes 2% by mass when heated from 100° C. at a heating rate of 10° C./min in a nitrogen stream. .
  • the fluorine-containing cyclic sulfonylimide salt has the following formula: 20.
  • the fluorine-containing cyclic sulfonylimide salt composition according to any one of Items 15 to 19, represented by ⁇ 21>
  • each R may be the same or different and is a fluorine atom or a trifluoromethyl group, m is 1 or 2, and M is H, Li, Na, K or NH 4 ⁇ , through an electrolytic coupling reaction step, a cyclization step, and a cation exchange step, the following general formula (1A): ⁇ wherein each R may be the same or different and is a fluorine atom or a trifluoromethyl group, n is an integer of 1 to 4, and M 1 is Li, Na or is K ⁇ , the fluorine-containing cyclic sulfonylimide salt obtained after the cation exchange step is dissolved in a monodentate chain ether solvent, and then crystallized.
  • the monodentate chain ether solvent used for the crystallization is ethyl ether, propyl methyl ether, propyl ethyl ether, propyl ether, isopropyl methyl ether, isopropyl ethyl ether, isopropyl ether, butyl methyl ether, butyl ethyl ether, isobutyl methyl ether, isobutyl ethyl ether, sec-butyl methyl ether, sec-butyl ethyl ether, tert-butyl methyl ether, tert-butyl ethyl ether, pentyl methyl ether, isopentyl methyl ether, sec-pentyl methyl ether, tert-pentyl methyl 23.
  • a method according to item 22, wherein the solvent is at least one solvent selected from the group consisting of ether, neopentyl methyl ether, and cyclopentyl methyl ether.
  • the solvent is at least one solvent selected from the group consisting of ether, neopentyl methyl ether, and cyclopentyl methyl ether.
  • 24. The method according to item 22 or 23, wherein n in the general formula (1A) is 2.
  • R in the general formula (1A) is F.
  • M in the general formula (1A) is Li.
  • the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3) is added to the ratio ( ⁇ / ⁇ ) of the mass ( ⁇ ) of water and the mass ( ⁇ ) of the nitrile group-containing solvent.
  • a method according to item 27, wherein the ratio ( ⁇ / ⁇ ) of the mass ( ⁇ ) of water to the mass ( ⁇ ) of the nitrile group-containing solvent is 0.75 or less.
  • the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3) is subjected to an electrolytic coupling reaction in a reaction vessel in the presence of a mixed solvent of water and a nitrile group-containing solvent. let During the reaction, the height (distance) TL from the bottom of the reaction vessel to the liquid surface of the reaction solution and the height (distance) TE from the bottom of the reaction vessel to the top (highest level) of the electrode satisfy the relationship TL>TE.
  • the height (distance) TS from the bottom of the reaction vessel to the interface between the organic phase and the aqueous phase, and the height (distance) from the bottom of the reaction vessel to the bottom of the electrode (lowest level) ) TE' satisfies the relationship TE'>TS.
  • a method according to item 29, wherein the relationship between said TE' and said TS is the relationship TE' ⁇ 0.6>TS.
  • the method according to any one of items 27 to 30, wherein the content of alkali metal in the reaction solution in the electrolytic coupling reaction is 2000 mass ppm or less.
  • the molar ratio of the compound represented by the general formula (5) is the following general formula (4): FO2S- (CR2) m - SO2F (4)
  • the method according to any one of items 27 to 31, wherein the production amount of 4) is 0.01 or less per 1 mol.
  • the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3) is subjected to an electrolytic coupling reaction in the presence of a mixed solvent of water and a nitrile group-containing solvent, and the fluorosulfonyl group 33.
  • the method of. ⁇ 34> 34 34.
  • the plate spacing between the anode and the cathode is 0.001 mm to 9.9 mm.
  • ⁇ 35> 35 The method according to item 33 or 34, wherein the yield of compound (4) is 70% or more in the electrolytic coupling reaction.
  • ⁇ 36> 36 The method according to any one of items 27 to 35, wherein the nitrile group-containing solvent is at least one selected from the group consisting of acetonitrile, propionitrile, butyronitrile, and benzonitrile.
  • ⁇ 37> 37 A method according to item 36, wherein the nitrile group-containing solvent is acetonitrile.
  • ⁇ 38> 38 The method according to any one of items 27 to 37, wherein the electrolytic coupling reaction is carried out at a reaction temperature ranging from -35°C to 10°C.
  • the fluorine-containing cyclic sulfonylimide salt according to the present invention has high heat resistance, can be used in a wide temperature range, and has low metal corrosiveness. Moreover, according to the present invention, it is possible to provide a non-aqueous electrolytic solution having low metal corrosiveness and excellent initial charge/discharge efficiency and cycle performance.
  • FIG. 2 is a cross-sectional view of the non-aqueous secondary battery of FIG. 1 taken along the line AA.
  • 2 is a surface SEM photograph (magnification: 1000) of a positive electrode Al current collector after a cycle test of a coin-type non-aqueous secondary battery made with the non-aqueous electrolytic solution used in Example II-1.
  • FIG. 10 is a surface SEM photograph (40 ⁇ magnification) of the positive electrode Al current collector after the cycle test of the coin-type non-aqueous secondary battery made with the non-aqueous electrolytic solution used in Comparative Example II-1.
  • 10 is a surface SEM photograph (magnification: 1000) of a positive electrode Al current collector after a cycle test of a coin-type non-aqueous secondary battery made from the non-aqueous electrolytic solution used in Comparative Example II-1.
  • FIG. 10 is a surface SEM photograph (40 ⁇ magnification) of a positive electrode Al current collector after a cycle test of a coin-type non-aqueous secondary battery made with the non-aqueous electrolytic solution used in Comparative Example II-3.
  • FIG. 10 is a surface SEM photograph (magnification: 1000) of a positive electrode Al current collector after a cycle test of a coin-type non-aqueous secondary battery made with the non-aqueous electrolytic solution used in Comparative Example II-3.
  • FIG. 10 is a surface SEM photograph (magnification: 10000) of a positive electrode Al current collector after a cycle test of a coin-type non-aqueous secondary battery made with the non-aqueous electrolyte used in Comparative Example II-3. It is drawing which shows the example of arrangement
  • this embodiment the form for carrying out the present invention (hereinafter simply referred to as “this embodiment") will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications are possible without departing from the scope of the invention.
  • the numerical range described using “-” includes the numerical values described before and after it.
  • One embodiment of the present invention is the following general formula (1A): ⁇ wherein each R may be the same or different and is a fluorine atom or a trifluoromethyl group, n is an integer of 1 to 4, and M 1 is Li, Na, is K or NH 4 ⁇ , and when heated from 100°C at a temperature elevation rate of 10°C/min under a nitrogen stream, the mass reduction rate is
  • the fluorine-containing cyclic sulfonylimide salt composition is characterized in that the temperature at which it becomes 2% by mass is 385°C or higher.
  • the compound (1A) will be described in detail below.
  • n is an integer of 1 to 4 from the viewpoint of easy availability or production and excellent economic efficiency, and from the same viewpoint, it is preferably an integer of 1 to 3, 1 or Two is more preferred, and two is most preferred.
  • Each R may be the same or different, and is a fluorine atom or a trifluoromethyl group, most preferably a fluorine atom, from the viewpoint of ease of availability or production and excellent economic efficiency.
  • M 1 is Li, Na, K, or NH 4 (that is, an alkali metal ion or an ammonium ion), preferably Li or Na, and most preferably Li, from the standpoint of ease of availability or production and excellent economic efficiency.
  • Specific examples of compound (1A) include the following structural formula: or The compound represented by is mentioned. Among these are the following structural formulas: A compound represented by is preferred.
  • the composition containing compound (1A) preferably has a 2% mass loss temperature of 385° C. or higher when heated from 100° C. at a rate of temperature increase of 10° C./min under a nitrogen stream. C. or higher is more preferred, and 395.degree. C. or higher is most preferred.
  • the upper limit of the 2% mass loss temperature is not particularly limited, it may be 1000° C. or lower or 500° C. or lower.
  • the 2% mass reduction temperature is the temperature at which the rate of mass reduction relative to the initial mass is 2% when thermogravimetric analysis is performed under the above conditions. That is, the higher the 2% mass loss temperature is, the more difficult it is to produce decomposed products and the higher the heat resistance.
  • the above 2% mass loss temperature is measured by heating from 25°C at a rate of 10°C/min and holding at 100°C for 30 minutes to evaporate volatile components such as moisture. /min and measure the 2% mass loss temperature.
  • the temperature at which the mass decreases by 2% is determined based on the mass at the start of heating from 100°C.
  • Devices that can be used to measure the 2% mass loss temperature include a simultaneous differential thermogravimetry device (eg, “DTG-60A” manufactured by Shimadzu Corporation).
  • the composition of compound (1A) used for the above measurement preferably has a total content of water and residual solvent of 2000 mass ppm or less, and from the same viewpoint, more preferably 1500 mass ppm or less. It is more preferably not more than 600 ppm by mass, and most preferably not more than 600 ppm by mass.
  • the above water content can be measured with an analytical instrument such as a Karl Fischer moisture meter, gas chromatography, or liquid chromatography.
  • a fluorine-containing cyclic sulfonylimide salt composition having a 2% mass loss temperature in the desired range can be obtained, for example, by distilling and purifying the reaction solution obtained in the electrolytic coupling reaction step as described below to remove the compound (5). , obtained by purifying the compound (1A) by crystallization. Also, this composition is obtained by performing both the distillation purification and the crystallization. Further, the composition is obtained by adding the compound (2) after performing distillation or crystallization.
  • the content (purity) of compound (1A) in the fluorine-containing cyclic sulfonylimide salt composition of the present embodiment is preferably at least 98.0% by mass, more preferably at least 99.0% by mass. , 99.5% by mass or more.
  • the composition containing the fluorine-containing cyclic sulfonylimide salt (1A) of the present embodiment has the following general formula (2): H(CR2) m - SO2NHM2 ( 2 ) ⁇ wherein each R may be the same or different and is a fluorine atom or a trifluoromethyl group, m is 1 or 2, M 2 is Li, Na, K, H or NH4 . ⁇ is preferably 10000 ppm by mass (1% by mass) or less.
  • the content of the compound (2) is within the above range, the heat resistance of the composition containing the compound (1A) is further enhanced, and the metal corrosiveness is reduced. An increase in irreversible capacity and a decrease in cycle performance can be suppressed.
  • the content of the compound (2) is more preferably 5000 mass ppm or less, most preferably 1000 mass ppm or less, relative to the total amount of the fluorine-containing cyclic sulfonylimide salt (1A).
  • the lower limit of the content of the compound (2) is not particularly limited, it may be 0 mass ppm or more, or 0.001 mass ppm or more with respect to the total amount of the fluorine-containing cyclic sulfonylimide salt (1A). It may be present, may be 10 mass ppm or more, or may be 100 mass ppm or more.
  • the content of compound (2) is calculated from the integrated value of the peak value of 19 F-NMR.
  • the content of compound (2) is measured by an internal standard method (internal standard substance: benzotrifluoride).
  • the content of compound (2) is calculated by the following formula.
  • Content of compound (2) (% by mass) (Im ⁇ Ci ⁇ Cmw) / (Ii ⁇ Ia) ⁇ 100
  • Cmw molecular weight of compound (2)
  • Ia including fluorine-containing cyclic sulfonylimide salt in measurement sample total mass of composition)
  • the content of compound (2) was tentatively calculated using the above internal standard method, and the value was multiplied by 200 to obtain the original non-aqueous
  • the content of compound (2) in the electrolytic solution can be calculated.
  • the content of the compound (2) in the compound (1A) used as the raw material of the non-aqueous electrolyte is calculated using the above internal standard method, and the compound (1A) is the compound in the non-aqueous electrolyte ( It can be calculated by dividing by the dilution factor when diluted to the concentration of 1A).
  • Identification of the structural formula of compound (2) is performed by one of general analytical techniques including mass spectrometry, nuclear magnetic resonance, infrared spectroscopy, elemental analysis, ion chromatography, ICP emission spectrometry, or Combinations are possible.
  • a fluorine-containing cyclic sulfonylimide salt having a desired content of compound (2) can be obtained, for example, by distilling and purifying the reaction solution obtained in the electrolytic coupling reaction step as described below to remove compound (5). obtained, or obtained by purifying compound (1A) by crystallization. Refining by crystallization, which is highly effective in reducing compound (2), is preferred, and metal corrosiveness is further reduced.
  • the fluorine-containing cyclic sulfonylimide salt composition and the non-aqueous electrolytic solution in which the content of the compound (2) is in the desired range is obtained by post-adding the compound (2) to the fluorine-containing cyclic sulfonylimide salt composition and the non-aqueous electrolytic solution. You can also get it by doing
  • R is synonymous with R in general formula (1A).
  • R is a fluorine atom.
  • m is 1.
  • M 2 is Li, Na, K or NH 4 (ie alkali metal ion, ammonium ion), preferably Li or Na, most preferably Li.
  • Specific examples of compound (2) include compounds represented by the following structural formulas. Among these, HCF 2 SO 2 NHLi (compound (2-1)) and HF 2 CSO 2 NHNH 4 (compound (2-2)) are preferred, and HCF 2 SO 2 NHLi (compound (2-1)) is most preferred. preferable.
  • the compound (5) produced as a by-product in the electrolytic coupling reaction step yields the compound (2-N) through the cyclization step, and then through the reaction in the cation exchange step, the compound ( 2) is generated.
  • the inventors of the present application have found that, as described above, the compound (1A) composition, which is the final product, has a ) It has been found that the content of compound (2) in the composition should be set to a predetermined value or less.
  • the fluorosulfonyl group-containing compound (compound (5)) produced as a by-product is added to the reaction solution obtained in the step.
  • the inventors have found that the content should be reduced to 0.1% by mass or less, and completed the present invention.
  • another embodiment of the present invention is the following general formula (3): HO2C- (CR2) m - SO2F (3)
  • each R may be the same or different and is a fluorine atom or a trifluoromethyl group, and m is 1 or 2.
  • each R may be the same or different and is a fluorine atom or a trifluoromethyl group, and m is 1 or 2.
  • is characterized by a purification step of reducing the fluorosulfonyl group-containing compound represented by ⁇ to 0.1% by mass or less in the reaction solution.
  • the compound (5) is obtained by purifying the reaction solution obtained in the electrolytic coupling reaction step, represented by the following general formula (4): FO2S- (CR2) m - SO2F (4) ⁇
  • each R may be the same or different and is a fluorine atom or a trifluoromethyl group, and m is 1 or 2.
  • is a by-product of the bis(fluorosulfonyl) compound represented by .
  • the fluorine-containing cyclic sulfonylimide salt (1A) obtained after the cation exchange step is added to a monodentate chain-like
  • the present inventors have found that the compound can be purified by dissolving it in an ether solvent and then crystallizing it, leading to the completion of the present invention.
  • another embodiment of the present invention is Starting from the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3), through the electrolytic coupling reaction step, the cyclization step, and the cation exchange step, the carboxylic acid compound represented by the general formula (1A)
  • the fluorine-containing cyclic sulfonylimide salt obtained after the cation exchange step is dissolved in a monodentate chain ether solvent and then crystallized to obtain a purified fluorine-containing salt. including a crystallization step to obtain a cyclic sulfonylimide salt.
  • a bis(fluorosulfonyl) compound (compound (4)) can be produced by subjecting compound (3) to an electrolytic coupling reaction. Even if a commercially available compound ( 3 ) is used, a known method, for example, adding SO3 to tetrafluoroethylene to obtain a sultone, obtaining a sultone ring - opening product in the presence of NEt3, A method of hydrolysis to obtain compound (3) as a sultone hydrolyzate may also be used.
  • R is synonymous with R in general formula (1A).
  • R is a fluorine atom.
  • m is 1.
  • Specific examples of compound (3) include compounds represented by the following structural formulas. Among these, FO 2 SCF 2 CO 2 H (2,2-difluoro-2-(fluorosulfonyl)acetic acid, compound (3-1)) is preferred.
  • the reaction temperature in the electrolytic coupling reaction step is not particularly limited as long as it is within the range generally used, but it is preferably -50°C or higher and 70°C or lower.
  • a reaction temperature of ⁇ 50° C. or higher is preferable because the electrical resistance is lowered and heat generation can be suppressed, thereby facilitating temperature control.
  • the reaction temperature is more preferably -40°C or higher, more preferably -35°C or higher, and most preferably -30°C or higher.
  • the reaction temperature is more preferably 50° C. or lower, more preferably 40° C. or lower, and most preferably 10° C. or lower.
  • a solvent may be used in the electrolytic coupling reaction step.
  • the solvent is not particularly limited as long as it is commonly used, but specific examples include aromatic solvents such as benzene, toluene, chlorobenzene, and 1,2-dichlorobenzene, 1,2-dimethoxy ethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyltetrahydropyran, cyclopentylmethyl ether, and anisole Ether group-containing solvents, nitrile group-containing solvents such as acetonitrile, propionitrile, butyronitrile, and benzonitrile, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and hydroxyl group-containing solvents such as 2-butan
  • nitrile solvents such as acetonitrile, propionitrile, butyronitrile, and benzonitrile
  • water methanol, ethanol, 1-propanol, 2-propanol, 1-butanol , and 2-butanol
  • carbonate group-containing solvents such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate and propylene carbonate.
  • a mixed solvent of water and a nitrile group-containing solvent or water and A mixed solvent of a carbonate group-containing solvent is preferred, a mixed solvent of water and a nitrile group-containing solvent is more preferred, and a mixed solvent of water and acetonitrile is most preferred.
  • the amount of acetonitrile in the solvent is preferably 0.5-90% by weight.
  • the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3) is used so that the ratio ( ⁇ / ⁇ ) of the mass ( ⁇ ) of water to the mass ( ⁇ ) of the nitrile group-containing solvent is 0. It is preferable to produce the bis(fluorosulfonyl) compound represented by the general formula (4) by performing the electrolytic coupling reaction in the presence of a mixed solvent of water and a nitrile group-containing solvent having a concentration of 0.80 or less. When ⁇ / ⁇ is 0.80 or less, production of compound (5) can be suppressed.
  • ⁇ / ⁇ is more preferably 0.75 or less, more preferably 0.5 or less, even more preferably 0.2 or less, and 0.1 or less. is even more preferable.
  • the lower limit of ⁇ / ⁇ is not particularly limited, it may be 0.01 or more, 0.03 or more, 0.05 or more, or 0.18 or more.
  • Patent Document 3 discloses a method for producing a bis(fluorosulfonyl) compound (FO 2 SCF 2 CF 2 SO 2 F) in one step by an electrolytic coupling reaction using FO 2 SCF 2 CO 2 H as a starting material. ing.
  • a bis(fluorosulfonyl) compound is produced according to Patent Document 3
  • a fluorosulfonyl group-containing compound represented by general formula (5) is mixed as a by-product.
  • bis(fluorosulfonyl) compounds are used as catalysts and electrolytes. .
  • the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3) is subjected to an electrolytic coupling reaction in a reaction vessel in the presence of a mixed solvent of water and a nitrile group-containing solvent,
  • a method for producing a bis(fluorosulfonyl) compound represented by the general formula (4) wherein during the reaction, the height (distance) TL from the bottom of the reaction vessel to the liquid surface of the reaction solution and the bottom of the reaction vessel and the height (distance) TE from the top of the electrode (highest level) satisfies the relationship TL>TE, and after the reaction, the height from the bottom of the reaction vessel to the interface between the organic phase and the aqueous phase
  • the height (distance) TL from the bottom of the reaction vessel to the liquid surface of the reaction solution and the height (distance) from the bottom of the reaction vessel to the top of the electrode (highest level)
  • the relationship TL>TE is satisfied
  • the height (distance) TS from the bottom of the reaction vessel to the interface between the organic phase and the aqueous phase, and the distance from the bottom of the reaction vessel to the bottom of the electrode (lowest level)
  • the height (distance) TE' preferably satisfies the relationship TE'>TS.
  • the relationship between TE' and TS more preferably satisfies the relationship TE' ⁇ 0.8>TS, and most preferably further satisfies TE' ⁇ 0.6>TS.
  • Patent Document 3 discloses a method for producing a bis(fluorosulfonyl) compound (FO 2 SCF 2 CF 2 SO 2 F) in one step by an electrolytic coupling reaction using FO 2 SCF 2 CO 2 H as a starting material. ing.
  • a bis(fluorosulfonyl) compound is produced according to Patent Document 3, hunting such as a sudden increase in voltage during the electrolytic coupling reaction is observed, and improvement in the stability of the electrolytic coupling reaction is required.
  • the height (distance) TL from the bottom of the reaction vessel to the liquid surface of the reaction solution and the height (distance) TE from the bottom of the reaction vessel to the top (highest level) of the electrode are TL>TE and after the reaction, the height (distance) TS from the bottom of the reaction vessel to the interface between the organic phase and the aqueous phase, and the height from the bottom of the reaction vessel to the bottom of the electrode (lowest level)
  • the inventors have found that by satisfying the relationship TE'>TS, the occurrence of hunting can be suppressed and the operation stability of the reactor can be improved, and the present invention has been completed.
  • the fluorosulfonyl group-containing carboxylic acid compound represented by the general formula (3) is subjected to an electrolytic coupling reaction in the presence of a mixed solvent of water and a nitrile group-containing solvent.
  • the ratio ( ⁇ / ⁇ ) between the mass ( ⁇ ) of the compound (3) and the mass ( ⁇ ) of the mixed solvent is preferably 1.5 or less.
  • ⁇ / ⁇ is 1.5 or less, the yield of compound (2) tends to be higher, which is preferable.
  • ⁇ / ⁇ is preferably 1.35 or less, most preferably 1.00 or less.
  • the lower limit of ⁇ / ⁇ is not particularly limited, it may be 0.01 or more, 0.05 or more, or 0.1 or more.
  • the electrode used in the electrolytic coupling reaction step is not particularly limited as long as it is a generally used electrode, but from the viewpoint of suppressing the decomposition of the solvent, it is preferably a platinum electrode.
  • the electrode plate interval between the anode and the cathode is preferably 0.001 mm to 9.9 mm.
  • the electrode plate interval is 0.001 mm or more, the electrolytic solution easily flows between the electrode plates, which tends to increase the yield of the compound (4), which is preferable.
  • the electrode plate spacing is 9.9 mm or less, the voltage is reduced and side reactions are suppressed, which tends to increase the yield of compound (4), which is preferable.
  • the distance between the anode and cathode plates is preferably 0.01 mm to 5 mm, most preferably 0.1 mm to 2.9 mm.
  • Patent Document 3 discloses a method for producing a bis(fluorosulfonyl) compound (FO 2 SCF 2 CF 2 SO 2 F) in one step by an electrolytic coupling reaction using FO 2 SCF 2 CO 2 H as a starting material. ing.
  • Patent Document 3 does not specifically describe the mixing ratio of the raw material and the solvent during the electrolytic coupling reaction and the electrode spacing between the anode and the cathode.
  • FO 2 SCF 2 CO 2 H is used as a starting material
  • the yield of the bis(fluorosulfonyl) compound varies greatly depending on the mixing ratio of the starting material and the solvent. In some cases, the target bis(fluorosulfonyl) compound cannot be obtained at all.
  • the content of alkali metal in the reaction solution in the electrolytic coupling reaction is preferably 2000 ppm by mass or less.
  • the content of the alkali metal in the reaction solution is more preferably 1000 ppm by mass or less, and even more preferably 500 ppm by mass or less.
  • the electrolytic coupling reaction step after the electrolytic coupling reaction of compound (3), compound (3), compound (4), and a method for separating each from the reaction product containing the solvent are generally used.
  • Any separation and removal method can be used without particular limitation. Examples include separation and removal of volatile components by distillation, separation and removal of liquid components by liquid separation, and separation and removal of insoluble solids by filtration. These methods may be used alone or in combination of multiple methods.
  • the method for separating each of compound (4) and compound (5) from the mixture is not particularly limited as long as it is generally used separation removal.
  • a separation method by distillation may be mentioned.
  • R is synonymous with R in general formula (1A).
  • R is a fluorine atom.
  • m is 1.
  • Specific examples of compound (5) include compounds represented by the following structural formulas. Among these, HCF 2 SO 2 F (1,1-difluoromethanesulfonyl fluoride, compound (5-1)) is preferred.
  • the current density during electrolytic coupling is preferably 0.001 A/cm 2 to 2.0 A/cm 2 .
  • the current density is more preferably 0.005 A/cm 2 to 1.5 A/cm 2 and most preferably 0.01 A/cm 2 to 1.0 A/cm 2 .
  • the electrolytic cell used in the present embodiment is one commonly used in organic electrolytic reactions, and may be of a batch type or a continuous type in which compound (3) and the like are continuously supplied.
  • the reaction time of the electrolytic coupling reaction step is not particularly limited as long as it is within the range normally used, but is preferably 0.5 to 100 hours, more preferably 1 to 50 hours.
  • the pressure in the electrolytic coupling reaction step depends on the temperature at which the reaction is carried out, but is not particularly limited as long as it is within the range normally used, but is preferably 10 kPa to 5000 kPa.
  • the reaction atmosphere is not particularly limited as long as it is an atmosphere that is normally used, but usually an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like is used. Among these, a nitrogen atmosphere and an argon atmosphere are preferable because they tend to produce the compound (4) more safely. A nitrogen atmosphere is more preferable because it tends to be a more economical manufacturing method.
  • a single reaction atmosphere may be used, or a plurality of types of reaction atmospheres may be used in combination.
  • a supporting electrolyte may be added during the electrolytic coupling reaction.
  • the supporting electrolyte is not particularly limited as long as it is a commonly used supporting electrolyte.
  • Specific examples include metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and sulfates such as sodium sulfate and potassium sulfate.
  • acid compounds such as nitric acid, sulfuric acid and hydrochloric acid; perchlorates such as sodium perchlorate and ammonium perchlorate; quaternary ammonium salts such as tetramethylammonium bromide and tetrabutylammonium p-toluenesulfonate;
  • the molar ratio of compound (5) produced in the electrolytic coupling reaction is preferably 0.01 or less per 1 mol of compound (4) produced.
  • the formation molar ratio of compound (5) is more preferably 0.008 or less, still more preferably 0.005 or less, and even more preferably 0.003 or less.
  • the yield of compound (4) in the electrolytic coupling reaction step is preferably 60% or higher, more preferably 70% or higher, still more preferably 80% or higher, and particularly preferably 90% or higher.
  • R in general formula (4) is synonymous with R in general formula (1A).
  • R is a fluorine atom.
  • m is 1.
  • compound (4) include compounds represented by the following structural formulas. Among these, FO 2 SCF 2 CF 2 SO 2 F (1,1,2,2-tetrafluoro-1,2-ethanedisulfonyldifluoride, compound (4-1)) is preferred.
  • the molar ratio ( ⁇ / ⁇ ) between the substance amount ( ⁇ ) of compound (4) and the substance amount ( ⁇ ) of ammonia is not particularly limited as long as it is within the range generally used, but it is 2 to 50. is preferred. When ⁇ / ⁇ is 2 or more, the yield of compound (1-N) tends to be higher, which is preferable. When ⁇ / ⁇ is 50 or less, waste can be reduced, and the production method tends to be more economical, which is preferable. From the same point of view, ⁇ / ⁇ is more preferably 5-40, most preferably 10-30.
  • a solvent may be used in the cyclization step.
  • the solvent is not particularly limited as long as it is inert during the reaction and is generally used. Specific examples include aromatic solvents such as benzene, toluene, chlorobenzene, and 1,2-dichlorobenzene.
  • Solvent 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyltetrahydropyran, cyclopentyl ether group-containing solvents such as methyl ether and anisole; nitrile group-containing solvents such as acetonitrile, propionitrile and benzonitrile; Examples include hydroxyl group-containing solvents.
  • 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 2 Ether group-containing solvents such as -methyltetrahydrofuran, 1,4-dioxane, 4-methyltetrahydropyran, cyclopentylmethyl ether, and anisole are more preferred.
  • 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane and 4-methyltetrahydropyran are more preferred, and 1,2-dimethoxyethane, tetrahydrofuran and 4-methyltetrahydropyran are even more preferred.
  • These organic solvents may be used alone, or may be used in combination of multiple kinds of solvents.
  • the ratio ( ⁇ / ⁇ ) between the mass ( ⁇ ) of the compound (4) and the mass ( ⁇ ) of the solvent is not particularly limited as long as it is within a generally used range, but is preferably 0.01 to 100. preferable. When ⁇ / ⁇ is within the above range, the yield of compound (1-N) tends to be higher. From the same point of view, ⁇ / ⁇ is more preferably 0.05-50, more preferably 0.1-10.
  • the reaction temperature in the cyclization step is not particularly limited as long as it is within the range generally used, but it is preferably -90°C to 20°C.
  • a reaction temperature of ⁇ 90° C. or higher is preferable because the reactivity of compound (4) is enhanced and the yield of compound (1-N) tends to be higher.
  • a reaction temperature of 20° C. or lower is preferable because by-products can be suppressed and the yield of compound (1-N) tends to be higher.
  • the reaction temperature is more preferably -80°C to 10°C, most preferably -80°C to 0°C.
  • the reaction time in the cyclization step is not particularly limited as long as it is within the range normally used, but is preferably 1 to 100 hours, more preferably 5 to 50 hours.
  • the pressure in the cyclization step depends on the temperature at which the reaction is carried out, but is not particularly limited as long as it is within the range normally used, but is preferably 10 kPa to 5000 kPa.
  • the reaction atmosphere is not particularly limited as long as it is an atmosphere that is normally used, but an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like is usually used. Among these, a nitrogen atmosphere and an argon atmosphere are preferable because they tend to produce the compound (1-N) more safely. Further, a nitrogen atmosphere is more preferable because it tends to be a more economical manufacturing method.
  • a single reaction atmosphere may be used, or a plurality of types of reaction atmospheres may be used in combination.
  • the reaction product containing compound (1-N) and solvent can be separated from each other by a generally used separation removal method. If there is, it can be used without any particular limitation. Examples include separation and removal of volatile components by distillation, separation and removal of liquid components by liquid separation, and separation and removal of insoluble solids by filtration. These methods may be used alone or in combination of multiple methods.
  • ⁇ Cation exchange step> A compound (1-N) and the following general formula (6): M1pX ( 6 ) where M 1 is Li, Na or K, X is OH or CO 3 and p is 1 if X is OH and 2 if X is CO 3 ⁇ (hereinafter also referred to as compound (6)), compound (1A) can be produced.
  • R in the following general formula (1-N) is synonymous with R in general formula (1A).
  • R is a fluorine atom.
  • n is preferably 1 or 2, most preferably 2.
  • m is 1.
  • n in the formula (1-N) is an integer of 1-4.
  • the compound (1-N) include the following general formulas (1-N-1) to (1-N-5):
  • the ammonium salt represented by is mentioned.
  • the ammonium salt represented by (1-N-2) is preferred.
  • the molar ratio ( ⁇ / ⁇ ) between the substance amount ( ⁇ ) of the compound (1-N) and the substance amount ( ⁇ ) of the compound (6) is not particularly limited as long as it is within a generally used range. .2 to 10 is preferred.
  • ⁇ / ⁇ is 0.2 or more, the yield of compound (1A) tends to increase, which is preferable.
  • ⁇ / ⁇ is 10 or less, waste can be reduced, and the manufacturing method tends to be more economical, which is preferable. From the same point of view, ⁇ / ⁇ is more preferably 0.5-5, most preferably 0.8-3.
  • a solvent may be used in the cation exchange step.
  • the solvent is not particularly limited as long as it is inert during the reaction and is generally used. Specific examples include aromatic solvents such as benzene, toluene, chlorobenzene, and 1,2-dichlorobenzene.
  • Solvent 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyltetrahydropyran, cyclopentyl ether group-containing solvents such as methyl ether and anisole; nitrile group-containing solvents such as acetonitrile, propionitrile and benzonitrile; Examples include hydroxyl group-containing solvents.
  • 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 2-methyl Ether group-containing solvents such as tetrahydrofuran, 1,4-dioxane, 4-methyltetrahydropyran, cyclopentylmethyl ether, and anisole are more preferred.
  • 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane and 4-methyltetrahydropyran are more preferred, and 1,2-dimethoxyethane, tetrahydrofuran and 4-methyltetrahydropyran are even more preferred.
  • These organic solvents may be used alone, or may be used in combination of multiple kinds of solvents.
  • the ratio ( ⁇ / ⁇ ) between the mass ( ⁇ ) of the compound (1-N) and the mass ( ⁇ ) of the solvent is not particularly limited as long as it is within a generally used range, and is 0.01 to 100. is preferred. When ⁇ / ⁇ is within the above range, the yield of compound (1A) tends to be higher. From the same point of view, it is more preferably 0.05 to 50, even more preferably 0.1 to 10.
  • the reaction temperature in the cation exchange step is not particularly limited as long as it is within the range generally used, but it is preferably 0°C to 150°C.
  • the reaction temperature is 0° C. or higher, the reactivity of compound (1-N) is enhanced, and the yield of compound (1A) tends to be higher, which is preferable.
  • a reaction temperature of 150° C. or lower is preferable because by-products can be suppressed and the yield of compound (1A) tends to be higher.
  • the reaction temperature is more preferably 20°C to 140°C, most preferably 40°C to 130°C.
  • the reaction time of the cation exchange step is not particularly limited as long as it is within the range normally used, but is preferably 1 to 100 hours, more preferably 5 to 50 hours.
  • the pressure in the cation exchange step depends on the temperature at which the reaction is carried out, but is not particularly limited as long as it is within the range normally used, but is preferably 10 kPa to 5000 kPa.
  • the reaction atmosphere is not particularly limited as long as it is an atmosphere that is normally used, but usually an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like is used. Among these, a nitrogen atmosphere and an argon atmosphere are preferable because they tend to produce the compound (1A) more safely. Further, a nitrogen atmosphere is more preferable because it tends to be a more economical manufacturing method.
  • a single reaction atmosphere may be used, or a plurality of types of reaction atmospheres may be used in combination.
  • Fluorine-containing cyclic sulfonylimide salts generally have extremely high solubility in water and various coordinating organic solvents, which is why they are used in a wide range of applications such as antistatic agents, ion-conducting materials such as organic electrolytes, and flame retardants. working in favor of On the other hand, this high solubility is directly linked to low crystallinity and increased residual solvent on drying. Crystallization is one of the most common and simple production methods for purifying powdery substances such as fluorine-containing cyclic sulfonylimide salts. Therefore, the existing techniques for high purification by crystallization of fluorine-containing cyclic sulfonylimide salts are limited.
  • Patent Document 4 describes an example of crystallization purification of a lithium salt in a mixed solvent of 1,4-dioxane as a poor solvent and acetonitrile as a good solvent.
  • the technique of Patent Document 1 described above leaves about 5% by mass of 1,4-dioxane in the crystals after drying, and there is a problem that it takes a long time and a lot of money to remove the residual solvent. It is believed that this problem is essentially due to the use of 1,4-dioxane, a cyclic ether with two oxygen atoms, which strongly coordinates the solvent to lithium in the crystalline state.
  • Patent Document 4 describes a high purification method by suspending, filtering and washing the same fluorine-containing cyclic sulfonylimid ammonium salt with 1,4-dioxane. is not described, and it is unclear whether it contributes to solving the problem related to the amount of residual solvent.
  • the inventor of the present invention actually dissolved a fluorine-containing cyclic sulfonylimide salt in a solvent such as dimethyl carbonate, acetonitrile, tetrahydrofuran, or acetone while proceeding with studies aiming at the invention of a simple and highly purified crystallization method. Attempts were made to crystallize by distilling off the solvent and concentrating, but the entire mixture turned into a gel during concentration and did not crystallize. It has been confirmed that there is a problem that it is impossible to obtain a high degree of purity in the first place. Thus, the high affinity with the solvent for dissolving the fluorine-containing cyclic sulfonylimide salt has been a barrier in the crystallization of the fluorine-containing cyclic sulfonylimide salt.
  • the crystallization step may be performed by cooling crystallization.
  • the crystallization step is desirably carried out in a dry atmosphere because the obtained crystals are easy to handle.
  • the drying atmosphere is not particularly limited, the drying can be carried out in an atmosphere of a gas such as dry air, dry nitrogen or dry argon, in an air stream, or in a vacuum and reduced pressure.
  • the term “poor solvent” means a solvent suitable for forming crystals when a solution of the fluorine-containing cyclic sulfonylimide salt is cooled, and does not necessarily have a solubility in which the fluorine-containing cyclic sulfonylimide salt is dissolved. It does not mean significantly lower.
  • the solvent used for crystallization in the production method of the present embodiment is a monodentate chain-like It is an ether solvent.
  • a highly pure fluorine-containing cyclic sulfonylimide salt with reduced amounts of fluorine impurities and residual solvent can be easily produced when a monodentate chain ether solvent is used for crystallization.
  • the present inventors have found that monodentate chain ether solvents tend to have lower coordinating properties to metals, dielectric constants, and dipole moments than other polar solvents and cyclic ethers.
  • a "monodentate coordinating" solvent means a solvent that has one site with coordinating ability to a metal.
  • An ether bond is mentioned as a site
  • a single solvent In the crystallization step, it is desirable to use a single solvent from the viewpoint of production costs. Therefore, it is sufficiently possible to obtain a highly pure imide salt using only a single solvent.
  • a plurality of solvents can be mixed, and crystallization can be promoted by adding a polar solvent as a good solvent or by further adding a poor solvent.
  • the amount of solvent remaining after drying tends to increase, which may be disadvantageous in terms of heat history and production costs.
  • a polar solvent which is a good solvent
  • the resulting crystals may adhere to the crystallizer, raising concerns such as a decrease in recovery rate and an increase in cost due to the introduction of special crushing equipment.
  • the monodentate chain ether solvent preferably has a low boiling point, that is, has a carbon number of 6 or less.
  • ether isopropyl methyl ether, isopropyl ethyl ether, isopropyl ether, butyl methyl ether, butyl ethyl ether, isobutyl methyl ether, isobutyl ethyl ether, sec-butyl methyl ether, sec-butyl ethyl ether, tert-butyl methyl ether, tert-butyl ethyl ether, pentyl methyl ether, isopentyl methyl ether, sec-pentyl methyl ether, tert-pentyl methyl ether, neopentyl methyl ether, cyclopentyl methyl ether, etc., and from the viewpoint of solubility, propyl methyl ether, isopentyl methyl ether, sec
  • the good solvent to be used is not particularly limited, but acetone, tetrahydrofuran, dimethyl carbonate, and diethyl carbonate are preferred because they particularly preferably dissolve the fluorine-containing cyclic sulfonylimide salt and have a relatively low boiling point. , ethylene carbonate, propylene carbonate, acetonitrile, methyl acetate, ethyl acetate, butyl acetate and the like.
  • the poor solvent to be used is not particularly limited. It is also desirable to have a low boiling point, and examples thereof include pentane, hexane, cyclohexane, heptane, chloroform, dichloromethane, and 1,2-dichloroethane.
  • the crystallization process mainly consists of a process of dissolving the crude fluorine-containing cyclic sulfonylimide salt with a monodentate chain ether solvent and a crystallization process, and the insoluble matter in the mixture is removed immediately before the crystallization process. You may perform the process to carry out. This removal step can be carried out by any of known methods such as centrifugation, natural filtration, vacuum filtration, and pressure filtration. When performing filtration, any known filter medium may be used as long as it can withstand the use of an organic solvent, and a filter aid may be added.
  • the pore size of the filtering material is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the step of dissolving the crude fluorine-containing cyclic sulfonylimide salt 100 to 1000% by mass, more preferably 100 to 500% by mass, and still more preferably 100 to 300% by mass of monodentate conformation relative to the imide salt-containing solid before crystallization.
  • Add a linear acyclic ether solvent 100 to 1000% by mass, more preferably 100 to 500% by mass, and still more preferably 100 to 300% by mass of monodentate conformation relative to the imide salt-containing solid before crystallization.
  • Add a linear acyclic ether solvent 100.g., stirring with a magnetic stirrer or stirring blades, or acceleration of dissolution by shaking, ultrasonic vibration, or the like may be performed.
  • the temperature during dissolution is not particularly limited, but the dissolution can be carried out at a temperature from 0°C to the boiling point of the solvent plus 50°C. When heating above the boiling point of the solvent, a known reflux apparatus can be used.
  • the crystallization step can be carried out, for example, by cooling the solution of the crude fluorine-containing cyclic sulfonylimide salt obtained in the dissolution step to a desired temperature.
  • the cooling temperature is preferably -100°C to 30°C, more preferably -80°C to 20°C, still more preferably -50°C to 20°C.
  • seed crystals may be added, as is widely practiced as a known technique, and concentration may be performed by distilling off the solvent before and during the cooling. Crystallization can be promoted by adding the poor solvent while performing the above.
  • the purified fluorine-containing cyclic sulfonylimide salt can be collected by any known method such as centrifugation, gravity filtration, vacuum filtration, pressure filtration, or the like. Any known filtering material may be used for filtration as long as it can withstand the use of organic solvents.
  • the pore size of the filtering material is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the crystals when they should be washed with a monodentate chain ether solvent, an added poor solvent, or a separately prepared fluorine-containing cyclic sulfonylimide salt solvent solution. is preferred.
  • the liquid used for washing may be separately heated or cooled to a desired temperature before use.
  • the purified fluorine-containing cyclic sulfonylimide salt obtained in the crystallization step is a high-purity imide salt in which impurities, particularly impurities containing fluorine atoms that are mixed during production, are reduced.
  • the purity of the purified fluorine-containing cyclic sulfonylimide salt is preferably 98% by mass or higher, more preferably 99% by mass or higher.
  • the ratio T1/T2 to the sum T2 of the integrated values of the peaks of impurities can be used as an indicator of the purity of compound (1A).
  • the compound (1A) when the compound (1A) is produced in the above steps, the sum T1 and the sum T2 of the integrated values of impurity peaks characterized by appearing as single or multiple doublet peaks in the region of ⁇ 115 ppm to ⁇ 125 ppm, the ratio T1/T2 is less than 500, and the compound (1A) tends to be colored brown.
  • the term "single or multiple doublet peaks in the region of -115 ppm to -125 ppm" is not particularly limited, but for example, H-CF 2 -X-
  • a compound having a difluoromethyl group such as Y (X is a linking group having no hydrogen and fluorine, and Y is a functional group that is not particularly limited) can be mentioned.
  • the purified fluorine-containing cyclic sulfonylimide salt has a sum T1 of integral values of peaks of the fluorine-containing cyclic sulfonylimide (1A) in 19 F-NMR and a single or multiple doublets in the region of ⁇ 115 ppm to ⁇ 125 ppm.
  • the ratio T1/T2 to the sum T2 of the integrated values of impurity peaks characteristic of appearing as peaks is preferably 500 or more, more preferably 800 or more, and more preferably 1000 or more. , and more preferably 2000 or more. Most preferably, the impurity peak is not observed at all, but such a case is inefficient from the viewpoint of production cost.
  • T1/T2 is at least the above value, the obtained fluorine-containing cyclic sulfonylimide salt is highly purified, and there is a tendency that no coloring is observed.
  • poor appearance when mixed with a resin as an antistatic agent, deterioration of quality during long-term storage, etc. can be suppressed, and use in a wider variety of applications becomes possible.
  • a drying step in order to remove excess solvent in the fluorine-containing cyclic sulfonylimide salt after collection.
  • the heating temperature is preferably 40°C, more preferably 60°C.
  • the upper limit is preferably 200°C.
  • the pressure during decompression is preferably 100 hPa or less, more preferably 50 hPa or less, still more preferably 10 hPa or less, and most preferably 1 hPa or less.
  • the residual solvent can be sufficiently removed by drying the crystals collected in the above step as they are. may be used, in which case further reductions in thermal history, time, and cost can be expected.
  • the obtained crystals have a small amount of residual solvent, and the adhesion of the crystals to each other and to the container can be suppressed. Stirring blades and mills that are generally widely used can be used.
  • the residual solvent can be sufficiently removed even if the crystals collected in the above step are dried as they are.
  • a washing operation with a fluorine-containing solvent may be added. Washing with a fluorine-containing solvent is presumed to weaken the affinity between the residual solvent and lithium in the fluorine-containing cyclic sulfonylimide salt, and can reduce the amount of residual solvent in the fluorine-containing cyclic sulfonylimide salt.
  • a sufficient amount of a fluorine-containing solvent is added to the fluorine-containing cyclic sulfonylimide salt after collection, and the mixture is stirred for a certain period of time or allowed to stand under no-stirring conditions, followed by filtering or reducing pressure. After distilling off the solvent, the above drying step is performed.
  • the washing operation described above may be repeated multiple times.
  • Fluorine-containing solvents include HCFC (hydrochlorofluorocarbon), HFC (hydrofluorocarbon), CFC (chlorofluorocarbon), PFC (perfluorocarbon), PFPE (perfluoropolyether), HFE (hydrofluoroether), HFO (hydrofluorocarbon), olefins).
  • 1,1,1,2,2,3,4,5,5,5-decafluoropentane, 1,1,1,2,2,3,4,4,5,5,5-undeca HFCs (hydrofluorocarbons) represented by fluoropentane, 1,1,1,2,2,3,3,4,5,5,5-undecafluoropentane, and perfluoropentane are preferred, and 1,1,1 , 2,2,3,4,5,5,5-decafluoropentane is most preferred.
  • the amount of residual solvent in the fluorine-containing cyclic sulfonylimide salt is preferably 5.0 mass % or less, and 100 mass ppm or more, based on the results of 1 H-NMR measurement with the addition of an internal standard substance such as benzotrifluoride. is preferably 100 mass ppm or more and 2.0 mass% or less, more preferably 100 mass ppm or more and 1.0 mass% or less, and still more preferably 100 mass ppm or more and 0.1 mass% or less. .
  • the residual solvent amount is 5.0% by mass or less, it is desirable because the handleability of the fluorine-containing cyclic sulfonylimide salt as a powder tends to be less likely to deteriorate.
  • the amount of residual solvent is 100 ppm by mass or more, the drying process time tends to be shortened and further heating tends to be unnecessary, which is desirable from the viewpoint of production cost.
  • each R f may be the same or different and represents a fluorine atom or a perfluoro group having 4 or less carbon atoms ⁇
  • the fluorine-containing cyclic sulfonylimide salt represented by the initial charge/discharge efficiency and cycle performance are improved.
  • the detailed mechanism is unknown, it is presumed that the cyclic anion produced by the dissociation of the fluorine-containing cyclic sulfonylimide salt is reductively decomposed at the negative electrode and deposited on the negative electrode to act as SEI.
  • the fluorine-containing cyclic sulfonylimide salt has low metal corrosiveness and suppresses the elution of Al ions from the positive electrode current collector.
  • the fluorine-containing cyclic sulfonylimide salt represented by formula (1) dissociates into cations and cyclic anions in a non-aqueous electrolytic solution containing acetonitrile.
  • the cyclic anion electrically interacts with acetonitrile and weakens the metal coordination ability of the nitrile group of acetonitrile.
  • acetonitrile can suppress the metal elution caused by forming a complex with the transition metal in the positive electrode active material at high temperature, and the movement of the metal complex to the negative electrode can be suppressed. Therefore, deterioration of the negative electrode SEI due to reduction deposition of the metal complex on the negative electrode is suppressed, and the initial charge/discharge efficiency and cycle performance are improved.
  • the decomposition product produced by the reductive decomposition of the cyclic anion at the negative electrode deposits on the negative electrode and acts as SEI, improves the durability of the negative electrode SEI against the reductive deposition of the metal complex on the negative electrode, and acts as a solvent at the negative electrode. can suppress the reductive decomposition of
  • n in formula (1) is an integer of 1-4.
  • Specific examples of fluorine-containing cyclic sulfonylimide salts in which n is 1 to 4 include lithium salts represented by the following compounds (1-1) to (1-5).
  • the compound (1-2) in which n is 2 is preferable from the viewpoint of easily obtaining an electrolytic solution with high ionic conductivity.
  • the content of the fluorine-containing cyclic sulfonylimide salt represented by formula (1) is preferably 0.1 mol or more, more preferably 0.5 mol or more, per 1 L of the non-aqueous solvent. , is more preferably 0.8 mol or more. Within the above range, the ionic conductivity tends to increase and high output characteristics can be exhibited.
  • the content of the fluorine-containing cyclic sulfonylimide salt represented by formula (1) is preferably less than 3 mol, more preferably 2.5 mol or less, per 1 L of the non-aqueous solvent. , is more preferably 1.8 mol or less, more preferably 1.5 mol or less, and even more preferably 1.3 mol or less.
  • the ionic conductivity of the non-aqueous electrolytic solution increases, the battery can exhibit high output characteristics, and the non-aqueous It tends to suppress the decrease in ionic conductivity that accompanies the increase in the viscosity of the electrolyte at low temperatures, and while maintaining the excellent performance of the non-aqueous electrolyte, the high-temperature cycle characteristics and other characteristics of the battery are further improved. tend to be able to
  • the formula (1) The content of the fluorine-containing cyclic sulfonylimide salt is preferably 1 mol or more, more preferably 1.2 mol or more, further preferably 1.5 mol or more, and 2 mol or more. is particularly preferred.
  • the content of the fluorine-containing cyclic sulfonylimide salt represented by the formula (1) is within the above range, rapid ion conduction is possible even in the deep part of the positive electrode away from the positive electrode-electrolyte interface, and non-aqueous secondary There is a tendency that the volumetric energy density can be improved while maintaining a balance with the output performance of the battery.
  • a method for measuring the content of the fluorine-containing cyclic sulfonylimide salt from the electrolytic solution for example, measurement of the cyclic anion content by 19 F-NMR using perfluorobenzene or the like as an internal standard, and ion chromatography.
  • a method of combining measurement of lithium ion content and the like can be mentioned.
  • the molar ratio of the content of the fluorine-containing cyclic sulfonylimide salt represented by the formula (1) to the content of LiPF6 is preferably 2.5 or more, and more than 10. It is preferably large, more preferably 15 or more, even more preferably 20 or more, and particularly preferably 25 or more.
  • the non-aqueous electrolytic solution of one embodiment of the present invention contains a non-aqueous solvent and a lithium salt, the non-aqueous solvent comprises a carbonate solvent;
  • the lithium salt is represented by the general formula (1) Contains a fluorine-containing cyclic sulfonylimide salt represented by The following general formula (2): H(CR2)m - SO2NHM2 ( 2 ) ⁇ wherein each R, which may be the same or different, is a fluorine atom or a trifluoromethyl group, M2 is Li, Na, K, H or NH4 , and m is , 1 or 2 ⁇
  • the fluorine-containing sulfonamide compound represented by is contained in an amount of 1000 mass ppm or less based on the total amount of the non-aqueous electrolytic solution.
  • Non-aqueous electrolytic solution refers to an electrolytic solution containing 1% by mass or less of water with respect to the total amount of the non-aqueous electrolytic solution.
  • the non-aqueous electrolytic solution according to the present embodiment preferably contains as little water as possible, but may contain a very small amount of water as long as it does not interfere with the solution of the problems of the present invention.
  • the content of such water is 300 ppm by mass or less, preferably 200 ppm by mass or less, based on the total amount of the non-aqueous electrolytic solution.
  • non-aqueous electrolyte if it has a configuration for achieving the problem solving of the present invention, for other components, the constituent materials in known non-aqueous electrolytes used in lithium ion batteries are used as appropriate. Can be selected and applied.
  • the non-aqueous electrolytic solution of the present embodiment contains a non-aqueous solvent, a lithium salt, and the compound (2), and optionally various additives shown below (in this specification, sometimes simply referred to as “additives” ) can be mixed by any means.
  • the various additives are a general term for electrode protection additives and other optional additives, and their contents are as shown below.
  • the content of each compound in the non-aqueous solvent is ⁇ 2-1.
  • Additives for Electrode Protection> the mixing ratio of the electrode protection additives described in ⁇ 2-2.
  • Lithium salt> the mixing ratio is defined by the number of moles per 1 L of the non-aqueous solvent, ⁇ 2-4.
  • Other Optional Additives> the mixing ratio is defined by parts by mass based on 100 parts by mass of the lithium salt and the non-aqueous solvent as a whole.
  • the electrolytic solution contains a compound other than the compounds specifically shown in each item of ⁇ 2-1> to ⁇ 2-4> below
  • the compound is liquid at room temperature (25 ° C.).
  • the mixing ratio is represented by volume % with respect to the total amount of each component (including the compound) constituting the non-aqueous solvent.
  • the mixing ratio is expressed in parts by mass based on 100 parts by mass of the lithium salt and the non-aqueous solvent.
  • Non-aqueous solvent includes a carbonate solvent.
  • carbonate solvents include cyclic carbonates, fluoroethylene carbonates, chain carbonates, and compounds obtained by substituting some or all of the H atoms of the above carbonate solvents with halogen atoms.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans-2, 3-pentylene carbonate, cis-2,3-pentylene carbonate, vinylene carbonate, 4,5-dimethylvinylene carbonate, and vinylethylene carbonate;
  • fluoroethylene carbonate examples include 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, cis-4,5-difluoro-1,3- Dioxolan-2-one, trans-4,5-difluoro-1,3-dioxolan-2-one, 4,4,5-trifluoro-1,3-dioxolan-2-one, 4,4,5,5 -tetrafluoro-1,3-dioxolan-2-one and 4,4,5-trifluoro-5-methyl-1,3-dioxolan-2-one;
  • chain carbonates examples include ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate; can be mentioned.
  • fluorinated chain carbonates examples include methyltrifluoroethyl carbonate, trifluorodimethyl carbonate, trifluorodiethyl carbonate, trifluoroethylmethyl carbonate, methyl 2,2-difluoroethyl carbonate, methyl 2,2, 2-trifluoroethyl carbonate, methyl 2,2,3,3-tetrafluoropropyl carbonate and the like.
  • the above fluorinated linear carbonates have the following general formula: R cc —OC(O) OR dd ⁇ wherein R cc and R dd are at least one selected from the group consisting of CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH(CH 3 ) 2 and CH 2 Rfee and R f ee is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom is substituted with at least one fluorine atom, and R cc and/or R dd contain at least one fluorine atom ⁇ can be expressed as A carbonate solvent other than acetonitrile in the present embodiment can be used alone or in combination of two or more.
  • the non-aqueous solvent in the present embodiment is more preferably used in combination with acetonitrile and a cyclic carbonate, and more preferably in combination with acetonitrile and both a cyclic carbonate and a chain carbonate.
  • cyclic carbonates When using cyclic carbonates with acetonitrile, it is particularly preferred that such cyclic carbonates include ethylene carbonate, vinylene carbonate and/or fluoroethylene carbonate.
  • non-aqueous solvent refers to elements in the non-aqueous electrolytic solution excluding lithium salts and various additives.
  • the "non-aqueous solvent” is the element excluding the lithium salt and the additive other than the electrode protection additive from the non-aqueous electrolyte Say.
  • non-aqueous solvents include alcohols such as methanol and ethanol; and aprotic solvents. Among them, an aprotic solvent is preferable as the non-aqueous solvent.
  • the non-aqueous solvent may contain a solvent other than the aprotic solvent as long as it does not interfere with the solution of the problems of the present invention.
  • the non-aqueous solvent related to the non-aqueous electrolytic solution of the present embodiment may contain acetonitrile as an aprotic solvent.
  • the non-aqueous solvent contains acetonitrile, the ion conductivity of the non-aqueous electrolytic solution is improved, so that the diffusibility of lithium ions in the battery can be enhanced. Therefore, even in a positive electrode in which the positive electrode active material layer is thickened to increase the filling amount of the positive electrode active material, lithium ions can reach the region near the current collector where it is difficult for lithium ions to reach during high-load discharge. be able to spread. Therefore, it is possible to obtain a sufficient capacity even during high-load discharge, and a non-aqueous secondary battery having excellent load characteristics can be obtained.
  • the rapid charging characteristics of the non-aqueous secondary battery can be enhanced.
  • the capacity per unit time during the CC charging period is larger than the charging capacity per unit time during the CV charging period.
  • acetonitrile is used as the non-aqueous solvent for the non-aqueous electrolyte, it is possible to increase the CC charging area (longer CC charging time) and increase the charging current. It can significantly reduce the time it takes to reach a fully charged state.
  • acetonitrile is easily electrochemically reduced and decomposed. Therefore, when acetonitrile is used, other solvents (e.g., aprotic solvents other than acetonitrile) are used in combination with acetonitrile as a non-aqueous solvent, and / or an electrode protection additive for forming a protective film on the electrode is preferably added.
  • other solvents e.g., aprotic solvents other than acetonitrile
  • the content of acetonitrile is preferably 3% by volume or more and 97% by volume or less with respect to the total amount of the non-aqueous solvent. More preferably, the content of acetonitrile is 5% by volume or more, or 10% by volume or more, or 20% by volume or more, or 30% by volume or more, or 40% by volume or more, or 50% by volume or more, relative to the total amount of the non-aqueous solvent. , more preferably 60% by volume or more. This value is more preferably 97% by volume or less, and even more preferably 95% by volume or less.
  • the ionic conductivity tends to increase and high output characteristics can be exhibited, and the dissolution of the lithium salt can be promoted. can. Since the additive described later suppresses the increase in the internal resistance of the battery, when the content of acetonitrile in the non-aqueous solvent is within the above range, while maintaining the excellent performance of acetonitrile, high temperature cycle characteristics and other There is a tendency that the battery characteristics can be further improved.
  • Aprotic solvents other than acetonitrile include, for example, lactones, organic compounds having a sulfur atom, cyclic ethers, mononitriles other than acetonitrile, alkoxy group-substituted nitriles, dinitriles, cyclic nitriles, short-chain fatty acid esters, chain ethers, fluorine Ethers, ketones, compounds in which some or all of the H atoms of the aprotic solvent are substituted with halogen atoms, and the like.
  • Lactones include ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone;
  • Organic compounds having a sulfur atom include, for example, ethylene sulfite, propylene sulfite, butylene sulfite, pentene sulfite, sulfolane, 3-sulfolene, 3-methylsulfolane, 1,3-propanesultone, 1,4-butanesultone , 1-propene 1,3-sultone, dimethyl sulfoxide, tetramethylene sulfoxide, and ethylene glycol sulfite;
  • Cyclic ethers include, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, and 1,3-dioxane;
  • mononitriles other than acetonitrile include propionitrile, butyronitrile, valeronitrile, benzonitrile, and acrylonitrile;
  • Alkoxy group-substituted nitriles include, for example, methoxyacetonitrile and 3-methoxypropionitrile;
  • dinitriles include malononitrile, succinonitrile, glutaronitrile, adiponitrile, 1,4-dicyanoheptane, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 2,6- Dicyanoheptane, 1,8-dicyanooctane, 2,7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1,6-dicyanodecane, and 2,4-dimethylglucane talonitrile;
  • Cyclic nitriles include, for example, benzonitrile
  • Examples of short-chain fatty acid esters include methyl acetate, methyl propionate, methyl isobutyrate, methyl butyrate, methyl isovalerate, methyl valerate, methyl pivalate, methyl hydroangelate, methyl caproate, ethyl acetate, propionic acid ethyl, ethyl isobutyrate, ethyl butyrate, ethyl isovalerate, ethyl valerate, ethyl pivalate, ethyl hydroangelicate, ethyl caproate, propyl acetate, propyl propionate, propyl isobutyrate, propyl butyrate, propyl isovalerate, Propyl valerate, propyl pivalate, propyl hydroangelate, propyl caproate, isopropyl acetate, isopropyl propionate, isopropyl isobutyrate, isopropyl but
  • chain ethers examples include dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, and tetraglyme;
  • fluorinated ethers examples include R f aa -OR bb ⁇ wherein R f aa is an alkyl group containing a fluorine atom, and R bb is an organic group which may contain a fluorine atom ⁇ ;
  • Ketones include, for example, acetone, methyl ethyl ketone, and methyl isobutyl ketone;
  • Examples of the compound in which some or all of the H atoms in the aprotic solvent are substituted with halogen atoms include compounds in which the halogen atoms are fluorine; can be mentioned.
  • Fluorinated short-chain fatty acid esters include, for example, 2,2-difluoroethyl acetate, 2,2,2-trifluoroethyl acetate, and 2,2,3,3-tetrafluoropropyl acetate. short-chain fatty acid esters, and the like.
  • Fluorinated short-chain fatty acid esters have the following general formula: R ff —C(O) OR gg ⁇ wherein R ff is CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH(CH 3 ) 2 , CF 3 CF 2 H, CFH 2 , CF 2 R f hh , CFHR f hh , and CH 2 R f ii is at least one selected from the group consisting of CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH(CH 3 ) 2 and CH 2 R f ii is at least one selected from the group consisting of, R f hh is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom may be substituted with at least one fluorine atom, and R f ii is at least one is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom is substituted with a fluorine atom, and
  • aprotic solvents other than acetonitrile in this embodiment can be used singly or in combination of two or more.
  • Lithium salt> (Fluorine-containing cyclic sulfonylimide salt (1))
  • the lithium salt is a fluorine-containing cyclic sulfonylimide salt represented by the general formula (1).
  • the content of the fluorine-containing cyclic sulfonylimide salt represented by the formula (1) is preferably 0.8 mol or more and 1.5 mol or less per 1 L of the non-aqueous solvent.
  • the fluorine-containing cyclic sulfonylimide salt represented by formula (1) may be the same as described in the above item ⁇ Composition containing fluorine-containing cyclic sulfonylimide salt (compound (1A))>.
  • the fluorine-containing cyclic sulfonylimide salt represented by formula (1) has a five-membered ring structure.
  • the fluorine-containing cyclic sulfonylimide salt having a 6-membered ring or more has a higher molecular weight of the lithium salt than the fluorine-containing cyclic sulfonylimide salt having a 5-membered ring. Therefore, the weight of the lithium salt required to prepare a non-aqueous electrolyte containing lithium ions at a certain molar concentration increases, and the viscosity of the non-aqueous electrolyte tends to increase and the output characteristics tend to decrease.
  • the lithium salt in the present embodiment may further contain one or more selected from lithium-containing imide salts, fluorine-containing inorganic lithium salts, organic lithium salts, and other lithium salts in addition to the fluorine-containing cyclic sulfonylimide salt.
  • the method for measuring the content of the lithium salt in this embodiment is the same method as the method for measuring the fluorine-containing cyclic sulfonylimide salt described above.
  • the non-aqueous electrolytic solution of the present embodiment may further contain LiPF 6 as a lithium salt.
  • the content of LiPF 6 in the non-aqueous electrolyte solution of the present embodiment is preferably less than 0.5 mol, more preferably less than 0.1 mol, and 0 More preferably less than 0.01 mol.
  • the content of LiPF 6 is within the range described above, it is possible to suppress the generation of acid components due to the thermal decomposition reaction of LiPF 6 and minimize the increase in negative electrode resistance due to excessive deposition of inorganic components in the negative electrode SEI. can do
  • the molar ratio of LiPF 6 to the content of vinylene carbonate and fluoroethylene carbonate is 4 or less, preferably 1 or less, and more preferably 0.2 or less.
  • the content of LiPF 6 is 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more in molar ratio with respect to the content of vinylene carbonate and fluoroethylene carbonate. preferable.
  • the internal resistance of the non-aqueous secondary battery tends to increase in the high temperature durability test.
  • the negative electrode SEI mainly composed of organic components derived from vinylene carbonate and fluoroethylene carbonate has low strength, and the reductive decomposition of the solvent in the negative electrode cannot be sufficiently suppressed, and the decomposition products accumulate on the negative electrode. It is presumed that the internal resistance increases. At this time, the reductive decomposition of the solvent occurs without consuming lithium ions, so the reversible capacity of the battery is kept high, but the internal resistance of the battery is high, so the output performance tends to decrease significantly.
  • the negative electrode SEI which is mainly composed of an inorganic component derived from LiPF 6 , has high insulating properties and inhibits lithium ion conduction at the negative electrode-electrolyte interface.
  • the imide salt preferably contains at least one of LiN(SO 2 F) 2 and LiN(SO 2 CF 3 ) 2 .
  • the imide salt is contained at a molar concentration of LiPF ⁇ lithium - containing imide salt. It is preferable because association and precipitation of the lithium salt and acetonitrile at low temperature can be suppressed.
  • the content of the lithium-containing imide salt is 0.5 mol or more and 3.0 mol or less per 1 L of the non-aqueous solvent. It is preferable from the viewpoint of securing.
  • acetonitrile-containing non-aqueous electrolyte containing at least one of LiN(SO 2 F) 2 and LiN(SO 2 CF 3 ) 2 ion conduction at a low temperature range such as -10 ° C. or -30 ° C. It is possible to effectively suppress the reduction of the modulus and obtain excellent low-temperature characteristics. In the present embodiment, by thus limiting the content of the lithium-containing imide salt, it is possible to more effectively suppress an increase in resistance during high-temperature heating.
  • the lithium salt used in the non-aqueous electrolytic solution of the present embodiment may contain fluorine-containing inorganic lithium salts other than LiPF 6 , such as LiBF 4 , LiAsF 6 , Li 2 SiF 6 , LiSbF 6 , Li 2 B 12 Fb. Fluorine-containing inorganic lithium salts such as H 12-b [wherein b is an integer of 0 to 3] may also be included.
  • the term "inorganic lithium salt” as used herein refers to a lithium salt that does not contain a carbon atom in its anion and is soluble in acetonitrile.
  • fluorine-containing inorganic lithium salt refers to a lithium salt that does not contain a carbon atom in its anion, contains a fluorine atom in its anion, and is soluble in acetonitrile.
  • a fluorine-containing inorganic lithium salt is excellent in that it forms a passive film on the surface of an aluminum foil, which is a positive electrode current collector, and suppresses corrosion of the positive electrode current collector.
  • These fluorine-containing inorganic lithium salts are used singly or in combination of two or more.
  • a compound that is a double salt of LiF and a Lewis acid is preferable.
  • a fluorine-containing inorganic lithium salt having a phosphorus atom is more preferable because free fluorine atoms are easily released.
  • a fluorine-containing inorganic lithium salt having a boron atom is used as the fluorine-containing inorganic lithium salt, it is preferable because it easily captures excessive free acid components that may lead to deterioration of the battery. LiBF4 is particularly preferred.
  • the content of the fluorine-containing inorganic lithium salt in the lithium salt used in the non-aqueous electrolytic solution of the present embodiment is preferably 0.01 mol or more, and is 0.1 mol or more, relative to 1 L of the non-aqueous solvent. is more preferably 0.25 mol or more.
  • the content of the fluorine-containing inorganic lithium salt is within the above range, the ionic conductivity tends to increase and high output characteristics can be exhibited.
  • the content is preferably less than 2.8 mol, more preferably less than 1.5 mol, and even more preferably less than 1 mol per 1 L of the non-aqueous solvent.
  • the ionic conductivity tends to increase, and high output characteristics can be exhibited, and a decrease in ionic conductivity due to an increase in viscosity at low temperatures can be suppressed.
  • the high-temperature cycle characteristics and other battery characteristics can be further improved.
  • the lithium salt in this embodiment may include an organic lithium salt.
  • Organic lithium salt refers to a lithium salt, other than an imide salt, which contains a carbon atom in the anion and is soluble in acetonitrile.
  • organic lithium salts include organic lithium salts having an oxalic acid group.
  • organic lithium salts having an oxalic acid group include LiB ( C2O4 ) 2 , LiBF2 ( C2O4 ), LiPF4 ( C2O4 ), and LiPF2 ( C2O 4 )
  • Organic lithium salts represented by each of 2 , etc. among which at least one lithium salt selected from lithium salts represented by LiB(C 2 O 4 ) 2 and LiBF 2 (C 2 O 4 ) is preferred. Moreover, it is more preferable to use one or more of these together with a fluorine-containing inorganic lithium salt.
  • This organic lithium salt having an oxalic acid group may be added to the non-aqueous electrolytic solution or may be contained in the negative electrode (negative electrode active material layer).
  • the amount of the organic lithium salt added to the non-aqueous electrolytic solution in the present embodiment is preferably 0.005 mol or more per 1 L of the non-aqueous solvent, from the viewpoint of better ensuring the effects of its use. , is more preferably 0.01 mol or more, still more preferably 0.02 mol or more, and particularly preferably 0.05 mol or more.
  • the amount of the organic lithium salt having an oxalic acid group is preferably less than 1.0 mol and less than 0.5 mol per 1 L of the non-aqueous solvent. is more preferred, and less than 0.2 mol is even more preferred.
  • organic lithium salts having an oxalic acid group are poorly soluble in organic solvents with low polarity, especially chain carbonates.
  • the content of the organic lithium salt in the non-aqueous electrolytic solution according to the present embodiment may be, for example, 0.01 mol or more and 0.5 mol or less per 1 L of the non-aqueous solvent.
  • the organic lithium salt having an oxalic acid group may contain a trace amount of lithium oxalate, and even when mixed as a non-aqueous electrolyte, it reacts with a trace amount of water contained in other raw materials. As a result, a new white precipitate of lithium oxalate may be generated. Therefore, the content of lithium oxalate in the non-aqueous electrolytic solution according to this embodiment is preferably suppressed to a range of 500 ppm or less.
  • the lithium salt in this embodiment may contain other lithium salts in addition to the above.
  • lithium salts include, for example, Inorganic lithium salts containing no fluorine atom in the anion, such as LiClO 4 , LiAlO 4 , LiAlCl 4 , LiB 10 Cl 10 , chloroborane Li; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCnF (2n+1) SO 3 ⁇ wherein n ⁇ 2 ⁇ , lower aliphatic carboxylic organic lithium salts such as Li acid , Li tetraphenylborate, LiB ( C3O4H2 ) 2 ; an organic lithium salt represented by LiPF n (C p F 2p+1 ) 6-n (wherein n is an integer of 1 to 5 and p is an integer of 1 to 8) such as LiPF 5 (CF 3 ); an organic lithium salt represented by LiBF q (C s F 2s+1 ) 4-q [wherein q is
  • the amount of other lithium salts to be added to the non-aqueous electrolytic solution may be appropriately set, for example, in the range of 0.01 mol or more and 0.5 mol or less per 1 L of the non-aqueous solvent.
  • the non-aqueous electrolytic solution according to the present embodiment may contain an additive for protecting the electrodes (electrode-protecting additive).
  • the electrode protection additive may substantially overlap with the material that acts as a solvent for dissolving the lithium salt (ie the non-aqueous solvent described above).
  • the electrode-protecting additive is preferably a substance that contributes to improving the performance of the non-aqueous electrolyte and the non-aqueous secondary battery, but also includes substances that do not directly participate in the electrochemical reaction.
  • additive for electrode protection examples include, for example, 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, cis-4,5-difluoro-1,3-dioxolan-2-one, trans- 4,5-difluoro-1,3-dioxolan-2-one, 4,4,5-trifluoro-1,3-dioxolan-2-one, 4,4,5,5-tetrafluoro-1,3- fluoroethylene carbonates represented by dioxolan-2-one and 4,4,5-trifluoro-5-methyl-1,3-dioxolan-2-one; Unsaturated bond-containing cyclic carbonates represented by vinylene carbonate, 4,5-dimethylvinylene carbonate, and vinylethylene carbonate; Lactones represented by ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolact
  • the content of the electrode protection additive in the non-aqueous electrolyte is preferably 0.1 to 30% by volume, more preferably 0.3 to 15% by volume, based on the total amount of the non-aqueous solvent. It is more preferably 0.4 to 8% by volume, and particularly preferably 0.5 to 4% by volume.
  • deterioration of the non-aqueous electrolytic solution is suppressed as the content of the electrode protecting additive increases.
  • the smaller the content of the electrode protecting additive the more improved the high output characteristics of the non-aqueous secondary battery in a low temperature environment. Therefore, by adjusting the content of the electrode protection additive within the above range, excellent performance based on the high ionic conductivity of the electrolyte can be achieved without impairing the basic functions of the non-aqueous secondary battery.
  • the cycle performance of a non-aqueous secondary battery, high output performance in a low temperature environment, and other battery characteristics are further improved. It tends to be a good thing.
  • the non-aqueous solvent containing acetonitrile preferably contains one or more cyclic aprotic polar solvents as an electrode protection additive for forming a protective film on the negative electrode, and one unsaturated bond-containing cyclic carbonate. More preferably, it contains more than one species.
  • the unsaturated bond-containing cyclic carbonate is preferably vinylene carbonate, and the content of vinylene carbonate in the non-aqueous electrolytic solution is preferably 0.1% by volume or more and 4% by volume or less, and 0.2% by volume or more and 3% by volume. %, more preferably 0.5% by volume or more and less than 2.5% by volume.
  • Vinylene carbonate as an additive for electrode protection suppresses the reductive decomposition reaction of acetonitrile on the surface of the negative electrode, and on the other hand, excessive film formation leads to deterioration of low-temperature performance. Therefore, by adjusting the amount of vinylene carbonate to be added within the above range, the interfacial (coating) resistance can be kept low, and cycle deterioration at low temperatures can be suppressed.
  • the non-aqueous secondary battery according to the present embodiment is stabilized by partly decomposing the non-aqueous electrolyte and forming SEI on the surface of the negative electrode during the initial charge.
  • an acid anhydride can be added to the non-aqueous electrolyte, the battery member, or the non-aqueous secondary battery.
  • acetonitrile is contained as a non-aqueous solvent, the strength of SEI tends to decrease as the temperature rises, but the addition of acid anhydride promotes strengthening of SEI. Therefore, by using such an acid anhydride, it is possible to effectively suppress an increase in internal resistance over time due to thermal history.
  • acid anhydrides include linear acid anhydrides represented by acetic anhydride, propionic anhydride, and benzoic anhydride; malonic anhydride, succinic anhydride, glutaric anhydride, maleic anhydride, anhydride Cyclic acid anhydrides represented by phthalic acid, 1,2-cyclohexanedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, or naphthalene-1,4,5,8-tetracarboxylic dianhydride; A mixed acid anhydride having a structure in which two different kinds of carboxylic acids or different kinds of acids such as a carboxylic acid and a sulfonic acid are dehydrated and condensed can be mentioned. These are used individually by 1 type or in combination of 2 or more types.
  • the acid anhydride since it is preferable to strengthen the SEI before reductive decomposition of the non-aqueous solvent, as the acid anhydride, at least a cyclic acid anhydride that acts early during the initial charge is used. It is preferable to include one type. These cyclic acid anhydrides may be contained singly or plurally. Alternatively, it may contain cyclic acid anhydrides other than these cyclic acid anhydrides. Also, the cyclic acid anhydride preferably contains at least one of succinic anhydride, maleic anhydride, and phthalic anhydride.
  • a non-aqueous electrolytic solution containing at least one of succinic anhydride, maleic anhydride, and phthalic anhydride can form a strong SEI in the negative electrode, and more effectively suppress an increase in resistance during high-temperature heating.
  • it preferably contains succinic anhydride. This makes it possible to more effectively form a strong SEI on the negative electrode while suppressing side reactions.
  • the content is in the range of 0.01 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the non-aqueous electrolytic solution. , more preferably 0.05 to 1 part by mass, and even more preferably 0.1 to 0.5 part by mass.
  • the acid anhydride is preferably contained in the non-aqueous electrolytic solution.
  • at least one battery member selected from the group consisting of the positive electrode, the negative electrode, and the separator contains the acid anhydride. may contain.
  • a method for incorporating an acid anhydride into a battery member for example, it may be incorporated into the battery member when the battery member is produced, or may be incorporated into the battery member by a post-treatment represented by coating, immersion, or spray drying on the battery member. May be impregnated.
  • an optional additive ( Additives other than acid anhydrides and electrode protection additives) may be contained as appropriate.
  • the content is in the range of 0.01% by mass or more and 10% by mass or less as the amount per total amount of the non-aqueous electrolytic solution It is preferably 0.02% by mass or more and 5% by mass or less, and even more preferably 0.05 to 3% by mass.
  • Compound (2) is a fluorine-containing sulfonamide compound represented by the general formula (2).
  • Compound (2) is corrosive to metals, and when a non-aqueous electrolytic solution containing a large amount of a fluorine-containing sulfonamide compound is used, the metal foil used for the positive electrode current collector corrodes, and the irreversible capacity during charging and discharging is reduced. increases and cycle performance decreases. In particular, when Al foil or stainless steel foil is used as the metal foil, it corrodes significantly.
  • the Al corrosion reaction (reaction formula a) at the positive electrode and the Al reduction deposition reaction (reaction formula b) at the negative electrode are promoted during charging. Therefore, it is presumed that the irreversible reaction in which Al moves from the positive electrode to the negative electrode during charging is promoted, and the irreversible capacity of the battery is increased.
  • a large amount of Al deposition at the negative electrode promotes uneven SEI formation at the negative electrode or uneven deposition of metallic lithium, which is thought to lead to a decrease in battery capacity or micro short circuits and short circuits in the battery. .
  • Reaction formula a Al+3(H(CR 2 ) m -SO 2 NHM) ⁇ [Al(H(CR 2 ) m -SO 2 NHM) 3 ] 3+ +3e - Reaction formula b: [Al(H(CR 2 ) m -SO 2 NHM) 3 ] 3+ +3e - ⁇ Al+3(H(CR 2 ) m -SO 2 NHM)
  • the content of the fluorine-containing sulfonamide compound (2) contained in the non-aqueous electrolytic solution is 1000 ppm by mass or less, preferably 500 ppm by mass or less, and 300 ppm by mass relative to the total amount of the non-aqueous electrolytic solution. It is more preferably 200 mass ppm or less, more preferably 150 mass ppm or less, and even more preferably 120 mass ppm or less.
  • the content of the fluorine-containing sulfonamide compound contained in the non-aqueous electrolytic solution is preferably 0.001 ppm by mass or more, more preferably 0.01 ppm by mass or more, relative to the total amount of the non-aqueous electrolytic solution. is more preferably 0.1 mass ppm or more, more preferably 1 mass ppm or more, and even more preferably 80 mass ppm or more.
  • Non-aqueous secondary battery The non-aqueous electrolytic solution of the present embodiment can be used for non-aqueous secondary batteries.
  • the non-aqueous secondary battery according to the present embodiment is not particularly limited, but is configured by housing a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte in a suitable battery exterior.
  • the non-aqueous secondary battery according to the present embodiment may be the non-aqueous secondary battery 100 illustrated in FIGS.
  • FIG. 1 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the non-aqueous secondary battery 100 shown in FIGS. 1 and 2 is composed of pouch-type cells.
  • the non-aqueous secondary battery 100 includes a laminated electrode body configured by laminating a positive electrode 150 and a negative electrode 160 with a separator 170 interposed in between a positive electrode 150 and a negative electrode 160, and a non-aqueous electrolyte (not shown) in a space 120 of a battery exterior 110. are accommodated.
  • the battery outer packaging 110 is made of, for example, an aluminum laminate film, and is sealed by heat-sealing the upper and lower films in the outer peripheral portion of the space formed by the two aluminum laminate films.
  • a laminate in which the positive electrode 150, the separator 170, and the negative electrode 160 are laminated in this order is impregnated with a non-aqueous electrolytic solution.
  • the layers constituting the battery outer casing 110 and the layers of the positive electrode 150 and the negative electrode 160 are not shown separately.
  • the aluminum laminate film that constitutes the battery exterior 110 is preferably an aluminum foil coated on both sides with a polyolefin resin.
  • the positive electrode 150 is connected to the positive electrode lead body 130 inside the non-aqueous secondary battery 100 .
  • the negative electrode 160 is also connected to the negative electrode lead body 140 inside the non-aqueous secondary battery 100 .
  • One end of each of the positive electrode lead body 130 and the negative electrode lead body 140 is pulled out to the outside of the battery housing 110 so as to be connectable to an external device or the like. It is heat-sealed together with the edges.
  • each of the positive electrode 150 and the negative electrode 160 has a laminated electrode body, but the number of laminated positive electrodes 150 and negative electrodes 160 may be increased depending on capacity design. It can be increased as appropriate.
  • tabs of the same polarity may be joined by welding or the like, then joined to one lead body by welding or the like, and taken out of the battery.
  • the tabs of the same polarity may be formed from the exposed portion of the current collector, or may be formed by welding a metal piece to the exposed portion of the current collector.
  • the positive electrode 150 is composed of a positive electrode current collector and a positive electrode active material layer.
  • the negative electrode 160 is composed of a negative electrode current collector and a negative electrode active material layer.
  • the positive electrode active material layer contains a positive electrode active material
  • the negative electrode active material layer contains a negative electrode active material
  • the positive electrode 150 and the negative electrode 160 are arranged such that the positive electrode active material layer and the negative electrode active material layer face each other with the separator 170 interposed therebetween.
  • Each element constituting the non-aqueous secondary battery according to the present embodiment will be described below in order.
  • the positive electrode 150 is composed of a positive electrode active material layer made from a positive electrode mixture and a positive electrode current collector.
  • the positive electrode mixture contains a positive electrode active material and, if necessary, a conductive aid and a binder.
  • the positive electrode active material layer contains a material that can occlude and release lithium ions as a positive electrode active material. Such materials are capable of obtaining high voltages and high energy densities.
  • the positive electrode active material includes, for example, a positive electrode active material containing at least one transition metal element selected from the group consisting of Ni, Mn, and Co, represented by the following general formula (at): LipNiqCorMnsMtOu ( at ) _ _ _ ⁇ wherein M is at least one metal selected from the group consisting of Al, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, Zr, Sr, and Ba; ⁇ p ⁇ 1.3, 0 ⁇ q ⁇ 1.2, 0 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, 0 ⁇ t ⁇ 0.3, 0.7 ⁇ q+r+s+t ⁇ 1.2, 1 .8 ⁇ u ⁇ 2.2, and p is a value determined by the charge/discharge state of the battery.
  • At least one Li-containing metal oxide selected from lithium (Li)-containing metal oxides represented by is preferable.
  • positive electrode active materials include lithium cobalt oxides typified by LiCoO 2 ; lithium manganese oxides typified by LiMnO 2 , LiMn 2 O 4 and Li 2 Mn 2 O 4 ; and LiNiO 2 typified by Lithium nickel oxides ; _ _ _ _ _ _ _ _ Li z MO 2 (wherein M represents two or more metal elements selected from the group consisting of Ni, Mn, Al, and Mg, and z represents a number greater than 0.9 and less than 1.2 and lithium-containing composite metal oxides represented by ).
  • the Ni content ratio q of the Li-containing metal oxide represented by the general formula (a t ) is 0.5 ⁇ q ⁇ 1.2
  • the amount of Co used which is a rare metal, can be reduced, and the energy density can be increased. It is preferable because both conversions are achieved.
  • positive electrode active materials include LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.75 Co 0.15 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1O2 , LiNi0.85Co0.075Mn0.075O2 , LiNi0.8Co0.15Al0.05O2 , LiNi0.81Co0.1Al0.09O2 _ _ _ _ _ _ _ _ _ _ _ _ , LiNi 0.85 Co 0.1 Al 0.05 O 2 , and the like.
  • the layered rock salt-type positive electrode active material represented by the general formula (at) essentially has active sites that cause oxidative deterioration of the electrolytic solution. This active site may unintentionally consume the electrode protecting additive.
  • these additive decomposition products taken in and deposited on the positive electrode side not only increase the internal resistance of the non-aqueous secondary battery, but also accelerate the deterioration of the lithium salt.
  • LiPF 6 is included as a lithium salt
  • HF is generated by degradation, promoting the elution of transition metals.
  • a complex is formed between the metal cation and acetonitrile, accelerating deterioration of the battery.
  • the positive electrode active material preferably contains at least one metal selected from the group consisting of Al, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, Zr, Sr, and Ba. .
  • the surface of the positive electrode active material is preferably coated with a compound containing at least one metal element selected from the group consisting of Zr, Ti, Al, and Nb. Moreover, it is more preferable that the surface of the positive electrode active material is coated with an oxide containing at least one metal element selected from the group consisting of Zr, Ti, Al, and Nb. Furthermore, the surface of the positive electrode active material is coated with at least one oxide selected from the group consisting of ZrO 2 , TiO 2 , Al 2 O 3 , NbO 3 , and LiNbO 2 . is particularly preferred because it does not interfere with
  • a lithium phosphorus metal oxide having an olivine crystal structure containing iron (Fe) atoms and the following formula (Xba): LiwMIIPO4 ( Xba ) ⁇ In the formula, M II represents one or more transition metal elements including at least one transition metal element containing Fe, and the value of w is determined by the charge/discharge state of the battery, and ranges from 0.05 to 1.0. show the number of 10 ⁇ It is more preferable to use a lithium phosphorus metal oxide having an olivine structure.
  • the transition metal elements are partially substituted with Al, Mg, or other transition metal elements. It may be one in which oxygen atoms are partially substituted with fluorine atoms or the like, or one in which at least part of the surface of the positive electrode active material is coated with another positive electrode active material.
  • positive electrode active materials include metal phosphate oxides containing lithium and a transition metal element, and metal silicate oxides containing lithium and a transition metal element.
  • the lithium-containing metal oxide particularly includes lithium and at least one transition selected from the group consisting of Co, Ni, Mn, Fe, Cu, Zn, Cr, V, and Ti.
  • a metal phosphate oxide containing a metal element is preferred, and a metal phosphate oxide containing Li and Fe is more preferred from the viewpoint of the lithium phosphorus metal oxide represented by the above formula (Xba).
  • LivMID2 ( Xa ) LivMID2 ( Xa ) ⁇ In the formula, D represents a chalcogen element, MI represents one or more transition metal elements including at least one transition metal element, and the value of v is determined by the charge/discharge state of the battery, and is 0 .05 to 1.10 ⁇ , You may use the compound represented by.
  • positive electrode active material in the present embodiment, only the lithium-containing metal oxide as described above may be used, or other positive electrode active material may be used together with the lithium-containing metal oxide.
  • Other positive electrode active materials include, for example, metal oxides or metal chalcogenides having a tunnel structure and a layered structure; sulfur; and conductive polymers.
  • Metal oxides or metal chalcogenides having a tunnel structure and a layered structure include, for example , MnO2 , FeO2 , FeS2 , V2O5 , V6O13 , TiO2 , TiS2 , MoS2 , and NbSe . 2 , oxides, sulfides, and selenides of metals other than lithium.
  • Examples of conductive polymers include conductive polymers typified by polyaniline, polythiophene, polyacetylene, and polypyrrole.
  • the above-mentioned other positive electrode active materials are used singly or in combination of two or more.
  • the positive electrode active material layer contains at least one transition metal element selected from Ni, Mn, and Co because it is possible to stably and reversibly occlude and release lithium ions and achieve a high energy density. preferably.
  • the usage ratio of both is 80% by mass or more as the usage ratio of the lithium-containing metal oxide to the entire positive electrode active material.
  • 85% by mass or more is more preferable.
  • the positive electrode active material layer is formed by applying a positive electrode mixture-containing slurry obtained by dispersing a positive electrode mixture, which is a mixture of a positive electrode active material and, if necessary, a conductive agent and a binder, in a solvent, to a positive electrode current collector, and drying (solvent removal). ) and, if necessary, pressed.
  • a positive electrode mixture which is a mixture of a positive electrode active material and, if necessary, a conductive agent and a binder, in a solvent
  • solvent a well-known thing can be used as such a solvent. Examples include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like.
  • Examples of conductive aids include graphite; carbon black represented by acetylene black and ketjen black; and carbon fiber.
  • the content of the conductive aid is preferably 1 part by mass to 20 parts by mass, more preferably 2 parts by mass to 15 parts by mass, based on 100 parts by mass of the positive electrode active material.
  • the content of the conductive aid is too high, the volume energy density will decrease, but if it is too low, the formation of electron conduction paths will be insufficient.
  • the positive electrode active material layer has lower electron conductivity than the negative electrode active material layer, if the amount of the conductive aid is insufficient, the non-aqueous secondary battery will not be discharged or charged at a high current value. , it becomes impossible to take out a predetermined battery capacity. Therefore, in applications that require high output and/or rapid charging, it is preferable to increase the content of the conductive aid within a range in which the reaction based on electron transfer does not become rate-determining.
  • binders examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, carboxymethylcellulose, styrene-butadiene rubber, and fluororubber.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the binder content is preferably 6 parts by mass or less, more preferably 0.5 to 4 parts by mass, per 100 parts by mass of the positive electrode active material.
  • the positive electrode current collector is made of, for example, metal foil such as aluminum foil, nickel foil, and stainless steel foil.
  • the surface of the positive electrode current collector may be carbon-coated, or may be processed into a mesh.
  • the thickness of the positive electrode current collector is preferably 5 to 40 ⁇ m, more preferably 7 to 35 ⁇ m, even more preferably 9 to 30 ⁇ m.
  • the basis weight per side of the positive electrode excluding the positive electrode current collector is preferably 15 mg/cm 2 or more, and is 17.5 mg/cm 2 or more, from the viewpoint of improving the volumetric energy density of the non-aqueous secondary battery. more preferably 24 mg/cm 2 or more.
  • the basis weight per side of the positive electrode excluding the positive electrode current collector is preferably 200 mg/cm 2 or less, more preferably 100 mg/cm 2 or less, and even more preferably 60 mg/cm 2 or less. .
  • the basis weight indicates the mass of the electrode active material contained per 1 cm 2 of the electrode area, and the electrode active material layer on both sides of the current collector. is the mass of the electrode active material contained per 1 cm 2 of electrode area on each side.
  • the negative electrode 160 is composed of a negative electrode active material layer made from a negative electrode mixture and a negative electrode current collector.
  • the negative electrode 160 can act as a negative electrode of a non-aqueous secondary battery.
  • the negative electrode mixture contains a negative electrode active material and, if necessary, a conductive aid and a binder.
  • negative electrode active materials examples include amorphous carbon (hard carbon, soft carbon), graphite (artificial graphite, natural graphite), pyrolytic carbon, coke, glassy carbon, sintered organic polymer compounds, mesocarbon microbeads, Carbon materials represented by carbon fibers, activated carbon, carbon colloids, and carbon black, metallic lithium, metallic oxides, metallic nitrides, lithium alloys, tin alloys, silicon alloys, intermetallic compounds, organic compounds, inorganic compounds, metal complexes , organic polymer compounds, and the like can be used.
  • a negative electrode active material is used individually by 1 type or in combination of 2 or more types.
  • graphite or one or more elements selected from the group consisting of Ti, V, Sn, Cr, Mn, Fe, Co, Ni, Zn, Al, Si, and B It is preferred to use a compound containing
  • lithium ions are used as the negative electrode active material at 0.4 V vs. 0.4 V from the viewpoint that the battery voltage can be increased. It is preferable to contain a material that can occlude at a potential less noble than Li/Li + .
  • the negative electrode active material layer is formed by applying a negative electrode mixture-containing slurry, which is a mixture of a negative electrode active material and, if necessary, a conductive aid and a binder, dispersed in a solvent, to a negative electrode current collector and drying (solvent removal). Then, if necessary, it is formed by pressing.
  • a negative electrode mixture-containing slurry which is a mixture of a negative electrode active material and, if necessary, a conductive aid and a binder, dispersed in a solvent, to a negative electrode current collector and drying (solvent removal). Then, if necessary, it is formed by pressing.
  • solvents can be used as such solvents, and examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, water and the like.
  • Examples of conductive aids include carbon black represented by acetylene black and Ketjen black; carbon fiber; and graphite.
  • the content of the conductive aid is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the negative electrode active material.
  • binders examples include carboxymethylcellulose, PVDF, PTFE, polyacrylic acid, and fluororubber. Also included are diene rubbers such as styrene-butadiene rubber.
  • the binder content is preferably 10 parts by mass or less, more preferably 0.5 to 6 parts by mass, per 100 parts by mass of the negative electrode active material.
  • the negative electrode current collector is composed of, for example, metal foil such as copper foil, nickel foil, and stainless steel foil. Further, the negative electrode current collector may be carbon-coated on the surface, or may be processed into a mesh shape.
  • the thickness of the negative electrode current collector is preferably 5 to 40 ⁇ m, more preferably 6 to 35 ⁇ m, even more preferably 7 to 30 ⁇ m.
  • the non-aqueous secondary battery 100 preferably includes a separator 170 between the positive electrode 150 and the negative electrode 160 from the viewpoint of preventing short circuits between the positive electrode 150 and the negative electrode 160 and providing safety such as shutdown.
  • a separator 170 an insulating thin film having high ion permeability and excellent mechanical strength is preferable.
  • the separator 170 include woven fabrics, non-woven fabrics, synthetic resin microporous membranes, etc. Among these, synthetic resin microporous membranes are preferable.
  • a microporous membrane containing polyethylene or polypropylene as a main component or a polyolefin microporous membrane such as a microporous membrane containing both of these polyolefins is preferably used.
  • nonwoven fabrics include porous membranes made of heat-resistant resin such as glass, ceramic, polyolefin, polyester, polyamide, liquid crystal polyester, and aramid.
  • the separator 170 may have a structure in which one type of microporous membrane is laminated in a single layer or a plurality of layers, or may be a structure in which two or more types of microporous membranes are laminated.
  • the separator 170 may have a structure in which a mixed resin material obtained by melting and kneading two or more resin materials is used to form a single layer or multiple layers.
  • inorganic particles may be present on the surface layer or inside the separator, and other organic layers may be further coated or laminated.
  • the separator may include a crosslinked structure.
  • the thickness of the separator is preferably 1 ⁇ m or more from the viewpoint of separator strength, preferably 500 ⁇ m or less from the viewpoint of permeability, more preferably 5 ⁇ m or more and 30 ⁇ m or less, and 10 ⁇ m or more and 25 ⁇ m or less. is more preferred.
  • the thickness of the separator is more preferably 15 ⁇ m or more and 20 ⁇ m or less when emphasis is placed on short-circuit resistance, but when emphasis is placed on high energy density, it is more preferably 10 ⁇ m or more and less than 15 ⁇ m. preferable.
  • the porosity of the separator is preferably 30% or more and 90% or less, more preferably 35% or more and 80% or less, and even more preferably 40% or more and 70% or less, from the viewpoint of following the rapid movement of lithium ions at high output. .
  • the air permeability of the separator is preferably 1 sec/100 cm 3 or more and 400 sec/100 cm 3 or less, more preferably 100 sec/100 cm 3 or more and 350/100 cm 3 or less, from the viewpoint of the balance between the separator thickness and porosity. .
  • the air permeability is particularly preferably 150 seconds/100 cm 3 or more and 350 seconds/100 cm 3 or less, and priority is given to improving output performance while ensuring safety. 100/100 cm 3 sec or more and less than 150 sec/100 cm 3 is particularly preferable.
  • the rate of lithium ion migration is determined not by the structure of the separator, but by the high ionic conductivity of the electrolyte. There is a tendency that such input/output characteristics cannot be obtained. Therefore, the ionic conductivity of the non-aqueous electrolytic solution at 25° C.
  • the thickness, air permeability and porosity of the separator, and the ionic conductivity of the non-aqueous electrolytic solution are not limited to the above examples.
  • a battery can for example, a battery can (not shown) or a laminate film casing can be used.
  • a metal can made of steel, stainless steel (SUS), aluminum, a clad material, or the like, such as a rectangular, prismatic, cylindrical, elliptical, flat, coin-shaped, or button-shaped can is used. be able to.
  • the laminate film outer body for example, a laminate film having a three-layer structure of hot-melt resin/metal film/resin can be used.
  • the laminate film exterior body is a state in which two sheets are stacked with the hot-melt resin side facing inward, or folded so that the hot-melt resin side faces inward, and the ends are sealed by heat sealing.
  • the positive electrode lead body 130 (or the positive electrode terminal and the lead tab connected to the positive electrode terminal) is connected to the positive electrode current collector
  • the negative electrode lead body 140 (or the negative electrode terminal and the negative electrode terminal) is connected to the negative electrode current collector. connecting lead tabs) may be connected.
  • the laminate film package is sealed with the ends of the positive lead 130 and the negative lead 140 (or lead tabs connected to the positive terminal and the negative terminal) pulled out to the outside of the package. good too.
  • the battery packaging of the non-aqueous secondary battery in the present embodiment preferably contains aluminum in at least part of the liquid-contacting layer with the non-aqueous electrolytic solution on the positive electrode side.
  • the wetted layer may be the same material as the main body, ie, the wetted layer of the main body, or may be a layer obtained by coating the main body with another material.
  • the aluminum contained in the wetted layer may be present in a part of the wetted layer with the non-aqueous electrolyte, or may be present in the entire wetted layer. It is more preferred that all of the wetted layers are aluminum in order to minimize this and to maximize the cyclability of the battery.
  • the battery casing of the non-aqueous secondary battery in the present embodiment may be one in which the main body is made of a metal other than aluminum, and at least a part of the liquid-contacting layer with the non-aqueous electrolyte contains aluminum.
  • the wetted layer containing aluminum can be provided by plating, clad, or the like. More preferably, it is composed of an aluminum clad.
  • a clad is a material in which two or more kinds of different metals are pasted together, and it is generally assumed that the interfaces of dissimilar metals are diffusion-bonded (has an alloy layer).
  • the clad can be produced by pressing or explosive welding.
  • the battery casing preferably contains aluminum in at least a part of the positive electrode side wetted layer, and at least a part of the positive electrode side wetted layer is clad with aluminum. more preferred.
  • the main metal layer of the battery exterior is made of a metal other than aluminum
  • the main metal is not particularly limited, but from the viewpoint of preventing corrosion on the outside of the container, austenitic stainless steel such as SUS304, SUS316, and SUS316L, SUS329J1, and SUS329J3L. austenitic/ferritic stainless steels such as SUS405 and SUS430; and martensitic stainless steels such as SUS403 and SUS410.
  • the non-aqueous secondary battery 100 in this embodiment includes the non-aqueous electrolyte solution described above, the positive electrode 150 having a positive electrode active material layer on one or both sides of the current collector, and the negative electrode active material layer on one or both sides of the current collector. It is produced by a known method using the negative electrode 160, the battery exterior 110, and, if necessary, the separator 170.
  • a laminate consisting of the positive electrode 150, the negative electrode 160, and, if necessary, the separator 170 is formed.
  • a mode in which the long positive electrode 150 and the negative electrode 160 are wound in a laminated state with the long separator interposed between the positive electrode 150 and the negative electrode 160 to form a laminated body having a wound structure and an aspect of forming a laminate having a laminated structure in which a positive electrode sheet and a negative electrode sheet obtained by cutting the negative electrode 160 into a plurality of sheets having a certain area and shape are alternately laminated with a separator sheet interposed; It is also possible to form a laminate having a laminated structure in which a long separator is zigzag and a positive electrode sheet and a negative electrode sheet are alternately inserted between the zigzag separators.
  • a non-aqueous secondary battery in the present embodiment can be produced.
  • a gel-state electrolyte membrane is prepared in advance by impregnating a base material made of a polymer material with an electrolytic solution, and the sheet-like positive electrode 150, the negative electrode 160, the electrolyte membrane, and, if necessary, After forming a laminate having a laminate structure using the separator 170 , the non-aqueous secondary battery 100 can be produced by housing the laminate in the battery exterior 110 .
  • the electrodes are arranged so that there is a portion where the outer peripheral edge of the negative electrode active material layer and the outer peripheral edge of the positive electrode active material layer overlap, or there is a portion where the width is too small in the non-facing portion of the negative electrode active material layer.
  • the positions of the electrodes of the electrode body used in the non-aqueous secondary battery be fixed in advance by tapes such as polyimide tape, polyphenylene sulfide tape, polypropylene (PP) tape, adhesives, or the like.
  • lithium ions released from the positive electrode during the initial charge of the non-aqueous secondary battery may diffuse throughout the negative electrode.
  • the lithium ions will remain in the negative electrode without being released during the first discharge. Therefore, the contribution of the lithium ions that are not released becomes the irreversible capacity.
  • a non-aqueous secondary battery using a non-aqueous electrolytic solution containing acetonitrile may have low initial charge/discharge efficiency.
  • the area of the positive electrode active material layer is larger than that of the negative electrode active material layer, or if the two have the same area, current tends to concentrate at the edge portion of the negative electrode active material layer during charging, and lithium dendrites are generated. becomes easier.
  • the ratio of the area of the entire negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other is not particularly limited, it is more than 1.0 and less than 1.1 for the reason described above. is preferably greater than 1.002 and less than 1.09, more preferably greater than 1.005 and less than 1.08, particularly greater than 1.01 and less than 1.08 preferable.
  • a non-aqueous secondary battery using a non-aqueous electrolyte solution containing acetonitrile by reducing the ratio of the area of the entire negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other, can improve the initial charge-discharge efficiency.
  • Reducing the ratio of the area of the entire negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other means that the negative electrode active material layer does not face the positive electrode active material layer. It means to limit the area ratio of the part.
  • the amount of lithium ions that are occluded in the portion of the negative electrode active material layer that is not opposed to the positive electrode active material layer that is, the amount of lithium ions released from the negative electrode during the initial discharge
  • the load characteristics of the battery are improved by using acetonitrile. While achieving the above, the initial charge/discharge efficiency of the battery can be improved, and the formation of lithium dendrites can be suppressed.
  • the non-aqueous secondary battery 100 in the present embodiment can function as a battery by the initial charge, but is stabilized by the partial decomposition of the electrolytic solution during the initial charge.
  • the method of initial charging is not particularly limited, but the initial charging is preferably performed at 0.001 to 0.3C, more preferably 0.002 to 0.25C, and 0.003 to 0.2C. It is even more preferable to carry out at Performing the initial charging via constant voltage charging also gives favorable results.
  • a stable and strong negative electrode SEI is formed on the electrode surface, suppressing an increase in internal resistance, and the reaction product is strong only on the negative electrode 160. Without being fixed to the positive electrode 150 and the separator 170, members other than the negative electrode 160 also have good effects. Therefore, it is very effective to perform the initial charge in consideration of the electrochemical reaction of the lithium salt dissolved in the non-aqueous electrolyte.
  • the non-aqueous secondary battery 100 in this embodiment can also be used as a battery pack in which a plurality of non-aqueous secondary batteries 100 are connected in series or in parallel.
  • the working voltage range per battery is 1.5 to 4.0 V. is preferred, and 2.0 to 3.8V is particularly preferred.
  • the working voltage range per battery is preferably 2 to 5 V, more preferably 2.5 to 5 V, and 2 .75V to 5V is particularly preferred.
  • Measuring device JNM-ECZ400S type nuclear magnetic resonance device (manufactured by JEOL Ltd.) Observation nuclei: 1 H, 19 F Solvent: deuterated chloroform, deuterated dimethylsulfoxide Reference substances: tetramethylsilane ( 1 H, 0.00 ppm), trichlorofluoromethane ( 19 F, 0.00 ppm) Reference substance concentration: 5% by mass Measurement sample concentration: 20% by mass Pulse width: 6.5 ⁇ s Waiting time: 2 seconds Accumulation times: 8 times ( 1 H), 1024 times ( 19 F) ⁇ Content of compound (2)> From the measurement results of 19 F-NMR, the content of compound (2) was measured from the integrated value of representative peaks of compound (1A) and compound (2).
  • RF power 1.2kW Plasma gas (argon) flow rate: 16 L/min Auxiliary gas (argon) flow rate: 0.5 L/min Carrier gas (argon) pressure: 0.24 MPa Carrier gas (argon) flow rate: 0.3 L/min Photometric height: 12 mm Chamber gas (argon) flow rate: 0.6 L/min
  • the sample After holding for 1 minute, the sample was heated at a measurement temperature range of 100° C. to 500° C. at a heating rate of 10° C./minute, and the state of mass reduction was observed.
  • the temperature (° C.) at which a mass reduction rate of 1% by mass and 2% by mass was confirmed was observed.
  • Acetonitrile (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., dried molecular sieve 3A 1/16 (manufactured by Fujifilm Wako Purechemical Co., Ltd.) is added, dehydrated, and the water content is determined by removing the molecular sieve 3A 1/16. It was adjusted)
  • Tetrahydrofuran (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., dried molecular sieve 3A 1/16 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) is added, dehydrated, and the water content is determined by removing the molecular sieve 3A 1/16. It was adjusted)
  • the reaction temperature is room temperature when it is room temperature without an external heating and cooling device.
  • the reaction temperature is the temperature of the medium used in the external heating/cooling device.
  • Example I-1 Electrolytic coupling reaction step
  • acetonitrile 59 g
  • water 75 g
  • FO 2 SCF 2 CO 2 H compound (3-1)
  • anode and a cathode platinum plate electrodes (25 mm ⁇ 50 mm) were placed at intervals of 6 mm and immersed in the solution. A current of 1.5 A was applied to the electrodes for 4 hours while stirring was maintained under cooling at 0°C.
  • the resulting reaction solution was filtered under pressure to remove insoluble solids, and then concentrated under reduced pressure to obtain a skin-colored solid.
  • Tetrahydrofuran (889 g) was added to the resulting skin-colored solid, and the mixture was stirred at 50°C for 30 minutes. The insoluble solid was removed by pressure filtration, and the mixture was concentrated under reduced pressure to obtain 177.9 g of a white solid. The resulting solid was sampled and analyzed by ICP emission spectrometry, confirming that the ammonium cations were exchanged with lithium cations.
  • Example I-1 The temperature at which the mass reduction rate of the fluorine-containing cyclic sulfonimide lithium salt (compound (1-2)) obtained in Example I-1 and Comparative Example I-1 is 1% by mass and 2% by mass was determined according to the above method. It was measured.
  • the fluorine-containing cyclic sulfonimide lithium salt (compound (1-2)) of Example I-1 in which the content of HF 2 CSO 2 NHLi (compound (2-1)) was reduced was HCF 2 SO 2
  • Non-Aqueous Electrolyte Under an inert atmosphere, various non-aqueous solvents were mixed so as to have a predetermined concentration. Furthermore, non-aqueous electrolytic solutions (S01) to (S20) were prepared by adding various lithium salts so as to have predetermined concentrations. A non-aqueous electrolytic solution (S21) was prepared by using (S01) as a mother electrolytic solution and adding a compound represented by the formula (2-1) to a predetermined mass part. Table 2 shows the composition of these non-aqueous electrolytes.
  • Lot A is the compound after purification by the crystallization step
  • Lot B is the compound synthesized through the cyclization step and the cation exchange step after purification by distillation after the electrolytic coupling reaction step
  • Lot C is the crystallization purification and electrolytic coupling step. It is a compound that has not undergone any purification by distillation after the reaction step.
  • Non-aqueous solvents and lithium salts in Table 2 have the following meanings.
  • Non-aqueous solvent AN: acetonitrile
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • ES ethylene sulfite
  • VC vinylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • (1-6) compound represented by the following formula (1-6)
  • LiFSI Lithium bis(fluorosulfonyl)imide (LiN( SO2F)2 )
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide (LiN ( SO2CF3 ) 2 )
  • Fluorine-containing sulfonamide compound (2-1): A fluorine-containing sulfonamide compound represented by the above formula (2-1): HCF 2 SO 2 NHLi
  • Measuring device JNM-ECZ400S type nuclear magnetic resonance device (manufactured by JEOL Ltd.) Observation nuclei: 1 H, 19 F Solvent: deuterated chloroform, deuterated dimethylsulfoxide Reference substances: tetramethylsilane ( 1 H, 0.00 ppm), trichlorofluoromethane ( 19 F, 0.00 ppm) Reference substance concentration: 5% by mass Measurement sample concentration: 20% by mass Pulse width: 6.5 ⁇ s Waiting time: 2 seconds Accumulation times: 8 times ( 1 H), 1024 times ( 19 F)
  • Measurement condition Measuring device: SPS3520UV-DD (manufactured by Hitachi High-Tech Science Co., Ltd.) Measurement atom: Li Sample preparation conditions: 0.1 g of the product was mixed with 9.9 g of ultrapure water to obtain a temporary dilution with a concentration of 1% by mass. Next, 1.5 g of the temporary dilution was mixed with 28.5 g of a 1% by mass nitric acid aqueous solution to prepare a measurement sample.
  • RF power 1.2kW Plasma gas (argon) flow rate: 16 L/min Auxiliary gas (argon) flow rate: 0.5 L/min Carrier gas (argon) pressure: 0.24 MPa Carrier gas (argon) flow rate: 0.3 L/min Photometric height: 12 mm Chamber gas (argon) flow rate: 0.6 L/min
  • Acetonitrile (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., dry molecular sieve 3A 1/16 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) is added, dehydrated, and the water content is determined by removing the molecular sieve 3A 1/16. It was adjusted)
  • Tetrahydrofuran (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., dried molecular sieve 3A 1/16 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) is added, dehydrated, and the water content is determined by removing the molecular sieve 3A 1/16. It was adjusted)
  • the reaction temperature is room temperature when no external heating and cooling equipment is used.
  • an external heating/cooling device such as a water bath or an oil bath
  • the temperature of the medium used in the external heating/cooling device is the reaction temperature.
  • the obtained crystals were dried under reduced pressure for 3 hours under conditions of no stirring, 60° C., and 40 hPa.
  • the crystals were pulverized using a mortar and pestle, and Vertrel (manufactured by Mitsui Chemours Fluoro Products Co., Ltd., main component: 1,1,1,2,2,3,4,5,5,5-decafluoropentane ), 4.9 g (yield 49.0%) of crystals were obtained by repeating the operation of adding 20 mL of ) and drying under reduced pressure for 2 hours under conditions of 100 ° C. and 15 hPa without stirring 4 times.
  • N-methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture and further mixed to prepare a slurry containing the positive electrode mixture.
  • This positive electrode mixture-containing slurry was applied to one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector while adjusting the basis weight to 11.4 mg/cm 2 , and the solvent was removed by drying. After that, it was rolled by a roll press so that the density of the positive electrode active material layer became 2.71 g/cm 3 to obtain a positive electrode (P1) composed of the positive electrode active material layer and the positive electrode current collector.
  • Negative Electrode (N1) Graphite powder as a negative electrode active material, carbon black powder as a conductive aid, and polyvinylidene fluoride (PVDF) as a binder at a mass ratio of 90:3:7. to obtain a negative electrode mixture.
  • PVDF polyvinylidene fluoride
  • a glass fiber filter paper (GA-100; manufactured by Advantech) punched into a disk shape with a diameter of 16.156 mm was set, and after injecting 150 ⁇ L of non-aqueous electrolytic solution (S01 to S21), the above-mentioned A disc having a diameter of 16.156 mm was punched out of the negative electrode (N1) thus obtained and set with the negative electrode active material layer facing downward. Further, after setting the spacer and spring in the battery case, the battery cap was fitted and crimped with a crimping machine. The overflowing non-aqueous electrolytic solution was wiped off with a waste cloth.
  • G-100 manufactured by Advantech
  • the assembly containing the laminate of the positive electrode, the glass fiber filter paper, the negative electrode, and the non-aqueous electrolyte was held at 25° C. for 12 hours to allow the non-aqueous electrolyte to sufficiently permeate the laminate to obtain a coin-type non-aqueous secondary battery. .
  • the small non-aqueous secondary battery assembled according to the procedure in (2-3) above is a 3 mAh class cell, the battery voltage in a fully charged state is set to 4.2 V, and the current value equivalent to 1 C is 3.0 mA. do. Henceforth, the notation of a current value and a voltage is abbreviate
  • Initial charge/discharge efficiency (initial discharge capacity (Y) / initial charge capacity (X)) x 100 [%]
  • charging was performed at a constant voltage of 4.2V until the current decayed to 0.025C. After that, it was discharged to 3V with a current value of 0.6mA corresponding to 0.2C. After that, one cycle of charging and discharging was performed in the same manner as described above.
  • (3-2) 25 ° C. cycle test For the coin-type non-aqueous secondary battery that has been subjected to the initial charge-discharge treatment by the method described in (3-1) above, the ambient temperature is set to 25 ° C. and 3 mA corresponding to 1C After reaching 4.2V by charging at a constant current of , charging was performed at a constant voltage of 4.2V until the current attenuated to 0.025C. After that, the battery was discharged to a battery voltage of 3.0 V at a constant current of 3 mA corresponding to 1C. This process of performing charging and discharging once each was regarded as one cycle, and 100 cycles of charging and discharging were performed.
  • the discharge capacity at this time was defined as the 100th cycle discharge capacity (hereinafter sometimes referred to as (T)).
  • the cycle test was not performed as a voltage abnormality.
  • the sample is placed in a Teflon (registered trademark) decomposition container, a mixed solvent of 68% nitric acid: 3 mL and 98% sulfuric acid: 5 mL is added, and after thermal decomposition with microwaves at 220 ° C. for 45 minutes (first stage reaction) , 68% nitric acid: 2 mL was added, and after heat decomposition by microwave again at 230° C. for 40 minutes (second stage reaction), the total amount was adjusted to about 100 g with ultrapure water. Since graphite remained as a residue, the filtered solution was used for ICP measurement. ETHOS one manufactured by Milestone General was used as a microwave pretreatment device, and the microwave output was 1000W.
  • Teflon registered trademark
  • the ICP emission spectroscopic analysis was performed under the following conditions, and the amount of Al elution of the negative electrode per 1 g of the negative electrode (including the negative electrode current collector foil) was measured.
  • Apparatus SPS3520UV-DD manufactured by SII Nano Technology Co., Ltd.
  • High frequency power 1.2 (Kw) Plasma gas (Ar) flow rate: 16 (L/min) Auxiliary gas (Ar) flow rate: 0.5 (L/min) Carrier gas (Ar) pressure: 0.24 (MPa) Carrier gas (Ar) flow rate: 0.3 (L/min) Chamber gas (Ar) flow rate: 0.6 (L/min) Purge gas (N 2 ) flow rate: 5 (L/min) Photometric height: 12 (mm) Element: Al Spectrometer: R Wavelength: 167.079 (nm) Purge gas: ON The calibration curve is prepared by diluting 100 mg/L of Al standard solution with an acid aqueous solution (prepared by adding 68% nitric acid and 98% sulfuric acid to ultrapure water so that the acid concentration is the same as that of the decomposition solution of the sample). 0, 0.01, 0.05, 0.1, 0.5, 1, and 2 mg/L were prepared using 6-point calibration curve standard solutions.
  • Hitachi SU8220 was used for SEM observation.
  • the measurement condition was an acceleration voltage of 1 kV.
  • FIG. 7 magnification: 40
  • FIG. 9 magnification of 10000 times
  • the initial efficiency indicates the ratio of the initial discharge capacity to the initial charge capacity, but it is generally lower than the charge/discharge efficiency after the second time. This is because Li ions are used to form the negative electrode SEI during the initial charge. This reduces the Li ions that can be discharged. Here, there is no problem if the initial charge/discharge efficiency is 84% or more, and 85% or more is desirable.
  • the 25°C cycle capacity retention rate is an index of battery deterioration due to repeated use. It is considered that the larger this value is, the smaller the decrease in capacity due to repeated use is and the more the material can be used for long-term use. Therefore, it is desirable that the 25° C. cycle capacity retention rate is 70% or more. Also, if the voltage drops to 2 V or less before the 25° C. cycle test, it is considered that a slight short circuit occurs in the battery, and it is considered difficult to use the battery for long-term use.
  • the negative electrode Al elution amount is an index of battery deterioration due to repeated use. It is thought that the smaller this value is, the more the corrosion of the positive electrode Al current collector foil due to repeated use is suppressed, the deterioration of the negative electrode SEI due to the reduction deposition of Al on the negative electrode is suppressed, and the use for long-term use is possible. be done. Therefore, the amount of aluminum eluted from the negative electrode is desirably 1000 mass ppm or less, and more desirably 500 mass ppm or less.
  • Table 3 shows the results of initial charge-discharge treatment, 25°C cycle test, and ICP emission spectroscopic analysis of the negative electrode.
  • Example II-1 Comparing Example II-1 with Comparative Examples II-1 to II-3, it was found that by using a fluorine-containing cyclic sulfonylimide salt as the lithium salt and adjusting the amount of the fluorine-containing sulfonamide compound within a preferred range, the initial Efficiency is improving. It is considered that this is because the Al corrosion reaction at the positive electrode and the Al reduction/precipitation reaction at the negative electrode during the initial charge were suppressed, thereby suppressing an increase in the irreversible capacity.
  • Example II-1 Although the initial charge capacity of Example II-1 is lower than that of Comparative Examples II-1 to II-3, Comparative Examples II-1 to II- The fact that the initial discharge capacity of Example II-1 did not decrease as compared with Example II-3 also suggests that the irreversible reaction caused by Al corrosion is suppressed.
  • Example II-1 when comparing Example II-1 with Comparative Examples II-1 and II-3, it was found that by using a fluorine-containing cyclic sulfonylimide salt as the lithium salt and adjusting the amount of the fluorine-containing sulfonamide compound within a preferred range, , the cycle capacity retention rate is improved, and the amount of Al eluted from the negative electrode is reduced. This is because the continuous Al corrosion reaction at the positive electrode and the Al reduction deposition reaction at the negative electrode are suppressed during the cycle test, and the increase in irreversible capacity is suppressed. This is thought to be due to the suppression of physical damage.
  • Example II-1 and Example II-2 when comparing Example II-1 and Example II-2, when lot A was used as the fluorine-containing cyclic sulfonylimide salt, the cycle capacity retention rate was improved compared to when lot B was used, and the negative electrode Al elution amount is reduced. This is because the crystallization purification has a higher effect of reducing the fluorine-containing sulfonamide compound than the distillation purification after the electrolytic coupling reaction step, and the fluorine-containing cyclic sulfonylimide salt and the fluorine-containing sulfonamide compound in the electrolyte are reduced.
  • the discharge IR drop in the 1st cycle was defined as the 1st cycle discharge IR drop
  • the discharge IR drop in the 100th cycle was defined as the 100th cycle discharge IR drop.
  • the discharge IR drop increase rate after 100 cycles is an index of battery deterioration due to repeated use. It is considered that the smaller this value, the smaller the increase in internal resistance due to repeated use, and the more the material can be used for long-term use. Therefore, in a non-aqueous secondary battery containing a non-aqueous electrolyte solution containing acetonitrile, the discharge IR drop increase rate after 100 cycles is preferably 400% or less, more preferably 200% or less. Table 4 shows the obtained evaluation results.
  • Example II-14 and Example II-15 when comparing Example II-14 and Example II-15, when Lot A was used as the fluorine-containing cyclic sulfonylimide salt, the rate of increase in the discharge IR drop after 100 cycles was lower than when Lot B was used. It is This is because the crystallization purification has a higher effect of reducing the fluorine-containing sulfonamide compound than the distillation purification after the electrolytic coupling reaction step, and the fluorine-containing cyclic sulfonylimide salt and the fluorine-containing sulfonamide compound in the electrolyte are reduced. This is probably because the continuous Al corrosion reaction in the positive electrode and the Al reduction/precipitation reaction in the negative electrode were suppressed during the cycle test, and the increase in internal resistance was suppressed.
  • Fabrication of small non-aqueous secondary battery (7-1) Fabrication of positive electrode (P2) As a positive electrode active material, a composite oxide of lithium, nickel, manganese and cobalt (LiNi 0.8 Mn 0.1 Co 0.1) was used . 1 O 2 ), carbon black powder as a conductive aid, and polyvinylidene fluoride (PVDF) as a binder were mixed at a mass ratio of 94:3:3 to obtain a positive electrode mixture.
  • PVDF polyvinylidene fluoride
  • N-methyl-2-pyrrolidone was added as a solvent to the obtained positive electrode mixture and further mixed to prepare a slurry containing the positive electrode mixture.
  • This positive electrode mixture-containing slurry was applied to one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector while adjusting the basis weight to 16.6 mg/cm 2 , and the solvent was removed by drying. After that, it was rolled by a roll press so that the density of the positive electrode active material layer was 2.91 g/cm 3 to obtain a positive electrode (P2) composed of the positive electrode active material layer and the positive electrode current collector.
  • N2 Preparation of negative electrode (N2) (A) graphite powder as a negative electrode active material, (B) carbon black powder as a conductive aid, and (C) polyvinylidene fluoride (PVDF) as a binder, They were mixed at a solid content mass ratio of 90:3:7 to obtain a negative electrode mixture.
  • PVDF polyvinylidene fluoride
  • 1 C means a current value that is expected to be discharged in one hour when a fully charged battery is discharged at a constant current.
  • 1C is specifically discharged from a fully charged state of 4.2 V to 3.0 V at a constant current and discharge is completed in 1 hour. is the expected current value.
  • the small non-aqueous secondary battery assembled according to the above procedure (7-3) is a 7.4 mAh class cell, the battery voltage in a fully charged state is set to 4.2 V, and the current value corresponding to 1 C is 7.4 V. 4 mA.
  • the notation of a current value and a voltage is abbreviate
  • the discharge IR drop in the 1st cycle was defined as the 1st cycle discharge IR drop
  • the discharge IR drop in the 100th cycle was defined as the 100th cycle discharge IR drop.
  • the discharge IR drop increase rate after 100 cycles is an index of battery deterioration due to repeated use. It is considered that the smaller this value, the smaller the increase in internal resistance due to repeated use, and the more the material can be used for long-term use. Therefore, in a non-aqueous secondary battery containing a non-aqueous electrolyte containing no acetonitrile, the discharge IR drop increase rate after 100 cycles is desirably 200% or less, more desirably 130% or less. Table 5 shows the obtained evaluation results.
  • Example II-16 exhibited a discharge IR drop increase rate of 130% or less after 100 cycles, while Example II-17 exhibited a discharge IR drop increase rate of 130% after 100 cycles. %.
  • Example II-16 and Example II-17 Comparing Example II-16 and Example II-17, the inclusion of LiPF 6 in the non-aqueous electrolyte improved the discharge IR drop increase rate after 100 cycles. This is probably because the inclusion of LiPF 6 satisfies the amount of hydrogen fluoride (HF) required for aluminum passivation and negative electrode SEI formation, and the decomposition product of the cyclic anion works as a negative electrode SEI component.
  • HF hydrogen fluoride
  • the content of LiPF 6 was in the range of 0.01 or more and 4 or less in terms of molar ratio to the content of vinylene carbonate. Discharge IR drop increase rate is improved. This is because the content of LiPF 6 is within a preferable range with respect to the content of vinylene carbonate, and the ratio of the organic component derived from the cyclic anion-containing lithium salt and cyclic carbonate in the negative electrode SEI to the inorganic component derived from LiPF 6 is This is probably due to proper control.
  • Measuring device JNM-ECZ400S type nuclear magnetic resonance device (manufactured by JEOL Ltd.) Observation nuclei: 1 H, 19 F Solvent: deuterated chloroform, deuterated dimethylsulfoxide Reference substances: tetramethylsilane ( 1 H, 0.00 ppm), trichlorofluoromethane ( 19 F, 0.00 ppm) Reference substance concentration: 5% by mass Measurement sample concentration: 20% by mass Pulse width: 6.5 ⁇ s Waiting time: 2 seconds Accumulation times: 8 times ( 1 H), 1024 times ( 19 F)
  • the reaction temperature is room temperature when it is room temperature without an external heating and cooling device.
  • the reaction temperature is the temperature of the medium used in the external heating/cooling device.
  • acetonitrile 5 g
  • water 25 g
  • platinum plate electrodes 13 mm ⁇ 50 mm were placed at intervals of 3 mm and immersed in the solution.
  • FO 2 SCF 2 CO 2 H compound (3-1
  • platinum plate electrodes 13 mm ⁇ 50 mm were placed at intervals of 3 mm and immersed in the solution.
  • acetonitrile 3.3 g
  • water 16.7 g
  • FO 2 SCF 2 CO 2 H compound (3-1)
  • anode and a cathode platinum plate electrodes (13 mm ⁇ 50 mm) were placed at intervals of 3 mm and immersed in the solution.
  • acetonitrile 4.5 g
  • water 22.5 g
  • FO 2 SCF 2 CO 2 H compound (3-1)
  • As an anode and a cathode platinum plate electrodes (13 mm ⁇ 50 mm) were placed at intervals of 3 mm and immersed in the solution.
  • Example III-14 After adding a stirrer, acetonitrile (15 g) and water (15 g) to a Schlenk tube having an outer diameter of 30 mm and a height of 170 mm and a capacity of 50 mL under a nitrogen atmosphere, the mixture was cooled to 0° C., and FO 2 SCF 2 was prepared. CO 2 H (compound (3-1), 5.1 g, 28.4 mmol) was added. As an anode and a cathode, platinum plate electrodes (13 mm ⁇ 50 mm) were placed at intervals of 3 mm and immersed in the solution.
  • Example III-15 After adding a stirrer, acetonitrile (15 g) and water (15 g) to a Schlenk tube having an outer diameter of 30 mm and a height of 170 mm and a capacity of 50 mL under a nitrogen atmosphere, the mixture was cooled to 0° C., and FO 2 SCF 2 was prepared. CO 2 H (compound (3-1), 5.1 g, 28.5 mmol) was added. As an anode and a cathode, platinum plate electrodes (13 mm ⁇ 50 mm) were placed at intervals of 3 mm and immersed in the solution.
  • Example III-16 After adding a stirrer, acetonitrile (15 g) and water (15 g) to a Schlenk tube having an outer diameter of 30 mm and a height of 170 mm and a capacity of 50 mL under a nitrogen atmosphere, the mixture was cooled to 0° C., and FO 2 SCF 2 was prepared. CO 2 H (compound (3-1), 5.0 g, 28.3 mmol) was added. As an anode and a cathode, platinum plate electrodes (13 mm ⁇ 50 mm) were placed at intervals of 3 mm and immersed in the solution.
  • the storage stability of FO 2 SCF 2 CO 2 H was measured according to the following method.
  • [Storage stability evaluation] FO 2 SCF 2 CO 2 H (compound (3-1), 10.0 g), acetonitrile (1.5 g), water (7.5 g), and Octa as an internal standard substance for 19 F-NMR were placed in a 30 mL screw tube. Fluorotoluene (0.3 g) was added, and after shaking, 19 F-NMR was measured, and the compound (3- As a result of calculating the integral value of the doublet peak at ⁇ 102.0 ppm in 1), it was 88.72. This value was taken as the standard content of compound (3-1) at an elapsed time of 0 hours.
  • Example IV-7 In a Schlenk tube having an outer diameter of 30 mm, a height of 170 mm, and a capacity of 50 mL, a stirrer, acetonitrile (4.5 g), and water (22.5 g) were added under a nitrogen atmosphere, and then cooled to 0 ° C., FO 2 SCF 2 CO 2 H (compound (4-1), 30.0 g, 168.5 mmol) was added. As an anode and a cathode, platinum plate electrodes (13 mm ⁇ 50 mm) were placed at intervals of 3 mm and immersed in the solution.
  • Example IV-8 (Cyclization step) After cooling the 3 L autoclave to -78 ° C., ammonia gas (250 g, 14.68 mol), and tetrahydrofuran (250 mL) were added, the temperature in the autoclave was kept at -55 ° C. or less, and the electrolysis of Example IV-3 was performed. A tetrahydrofuran (250.0 mL) solution of FO 2 SCF 2 CF 2 SO 2 F (compound (4-1), 208 g, 0.71 mol) obtained by the coupling reaction was added dropwise. After the dropwise addition was completed, the mixture was stirred overnight at room temperature.
  • Measuring device JNM-ECZ400S type nuclear magnetic resonance device (manufactured by JEOL Ltd.) Observation nucleus: 1 H or 19 F
  • Solvent deuterated chloroform, deuterated dimethylsulfoxide
  • Reference substances tetramethylsilane ( 1 H, 0.00 ppm), trichlorofluoromethane ( 19 F, 0.00 ppm)
  • Reference substance concentration 5% by mass Measurement sample concentration: 20% by mass Pulse width: 6.5 ⁇ s Wait time: 2 seconds Accumulation times: 8 times ( 1 H) or 1024 times ( 19 F).
  • the sum of the integrated values of the peaks of the fluorine-containing cyclic sulfonylimide salt is defined as T1, and a single or multiple
  • T2 The sum of the integrated values of the impurity peaks characteristic of appearing as a doublet peak of is denoted by T2
  • T1/T2 the ratio between T1 and T2 is denoted by T1/T2, which is used as an indicator of the purity of the fluorine-containing cyclic sulfonylimide. use.
  • the fluorine-containing cyclic sulfonylimide salt and impurity peaks may vary in chemical shift value by about ⁇ 5 ppm depending on the purity, residual solvent amount, measurement conditions, and the like.
  • the fluorine-containing cyclic sulfonylimide salt according to the present invention is not subject to such assignment errors due to variations in chemical shift values.
  • Example V-1 Commercially available 2,2-difluoro-2-fluorosulfonylacetic acid ( Fujifilm Wako Pure Chemical Co., Ltd.) as a raw material, through the electrolytic coupling reaction process, the cyclization process with ammonia, and the cation exchange process with lithium hydroxide, the following structural formula:
  • Example V-2 Compound (1-2) was synthesized in the same manner as in Example V-1. Next, 1 g of the synthesized compound (1-2) and 2 g of acetone (boiling point: 56° C.) were weighed into a 20 mL round-bottomed flask, and the mixture was stoppered and stirred for 30 minutes. The mixture was cooled overnight at -50°C, but no crystals were formed and high purification was not possible. For recovery, it was dried under reduced pressure at 60°C and 10 hPa for 3 hours. Only a portion of the wall surface of the contents solidified, and a highly viscous liquid remained at the bottom. was impossible. A large amount of the solvent remained even when acetone with a low boiling point was used, probably because the high affinity between acetone and lithium inhibited the distillation of acetone.
  • Example V-3 Compound (1-2) was synthesized in the same manner as in Example V-1. Next, 1 g of the synthesized compound (1-2) and 2 g of dimethyl carbonate were weighed into a 50 mL round-bottomed flask, fitted with a hermetic stopper, and stirred for 30 minutes. After the mixture was filtered, 20 g of cyclohexane was added to the obtained liquid, and the liquid content was separated into two phases, and no crystals were formed. The phase-separated content liquid was cooled overnight at -20°C, but the compound (1-2) did not crystallize and could not be highly purified. This is probably because crystallization was suppressed due to the high affinity between dimethyl carbonate and lithium.
  • Example V-2 Compound (1-2) was synthesized in the same manner as in Example V-1. Next, 10 g of the synthesized compound (1-2) and 20 g of dimethyl carbonate were weighed into a 200 mL round-bottomed flask, fitted with a hermetic stopper, and stirred for 30 minutes. After filtering the mixture, the liquid was cooled at -50°C overnight, but no crystals formed. When the mixture was dried under reduced pressure at 100° C. and 5 hPa for 10 hours for recovery, the mixture as a whole turned into a white turbid gel. After adding and dissolving 27 g of tert-butyl methyl ether, the mixture was cooled to -50°C overnight to yield colorless crystals.
  • T1/T2 was 1550 by 19 F-NMR. From 1 H-NMR measurement using benzotrifluoride as an internal standard, the residual amount of tert-butyl methyl ether was 0.29% by mass, and the residual amount of dimethyl carbonate was 0.13% by mass. The purity of (1-2) was 99.5% by mass.
  • Example V-4 Compound (1-2) was synthesized in the same manner as in Example V-1. Next, 1.0 g of the synthesized compound (1-2) and 1.3 g of tetrahydrofuran (boiling point: 65° C.) were weighed in a 20-mL round-bottomed flask, and the mixture was stoppered and stirred for 30 minutes. The mixture was cooled overnight at -50°C, but no crystals were formed and high purification was not possible. For recovery, it was dried under reduced pressure at 60°C and 10 hPa for 3 hours. Only a portion of the wall surface of the contents solidified, and a highly viscous liquid remained at the bottom. was impossible.
  • Example V-5 Compound (1-2) was synthesized, crystallized and dried in the same manner as in Example V-1 to obtain 4.9 g of crystals. Next, the crystals are washed by adding 30 mL of 1,1,1,2,2,3,4,5,5,5-decafluoropentane and mixing with a spatula, and dried at 100° C. and 15 hPa for 7 hours. did. This washing and drying operation was repeated a total of 5 times to finally obtain 4.6 g of crystals. T1/T2 was 3355 by 19 F-NMR.
  • Non-aqueous electrolytes within the scope of the constituent elements of the present invention can be used in batteries that require improved high-temperature durability and reduced metal corrosiveness.
  • Secondary batteries include, for example, mobile phones, portable audio devices, personal computers, rechargeable batteries for mobile devices such as IC (Integrated Circuit) tags; rechargeable batteries for vehicles such as hybrid vehicles, plug-in hybrid vehicles, and electric vehicles; Low-voltage power sources such as power sources, 24V-class power sources, and 48V-class power sources; residential power storage systems, IoT devices, etc., are expected to be used.
  • the non-aqueous secondary battery using the non-aqueous electrolytic solution of the present invention can be applied to applications in cold regions, outdoor applications in summer, and the like.
  • the fluorine-containing cyclic sulfonylimide salt (1A) according to the present invention has high heat resistance and can be used in a wide temperature range, it can be suitably used as an antistatic agent, an ion-conducting material such as an organic electrolyte, and a flame retardant. It is possible.
  • the content of bis(fluorosulfonyl) compounds which are raw materials for surfactants, antistatic agents, electrolytes, ionic liquids, catalysts, etc., and the content of fluorosulfonyl group-containing compounds, which are by-products, are reduced. can be manufactured while
  • bis(fluorosulfonyl) compounds which are raw materials for surfactants, antistatic agents, electrolytes, ionic liquids, catalysts, etc., can be produced stably at high yields.
  • a fluorine-containing cyclic sulfonylimide salt with a small amount of residual solvent and a small amount of fluorine impurities can be produced with high efficiency.
  • the fluorine-containing cyclic sulfonylimide salt obtained by the production method according to the present invention can be suitably used as an ion-conducting material, an antistatic agent, a flame retardant, and the like.
  • non-aqueous secondary battery 110 battery packaging 120 space in battery packaging 130 positive electrode lead body 140 negative electrode lead body 150 positive electrode 160 negative electrode 170 separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

非水系電溶媒及びリチウム塩を含有する非水系電解液であって、非水系溶媒はカーボネート溶媒を含み、 リチウム塩が、下記一般式(1): {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又は炭素数4以下のパーフルオロ基を表す}で表される含フッ素環状スルホニルイミド塩を含有し、かつ 下記一般式(2): H(CR2m-SO2NHM2 (2) {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、M2は、Li、Na、K、H又はNH4であり、そしてmは、1又は2である} で表される含フッ素スルホンアミド化合物を非水系電解液の全量に対して1000質量ppm以下含有する非水系電解液が提供される。

Description

含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液、非水系二次電池
 本発明は、帯電防止剤、有機電解質等のイオン電導材料や難燃剤として有用な含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液並びに非水系二次電池に関する。
 リチウムイオン電池をはじめとする非水系二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、各種携帯用電子機器電源として広範囲に用いられている。近年では、非水系電解液は、電動工具等のパワーツールに代表される産業用、及び電気自動車、電動式自転車における車載用としても広がりを見せており、更には住宅用蓄電システム等の電力貯蔵分野においても注目されている。
 リチウムイオン電池の非水系電解液としては、環状炭酸エステル等の高誘電性溶媒と、鎖状炭酸エステル等の低粘性溶媒との組み合わせが、一般的に例示される。また、負極表面にSEI(Solid Electrolyte Interface:固体電解質界面)を形成し、これにより非水系溶媒の還元分解を抑制するために、ビニレンカーボネート等の電極保護用添加剤を添加することが望ましい。
 近年、非水系電解液の材料として、含フッ素環状スルホニルイミド塩が注目を集めている。
 例えば、特許文献1では、含フッ素環状スルホニルイミド塩を用いることによって、電極の腐食がなく、高いイオン伝導度を保つ非水系電解液が報告されている。
 特許文献2では、含フッ素環状スルホニルイミド塩を含む非水系電解液と、コバルト使用量を減少した正極とを組み合わせた非水系二次電池が報告されている。
 N、N-ビス(トリフルオロメタンスルホニル)イミド、ビス(フルオロスルホニル)イミド等の含フッ素スルホニルイミド塩、及びその誘導体は、イオン電導材料や難燃剤として有用な化合物であることが知られている(例えば、以下の非特許文献1参照)。
 ところで、化合物(1A)を製造する方法としては、FSO2CF2COOHの電解カップリング反応により合成したFO2SCF2CF2SO2Fとアンモニアを反応させ、含フッ素環状スルホニルイミドアンモニウム塩を得た(環化反応の)後、アルカリ金属の水酸化物や炭酸塩と反応させて(カチオン交換反応)を経る方法が知られている(以下の特許文献3参照)。
国際公開第2010/110388号 特開2008-21517号公報 国際公開第2006/106960号 国際公開第2009/025246号
旭硝子研究報告 60巻(2010年)13-21頁
 特許文献3には、電解カップリング反応により合成したFO2SCF2CF2SO2Fを含む反応粗生成物は、蒸留等による後処理により精製してもよいと記載されているが、最終生成物である化合物(1A)中に含まれる特定の副生成物の含有量を低下させて耐熱特性(高温での低い質量減少率)を高めるための具体的な、後処理については記載されていないし、示唆もされていない。
 特許文献3に従い一般式(1A):
Figure JPOXMLDOC01-appb-C000007
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na、K又はNH4である。}で表される含フッ素環状スルホニルイミド塩(以下、本書中、化合物(1A)ともいう。)を製造した場合、下記一般式(2):
   H(CR2m-SO2NHM2   (2)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてM2は、Li、Na、K、H又はNH4である。}で表される含フッ素スルホンアミド化合物(以下、化合物(2)ともいう。)が、最終生成物に副生成物(不純物)として混入し、結果として化合物(1A)の所望の耐熱特性が得られない。
 なお、含フッ素環状スルホニルイミド塩の晶析に係る限られた既存技術として、例えば、特許文献4には、1,4-ジオキサンを貧溶媒とし、アセトニトリルを良溶媒とした混合溶媒でのリチウム塩の晶析精製の実施例が記載されている。
 また、特許文献1~3に記載の技術では、非水系二次電池部材の金属腐食の十分な抑制、または初回充放電効率及びサイクル性能に課題があった。
 上記事情に鑑み、本発明が解決しようとする課題は、耐熱性に優れ、金属腐食性を低減した含フッ素環状スルホニルイミド塩および非水系電解液を提供することである。
 本発明者は、前記課題を解決すべく鋭意検討し実験を重ねた結果、特定の不純物が低減された含フッ素環状スルホンイミドのアルカリ金属塩が耐熱特性に優れるとともに、金属腐食性を低減することを予想外に見出し、本発明を完成するに至ったものである。
 即ち、本発明は以下のとおりのものである。
<1>
 非水系電溶媒及びリチウム塩を含有する非水系電解液であって、
 前記非水系溶媒はカーボネート溶媒を含み、
 前記リチウム塩が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000008
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又は炭素数4以下のパーフルオロ基を表す}
で表される含フッ素環状スルホニルイミド塩を含有し、かつ
 下記一般式(2):
   H(CR2m-SO2NHM2   (2)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、M2は、Li、Na、K、H又はNH4であり、そしてmは、1又は2である}
で表される含フッ素スルホンアミド化合物を前記非水系電解液の全量に対して、1000質量ppm以下含有する、非水系電解液。
<2>
 前記一般式(1)で表される含フッ素環状スルホニルイミド塩が、下記式(1-1)~(1-5):
Figure JPOXMLDOC01-appb-C000009
のいずれか一つを含む、項目1に記載の非水系電解液。
<3>
 前記一般式(2)で表される含フッ素スルホンアミド化合物を、前記非水系電解液の全量に対して、0.1質量ppm以上含有する、項目1又は2に記載の非水系電解液。
<4>
 前記非水系溶媒が、アセトニトリルを、前記非水系溶媒の全量に対して、3体積%以上97体積%以下含有する、項目1~3のいずれか一項に記載の非水系電解液。
<5>
 前記アセトニトリルの含有量が、前記非水系溶媒の全量に対して、20体積%以上95体積%以下である、項目4に記載の非水系電解液。
<6>
 前記一般式(2)で表される含フッ素スルホンアミド化合物を、前記非水系電解液の全量に対して、1質量ppm以上200質量ppm以下含有する、項目1~5のいずれか一項に記載の非水系電解液。
<7>
 前記一般式(1)で表される含フッ素環状スルホニルイミド塩の含有量が、前記非水系溶媒1Lに対して、0.8モル以上1.5モル以下である、項目1~6のいずれか一項に記載の非水系電解液。
<8>
 前記一般式(2)で表される含フッ素スルホンアミド化合物を、前記非水系電解液の全量に対して、80質量ppm以上120質量ppm以下含有する、項目1~7のいずれか一項に記載の非水系電解液。
<9>
 前記リチウム塩が、前記一般式(1)で表される含フッ素環状スルホニルイミド塩と、LiPFとを含有し、
 前記非水系溶媒が、ビニレンカーボネート及び/またはフルオロエチレンカーボネートを含有し、
 前記一般式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、前記LiPFの含有量に対してモル比で2.5以上であり、かつ
 前記LiPFの含有量は、ビニレンカーボネート及びフルオロエチレンカーボネートの含有量に対してモル比で0.01以上4以下である、項目1~8のいずれか一項に記載の非水系電解液。
<10>
 前記一般式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、前記LiPFの含有量に対してモル比で10より大きい、項目1~9のいずれか一項に記載の非水系電解液。
<11>
 項目1~10のいずれか一項の非水系電解液を備えた、非水系二次電池。
<12>
 前記非水系二次電池は電池外装を備え、前記電池外装が、正極側の、前記非水系電解液との接液層の少なくとも一部にアルミニウムを含む、項目11に記載の非水系二次電池。
<13>
 下記一般式(3):
   MO2C-(CR2m-SO2F   (3)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、前記一般式(1)で表される含フッ素環状スルホニルイミド塩を製造し、
 前記一般式(1)で表される含フッ素環状スルホニルイミド塩と非水系溶媒とを混合する混合工程を含み、
 該電解カップリング反応工程後に下記一般式(5):
   H-(CR2m-SO2F   (5)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である}で表されるフルオロスルホニル基含有化合物を、該反応液中0.1質量%以下まで低下させる精製工程、を含むことを特徴とする項目1~10のいずれか一項に記載の非水系電解液の製造方法。
<14>
 下記一般式(3):
   MO2C-(CR2m-SO2F   (3)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、前記一般式(1)で表される含フッ素環状スルホニルイミド塩を製造し、
 前記カチオン交換工程後に得られる前記一般式(1)で表される含フッ素環状スルホニルイミド塩を、単座配位性の鎖状エーテル溶媒に、溶解させた後に晶析して、精製された含フッ素環状スルホニルイミド塩を得る晶析工程と、
 前記晶析工程で得られた前記一般式(1)で表される含フッ素環状スルホニルイミド塩と非水系溶媒とを混合する混合工程とを含む、項目1~10のいずれか一項に記載の非水系電解液の製造方法。
<15>
 下記一般式(1A):
Figure JPOXMLDOC01-appb-C000010
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na、K、又はNH4である}で表される含フッ素環状スルホニルイミド塩を含む含フッ素環状スルホニルイミド塩組成物であって、
 窒素気流下、100℃より10℃/分の昇温速度で加熱したときに、質量減少率が2質量%となる温度が385℃以上であることを特徴とする含フッ素環状スルホニルイミド塩組成物。
<16>
 下記一般式(2):
   H(CR2m-SO2NHM2   (2)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、M2は、Li、Na、K、H又はNH4であり、そしてmは、1又は2である}
で表される含フッ素スルホンアミド化合物を5000質量ppm以下含有する、項目15に記載の含フッ素環状スルホニルイミド塩組成物。
<17>
 前記一般式(1A)中、nが2である、項目16に記載の含フッ素環状スルホニルイミド塩組成物。
<18>
 前記一般式(1A)と(2)中、Rがフッ素原子である、項目16又は17に記載の含フッ素環状スルホニルイミド塩組成物。
<19>
 前記一般式(1A)中、M1がLiであり、かつ、前記一般式(2)中、M2がLiである、項目16~18のいずれか一項に記載の含フッ素環状スルホニルイミド塩組成物。
<20>
 前記含フッ素環状スルホニルイミド塩が、下記式:
Figure JPOXMLDOC01-appb-C000011
で表される、項目15~19のいずれか一項に記載の含フッ素環状スルホニルイミド塩組成物。
<21>
 下記一般式(3):
   MO2C-(CR2m-SO2F   (3)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、下記一般式(1A):
Figure JPOXMLDOC01-appb-C000012
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na又はKである}で表される含フッ素環状スルホニルイミド塩を製造する方法において、該電解カップリング反応工程後に下記一般式(5):
   H-(CR2m-SO2F   (5)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である}で表されるフルオロスルホニル基含有化合物を、該反応液中0.1質量%以下まで低下させる精製工程を特徴とする前記製造方法。
<22>
 下記一般式(3):
   MO2C-(CR2m-SO2F   (3)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、下記一般式(1A):
Figure JPOXMLDOC01-appb-C000013
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na又はKである}で表される含フッ素環状スルホニルイミド塩を製造する方法において、カチオン交換工程後に得られる含フッ素環状スルホニルイミド塩を、単座配位性の鎖状エーテル溶媒に、溶解させた後に晶析して、精製された含フッ素環状スルホニルイミド塩を得る晶析工程を含む、前記方法。
<23>
 前記晶析に用いる単座配位性の鎖状エーテル溶媒が、エチルエーテル、プロピルメチルエーテル、プロピルエチルエーテル、プロピルエーテル、イソプロピルメチルエーテル、イソプロピルエチルエーテル、イソプロピルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、イソブチルメチルエーテル、イソブチルエチルエーテル、sec-ブチルメチルエーテル、sec-ブチルエチルエーテル、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、ペンチルメチルエーテル、イソペンチルメチルエーテル、sec-ペンチルメチルエーテル、tert-ペンチルメチルエーテル、ネオペンチルメチルエーテル、及びシクロペンチルメチルエーテルからなる群から選ばれる少なくとも1種の溶媒である、項目22に記載の方法。
<24>
 前記一般式(1A)中のnが2である、項目22又は23に記載の方法。
<25>
 前記一般式(1A)中のRがFである、項目22~24のいずれか一項に記載の方法。
<26>
 前記一般式(1A)中のMがLiである、項目22~25のいずれか一項に記載の方法。
<27>
 前記電解カップリング反応工程において、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水の質量(α)とニトリル基含有溶媒の質量(β)の比率(β/α)が0.80以下である水とニトリル基含有溶媒との混合溶媒の存在下、電解カップリング反応させる、項目21~26のいずれか一項に記載の方法。
<28>
 前記水の質量(α)とニトリル基含有溶媒の質量(β)の比率(β/α)が0.75以下である、項目27に記載の方法。
<29>
 前記電解カップリング反応工程において、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水とニトリル基含有溶媒との混合溶媒の存在下、反応容器中で、電解カップリング反応させ、
 反応中、前記反応容器底部から反応液の液面までの高さ(距離)TLと前記反応容器底部から電極上部(最高位)までの高さ(距離)TEとが、TL>TEの関係を満たし、かつ、反応後には、前記反応容器底部から、有機相と水相の間の界面までの高さ(距離)TSと、前記反応容器底部から電極下部(最低位)までの高さ(距離)TE’とが、TE’>TSの関係を満たす、項目21~28のいずれか一項に記載の方法。
<30>
 前記TE’と前記TSの関係が、TE’×0.6>TSの関係である、項目29に記載の方法。
<31>
 前記電解カップリング反応における反応液中のアルカリ金属の含有量が2000質量ppm以下である、項目27~30のいずれか一項に記載の方法。
<32>
 前記電解カップリング反応工程において、上記一般式(5)で表される化合物の生成モル比が、下記一般式(4):
   FO2S-(CR2m-SO2F   (4)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である}で表されるビス(フルオロスルホニル)化合物(4)の生成量1モルに対し、0.01以下とする、項目27~31のいずれか一項に記載の方法。
<33>
 前記電解カップリング反応工程において、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水とニトリル基含有溶媒との混合溶媒存在下、電解カップリング反応させ、該フルオロスルホニル基含有カルボン酸化合物の質量(γ)と、該混合溶媒の質量(δ)の比率(δ/γ)が1.5以下であることを特徴とする、項目27~32のいずれか一項に記載の方法。
<34>
 前記電解カップリング反応において、陽極と陰極との極板間隔が0.001mm~9.9mmである、項目27~33のいずれか一項に記載の方法。
<35>
 前記電解カップリング反応において、前記化合物(4)の収率を、70%以上とする、項目33又は34に記載の方法。
<36>
 前記ニトリル基含有溶媒が、アセトニトリル、プロピオニトリル、ブチロニトリル、及びベンゾニトリルからなる群より選ばれる少なくとも1種である、項目27~35のいずれか一項に記載の方法。
<37>
 前記ニトリル基含有溶媒がアセトニトリルである、項目36に記載の方法。
<38>
 前記電解カップリング反応が、-35℃以上10℃以下の範囲の反応温度で行われる、項目27~37のいずれか一項に記載の方法。
 本発明に係る含フッ素環状スルホニルイミド塩は、耐熱性が高く、広い温度領域で使用可能であり、金属腐食性が低い。また、本発明によれば、金属腐食性が低く、優れた初回充放電効率とサイクル性能を備えた非水系電解液を提供することができる。
本実施形態の非水系二次電池の一例を概略的に示す平面図である。 図1の非水系二次電池のA-A線断面図である。 実施例II-1に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極アルミニウム(Al)集電体の表面走査型電子顕微鏡(SEM)写真(倍率40倍)である。 実施例II-1に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真(倍率1000倍)である。 比較例II-1に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真(倍率40倍)である。 比較例II-1に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真(倍率1000倍)である。 比較例II-3に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真(倍率40倍)である。 比較例II-3に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真(倍率1000倍)である。 比較例II-3に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真(倍率10000倍)である。 反応容器における反応液、電極等の配置例を示す図面である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。本発明は、以下の実施形態に限定されず、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書において「~」を用いて記載される数値範囲は、その前後に記載される数値を含む。
 本発明の一実施形態は、下記一般式(1A):
Figure JPOXMLDOC01-appb-C000014
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na、K又はNH4である}で表される含フッ素環状スルホニルイミド塩を含む組成物であって、窒素気流下、100℃より10℃/分の昇温速度で加熱したときに、質量減少率が2質量%となる温度が385℃以上であることを特徴とする含フッ素環状スルホニルイミド塩組成物である。
 以下、化合物(1A)について詳細に説明する。
<含フッ素環状スルホニルイミド塩(化合物(1A))を含む組成物>
 一般式(1A)中、nは、入手又は製造が容易であり、経済性に優れる観点から1~4の整数であり、同様の観点から、1~3の整数であることが好ましく、1又は2であることがより好ましく、2であることが最も好ましい。
 Rはそれぞれ同一であっても異なっていてもよく、入手又は製造が容易であり、経済性に優れる観点から、フッ素原子又はトリフルオロメチル基であり、フッ素原子が最も好ましい。
 M1は、入手又は製造が容易であり、経済性に優れる観点から、Li、Na、K又はNH4(すなわち、アルカリ金属イオン、アンモニウムイオン)であり、Li又はNaが好ましく、Liが最も好ましい。
 化合物(1A)の具体例としては、以下の構造式:
Figure JPOXMLDOC01-appb-C000015
又は
Figure JPOXMLDOC01-appb-C000016
で表される化合物が挙げられる。
 これらの中でも、以下の構造式:
Figure JPOXMLDOC01-appb-C000017
で表される化合物が好ましい。
 化合物(1A)を含む組成物は窒素気流下、100℃より10℃/分の昇温速度で加熱したときに、2%質量減少温度が385℃以上であるのが好ましく、同様の観点から390℃以上であるのがより好ましく、395℃以上であるのが最も好ましい。当該2%質量減少温度は、その上限値は特に限定されないが、1000℃以下であってもよく、500℃以下であってもよい。ここで、2%質量減少温度とは、上記条件下で熱重量分析を行ったときに、初期の質量に対する質量減少率が2%となる温度である。すなわち、2%質量減少温度が高くなるほど分解物を生じ難く、耐熱特性が高いことを示す。
 上記2%質量減少温度の測定は、25℃より10℃/分の昇温速度で加熱して100℃で30分間保持して水分等の揮発性成分を蒸発させた後に、100℃より10℃/分の昇温速度で加熱して2%質量減少温度を測定する。100℃からの昇温開始時の質量を基準として、2%質量減少する温度を求める。
 上記2%質量減少温度の測定に使用可能な装置としては、示差熱熱重量同時測定装置(例えば、株式会社島津製作所製の「DTG-60A」)等が挙げられる。
 尚、測定試料が水分や残留溶媒を含んでいる場合には、正確な測定結果が得られ難い。したがって、上記測定に用いる化合物(1A)の組成物は水分と残留溶媒の合計含有率が2000質量ppm以下であることが好ましく、同様の観点から、1500質量ppm以下であることがより好ましく、1000質量ppm以下であることがさらに好ましく、600質量ppm以下であることが最も好ましい。上記の水分量は、カールフィッシャー水分計、ガスクロマトグラフィー、液体クロマトグラフィー等の分析機器により測定することができる。
 2%質量減少温度が所望の範囲の含フッ素環状スルホニルイミド塩組成物は、例えば、後述するように電解カップリング反応工程において得られる反応液を蒸留精製して化合物(5)を除去することや、化合物(1A)を晶析により精製することで得られる。また、この組成物は、前記蒸留精製と晶析を両方行うことで得られる。さらに、前記組成物は、蒸留や晶析を行った後に、化合物(2)を添加することで得られる。
 本実施形態の含フッ素環状スルホニルイミド塩組成物中の化合物(1A)の含有量(純度)は、98.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましく、99.5質量%以上であることがさらに好ましい。
 本実施形態の含フッ素環状スルホニルイミド塩(1A)を含む組成物は、下記一般式(2):
   H(CR2m-SO2NHM2   (2)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、M2は、Li、Na、K、H又はNH4である。}で表される含フッ素スルホンアミド化合物の含有量が10000質量ppm(1質量%)以下であることが好ましい。化合物(2)の含有量が上記範囲内にあると、化合物(1A)を含む組成物の耐熱特性がより高まるとともに、金属腐食性が低減され、正極Al集電体の腐食による充放電時の不可逆容量の増加及びサイクル性能の低下を抑制できる。同様の観点から、化合物(2)の含有量は、含フッ素環状スルホニルイミド塩(1A)の全量に対して、5000質量ppm以下であることがより好ましく、1000質量ppm以下であることが最も好ましい。化合物(2)の含有量は、その下限値は特に限定されないが、含フッ素環状スルホニルイミド塩(1A)の全量に対して、0質量ppm以上であってもよく、0.001質量ppm以上であってもよく、10質量ppm以上であってもよく、100質量ppm以上であってもよい。
 化合物(2)の含有量は、19F-NMRのピーク値の積分値から算出する。化合物(2)の含有量は、内部標準法(内部標準物質;ベンゾトリフルオリド)にて測定する。化合物(2)の含有量は、下式により算出する。
 化合物(2)の含有量(質量%)=(Im×Ci×Cmw)/(Ii×Ia)×100
(式中、
Im=内部標準物質モル数=ベンゾトリフルオリドの測定サンプル内の質量/ベンゾトリフルオリドの分子量
Ii=内部標準物質の1Fあたりの積分値=ベンゾトリフルオリドの積分値/ベンゾトリフルオリドのフッ素原子数
Ci=化合物(2)の1Fあたりの積分値=化合物(2)の積分値/化合物(2)のフッ素原子数
Cmw=化合物(2)の分子量
Ia=測定サンプル内の含フッ素環状スルホニルイミド塩を含む組成物の総質量)
 例えば、非水系電解液中の化合物(2)の含有量が10質量ppm以下であり、上記の内部標準法での検出が困難な場合は、100mLの非水系電解液を溶媒留去して得られた固体サンプルを0.5mLの溶媒に再溶解したサンプルに関して、上記の内部標準法を用いて化合物(2)の含有量を仮に算出し、その値を200倍することで、元の非水系電解液中の化合物(2)の含有量を算出できる。または、非水系電解液の原料に用いられた化合物(1A)中の化合物(2)の含有量を上記の内部標準法を用いて算出し、化合物(1A)を非水系電解液中の化合物(1A)の濃度に希釈した際の希釈倍率で除することで算出できる。
 化合物(2)の構造式の同定は、質量分析法、核磁気共鳴法、赤外分光法、元素分析、イオンクロマトグラフィ―法、ICP発光分光分析法を含む一般的な分析手法のうち一つまたは組合せによって可能である。
 化合物(2)の含有量が所望の範囲の含フッ素環状スルホニルイミド塩は、例えば、後述するように電解カップリング反応工程において得られる反応液を蒸留精製して化合物(5)を除去することで得られる、または、化合物(1A)を晶析により精製することで得られる。化合物(2)を低減する効果が高い晶析精製が好ましく、金属腐食性がより低減される。
 また、化合物(2)の含有量が所望の範囲の含フッ素環状スルホニルイミド塩組成物および非水系電解液は、化合物(2)を含フッ素環状スルホニルイミド塩組成物および非水系電解液に後添加することでも得られる。
 一般式(2)中、Rの定義は、一般式(1A)におけるRと同義である。Rはフッ素原子であることが最も好ましい。mは、1であることが最も好ましい。M2は、Li、Na、K又はNH4(すなわち、アルカリ金属イオン、アンモニウムイオン)であり、Li又はNaが好ましく、Liが最も好ましい。
 化合物(2)の具体例としては、下記の構造式で表される化合物が挙げられる。これらの中でも、HCF2SO2NHLi(化合物(2-1))、HF2CSO2NHNH4(化合物(2-2))が好ましく、HCF2SO2NHLi(化合物(2-1))が最も好ましい。
Figure JPOXMLDOC01-appb-C000018
<含フッ素環状スルホニルイミド塩(化合物(1A))の製造方法>
 前記したように、化合物(1A)を製造する方法として、従来公知の方法、例えば、特許文献3に記載の方法を採用することができる。以下に、Rがフッ素原子、nが2である場合を例にとり、化合物(1A)の反応スキームを示す。かかる方法は、以下の反応スキームの上段に示すように、下記一般式(3):
   HO2C-(CR2m-SO2F   (3)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である。}で表されるフルオロスルホニル基含有カルボン酸化合物(以下、化合物(3)ともいう。)から出発して、電解カップリング反応工程により化合物(4)を得て、次いで、環化工程により化合物(1-N)を得て、最後にカチオン交換工程を経て、化合物(1A)を製造する方法である。化合物(1A)においてM=NHである場合は、カチオン交換工程を省略できる。
Figure JPOXMLDOC01-appb-C000019
 しかしながら、従来技術の方法によっては、化合物(2)の含有量が低減され、所望の耐熱性を有する化合物(1A)は得られない。反応スキーム下段に示すように、電解カップリング反応工程において、副生成物として生じる化合物(5)が、環化工程により化合物(2-N)を生じ、次いでカチオン交換工程における反応を経て、化合物(2)が生成する。
 本願発明者らは、鋭意検討し実験を重ねた結果、最終生成物である化合物(1A)組成物の耐熱特性を高め、金属腐食性を低減するためには、前記したように、化合物(1A)組成物中の化合物(2)の含有量を所定値以下にすればよいことを見出した。
 さらに、そうするためには、上記反応スキームの下段に示すように、電解カップリング反応工程において、副生成物として生じるフルオロスルホニル基含有化合物(化合物(5))を、該工程で得られる反応液中0.1質量%以下まで低下させればよいことを見出し、本発明を完成する至ったもののである。
 すなわち、本発明の他の実施形態は、下記一般式(3):
   HO2C-(CR2m-SO2F   (3)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である。}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、下記一般式(1A):
Figure JPOXMLDOC01-appb-C000020
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na又はKである。}で表される含フッ素環状スルホニルイミド塩を製造する方法において、該電解カップリング反応工程後に下記一般式(5):
   H-(CR2m-SO2F   (5)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である。}で表されるフルオロスルホニル基含有化合物を、該反応液中0.1質量%以下まで低下させる精製工程を特徴とする前記製造方法である。なお、化合物(5)は、該電解カップリング反応工程において得られる反応液を精製して得られる、下記一般式(4):
   FO2S-(CR2m-SO2F   (4)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である。}で表されるビス(フルオロスルホニル)化合物の副生成物である。
 さらに、化合物(1A)組成物中の化合物(2)の含有量を所定値以下にするには、カチオン交換工程後に得られる含フッ素環状スルホニルイミド塩(1A)を、単座配位性の鎖状エーテル溶媒に、溶解させた後に晶析して、精製すればよいことを見出し、本発明を完成するに至ったものである。
 すなわち、本発明の他の実施形態は、
 前記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、前記一般式(1A)で表される含フッ素環状スルホニルイミド塩を製造する方法において、カチオン交換工程後に得られる含フッ素環状スルホニルイミド塩を、単座配位性の鎖状エーテル溶媒に、溶解させた後に晶析して、精製された含フッ素環状スルホニルイミド塩を得る晶析工程を含む、ものである。
 以下、かかる製造方法を詳細に説明する。
<電解カップリング反応工程>
 化合物(3)を電解カップリング反応させることにより、ビス(フルオロスルホニル)化合物(化合物(4))を製造することができる。化合物(3)は市販のものを使用しても、公知の方法、例えば、テトラフルオロエチレンにSO3を付加して、サルトンを得、NEt3の存在下でサルトン開環物を得、これを加水分解して、サルトン加水分解物として化合物(3)を得る方法を使用してもよい。
 一般式(3)中、Rの定義は、一般式(1A)におけるRと同義である。Rはフッ素原子であることが最も好ましい。mは、1であることが最も好ましい。
 化合物(3)の具体例としては、下記の構造式で表される化合物が挙げられる。これらの中でも、FO2SCF2CO2H(2,2-ジフルオロ-2-(フルオロスルホニル)酢酸、化合物(3-1))が好ましい。
Figure JPOXMLDOC01-appb-C000021
 電解カップリング反応工程の反応温度は、一般的に用いられる範囲であれば特に限定されないが、-50℃以上70℃以下であることが好ましい。反応温度が-50℃以上であると、電気抵抗が低下し発熱が抑制できるため、温度制御が容易となるので好ましい。同様の観点から、反応温度は-40℃以上であることがより好ましく、-35℃以上であることがより好ましく、-30℃以上であることが最も好ましい。反応温度が70℃以下であると、化合物(3)、及び化合物(4)の分解が抑制でき、化合物(4)の収率がより高まる傾向にあるので好ましい。同様の観点から、反応温度は50℃以下であることがより好ましく、40℃以下であることがより好ましく、10℃以下であることが最も好ましい。
 電解カップリング反応工程においては、溶媒を用いてもよい。
 上記溶媒としては、一般的に使用されるものであれば特に限定されないが、具体例としては、ベンゼン、トルエン、クロロベンゼン、及び1,2-ジクロロベンゼン等の芳香族系溶媒、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテル、及びアニソール等のエーテル基含有溶媒、アセトニトリル、プロピオニトリル、ブチロニトリル、及びベンゾニトリル等のニトリル基含有溶媒、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、及び2-ブタノール等の水酸基含有溶媒、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート等の炭酸エステル基含有溶媒等が挙げられる。中でも、化合物(4)の収率が高まる傾向にあることから、アセトニトリル、プロピオニトリル、ブチロニトリル、及びベンゾニトリル等のニトリル溶媒、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、及び2-ブタノール等の水酸基含有溶媒、及びジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート等の炭酸エステル基含有溶媒が好ましい。
 これらの溶媒は単独で用いてもよいし、複数種を組み合わせてもよく、化合物(4)の収率がより高まる傾向にあることから、水とニトリル基含有溶媒との混合溶媒、又は水と炭酸エステル基含有溶媒との混合溶媒が好ましく、水とニトリル基含有溶媒との混合溶媒がより好ましく、水とアセトニトリルとの混合溶媒が最も好ましい。溶媒中のアセトニトリルの量は、0.5~90質量%が好ましい。
 本実施形態においては、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水の質量(α)とニトリル基含有溶媒の質量(β)の比率(β/α)が0.80以下である水とニトリル基含有溶媒との混合溶媒の存在下、電解カップリング反応させ、上記一般式(4)で表されるビス(フルオロスルホニル)化合物を製造することが好ましい。β/αが0.80以下であると、化合物(5)の生成が抑制できる。同様の観点から、β/αは0.75以下であることがより好ましく、0.5以下であることがさらに好ましく、0.2以下であることがよりさらに好ましく、0.1以下であることがよりさらに好ましい。β/αは、その下限値は特に限定されないが、0.01以上であってもよく、0.03以上であってもよく、0.05以上であってもよく、0.18以上であってもよい。
 特許文献3には、FO2SCF2CO2Hを出発原料とし、電解カップリング反応により1工程でビス(フルオロスルホニル)化合物(FO2SCF2CF2SO2F)を製造する方法が開示されている。しかしながら、特許文献3に従いビス(フルオロスルホニル)化合物を製造した場合、一般式(5)で表されるフルオロスルホニル基含有化合物が副生成物として混入する。上述したように、ビス(フルオロスルホニル)化合物は、触媒や、電解質として利用されるが、これらの分野においては微量に混入する不純物により触媒活性や電気伝導度等の性能が大きく低下することがある。したがって、特許文献3に従いビス(フルオロスルホニル)化合物を製造した場合には、蒸留等の精製操作によりフルオロスルホニル基含有化合物を分離除去する必要がありフルオロスルホニル基含有化合物の含有量が少ないビス(フルオロスルホニル)化合物を製造する方法が求められてきた。
 我々は、水の質量(α)と、ニトリル基含有溶媒の質量との比率(β/α)を特定の数値以下にすることで、副生成物としてのフルオロスルホニル基含有化合物(化合物(5))の含有量が少ない化合物(4)が得られることを予想外に見出し、本発明をなすに至ったものである。
 本実施形態においては、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水とニトリル基含有溶媒との混合溶媒の存在下、反応容器中で、電解カップリング反応させ、上記一般式(4)で表されるビス(フルオロスルホニル)化合物を製造する方法であって、反応中、前記反応容器底部から反応液の液面までの高さ(距離)TLと前記反応容器底部から電極上部(最高位)までの高さ(距離)TEとが、TL>TEの関係を満たし、かつ、反応後には、前記反応容器底部から、有機相と水相の間の界面までの高さ(距離)TSと、前記反応容器底部から電極下部(最低位)までの高さ(距離)TE’とが、TE’>TSの関係を満たす、前記ビス(フルオロスルホニル)化合物(化合物(4))の製造方法であることが好ましい。
 図10に示すように、本実施形態では、反応中、反応容器底部から反応液の液面までの高さ(距離)TLと反応容器底部から電極上部(最高位)までの高さ(距離)が、TL>TEの関係を満たし、反応後には、反応容器底部から、有機相と水相の間の界面までの高さ(距離)TSと、反応容器底部から電極下部(最低位)までの高さ(距離)TE’とが、TE’>TSの関係を満たすことが好ましい。TLとTE、及び、TE’とTSが、それぞれ、上記関係を満たすことで、電解カップリング反応時の電圧の急激な上昇が抑制され、より安全性の高い製造方法となる傾向にある。
 同様の観点から、TE’とTSの関係は、TE’×0.8>TSの関係を満たすことがより好ましく、TE’×0.6>TSをさらに満たすことが最も好ましい。
 特許文献3には、FO2SCF2CO2Hを出発原料とし、電解カップリング反応により1工程でビス(フルオロスルホニル)化合物(FO2SCF2CF2SO2F)を製造する方法が開示されている。しかしながら、特許文献3に従いビス(フルオロスルホニル)化合物を製造した場合、電解カップリング反応中に電圧が急激に上昇するといったハンチングが観測され、電解カップリング反応の安定性の向上が求められる。
 我々は、反応中、前記反応容器底部から反応液の液面までの高さ(距離)TLと前記反応容器底部から電極上部(最高位)までの高さ(距離)TEとが、TL>TEの関係を満たし、かつ、反応後には、前記反応容器底部から、有機相と水相の間の界面までの高さ(距離)TSと、前記反応容器底部から電極下部(最低位)までの高さ(距離)TE’とが、TE’>TSの関係を満たすことで、ハンチングの発生を抑制し、反応器の運転安定性に優れることを見出し、本発明をなすに至ったものである。
 本実施形態においては、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水とニトリル基含有溶媒との混合溶媒存在下、電解カップリング反応させる前記電解カップリング反応工程において、化合物(3)の質量(γ)と、混合溶媒の質量(δ)との比率(δ/γ)は、1.5以下であることが好ましい。δ/γが1.5以下であると、化合物(2)の収率がより高まる傾向にあるため好ましい。同様の観点から、δ/γは1.35以下であることが好ましく、1.00以下であることが最も好ましい。δ/γは、その下限値は特に限定されないが、0.01以上であってもよく、0.05以上であってもよく、0.1以上であってもよい。
 電解カップリング反応工程に用いる電極は、一般的に用いられる電極であれば特に限定されないが、溶媒の分解を抑制する観点から、白金電極であることが好ましい。
 本実施形態においては、電解カップリング反応において、陽極と陰極との極板間隔は、0.001mm~9.9mmであることが好ましい。極板間隔が0.001mm以上であると、極板間に電解液が流れやすくなり、化合物(4)の収率がより高まる傾向にあるため好ましい。極板間隔が9.9mm以下であると、電圧が低減され、副反応が抑制されることにより化合物(4)の収率がより高まる傾向にあるため好ましい。同様の観点から、陽極と陰極の極板間隔は、0.01mm~5mmであることが好ましく、0.1mm~2.9mmであることが最も好ましい。
 特許文献3には、FO2SCF2CO2Hを出発原料とし、電解カップリング反応により1工程でビス(フルオロスルホニル)化合物(FO2SCF2CF2SO2F)を製造する方法が開示されている。しかしながら、特許文献3には、電解カップリング反応時の原料と溶媒の混合比や、陽極と陰極との電極間隔に関する具体的な記載はない。実際に、FO2SCF2CO2Hを出発原料として通電しても、原料と溶媒の混合比率によってビス(フルオロスルホニル)化合物の収率に大きな変動があり、また、陽極と陰極との電極間隔によっては目的物であるビス(フルオロスルホニル)化合物が全く得られない場合がある。
 我々は、該フルオロスルホニル基含有カルボン酸化合物の質量(γ)と、該混合溶媒の質量(δ)の比率(δ/γ)を特定の数値以下にし、陽極と陰極との電極間隔一定の範囲に設定する組合せによって、ビス(フルオロスルホニル)化合物が高い収率で安定して得られることを予想外に見出し、本発明をなすに至ったものである。
 本実施形態においては、電解カップリング反応にける反応液中のアルカリ金属の含有量が2000質量ppm以下であることが好ましい。アルカリ金属の含有量が当該範囲であることで、化合物(3)の分解が抑制され、化合物(4)の収率がより高まる傾向にある。反応液中のアルカリ金属の含有量は、より好ましくは1000質量ppm以下であり、さらに好ましくは500質量ppm以下である。
 電解カップリング反応工程において、化合物(3)の電解カップリング反応後、化合物(3)、化合物(4)、及び溶媒を含む反応生成物から、各々を分離する方法としては、一般的に用いられる分離除去方法であれば特に限定されず用いることができる。例えば、蒸留による揮発成分の分離除去、分液操作による液体成分の分離、濾過による不溶固体の分離除去等が挙げられる。
 これらの方法は、単独で用いてもよいし、複数種の方法を組み合わせて用いてもよい。
 電解カップリング反応工程において、目的物である化合物(4)とともに、副生成物としてH-(CR2m-SO2F{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である。}(化合物(5))が生成することがある。化合物(5)は、電解カップリング反応工程に引き続く環化工程、カチオン交換工程を経て、化合物(2)へと変化し、化合物(1A)の耐熱特性の低下の原因となる。さらに、化合物(1A)、及び化合物(2)はともに固体であり、化合物(1A)、及び化合物(2)の混合物から、化合物(2)を分離除去することは困難である。したがって、化合物(1A)の耐熱特性低下の原因となる化合物(5)は、電解カップリング反応工程後において、該工程で得られる反応液中0.1質量%以下まで低下させることが好ましい。
 化合物(3)の電解カップリング反応時、一般式(5)で表される化合物が副生する詳細な理由は明らかではないが、以下の反応スキームに示すように、化合物(3)のカルボキシル基と、溶媒のニトリル基とが相互作用することで化合物(3)の脱炭酸反応が促進され、その後、溶媒の水と反応することにより化合物(5)が生成すると考えられる。
Figure JPOXMLDOC01-appb-C000022
 化合物(4)、及び化合物(5)との混合物から、各々を分離する方法としては、一般的に用いられる分離除去であれば特に限定されず用いることができる。例えば、蒸留による分離方法が挙げられる。
 一般式(5)中、Rの定義は、一般式(1A)におけるRと同義である。Rはフッ素原子であることが最も好ましい。mは、1であることが最も好ましい。
 化合物(5)の具体例としては、下記の構造式で表される化合物が挙げられる。これらの中でも、HCFSOF(1,1-ジフルオロメタンスルホニルフルオリド、化合物(5-1))が好ましい。
Figure JPOXMLDOC01-appb-C000023
 電解カップリング時の電流密度は、0.001A/cm2~2.0A/cm2であることが好ましい。電流密度が上記範囲内であると、副反応が抑制され、化合物(4)の収率がより高まる傾向にあるため好ましい。同様の観点から、電流密度は、0.005A/cm2~1.5A/cm2であることがより好ましく、0.01A/cm2~1.0A/cm2であることが最も好ましい。
 本実施形態において使用される電解槽は有機電解反応において通常用いられるものであり、バッチ式であっても、化合物(3)等を連続的に供給しながら行う連続式であってもよい。
 電解カップリング反応工程の反応時間は、通常用いられる範囲であれば特に限定されないが、0.5~100時間が好ましく、1~50時間がより好ましい。
 電解カップリング反応工程の圧力は、反応を行う温度によるが、通常用いられる範囲であれば特に限定されないが、10kPa~5000kPaが好ましい。
 反応雰囲気は、通常用いられる雰囲気であれば特に限定されないが、通常は大気雰囲気、窒素雰囲気、及びアルゴン雰囲気等が用いられる。これらの中でも、より安全に化合物(4)を製造できる傾向にあることから、窒素雰囲気、及びアルゴン雰囲気が好ましい。また、より経済性に優れる製造方法となる傾向にあることから、窒素雰囲気がさらに好ましい。
 反応雰囲気は、単独で用いてもよいし、複数種の反応雰囲気を組み合わせて用いてもよい。
 電解カップリング反応時、支持電解質を添加してもよい。支持電解質としては、通常用いられる支持電解質であれば特に限定されないが、具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の金属水酸化物、硫酸ナトリウム、硫酸カリウム等の硫酸塩、硝酸、硫酸、塩酸等の酸性化合物、過塩素酸ナトリウム、過塩素酸アンモニウム等の過塩素酸塩、テトラメチルアンモニウムブロミド、パラトルエンスルホン酸テトラブチルアンモニウム等の4級アンモニウム塩等が挙げられる。
 本実施形態の製造方法は、電解カップリング反応において、化合物(5)の生成モル比が、化合物(4)の生成量1モルに対し、0.01以下とすることが好ましい。化合物(5)の生成モル比は、0.008以下とすることがより好ましく、0.005以下とすることが更に好ましく、0.003以下とすることがよりさらに好ましい。上述のように電解カップリング反応を所定のβ/αの範囲で行うことなどにより、当該生成モル比とすることができる。当該生成比は、電解カップリング後の反応液を19F-NMRで測定することにより求められる。具体的な条件は実施例に記載する。
 電解カップリング反応工程における化合物(4)の収率は、60%以上が好ましく、70%以上がより好ましく、80%以上が更に好ましく、90%以上が特に好ましい。上述の化合物(4)の収率で電解カップリング反応工程を行うことで、化合物(4)の製造コストを低減できるとともに、単位時間当たりの製造量を向上できる。
<環化工程>
 化合物(4)と、アンモニアを反応させることにより、下記一般式(1-N):
Figure JPOXMLDOC01-appb-C000024
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数である}で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N))を製造することができる。
 一般式(4)中、Rの定義は、一般式(1A)におけるRと同義である。Rはフッ素原子であることが最も好ましい。mは、1であることが最も好ましい。
 化合物(4)の具体例としては、下記の構造式で表される化合物が挙げられる。これらの中でも、FO2SCF2CF2SO2F(1,1,2,2-テトラフルオロー1,2-エタンジスルホニルジフルオリド、化合物(4-1))が好ましい。
Figure JPOXMLDOC01-appb-C000025
 化合物(4)の物質量(λ)と、アンモニアの物質量(μ)とのモル比率(μ/λ)は、一般的に用いられる範囲であれば特に限定されないが、2~50であることが好ましい。μ/λが2以上であると、化合物(1-N)の収率がより高まる傾向にあるため好ましい。δ/γが50以下であると、廃棄物が低減でき、経済性により優れる製法となる傾向にあるため好ましい。同様の観点から、μ/λは5~40であることがより好ましく、10~30であることが最も好ましい。
 環化工程においては、溶媒を使用してもよい。
 上記溶媒としては、反応時に不活性であり、一般的に使用されるものであれば特に限定されないが、具体例としては、ベンゼン、トルエン、クロロベンゼン、及び1,2-ジクロロベンゼン等の芳香族系溶媒、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテル、及びアニソール等のエーテル基含有溶媒、アセトニトリル、プロピオニトリル、及びベンゾニトリル等のニトリル基含有溶媒、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、及び2-ブタノール等の水酸基含有溶媒等が挙げられる。中でも、化合物(1-N)の収率が高まる傾向にあることから、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテル、及びアニソール等のエーテル基含有溶媒がより好ましい。同様の観点から、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、及び4-メチルテトラヒドロピランがより好ましく、1,2-ジメトキシエタン、テトラヒドロフラン、及び4-メチルテトラヒドロピランがさらに好ましい。
 これらの有機溶媒は単独で用いてもよいし、複数種の溶媒を組み合わせて用いてもよい。
 化合物(4)の質量(ε)と、溶媒の質量(ζ)との比率(ζ/ε)は、一般的に用いられる範囲であれば特に限定されないが、0.01~100であることが好ましい。ζ/εが上記範囲内であると、化合物(1-N)の収率がより高まる傾向にある。同様の観点から、ζ/εは0.05~50であることがより好ましく、0.1~10であることがさらに好ましい。
 環化工程の反応温度は、一般的に用いられる範囲であれば特に限定されないが、-90℃~20℃であることが好ましい。反応温度が-90℃以上であると、化合物(4)の反応性が高まり、化合物(1-N)の収率がより高まる傾向にあるので好ましい。反応温度が20℃以下であると、副生成物が抑制でき、化合物(1-N)の収率がより高まる傾向にあるので好ましい。同様の観点から、反応温度は-80℃~10℃であることがより好ましく、-80℃~0℃であることが最も好ましい。
 環化工程の反応時間は、通常用いられる範囲であれば特に限定されないが、1~100時間が好ましく、5~50時間がより好ましい。
 環化工程の圧力は、反応を行う温度によるが、通常用いられる範囲であれば特に限定されないが、10kPa~5000kPaが好ましい。
 反応雰囲気は、通常用いられる雰囲気であれば特に限定されないが、通常は大気雰囲気、窒素雰囲気、及びアルゴン雰囲気等が用いられる。これらの中でも、より安全に化合物(1-N)を製造できる傾向にあることから、窒素雰囲気、及びアルゴン雰囲気が好ましい。また、より経済性に優れる製造方法となる傾向にあることから、窒素雰囲気がさらに好ましい。
 反応雰囲気は、単独で用いてもよいし、複数種の反応雰囲気を組み合わせて用いてもよい。
 環化工程において、化合物(4)とアンモニアとの反応後、化合物(1-N)、及び溶媒とを含む反応生成物から、各々を分離する方法としては、一般的に用いられる分離除去方法であれば特に限定されず用いることができる。例えば、蒸留による揮発成分の分離除去、分液操作による液体成分の分離、濾過による不溶固体の分離除去等が挙げられる。
 これらの方法は、単独で用いてもよいし、複数種の方法を組み合わせて用いてもよい。
<カチオン交換工程>
 化合物(1-N)と、下記一般式(6):
 M1 pX   (6)
(式中、M1は、Li、Na又はKであり、Xは、OH又はCO3であり、そしてpは、XがOHの場合、1であり、XがCO3の場合、2である。}で表されるアルカリ金属塩(以下、化合物(6)ともいう。)とを、反応させることにより、化合物(1A)を製造することができる。
 下記一般式(1-N)中、Rの定義は、一般式(1A)におけるRと同義である。Rはフッ素原子であることが最も好ましい。nは、1または2であることが好ましく、2であることが最も好ましい。mは、1であることが最も好ましい。式(1―N)におけるnは、1~4の整数である。
 化合物(1-N)の具体例としては、下記一般式(1-N-1)~(1-N-5):
Figure JPOXMLDOC01-appb-C000026
で表されるアンモニウム塩が挙げられる。これらの中でも、(1-N-2)で表されるアンモニウム塩が好ましい。
Figure JPOXMLDOC01-appb-C000027
 化合物(1-N)の物質量(η)と、化合物(6)の物質量(θ)とのモル比率(θ/η)は、一般的に用いられる範囲であれば特に限定されないが、0.2~10であることが好ましい。θ/ηが0.2以上であると、化合物(1A)の収率がより高まる傾向にあるため好ましい。θ/ηが10以下であると、廃棄物が低減でき、経済性により優れる製法となる傾向にあるため好ましい。同様の観点から、θ/ηは0.5~5であることがより好ましく、0.8~3であることが最も好ましい。
 カチオン交換工程において、溶媒を使用してもよい。
 上記溶媒としては、反応時に不活性であり、一般的に使用されるものであれば特に限定されないが、具体例としては、ベンゼン、トルエン、クロロベンゼン、及び1,2-ジクロロベンゼン等の芳香族系溶媒、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテル、及びアニソール等のエーテル基含有溶媒、アセトニトリル、プロピオニトリル、及びベンゾニトリル等のニトリル基含有溶媒、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、及び2-ブタノール等の水酸基含有溶媒等が挙げられる。中でも、化合物(1A)の収率が高まる傾向にあることから、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、4-メチルテトラヒドロピラン、シクロペンチルメチルエーテル、及びアニソール等のエーテル基含有溶媒がより好ましい。同様の観点から、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、及び4-メチルテトラヒドロピランがより好ましく、1,2-ジメトキシエタン、テトラヒドロフラン、及び4-メチルテトラヒドロピランがさらに好ましい。
 これらの有機溶媒は単独で用いてもよいし、複数種の溶媒を組み合わせて用いてもよい。
 化合物(1―N)の質量(ι)と、溶媒の質量(κ)との比率(κ/ι)は、一般的に用いられる範囲であれば特に限定されないが、0.01~100であることが好ましい。κ/ιが上記範囲内であると、化合物(1A)の収率がより高まる傾向にある。同様の観点から、0.05~50であることがより好ましく、0.1~10であることがさらに好ましい。
 カチオン交換工程の反応温度は、一般的に用いられる範囲であれば特に限定されないが、0℃~150℃であることが好ましい。反応温度が0℃以上であると、化合物(1-N)の反応性が高まり、化合物(1A)の収率がより高まる傾向にあるので好ましい。反応温度が150℃以下であると、副生成物が抑制でき、化合物(1A)の収率がより高まる傾向にあるので好ましい。同様の観点から、反応温度は20℃~140℃であることがより好ましく、40℃~130℃であることが最も好ましい。
 カチオン交換工程の反応時間は、通常用いられる範囲であれば特に限定されないが、1~100時間が好ましく、5~50時間がより好ましい。
 カチオン交換工程の圧力は、反応を行う温度によるが、通常用いられる範囲であれば特に限定されないが、10kPa~5000kPaが好ましい。
 反応雰囲気は、通常用いられる雰囲気であれば特に限定されないが、通常は大気雰囲気、窒素雰囲気、及びアルゴン雰囲気等が用いられる。これらの中でも、より安全に化合物(1A)を製造できる傾向にあることから、窒素雰囲気、及びアルゴン雰囲気が好ましい。また、より経済性に優れる製造方法となる傾向にあることから、窒素雰囲気がさらに好ましい。
 反応雰囲気は、単独で用いてもよいし、複数種の反応雰囲気を組み合わせて用いてもよい。
<含フッ素環状スルホニルイミド塩(化合物(1A))の晶析工程>
 含フッ素環状スルホニルイミド塩は、一般に、水及び配位性の各種有機溶媒への溶解性が極めて高く、このことが帯電防止剤、有機電解質等のイオン電導材料や難燃剤といった幅広い用途での利用に有利に働いている。他方、この高い溶解性は、低い結晶性及び乾燥時の溶媒残存量の増大と直接的に結びついている。含フッ素環状スルホニルイミド塩のような粉体物質を高純度化するための最も一般的で簡便な製造方法の一つとして晶析が挙げられるが、この低い結晶性と溶媒残存量の増大が問題となり、含フッ素環状スルホニルイミド塩の晶析による高純度化に係る既存技術は限られている。
 特許文献4には、1,4-ジオキサンを貧溶媒とし、アセトニトリルを良溶媒とした混合溶媒でのリチウム塩の晶析精製の実施例が記載されている。しかしながら、上述の特許文献1の手法では乾燥後の結晶に1,4-ジオキサンが5質量%程度残存しており、残存溶媒の除去に長大な時間と費用がかかるという問題がある。この問題は本質的に、二つの酸素原子を有する環状エーテルである1,4-ジオキサンを用いたことで、結晶状態において溶媒がリチウムに強固に配位していることに起因すると考えられる。尚、特許文献4には、同一の含フッ素環状スルホニルイミドアンモニウム塩を1,4-ジオキサンで懸濁濾過、洗浄することによる高純度化法が記載されているが、乾燥後の残存溶媒量に関しては記述されておらず、残存溶媒量に係る問題解決に資するものかは不明瞭である。
 また、実際に本発明の発明者も、簡便かつ高純度化可能な晶析方法の発明を目指し検討を進める中で、炭酸ジメチルやアセトニトリル、テトラヒドロフラン、アセトンといった溶媒に含フッ素環状スルホニルイミド塩を溶解させ、溶媒を留去し濃縮させることによる晶析を試みたが、濃縮時に混合物全体がゲル状となり結晶化せず濃縮を継続しても乾固しない、濃厚溶液を冷却しても結晶が生じず高純度化が不可能である、といった問題が生ずることを確認している。このように含フッ素環状スルホニルイミド塩を溶解させる溶媒との高い親和性が、含フッ素環状スルホニルイミド塩の晶析においては障壁となっていた。
 本発明者は鋭意検討した結果、晶析において、単座配位性の鎖状エーテル溶媒を用いることで、極めて高純度な、低残存溶媒量の含フッ素環状スルホニルイミド塩を簡便に得られることを予想外に見出し、本発明を完成するに至ったものである。
 晶析工程は、冷却晶析により行われてもよい。晶析工程は、含フッ素環状スルホニルイミド塩の有する高い吸湿性を鑑み、得られる結晶の取り扱いの容易さから乾燥雰囲気下で行なうのが望ましい。乾燥雰囲気は特に限定されないが、乾燥空気、乾燥窒素、乾燥アルゴン等の気体の雰囲気下、気流下において行なうことができ、真空減圧下において行うこともできる。
 以下において、「貧溶媒」との語は、含フッ素環状スルホニルイミド塩の溶液を冷却した際に結晶を生ずるに好適な溶媒、を示すものであり、必ずしも含フッ素環状スルホニルイミド塩の溶解性が著しく低いことを意味するものではない。
 本実施形態の製造方法における晶析に用いる溶媒としては、含フッ素環状スルホニルイミド塩の比較的高い溶解性と金属への低配位性との双方を満たす観点から、単座配位性の鎖状エーテル溶媒である。晶析に単座配位性の鎖状エーテル溶媒を用いる場合、フッ素系不純物、及び残存溶媒量の低減された含フッ素環状スルホニルイミド塩を高純度かつ簡便に製造することができる理由は明らかでないが、本発明者は、単座配位性の鎖状エーテル溶媒は、金属への配位性、誘電率、双極子モーメント、いずれもその他の極性溶媒や環状エーテル等に比べて低い傾向にあり、このことが結晶中からの溶媒の除去に有利に働くものと推定している。本実施形態の製造方法では、含フッ素環状スルホニルイミド塩の晶析に単座配位性の鎖状エーテル溶媒を用いることで、フッ素系不純物、及び残存溶媒量の低減された含フッ素環状スルホニルイミド塩を高純度かつ簡便に得ることが達成できる。
 「単座配位性」の溶媒とは、金属への配位性を有する部位を一つ有する溶媒を意味する。配位性を有する部位としてはエーテル結合が挙げられる。
 晶析工程において、製造コストの観点からは単一の溶媒を用いることが望ましく、本実施形態においては、単座配位性の鎖状エーテル溶媒それ自体が晶析における貧溶媒として有効に機能することから、単一の溶媒のみを用いても高純度のイミド塩を得ることが充分可能である。しかしながら、本実施形態においては、複数の溶媒を混合することもでき、極性溶媒を良溶媒として添加することや、貧溶媒を更に添加することで結晶化を促すこともできる。但し、複数の溶媒を混合した場合には、乾燥後の溶媒残存量が増大する傾向にあり、熱履歴や製造コストの観点では不利になる場合がある。また、良溶媒である極性溶媒を添加した場合には、生じた結晶が晶析器内に固着する場合があり、回収率の低下、特殊な破砕機器の導入によるコストの増大といった懸念が生じる。
 単座配位性の鎖状エーテル溶媒としては、乾燥後の残存溶媒量低減の観点からは、低沸点、すなわち炭素数が6以下のものが好ましく、エチルエーテル、プロピルメチルエーテル、プロピルエチルエーテル、プロピルエーテル、イソプロピルメチルエーテル、イソプロピルエチルエーテル、イソプロピルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、イソブチルメチルエーテル、イソブチルエチルエーテル、sec-ブチルメチルエーテル、sec-ブチルエチルエーテル、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、ペンチルメチルエーテル、イソペンチルメチルエーテル、sec-ペンチルメチルエーテル、tert-ペンチルメチルエーテル、ネオペンチルメチルエーテル、シクロペンチルメチルエーテル等が挙げられ、また、溶解性の観点からは、プロピルメチルエーテル、プロピルエチルエーテル、イソプロピルメチルエーテル、イソプロピルエチルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、イソブチルメチルエーテル、イソブチルエチルエーテル、sec-ブチルメチルエーテル、sec-ブチルエチルエーテル、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、ペンチルメチルエーテル、イソペンチルメチルエーテル、sec-ペンチルメチルエーテル、tert-ペンチルメチルエーテル、ネオペンチルメチルエーテル、シクロペンチルメチルエーテルがより好ましく、更に好ましくはブチルメチルエーテル、ブチルエチルエーテル、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、tert-ペンチルメチルエーテル、シクロペンチルメチルエーテルである。
 極性溶媒を良溶媒として添加する場合、用いる良溶媒は特に限定されないが、含フッ素環状スルホニルイミド塩をとりわけ好適に溶解し、比較的低沸点である観点から、アセトン、テトラヒドロフラン、炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、アセトニトリル、酢酸メチル、酢酸エチル、酢酸ブチル等が挙げられる。
 結晶化を促すために貧溶媒を殊更に添加する場合には、用いる貧溶媒は特に限定されないが、含フッ素環状スルホニルイミド塩を溶解せず、単座配位性の鎖状エーテル溶媒と混和し、かつ低沸点であることが望ましく、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、クロロホルム、ジクロロメタン、1,2-ジクロロエタン等が挙げられる。
 晶析工程は主に、単座配位性の鎖状エーテル溶媒による粗含フッ素環状スルホニルイミド塩の溶解工程、晶析工程から構成されるが、晶析工程の直前に混合物中の不溶物を除去する工程を行なってもよい。この除去工程は、いずれも公知の、遠心分離、自然濾過、減圧濾過、加圧濾過等によって行なうことができる。濾過を行なう際には有機溶媒の使用に耐え得るものであれば、公知のいずれの濾過材を用いてもよく、濾過助剤を添加することもできる。濾過材の孔径は、好ましくは10μm以下、より好ましくは1μm以下である。
 粗含フッ素環状スルホニルイミド塩の溶解工程では、晶析前のイミド塩含有固体に対して、100~1000質量%、より好ましくは100~500質量%、さらに好ましくは100~300質量%の単座配位性の鎖状エーテル溶媒を加える。この工程は、マグネチックスターラーや撹拌羽根による撹拌、振盪や超音波振動等による溶解の促進を行なってもよい。溶解時の温度は特に限定されないが、0℃から溶媒の沸点+50℃の温度において行なうことができる。溶媒の沸点を超えて加熱を行なう場合には、公知の還流装置を用いることができる。
 晶析工程は、例えば、上記溶解工程によって得られた粗含フッ素環状スルホニルイミド塩の溶液を所望の温度で冷却することにより実施することができる。冷却に際しては、生じる結晶の高純度化の観点から、所望の温度まで穏やかに冷却していくことが好ましい。冷却温度としては-100℃~30℃が好ましく、より好ましくは-80℃~20℃、さらに好ましくは-50℃~20℃である。晶析時には、公知の手法として広く行なわれるように、種晶を添加してもよく、また、冷却を開始する前及び冷却中に、溶媒を留去することによる濃縮を行なってもよく、冷却を行ないながら上記貧溶媒を添加することで結晶化を促すこともできる。
 精製された含フッ素環状スルホニルイミド塩の捕集は、いずれも公知の、遠心分離、自然濾過、減圧濾過、加圧濾過等によって行なうことができる。濾過を行なう際には有機溶媒の使用に耐え得るものであれば、公知のいずれの濾過材を用いてもよい。濾過材の孔径としては好ましくは、10μm以下、より好ましくは1μm以下である。また、高純度化のためには、結晶の捕集時に、単座配位性の鎖状エーテル溶媒や添加した貧溶媒、又は別途調製した含フッ素環状スルホニルイミド塩の該溶媒溶液等によって洗浄することが好ましい。洗浄時に用いる液は、別途所望の温度に加熱又は冷却して使用してもよい。
 製造コストの面においては不利であるが、更に高純度の結晶を得るためには、必要に応じて上記の晶析工程を複数回繰り返すこともできる。
 製造工程の高効率化の観点から、結晶の捕集時に除去した液部及び洗浄液等は全て回収し、溶解工程又は晶析工程へと再利用することが望ましい。
 晶析工程で得られた精製された含フッ素環状スルホニルイミド塩は、不純物、特に製造時に混入するフッ素原子を有する不純物が低減された高純度のイミド塩である。精製された含フッ素環状スルホニルイミド塩の純度は、好ましくは98質量%以上であり、より好ましくは99質量%以上である。
 また、19F-NMRにおける含フッ素環状スルホニルイミド(1A)のピークの積分値の和T1と、-115ppm~-125ppmの領域に単一の又は複数の二重線ピークとして現れることに特徴的な不純物のピークの積分値の和T2、との比T1/T2を、化合物(1A)の純度に係る一の指標として用いることができる。発明者の検討によれば、前記の工程にて化合物(1A)を製造した場合特段の精製を行なわなければ、19F-NMRにおける含フッ素環状スルホニルイミド(1A)のピークの積分値の和T1と、-115ppm~-125ppmの領域に単一の又は複数の二重線ピークとして現れることに特徴的な不純物のピークの積分値の和T2、との比T1/T2は、500未満となり、化合物(1A)は褐色に着色する傾向がある。
 尚、本明細書中、用語「-115ppm~-125ppmの領域に単一の又は複数の二重線ピーク」を特徴とする不純物は、特に限定されないが、例えば、例えばH-CF2-X-Y(Xは水素およびフッ素を有さない連結基、Yは特に限定されない官能基)のようなジフルオロメチル基を有する化合物を挙げることができる。
 精製された含フッ素環状スルホニルイミド塩は、19F-NMRにおける含フッ素環状スルホニルイミド(1A)のピークの積分値の和T1と、-115ppm~-125ppmの領域に単一又は複数の二重線ピークとして現れることに特徴的な不純物のピークの積分値の和T2、との比T1/T2が、500以上であることが好ましく、より好ましくは、T1/T2が800以上、より好ましくは1000以上、更に好ましくは2000以上である。最も好ましくは該不純物ピークが全く見られないことであるが、このような場合は製造コストの観点から非効率的である。T1/T2が上記の値以上であれば得られた含フッ素環状スルホニルイミド塩は高純度化され、着色が全く見られなくなる傾向がある。これにより、例えば、帯電防止剤として樹脂と混合した際の外観不良や、長期保存時の品質劣化等を抑えることができ、より多様な用途での利用が可能になる。
<含フッ素環状スルホニルイミド塩(化合物(1A))の乾燥工程>
 次に、捕集後の含フッ素環状スルホニルイミド塩中の余剰の溶媒の除去のために乾燥工程を行なうことが好ましい。乾燥工程では一般に行なわれるように加熱減圧乾燥を行なうことができる。加熱温度は好ましくは40℃、より好ましくは60℃であるが、含フッ素環状スルホニルイミド塩の分解が進行しない限りにおいては100℃以上の温度で行なってもよく、含フッ素環状スルホニルイミド塩の熱安定性を考慮すると上限は200℃とするのが好ましい。減圧時の圧力は好ましくは100hPa以下、より好ましくは50hPa以下、さらに好ましくは10hPa以下であり、最も好ましくは1hPa以下である。
 乾燥を行なう際は、上記工程で捕集されたそのままの形態の結晶を乾燥しても充分に残存溶媒を除去できるが、より速やかに乾燥を進行させる目的で、結晶の破砕、撹拌操作を加えてもよく、この場合は更なる熱履歴、時間、及びコストの低減が期待できる。本実施形態の製造方法によれば、得られる結晶は残存溶媒量が少なく、結晶同士の固着や容器への固着を抑制できることから、結晶の破砕や粉砕工程には特殊な製造装置は必要なく、一般に広く用いられる撹拌翼やミルを用いることができる。
 乾燥を行なう際は、上記工程で捕集されたそのままの形態の結晶を乾燥しても充分に残存溶媒を除去できるが、残存溶媒量を低減し、より高純度な含フッ素環状スルホニルイミド塩を得る目的で、フッ素含有溶剤による洗浄操作を加えてもよい。フッ素含有溶剤による洗浄操作は、残存溶媒と含フッ素環状スルホニルイミド塩中のリチウムの間の親和性を弱めると推測され、含フッ素環状スルホニルイミド塩中の残存溶媒量を低減することができる。具体的な洗浄操作としては、捕集後の含フッ素環状スルホニルイミド塩に十分量のフッ素含有溶剤を添加して、一定時間攪拌、または無攪拌条件で静置、した後、ろ過または減圧操作によって溶媒留去した上で、上記の乾燥工程を行う。上記の洗浄操作は複数回繰り返してもよい。フッ素含有溶剤としては、HCFC(ハイドロクロロフルオロカーボン)、HFC(ハイドロフルオロカーボン)、CFC(クロロフルオロカーボン)、PFC(パーフルオロカーボン)、PFPE(パーフルオロポリエーテル)、HFE(ハイドロフルオロエーテル)、HFO(ハイドロフルオロオレフィン)が挙げられる。中でも、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン、1,1,1,2,2,3,4,4,5,5,5-ウンデカフルオロペンタン、1,1,1,2,2,3,3,4,5,5,5-ウンデカフルオロペンタン、パーフルオロペンタンで表されるHFC(ハイドロフルオロカーボン)が好ましく、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタンで表されるHFC(ハイドロフルオロカーボン)が最も好ましい。
 含フッ素環状スルホニルイミド塩の残存溶媒量としては、ベンゾトリフルオリド等の内部標準物質を添加した1H-NMR測定の結果から、5.0質量%以下であることが好ましく、また100質量ppm以上であることが好ましく、より好ましくは100質量ppm以上2.0質量%以下、更に好ましくは100質量ppm以上1.0質量%以下、より一層好ましくは100質量ppm以上0.1質量%以下である。残存溶媒量が5.0質量%以下の場合は、含フッ素環状スルホニルイミド塩の粉体としての取り扱い性が低下し難い傾向があり望ましい。また、残存溶媒量が100質量ppm以上の場合には、乾燥工程の時間の短縮と更なる加熱が不要となる傾向があることから製造コストの観点で望ましい。
<1.非水系電解液>
 非水系電解液において、下記一般式(1):
Figure JPOXMLDOC01-appb-C000028
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又は炭素数4以下のパーフルオロ基を表す}
で表される含フッ素環状スルホニルイミド塩を用いることによって、初回充放電効率とサイクル性能が向上する。その詳細な機構は不明だが、含フッ素環状スルホニルイミド塩が解離して生成した環状アニオンが負極で還元分解され、負極に堆積してSEIとして働くためだと推測される。また、含フッ素環状スルホニルイミド塩は金属腐食性が低く、正極集電体のAlイオンの溶出が抑制されたためだと推測される。
 非水系溶媒がアセトニトリルを含有する非水系電解液において、式(1)で表される含フッ素環状スルホニルイミド塩を用いることによって、金属腐食性が低く、初回充放電効率とサイクル性能が向上する。その機構は以下のように推察される。
 式(1)で表される含フッ素環状スルホニルイミド塩は、アセトニトリルを含有する非水系電解液中でカチオンと環状アニオンに解離する。環状アニオンは、アセトニトリルと電気的に相互作用し、アセトニトリルの持つニトリル基の金属配位能を弱める。それによって、高温下でアセトニトリルが正極活物質中の遷移金属と錯体を形成することで起こる金属溶出を抑制でき、金属錯体の負極への移動が抑制される。従って、金属錯体の負極での還元析出による負極SEIの劣化が抑制され、初回充放電効率とサイクル性能が向上する。
 それに加えて、環状アニオンが負極で還元分解して生成した分解物は、負極に堆積してSEIとして働き、金属錯体の負極での還元析出に対する負極SEIの耐久性を向上させ、負極での溶媒の還元分解を抑制できる。
 式(1)におけるnは、1~4の整数である。nが1~4の含フッ素環状スルホニルイミド塩として、具体的には、下記化合物(1-1)~(1-5)で表されるリチウム塩が挙げられる。なかでも、イオン伝導度の高い電解液が得られ易い観点から、nが2の化合物(1-2)が好ましい。
Figure JPOXMLDOC01-appb-C000029
 式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、非水系溶媒1L当たりの量として、0.1モル以上であることが好ましく、0.5モル以上であることがより好ましく、0.8モル以上であることがさらに好ましい。上述の範囲内にある場合、イオン伝導度が増大し、高出力特性を発現できる傾向にある。また、式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、非水系溶媒1L当たりの量として、3モル未満であることが好ましく、2.5モル以下であることがより好ましく、1.8モル以下であることがより好ましく、1.5モル以下であることがより好ましく、1.3モル以下であることがさらに好ましい。式(1)で表される含フッ素環状スルホニルイミド塩の含有量が上述の範囲内にある場合、非水系電解液のイオン伝導度が増大し、電池の高出力特性を発現できると共に、非水系電解液の低温での粘度上昇に伴うイオン伝導度の低下を抑制できる傾向にあり、非水系電解液の優れた性能を維持しながら、電池の高温サイクル特性及びその他の特性を一層良好なものとすることができる傾向にある。
 また、非水系二次電池の体積エネルギー密度を向上するため、正極に含まれる正極活物質層の目付量が24~200mg/cmの範囲に調整されている場合、式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、1モル以上であることが好ましく、1.2モル以上であることがより好ましく、1.5モル以上であることがさらに好ましく、2モル以上であることが特に好ましい。式(1)で表される含フッ素環状スルホニルイミド塩の含有量が上述の範囲内にある場合、正極-電解液界面から離れた正極深部においても素早いイオン伝導が可能になり、非水系二次電池における出力性能とのバランスを保ちながら体積エネルギー密度を向上することができる傾向にある。
 また、含フッ素環状スルホニルイミド塩の含有量を電解液から測定する方法としては、例えば、パーフルオロベンゼンなどを内部標準に用いた19F-NMRによる環状アニオン含有量の測定、及び、イオンクロマトグラフィによるリチウムイオン含有量の測定を組み合わせる方法などが挙げられる。
 また非水系電解液において、過剰なLiPFは、高温下での電池性能低下をもたらす原因となる一方、含フッ素環状スルホニルイミド塩は、負極SEIへの寄与などと推測される機構によって高温下での電池性能低下を抑制することから、LiPFの含有量に対する式(1)で表される含フッ素環状スルホニルイミド塩の含有量のモル比は、2.5以上であることが好ましく、10より大きいことが好ましく、15以上であることがより好ましく、20以上であることが更に好ましく、25以上であることが特に好ましい。LiPFの含有量に対する含フッ素環状スルホニルイミド塩の含有量のモル比が上述の範囲内にある場合、例えば50℃以上のような高温での電池性能低下を効果的に抑制でき、優れた高温耐久性を得ることができる。
 本発明の一実施形態の非水系電解液は、非水系溶媒及びリチウム塩を含有し、
 前記非水系溶媒はカーボネート溶媒を含み、
 前記リチウム塩が、上記一般式(1)
で表される含フッ素環状スルホニルイミド塩を含有し、
 下記一般式(2):
   H(CR2)m-SO2NHM2   (2)
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、Mは、Li、Na、K、H又はNHであり、そしてmは、1又は2である}
で表される含フッ素スルホンアミド化合物を前記非水系電解液の全量に対して、1000質量ppm以下含有する。
 非水系電解液とは、非水系電解液の全量に対し、水が1質量%以下の電解液を指す。本実施形態に係る非水系電解液は、水分を極力含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してよい。そのような水分の含有量は、非水系電解液の全量当たり、300質量ppm以下であり、好ましくは200質量ppm以下である。非水系電解液については、本発明の課題解決を達成するための構成を具備していれば、その他の構成要素については、リチウムイオン電池に用いられる既知の非水系電解液における構成材料を、適宜選択して適用することができる。
 本実施形態の非水系電解液は、非水系溶媒とリチウム塩と化合物(2)を含有し、更に、所望により下記に示す各種添加剤(本明細書では、単に「添加剤」ということもある)とを、任意の手段で混合して製造することができる。なお、各種添加剤とは、電極保護用添加剤及びその他の任意的添加剤の総称であり、それらの含有量は、下記に示したとおりである。
 なお、非水系溶媒の各化合物の含有量は、特に断りが無い限り、<2-1.非水系溶媒>に記載の各成分、及び<2-3.電極保護用添加剤>に記載の電極保護用添加剤については非水系溶媒を構成する各成分の合計量に対する体積%で混合比を規定し、<2-2.リチウム塩>に記載のリチウム塩については、非水系溶媒1L当たりのモル数で混合比を規定し、<2-4.その他の任意的添加剤>についてはリチウム塩及び非水系溶媒全体を100質量部としたときの質量部で混合比を規定する。
 また、本実施形態において、下記<2-1>~<2-4>の各項目で具体的に示した化合物以外の化合物を電解液に含む場合は、該化合物が常温(25℃)で液体の場合は非水系溶媒に準じて取り扱い、非水系溶媒を構成する各成分(該化合物を含む)の合計量に対する体積%で混合比を表す。他方、該化合物が常温(25℃)で固体の場合はリチウム塩及び非水系溶媒全体を100質量部としたときの質量部で混合比を表す。
<2-1.非水系溶媒>
 本実施形態の非水系溶媒はカーボネート溶媒を含む。カーボネート溶媒としては、環状カーボネート、フルオロエチレンカーボネート、鎖状カーボネート、前記カーボネート性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物等が挙げられる。
 環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネート;
 フルオロエチレンカーボネートとしては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オン;
 鎖状カーボネートとしては、例えば、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート;
を挙げることができる。
 ここで、鎖状カーボネートのフッ素化物としては、例えば、メチルトリフルオロエチルカーボネート、トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、トリフルオロエチルメチルカーボネート、メチル2,2-ジフルオロエチルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、メチル2,2,3,3-テトラフルオロプロピルカーボネートなどが挙げられる。上記のフッ素化鎖状カーボネートは、下記の一般式:
 Rcc-O-C(O)O-Rdd
{式中、Rcc及びRddは、CH、CHCH、CHCHCH、CH(CH、及びCH eeから成る群より選択される少なくとも一つであり、R eeは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてRcc及び/又はRddは、少なくとも1つのフッ素原子を含有する}
で表すことができる。
 本実施形態におけるアセトニトリル以外のカーボネート溶媒は、1種を単独で使用することができ、又は2種以上を組み合わせて使用してよい。
 本実施形態における非水系溶媒は、環状カーボネート及び鎖状カーボネートのうちの1種以上とともに、アセトニトリルを併用することが、非水系電解液の安定性向上の観点から好ましい。この観点から、本実施形態における非水系溶媒は、アセトニトリルとともに環状カーボネートを併用することがより好ましく、アセトニトリルとともに環状カーボネート及び鎖状カーボネートの双方を使用することが、更に好ましい。
 アセトニトリルとともに環状カーボネートを使用する場合、かかる環状カーボネートが、エチレンカーボネート、ビニレンカーボネート及び/又はフルオロエチレンカーボネートを含むことが特に好ましい。
 本実施形態でいう「非水系溶媒」とは、非水系電解液中から、リチウム塩及び各種添加剤を除いた要素をいう。非水系電解液に電極保護用添加剤が含まれている場合、「非水系溶媒」とは、非水系電解液中から、リチウム塩と、電極保護用添加剤以外の添加剤とを除いた要素をいう。非水系溶媒としては、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非水系溶媒としては、非プロトン性溶媒が好ましい。本発明の課題解決を阻害しない範囲であれば、非水系溶媒は、非プロトン性溶媒以外の溶媒を含有してよい。
 本実施形態の非水系電解液に係る非水系溶媒は、非プロトン性溶媒としてアセトニトリルを含有してもよい。非水系溶媒がアセトニトリルを含有することにより、非水系電解液のイオン伝導性が向上することから、電池内におけるリチウムイオンの拡散性を高めることができる。そのため、特に正極活物質層を厚くして正極活物質の充填量を高めた正極においても、高負荷での放電時にはリチウムイオンが到達し難い集電体近傍の領域にまで、リチウムイオンが良好に拡散できるようになる。よって、高負荷放電時にも十分な容量を引き出すことが可能となり、負荷特性に優れた非水系二次電池を得ることができる。
 また、非水系溶媒がアセトニトリルを含有することにより、非水系二次電池の急速充電特性を高めることができる。非水系二次電池の定電流(CC)-定電圧(CV)充電では、CV充電期間における単位時間当たりの充電容量よりも、CC充電期間における単位時間当たりの容量の方が大きい。非水系電解液の非水系溶媒にアセトニトリルを使用する場合、CC充電できる領域を大きく(CC充電の時間を長く)できる他、充電電流を高めることもできるため、非水系二次電池の充電開始から満充電状態にするまでの時間を大幅に短縮できる。
 なお、アセトニトリルは、電気化学的に還元分解され易い。そのため、アセトニトリルを用いる場合、非水系溶媒としてアセトニトリルとともに他の溶媒(例えば、アセトニトリル以外の非プロトン性溶媒)を併用すること、及び/又は、電極への保護被膜形成のための電極保護用添加剤を添加すること、を行うことが好ましい。
 アセトニトリルの含有量は、非水系溶媒の全量に対して、3体積%以上、97体積%以下であることが好ましい。アセトニトリルの含有量は、非水系溶媒の全量に対して、5体積%以上又は10体積%以上又は20体積%以上又は30体積%以上又は40体積%以上又は50体積%以上であることがより好ましく、60体積%以上であることが更に好ましい。この値は、97体積%以下であることがより好ましく、95体積%以下であることが更に好ましい。アセトニトリルの含有量が、非水系溶媒の全量に対して3体積%以上である場合、イオン伝導度が増大して高出力特性を発現できる傾向にあり、更に、リチウム塩の溶解を促進することができる。後述の添加剤が電池の内部抵抗の増加を抑制するため、非水系溶媒中のアセトニトリルの含有量が上記の範囲内にある場合、アセトニトリルの優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
 アセトニトリル以外の非プロトン性溶媒としては、例えば、ラクトン、硫黄原子を有する有機化合物、環状エーテル、アセトニトリル以外のモノニトリル、アルコキシ基置換ニトリル、ジニトリル、環状ニトリル、短鎖脂肪酸エステル、鎖状エーテル、フッ素化エーテル、ケトン、前記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物等が挙げられる。
 ラクトンとしては、γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトン;
 硫黄原子を有する有機化合物としては、例えば、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、ジメチルスルホキシド、テトラメチレンスルホキシド、及びエチレングリコールサルファイト;
 環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、及び1,3-ジオキサン;
 アセトニトリル以外のモノニトリルとしては、例えば、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリル;
 アルコキシ基置換ニトリルとしては、例えば、メトキシアセトニトリル及び3-メトキシプロピオニトリル;
 ジニトリルとしては、例えば、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、及び2,4-ジメチルグルタロニトリル;
 環状ニトリルとしては、例えば、ベンゾニトリル;
 短鎖脂肪酸エステルとしては、例えば、酢酸メチル、プロピオン酸メチル、イソ酪酸メチル、酪酸メチル、イソ吉草酸メチル、吉草酸メチル、ピバル酸メチル、ヒドロアンゲリカ酸メチル、カプロン酸メチル、酢酸エチル、プロピオン酸エチル、イソ酪酸エチル、酪酸エチル、イソ吉草酸エチル、吉草酸エチル、ピバル酸エチル、ヒドロアンゲリカ酸エチル、カプロン酸エチル、酢酸プロピル、プロピオン酸プロピル、イソ酪酸プロピル、酪酸プロピル、イソ吉草酸プロピル、吉草酸プロピル、ピバル酸プロピル、ヒドロアンゲリカ酸プロピル、カプロン酸プロピル、酢酸イソプロピル、プロピオン酸イソプロピル、イソ酪酸イソプロピル、酪酸イソプロピル、イソ吉草酸イソプロピル、吉草酸イソプロピル、ピバル酸イソプロピル、ヒドロアンゲリカ酸イソプロピル、カプロン酸イソプロピル、酢酸ブチル、プロピオン酸ブチル、イソ酪酸ブチル、酪酸ブチル、イソ吉草酸ブチル、吉草酸ブチル、ピバル酸ブチル、ヒドロアンゲリカ酸ブチル、カプロン酸ブチル、酢酸イソブチル、プロピオン酸イソブチル、イソ酪酸イソブチル、酪酸イソブチル、イソ吉草酸イソブチル、吉草酸イソブチル、ピバル酸イソブチル、ヒドロアンゲリカ酸イソブチル、カプロン酸イソブチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、イソ酪酸tert-ブチル、酪酸tert-ブチル、イソ吉草酸tert-ブチル、吉草酸tert-ブチル、ピバル酸tert-ブチル、ヒドロアンゲリカ酸tert-ブチル、及びカプロン酸tert-ブチル;
 鎖状エーテルとしては、例えば、ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、及びテトラグライム;
 フッ素化エーテルとしては、例えば、R aa-ORbb{式中、R aaはフッ素原子を含有するアルキル基、Rbbはフッ素原子を含有してよい有機基};
 ケトンとしては、例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン;
 前記非プロトン性溶媒のH原子の一部または全部をハロゲン原子で置換した化合物としては、例えば、ハロゲン原子がフッ素である化合物;
を挙げることができる。
 また、短鎖脂肪酸エステルのフッ素化物としては、例えば、酢酸2,2-ジフルオロエチル、酢酸2,2,2-トリフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピルに代表されるフッ素化短鎖脂肪酸エステルなどが挙げられる。フッ素化短鎖脂肪酸エステルは、下記の一般式:
 Rff-C(O)O-Rgg
{式中、Rffは、CH、CHCH,CHCHCH、CH(CH、CFCFH、CFH、CF hh、CFHR hh、及びCH iiから成る群より選択される少なくとも一つであり、Rggは、CH、CHCH、CHCHCH、CH(CH、及びCH iiから成る群より選択される少なくとも一つであり、R hhは、少なくとも1つのフッ素原子で水素原子が置換されてよい炭素数1~3のアルキル基であり、R iiは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてRff及び/又はRggは、少なくとも1つのフッ素原子を含有し、RffがCFHである場合、RggはCHではない}
で表すことができる。
 本実施形態におけるアセトニトリル以外の非プロトン性溶媒は、1種を単独で使用することができ、又は2種以上を組み合わせて使用してよい。
<2-2.リチウム塩>
(含フッ素環状スルホニルイミド塩(1))
 前記リチウム塩が、上記一般式(1)で表される含フッ素環状スルホニルイミド塩である。
 前記式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、前記非水系溶媒1Lに対して、0.8モル以上1.5モル以下であることが好ましい。
 前記式(1)で表される含フッ素環状スルホニルイミド塩は、上記項目<含フッ素環状スルホニルイミド塩(化合物(1A))を含む組成物>に記載の内容と同じでよい。
 前記式(1)で表される含フッ素環状スルホニルイミド塩は、5員環構造を持つ。下記一般式(1B):
Figure JPOXMLDOC01-appb-C000030
{式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又は炭素数4以下のパーフルオロ基を表す}で表される6員環の含フッ素環状スルホニルイミド塩は、スルホニル基と隣接していないCR基中の炭素原子とR基の結合が弱いため、充電時に負極で還元されることで電池の高温耐久性が低下する。また、6員環以上の含フッ素環状スルホニルイミド塩は、5員環の含フッ素環状スルホニルイミド塩に比べてリチウム塩の分子量が大きい。そのため、一定のモル濃度のリチウムイオンを含む非水系電解液を調製するために必要なリチウム塩の重量が増加するため、非水系電解液の粘度が上昇して出力特性が低下する傾向にある。
(含フッ素環状スルホニルイミド塩(化合物(1))の製造方法)
 上記式(1)で表される含フッ素環状スルホニルイミド塩(化合物(1))の製造方法は、上記項目<含フッ素環状スルホニルイミド塩(化合物(1A))の製造方法>に記載の内容と同じでよい。
 本実施形態におけるリチウム塩は、含フッ素環状スルホニルイミド塩とともに、リチウム含有イミド塩、フッ素含有無機リチウム塩、有機リチウム塩、及びその他のリチウム塩から選択される1種以上を、更に含んでよい。
 本実施形態におけるリチウム塩の含有量を測定する方法は、先述した含フッ素環状スルホニルイミド塩の測定方法と同じ方法である。
(LiPF
 本実施形態の非水系電解液は、リチウム塩として、LiPFをさらに含有してもよい。本実施形態の非水系電解液におけるLiPFの含有量については、非水系溶媒1L当たりの量として、0.5モル未満であることが好ましく、0.1モル未満であることがより好ましく、0.01モル未満であることが更に好ましい。LiPFの含有量が上述の範囲内にある場合、LiPFの熱分解反応による酸成分の生成を抑えることができ、負極SEIにおける無機成分の過剰な堆積による負極の抵抗増加を最小限に留めることが出来る。
 LiPFの含有量は、ビニレンカーボネート及びフルオロエチレンカーボネートの含有量に対してモル比で4以下であり、1以下であることが好ましく、0.2以下であることがより好ましい。また、LiPFの含有量は、ビニレンカーボネート及びフルオロエチレンカーボネートの含有量に対してモル比で0.01以上であり、0.05以上であることが好ましく、0.1以上であることがより好ましい。LiPFの含有量を上述の範囲内に調整することにより、ビニレンカーボネート及びフルオロエチレンカーボネート由来の有機成分と、LiPF由来の無機成分のバランスに優れた負極SEIを形成し、例えば50℃以上のような高温試験における負極の抵抗増加を抑制することができる。
 負極SEIにおけるビニレンカーボネート及びフルオロエチレンカーボネート由来の有機成分の割合がLiPF由来の無機成分の割合に比べて極端に高い場合、高温耐久性試験において非水系二次電池の内部抵抗が増加する傾向にある。詳細は不明だが、ビニレンカーボネート及びフルオロエチレンカーボネート由来の有機成分を主体として構成された負極SEIは強度が低く、負極における溶媒の還元分解が十分に抑制できず、分解物が負極に堆積することで内部抵抗が増加するものと推測される。この際、リチウムイオンが消費されることなく溶媒の還元分解が起こるために電池の可逆容量は高く保たれるが、電池の内部抵抗が高いために出力性能が大幅に低下する傾向がある。
 また、負極SEIにおけるビニレンカーボネート及びフルオロエチレンカーボネート由来の有機成分の割合がLiPF由来の無機成分の割合に比べて極端に低い場合も、高温耐久性試験において非水系二次電池の内部抵抗が増加する傾向にある。詳細は不明だが、LiPF由来の無機成分を主体として構成された負極SEIの絶縁性が高く、負極-電解液界面のリチウムイオン伝導を阻害するものと推測される。
(リチウム含有イミド塩)
 イミド塩としては、具体的には、LiN(SOF)、及びLiN(SOCFのうち少なくとも1種を含むことが好ましい。
 非水系溶媒にアセトニトリルが含まれる場合、アセトニトリルに対するリチウム含有イミド塩の飽和濃度がLiPFの飽和濃度よりも高いことから、LiPF≦リチウム含有イミド塩となるモル濃度でイミド塩を含むことが、低温でのリチウム塩とアセトニトリルの会合及び析出を抑制できるため好ましい。また、リチウム含有イミド塩の含有量が、非水系溶媒1L当たりの量として、0.5モル以上3.0モル以下であることが、本実施形態に係る非水系電解液へのイオン供給量を確保する観点から好ましい。
 LiN(SOF)、及びLiN(SOCFのうち少なくとも1種を含むアセトニトリル含有非水系電解液によれば、-10℃又は-30℃のような低温域でのイオン伝導率の低減を効果的に抑制でき、優れた低温特性を得ることができる。本実施形態では、このように、リチウム含有イミド塩の含有量を限定することで、より効果的に、高温加熱時の抵抗増加を抑制することも可能となる。
(フッ素含有無機リチウム塩)
 本実施形態の非水系電解液で用いるリチウム塩は、LiPF以外のフッ素含有無機リチウム塩を含んでもよく、例えば、LiBF、LiAsF、LiSiF、LiSbF、Li1212-b〔式中、bは0~3の整数である〕等のフッ素含有無機リチウム塩を含んでもよい。ここで「無機リチウム塩」とは、炭素原子をアニオンに含まず、アセトニトリルに可溶なリチウム塩をいう。また、「フッ素含有無機リチウム塩」とは、炭素原子をアニオンに含まず、フッ素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。フッ素含有無機リチウム塩は、正極集電体であるアルミニウム箔の表面に不働態被膜を形成し、正極集電体の腐食を抑制する点で優れている。これらのフッ素含有無機リチウム塩は、1種を単独で又は2種以上を組み合わせて用いられる。フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物が好ましく、中でも、リン原子を有するフッ素含有無機リチウム塩を用いると、遊離のフッ素原子を放出し易くなることからより好ましい。フッ素含有無機リチウム塩として、ホウ素原子を有するフッ素含有無機リチウム塩を用いた場合には、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉し易くなることから好ましく、このような観点からはLiBFが特に好ましい。
 本実施形態の非水系電解液に用いるリチウム塩におけるフッ素含有無機リチウム塩の含有量については、非水系溶媒1Lに対して、0.01モル以上であることが好ましく、0.1モル以上であることがより好ましく、0.25モル以上であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し、高出力特性を発現できる傾向にある。また、この含有量は、非水系溶媒1Lに対して、2.8モル未満であることが好ましく、1.5モル未満であることがより好ましく、1モル未満であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し、高出力特性を発現できると共に、低温での粘度上昇に伴うイオン伝導度の低下を抑制できる傾向にあり、非水系電解液の優れた性能を維持しながら、高温サイクル特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
(有機リチウム塩)
 本実施形態におけるリチウム塩は、有機リチウム塩を含んでよい。「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶な、イミド塩以外のリチウム塩をいう。
 有機リチウム塩としては、シュウ酸基を有する有機リチウム塩を挙げることができる。シュウ酸基を有する有機リチウム塩の具体例としては、例えば、LiB(C、LiBF(C)、LiPF(C)、及びLiPF(Cのそれぞれで表される有機リチウム塩等が挙げられ、中でもLiB(C及びLiBF(C)で表されるリチウム塩から選ばれる少なくとも1種のリチウム塩が好ましい。また、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することがより好ましい。このシュウ酸基を有する有機リチウム塩は、非水系電解液に添加する他、負極(負極活物質層)に含有させてもよい。
 本実施形態における有機リチウム塩の非水系電解液への添加量は、その使用による効果をより良好に確保する観点から、非水系溶媒1L当たりの量として、0.005モル以上であることが好ましく、0.01モル以上であることがより好ましく、0.02モル以上であることが更に好ましく、0.05モル以上であることが特に好ましい。ただし、上記シュウ酸基を有する有機リチウム塩の非水系電解液中の量が多すぎると析出する恐れがある。よって、上記シュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、非水系溶媒1L当たりの量として、1.0モル未満であることが好ましく、0.5モル未満であることがより好ましく、0.2モル未満であることが更に好ましい。
 シュウ酸基を有する有機リチウム塩は、極性の低い有機溶媒、特に鎖状カーボネートに対して難溶性であることが知られている。本実施形態に係る非水系電解液における有機リチウム塩の含有量は、非水系溶媒1L当たりの量として、例えば、0.01モル以上0.5モル以下であってよい。
 なお、シュウ酸基を有する有機リチウム塩は、微量のシュウ酸リチウムを含有している場合があり、更に、非水系電解液として混合するときにも、他の原料に含まれる微量の水分と反応して、シュウ酸リチウムの白色沈殿を新たに発生させる場合がある。したがって、本実施形態に係る非水系電解液におけるシュウ酸リチウムの含有量は、500ppm以下の範囲に抑制することが好ましい。
(その他のリチウム塩)
 本実施形態におけるリチウム塩は、上記以外に、その他のリチウム塩を含んでよい。
 その他のリチウム塩の具体例としては、例えば、
 LiClO、LiAlO、LiAlCl、LiB10Cl10、クロロボランLi等のフッ素原子をアニオンに含まない無機リチウム塩;
 LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiCnF(2n+1)SO{式中、n≧2}、低級脂肪族カルボン酸Li、四フェニルホウ酸Li、LiB(C等の有機リチウム塩;
 LiPF(CF)等のLiPF(C2p+16-n〔式中、nは1~5の整数、pは1~8の整数である〕で表される有機リチウム塩;
 LiBF(CF)等のLiBF(C2s+14-q〔式中、qは1~3の整数、sは1~8の整数である〕で表される有機リチウム塩;
 多価アニオンと結合されたリチウム塩;
 下記式(XXa):
  LiC(SOjj)(SOkk)(SOll)   (XXa)
{式中、Rjj、Rkk、及びRllは、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}、
 下記式(XXb):
  LiN(SOORmm)(SOORnn)   (XXb)
{式中、Rmm、及びRnnは、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}、及び
 下記式(XXc):
  LiN(SOoo)(SOORpp)   (XXc)
{式中、Roo、及びRppは、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}
のそれぞれで表される有機リチウム塩等が挙げられ、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することができる。
 その他のリチウム塩の非水系電解液への添加量は、非水系溶媒1L当たりの量として、例えば、0.01モル以上0.5モル以下の範囲で適宜に設定されてよい。
<2-3.電極保護用添加剤>
 本実施形態に係る非水系電解液は、電極を保護するための添加剤(電極保護用添加剤)を含んでよい。電極保護用添加剤は、リチウム塩を溶解させるための溶媒としての役割を担う物質(すなわち上記の非水系溶媒)と実質的に重複してよい。電極保護用添加剤は、非水系電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含する。
 電極保護用添加剤の具体例としては、例えば、
 4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オンに代表されるフルオロエチレンカーボネート;
 ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;
 γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトンに代表されるラクトン;
 1,4-ジオキサンに代表される環状エーテル;
 エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-スルホレン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、1-プロペン1,3-スルトン、及びテトラメチレンスルホキシドに代表される環状硫黄化合物;
が挙げられ、これらは1種を単独で又は2種以上を組み合わせて用いられる。
 非水系電解液中の電極保護用添加剤の含有量は、非水系溶媒の全量当たりの量として、0.1~30体積%であることが好ましく、0.3~15体積%であることがより好ましく、0.4~8体積%であることが更に好ましく、0.5~4体積%であることが特に好ましい。
 本実施形態においては、電極保護用添加剤の含有量が多いほど、非水系電解液の劣化が抑えられる。しかしながら、電極保護用添加剤の含有量が少ないほど、非水系二次電池の低温環境下における高出力特性が向上することになる。したがって、電極保護用添加剤の含有量を上記の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電解液の高イオン伝導度に基づく優れた性能を発揮することができる傾向にあり、そして、このような組成で非水系電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能及びその他の電池特性を、一層良好なものとすることができる傾向にある。
 アセトニトリルは、電気化学的に還元分解され易い。そのため、アセトニトリルを含む非水系溶媒は、負極への保護被膜形成のための電極保護用添加剤として、環状の非プロトン性極性溶媒を1種以上含むことが好ましく、不飽和結合含有環状カーボネートを1種以上含むことがより好ましい。
 不飽和結合含有環状カーボネートとしてはビニレンカーボネートが好ましく、ビニレンカーボネートの含有量は、非水系電解液中、0.1体積%以上4体積%以下であることが好ましく、0.2体積%以上3体積%未満であることがより好ましく、0.5体積%以上2.5体積%未満であることが更に好ましい。これにより、低温耐久性をより効果的に向上させることができ、低温性能に優れた二次電池を提供することが可能になる。
 電極保護用添加剤としてのビニレンカーボネートは、負極表面でのアセトニトリルの還元分解反応を抑制し、他方では、過剰な被膜形成は低温性能の低下を招く。そこで、ビニレンカーボネートの添加量を上記の範囲内に調整することで、界面(被膜)抵抗を低く抑えることができ、低温時のサイクル劣化を抑制することができる。
(酸無水物)
 本実施形態に係る非水系二次電池は、初回充電のときに非水系電解液の一部が分解し、負極表面にSEIを形成することにより安定化する。このSEIをより効果的に強化するため、非水系電解液、電池部材、又は非水系二次電池に、酸無水物を添加することができる。非水系溶媒としてアセトニトリルを含む場合には、温度上昇に伴いSEIの強度が低下する傾向にあるが、酸無水物の添加によってSEIの強化が促進される。よって、このような酸無水物を用いることにより、効果的に熱履歴による経時的な内部抵抗の増加を抑制することができる。
 酸無水物の具体例としては、例えば、無水酢酸、無水プロピオン酸、無水安息香酸に代表される鎖状酸無水物;マロン酸無水物、無水コハク酸、グルタル酸無水物、無水マレイン酸、無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、又は、ナフタレン-1,4,5,8-テトラカルボン酸二無水物に代表される環状酸無水物;異なる2種類のカルボン酸、又はカルボン酸とスルホン酸等、違う種類の酸が脱水縮合した構造の混合酸無水物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態に係る非水系二次電池は、非水系溶媒の還元分解前にSEIを強化することが好ましいことから、酸無水物としては初回充電のときに早期に作用する環状酸無水物を少なくとも1種含むことが好ましい。これら環状酸無水物は、1種のみ含んでも複数種含んでよい。又は、これらの環状酸無水物以外の環状酸無水物を含んでいてよい。また、環状酸無水物は、無水コハク酸、無水マレイン酸、及び無水フタル酸のうち少なくとも1種を含むことが好ましい。
 無水コハク酸、無水マレイン酸、及び無水フタル酸のうち少なくとも1種を含む非水系電解液によれば、負極に強固なSEIを形成でき、より効果的に、高温加熱時の抵抗増加を抑制する。特に、無水コハク酸を含むことが好ましい。これにより、副反応を抑制しつつ、より効果的に、負極に強固なSEIを形成できる。
 本実施形態に係る非水系電解液が酸無水物を含有する場合、その含有量は、非水系電解液100質量部当たりの量として、0.01質量部以上10質量部以下の範囲であることが好ましく、0.05質量部以上1質量部以下であることがより好ましく、0.1質量部以上0.5質量部以下であることが更に好ましい。
 酸無水物は、非水系電解液が含有することが好ましい。他方、酸無水物が、非水系二次電池の中で作用することが可能であればよいので、正極、負極、及びセパレータから成る群より選ばれる少なくとも1種の電池部材が、酸無水物を含有していてよい。酸無水物を電池部材含有させる方法としては、例えば、電池部材作製時にその電池部材に含有させてよいし、電池部材への塗布、浸漬又は噴霧乾燥等に代表される後処理によってその電池部材に含浸させてよい。
<2-4.その他の任意的添加剤>
 本実施形態においては、非水系二次電池の充放電サイクル特性の改善、高温貯蔵性、安全性の向上(例えば過充電防止等)等の目的で、非水系電解液に、任意的添加剤(酸無水物、及び電極保護用添加剤以外の添加剤)を適宜含有させることもできる。
 任意的添加剤としては、例えば、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、tert-ブチルベンゼン、リン酸エステル〔エチルジエチルホスホノアセテート(EDPA);(CO)(P=O)-CH(C=O)OC、リン酸トリス(トリフルオロエチル)(TFEP);(CFCHO)P=O、リン酸トリフェニル(TPP);(CO)P=O、リン酸トリアリル;(CH=CHCHO)P=O、リン酸トリアミル、リン酸トリオクチル、リン酸トリス(2-ブトキシエチル)、リン酸トリス(2-エチルヘキシル)等〕、非共有電子対周辺に立体障害のない窒素含有環状化合物〔ピリジン、1-メチル-1H-ベンゾトリアゾール、1-メチルピラゾール等〕等が挙げられる。特に、リン酸エステルは、貯蔵時の副反応を抑制する作用および非水系電解液のセパレータへの含浸性を向上させる作用があり、任意的添加剤として効果的である。
 本実施形態に係る非水系電解液がその他の任意的添加剤を含有する場合、その含有量は、非水系電解液の全量当たりの量として、0.01質量%以上10質量%以下の範囲であることが好ましく、0.02質量%以上5質量%以下であることがより好ましく、0.05~3質量%であることが更に好ましい。その他の任意的添加剤の含有量を上記の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、より一層良好な電池特性を付加することができる傾向にある。
<2-5.化合物(2)>
 化合物(2)は、上記一般式(2)で表される含フッ素スルホンアミド化合物である。
 化合物(2)は金属腐食性を有し、含フッ素スルホンアミド化合物を多量に含有する非水系電解液を用いた場合、正極集電体に用いられる金属箔が腐食し、充放電時の不可逆容量の増加及びサイクル性能が低下する。特に、金属箔にAl箔またはステンレス箔を用いた場合、顕著に腐食する。
 詳細には、例えば正極にAl集電体を用いた場合、充電時に正極でのAl腐食反応(反応式a)、及び、負極でのAlの還元析出反応(反応式b)が促進されることで、充電時にAlが正極から負極に移動する不可逆反応が促進され、電池の不可逆容量が増加したものと推測される。長期的にも、負極での多量のAl析出は、負極での不均一なSEI形成又は不均一な金属リチウムの析出を促進し、電池の容量減少又は電池の微短絡及び短絡に繋がると考えられる。
反応式a:Al+3(H(CR2m-SO2NHM)→[Al(H(CR2m-SO2NHM)]3++3e
反応式b:[Al(H(CR2m-SO2NHM)]3++3e→Al+3(H(CR2m-SO2NHM)
 化合物(2)の含有量を低減することで、充電時の正極でのAl腐食反応(反応式a)及び負極でのAlの還元析出反応(反応式b)を抑制でき、充放電時の不可逆容量が低下し、サイクル性能が向上する。これらの現象は、本発明者らの検討により新たに判明し、特許文献1~4には一切記載されていない。
 非水系電解液に含まれる含フッ素スルホンアミド化合物(2)の含有量は、非水系電解液の全量に対して、1000質量ppm以下であり、500質量ppm以下であることが好ましく、300質量ppm以下であることがより好ましく、200質量ppm以下であることがより好ましく、150質量ppm以下であることがより好ましく、120質量ppm以下であることがさらに好ましい。含フッ素スルホンアミド化合物の含有量を上述の範囲内に調整することにより、正極Al集電体の腐食による充放電時の不可逆容量の増加及びサイクル性能の低下を抑制できる。
 また、非水系電解液に含まれる含フッ素スルホンアミド化合物の含有量は、非水系電解液の全量に対して、0.001質量ppm以上であることが好ましく、0.01質量ppm以上であることがより好ましく、0.1質量ppm以上であることがより好ましく、1質量ppm以上であることがより好ましく、80質量ppm以上であることがさらに好ましい。含フッ素スルホンアミド化合物の含有量を上述の範囲内に調整することにより、含フッ素スルホンアミド化合物が負極で還元された分解物が負極SEIとして働き、電池の長期耐久性を向上できる。
<3.非水系二次電池>
 本実施形態の非水系電解液は、非水系二次電池に用いることができる。
 本実施形態に係る非水系二次電池は、特に制限を与えるものではないが、正極、負極、セパレータ、及び非水系電解液が、適当な電池外装中に収納されて構成される。
 本実施形態に係る非水系二次電池としては、具体的には、図1及び2に図示される非水系二次電池100であってよい。ここで、図1は非水系二次電池を概略的に表す平面図であり、図2は図1のA-A線断面図である。
 図1、図2に示す非水系二次電池100は、パウチ型セルで構成される。非水系二次電池100は、電池外装110の空間120内に、正極150と負極160とをセパレータ170を介して積層して構成した積層電極体と、非水系電解液(図示せず)とを収容している。電池外装110は、例えばアルミニウムラミネートフィルムで構成されており、2枚のアルミニウムラミネートフィルムで形成された空間の外周部において、上下のフィルムを熱融着することにより封止されている。正極150、セパレータ170、及び負極160を順に積層した積層体には、非水系電解液が含浸されている。ただし、この図2では、図面が煩雑になることを避けるために、電池外装110を構成している各層、並びに正極150及び負極160の各層を区別して示していない。
 電池外装110を構成するアルミニウムラミネートフィルムは、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
 正極150は、非水系二次電池100内で正極リード体130と接続している。図示していないが、負極160も、非水系二次電池100内で負極リード体140と接続している。そして、正極リード体130及び負極リード体140は、それぞれ、外部の機器等と接続可能なように、片端側が電池外装110の外側に引き出されており、それらのアイオノマー部分が、電池外装110の1辺とともに熱融着されている。
 図1及び2に図示される非水系二次電池100は、正極150及び負極160が、それぞれ1枚ずつの積層電極体を有しているが、容量設計により正極150及び負極160の積層枚数を適宜増やすことができる。正極150及び負極160をそれぞれ複数枚有する積層電極体の場合には、同一極のタブ同士を溶接等により接合したうえで1つのリード体に溶接等により接合して電池外部に取り出してよい。上記同一極のタブとしては、集電体の露出部から構成される態様、集電体の露出部に金属片を溶接して構成される態様等が可能である。
 正極150は、正極集電体と、正極活物質層とから構成される。負極160は、負極集電体と、負極活物質層とから構成される。
 正極活物質層は正極活物質を含み、負極活物質層は負極活物質を含む。
 正極150及び負極160は、セパレータ170を介して正極活物質層と負極活物質層とが対向するように配置される。
 以下、本実施形態に係る非水系二次電池を構成する各要素について、順に説明する。
<4.正極>
 正極150は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。正極合剤は、正極活物質を含有し、必要に応じて、導電助剤及びバインダーを含有する。
 正極活物質層は、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有する。このような材料は、高電圧及び高エネルギー密度を得ることができる。
 正極活物質としては、例えば、Ni、Mn、及びCoから成る群より選ばれる少なくとも1種の遷移金属元素を含有する正極活物質が挙げられ、下記一般式(a):
  LiNiCoMn・・・・・(a
{式中、Mは、Al、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、及びBaから成る群から選ばれる少なくとも1種の金属であり、且つ、0<p<1.3、0<q<1.2、0<r<1.2、0≦s<0.5、0≦t<0.3、0.7≦q+r+s+t≦1.2、1.8<u<2.2の範囲であり、そしてpは、電池の充放電状態により決まる値である。}
で表されるリチウム(Li)含有金属酸化物から選ばれる少なくとも1種のLi含有金属酸化物が好適である。
 正極活物質の具体例としては、例えば、LiCoOに代表されるリチウムコバルト酸化物;LiMnO、LiMn、及びLiMnに代表されるリチウムマンガン酸化物;LiNiOに代表されるリチウムニッケル酸化物;LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.2に代表されるLiMO(式中、Mは、Ni、Mn、Al、及びMgから成る群より選ばれる2種以上の金属元素を示し、そしてzは、0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物等が挙げられる。
 特に、一般式(a)で表されるLi含有金属酸化物のNi含有比qが、0.5<q<1.2であると、レアメタルであるCoの使用量削減と、高エネルギー密度化の両方が達成されるため好ましい。そのような正極活物質としては、例えば、LiNi0.6Co0.2Mn0.2、LiNi0.75Co0.15Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.85Co0.075Mn0.075、LiNi0.8Co0.15Al0.05、LiNi0.81Co0.1Al0.09、LiNi0.85Co0.1Al0.05、等に代表されるリチウム含有複合金属酸化物が挙げられる。
 他方、Li含有金属酸化物のNi含有比が高まるほど、低電圧で劣化が進行する傾向にある。一般式(a)で表される層状岩塩型の正極活物質には、電解液を酸化劣化させる活性点が本質的に存在する。この活性点が電極保護用添加剤を意図せず消費してしまうことがある。
 また、正極側に取り込まれ堆積したこれらの添加剤分解物は非水系二次電池の内部抵抗増加要因となるだけでなく、リチウム塩の劣化も加速させる。特に、リチウム塩としてLiPFが含まれる場合、劣化によりHFが生成し、遷移金属の溶出が促進されることが考えられる。非水系溶媒としてアセトニトリルを含有する非水系電解液では、金属カチオンとアセトニトリルの錯体が形成され、電池の劣化が加速する。
 更に、電極保護用添加剤、又はリチウム塩の劣化により、本来の目的であった負極表面の保護も不十分にしてしまう。特に、非水系溶媒としてアセトニトリルを含有する非水系電解液では、負極表面の保護が十分でない場合にアセトニトリルの還元分解が進行し、電池性能が急激に悪化するため、致命的な課題となる。
 非水系電解液を本質的に酸化劣化させる活性点を失活させるにはヤーンテラー歪みの制御又は中和剤的な役割を担う成分の共存が重要である。そのため、正極活物質にはAl、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Mo、Zr、Sr、及びBaから成る群より選ばれる少なくとも1種の金属を含有することが好ましい。
 同様の理由により、正極活物質の表面が、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する化合物で被覆されていることが好ましい。また、正極活物質の表面が、Zr、Ti、Al、及びNbから成る群より選ばれる少なくとも1種の金属元素を含有する酸化物で被覆されていることがより好ましい。更に、正極活物質の表面が、ZrO、TiO、Al、NbO、及びLiNbOから成る群より選ばれる少なくとも1種の酸化物で被覆されていることが、リチウムイオンの透過を阻害しないため特に好ましい。
 本実施形態に係る非水系二次電池では、鉄(Fe)原子が含まれるオリビン結晶構造を有するリチウムリン金属酸化物を使用することが好ましく、下記式(Xba):
  LiIIPO   (Xba)
{式中、MIIは、Feを含む少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、そしてwの値は、電池の充放電状態により決まり、0.05~1.10の数を示す}
で表されるはオリビン構造を有するリチウムリン金属酸化物を用いることがより好ましい。これらのリチウム含有金属酸化物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってもよい。
 正極活物質としては、例えば、リチウムと遷移金属元素とを含むリン酸金属酸化物、及びリチウムと遷移金属元素とを含むケイ酸金属酸化物が挙げられる。より高い電圧を得る観点から、リチウム含有金属酸化物としては、特に、リチウムと、Co、Ni、Mn、Fe、Cu、Zn、Cr、V、及びTiから成る群より選ばれる少なくとも1種の遷移金属元素と、を含むリン酸金属酸化物が好ましく、上記式(Xba)で表されるリチウムリン金属酸化物の観点から、LiとFeを含むリン酸金属酸化物がより好ましい。
 上記式(Xba)で表されるリチウムリン金属酸化物とは異なるリチウムリン金属酸化物として、下記式(Xa):
  Li   (Xa)
{式中、Dは、カルコゲン元素を示し、Mは、少なくとも1種の遷移金属元素を含む1種以上の遷移金属元素を示し、そしてvの値は、電池の充放電状態により決まり、0.05~1.10の数を示す}、
で表される化合物を使用してもよい。
 本実施形態における正極活物質としては、上記のようなリチウム含有金属酸化物のみを用いてもよいし、該リチウム含有金属酸化物と共にその他の正極活物質を併用してもよい。その他の正極活物質としては、例えば、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;イオウ;導電性高分子等が挙げられる。トンネル構造及び層状構造を有する金属酸化物、又は金属カルコゲン化物としては、例えば、MnO、FeO、FeS、V、V13、TiO、TiS、MoS、及びNbSeに代表されるリチウム以外の金属の酸化物、硫化物、セレン化物等が挙げられる。導電性高分子としては、例えば、ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子が挙げられる。
 上述のその他の正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有することが好ましい。
 正極活物質として、リチウム含有金属酸化物とその他の正極活物質とを併用する場合、両者の使用割合としては、正極活物質の全部に対するリチウム含有金属酸化物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
 正極活物質層は、正極活物質と、必要に応じて導電助剤及びバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、公知のものを用いることができる。例えば、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
 導電助剤としては、例えば、グラファイト;アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック;並びに炭素繊維が挙げられる。導電助剤の含有量は、正極活物質100質量部当たりの量として、1質量部~20質量部とすることが好ましく、より好ましくは2質量部~15質量部である。
 導電助剤の含有量は、多すぎると体積エネルギー密度が低下するが、少なすぎると電子伝導パスの形成が不十分となる。特に、正極活物質層は負極活物質層と比べて電子伝導性が低いため、導電助剤の量が不足している場合は、非水系二次電池を高い電流値で放電または充電した際に、所定の電池容量を取り出すことができなくなる。そのため、高出力及び/又は急速充電が必要な用途では、電子の移動に基づく反応が律速とならない範囲に導電助剤の含有量を増やした方が好ましい。
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、カルボキシメチルセルロース、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、正極活物質100質量部に対して、6質量部以下とすることが好ましく、より好ましくは0.5~4質量部である。
 正極集電体は、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体は、表面にカーボンコートが施されていてもよく、メッシュ状に加工されていてもよい。正極集電体の厚さは、5~40μmであることが好ましく、7~35μmであることがより好ましく、9~30μmであることが更に好ましい。
 正極集電体を除く正極片面当たりの目付量は、非水系二次電池における体積エネルギー密度を向上させるという観点から、15mg/cm以上であることが好ましく、17.5mg/cm以上であることがより好ましく、24mg/cm以上であることがさらに好ましい。また、正極集電体を除く正極片面当たりの目付量は、200mg/cm以下であることが好ましく、100mg/cm以下であることがより好ましく、60mg/cm以下であることが更に好ましい。正極集電体を除く正極片面当たりの目付量を上記の範囲に制限することによって、体積エネルギー密度の高い電極活物質層を設計した場合においても、高出力性能を実現する非水系二次電池を提供することができる。
 ここで、目付量とは、集電体の片面に電極活物質層を形成する場合は、電極面積1cmあたりに含まれる電極活物質の質量を示し、集電体の両面に電極活物質層を形成する場合は、各片面の電極面積1cmあたりに含まれる電極活物質の質量を示す。電極集電体に電極活物質を多く塗布すると、電池の単位体積あたりの電極活物質量が、電池容量に関係しない他の電池材料、例えば集電箔やセパレータよりも相対的に多くなるため、電池としては高容量化することになる。
 集電体の片面に電極活物質層を形成する場合の目付量は、下記式(12)により算出することができる。
 目付量[mg/cm]=(電極質量[mg]-電極集電体質量[mg])÷電極面積[cm] ・・・・・(12)
<5.負極>
 負極160は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。負極160は、非水系二次電池の負極として作用することができる。
 負極合剤は、負極活物質を含有し、必要に応じて導電助剤及びバインダーを含有する。
 負極活物質としては、例えば、アモルファスカーボン(ハードカーボン、ソフトカーボン)、黒鉛(人造黒鉛、天然黒鉛)、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、炭素コロイド、及びカーボンブラックに代表される炭素材料、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、シリコン合金、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等を用いることができる。負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。
 本実施形態の負極活物質としては、黒鉛、またはTi、V、Sn、Cr、Mn、Fe、Co、Ni、Zn、Al、Si、及びBから成る群から選択される1種以上の元素を含有する化合物を用いることが好ましい。
 負極活物質層は、電池電圧を高められるという観点から、負極活物質としてリチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。
 負極活物質層は、負極活物質と必要に応じて導電助剤及びバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体に塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、公知のものを用いることができ、例えば、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
 導電助剤としては、例えば、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック;炭素繊維;並びに黒鉛が挙げられる。導電助剤の含有割合は、負極活物質100質量部に対して、20質量部以下とすることが好ましく、より好ましくは0.1~10質量部である。
 バインダーとしては、例えば、カルボキシメチルセルロース、PVDF、PTFE、ポリアクリル酸、及びフッ素ゴムが挙げられる。また、ジエン系ゴム、例えばスチレンブタジエンゴム等も挙げられる。バインダーの含有割合は、負極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは0.5~6質量部である。
 負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体は、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体の厚さは、5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
<6.セパレータ>
 本実施形態における非水系二次電池100は、正極150及び負極160の短絡防止、シャットダウン等の安全性付与の観点から、正極150と負極160との間にセパレータ170を備えることが好ましい。セパレータ170としては、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータ170としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。
 合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、又は、これらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
 セパレータ170は、1種の微多孔膜を単層又は複数積層した構成でよく、2種以上の微多孔膜を積層したものであってもよい。セパレータ170は、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて単層又は複数層に積層した構成であってもよい。
 機能付与を目的として、セパレータの表層又は内部に無機粒子を存在させてもよく、その他の有機層を更に塗工又は積層してもよい。また、セパレータは、架橋構造を含むものであってもよい。非水系二次電池の安全性能を高めるため、これらの手法は必要に応じ組み合わせてもよい。
 このようなセパレータ170を用いることで、特に上記の高出力用途のリチウムイオン電池に求められる良好な入出力特性、低い自己放電特性を実現することができる。セパレータの厚さは、セパレータ強度の観点から1μm以上であることが好ましく、透過性の観点より500μm以下であることが好ましく、5μm以上30μm以下であることがより好ましく、10μm以上25μm以下であることが更に好ましい。なお、耐ショート性能を重視する場合には、セパレータの厚さは、15μm以上20μm以下であることが更に好ましいが、高エネルギー密度化を重視する場合には、10μm以上15μm未満であることが更に好ましい。セパレータの気孔率は、高出力時のリチウムイオンの急速な移動に追従する観点から、30%以上90%以下が好ましく、35%以上80%以下がより好ましく、40%以上70%以下が更に好ましい。なお、安全性を確保しつつ出力性能の向上を優先に考えた場合には、50%以上70%以下が特に好ましく、耐ショート性能と出力性能の両立を重視する場合には、40%以上50%未満が特に好ましい。セパレータの透気度は、セパレータの厚さ、気孔率とのバランスの観点から、1秒/100cm以上400秒/100cm以下が好ましく、100秒/100cm以上350/100cm以下がより好ましい。なお、耐ショート性能と出力性能の両立を重視する場合には、透気度は、150秒/100cm以上350秒/100cm以下が特に好ましく、安全性を確保しつつ出力性能の向上を優先に考えた場合には、100/100cm秒以上150秒/100cm未満が特に好ましい。他方では、イオン伝導度の低い非水系電解液と上記範囲内のセパレータを組み合わせた場合、リチウムイオンの移動速度がセパレータの構造ではなく、電解液のイオン伝導度の高さが律速となり、期待したような入出力特性が得られない傾向がある。そのため、非水系電解液の25℃におけるイオン伝導度は、10mS/cm以上であることが好ましく、15mS/cm以上であることがより好ましく、20mS/cm以上であることが更に好ましい。ただし、セパレータの厚さ、透気度及び気孔率、並びに非水系電解液のイオン伝導度は上記の例に限定されない。
<7.電池外装>
 本実施形態における非水系二次電池100の電池外装110の構成は、例えば、電池缶(図示せず)、及びラミネートフィルム外装体のいずれかの電池外装を用いることができる。電池缶としては、例えば、スチール、ステンレス(SUS)、アルミニウム、又はクラッド材等から成る角型、角筒型、円筒型、楕円型、扁平型、コイン型、又はボタン型等の金属缶を用いることができる。ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成から成るラミネートフィルムを用いることができる。
 ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体に正極リード体130(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体に負極リード体140(又は負極端子及び負極端子と接続するリードタブ)を接続してもよい。この場合、正極リード体130及び負極リード体140(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してもよい。
 本実施形態における非水系二次電池の電池外装は、正極側の、非水系電解液との接液層の少なくとも一部にアルミニウムを含むことが好ましい。このような電池外装を用いることで、電池外装の腐食劣化を最大限に抑えて、電池のサイクル特性を向上させることができる。前記接液層は、本体と同じ素材、即ち本体の接液層、であってもよく、本体に別の素材をコーティングした層であってもよい。
 前記接液層に含まれるアルミニウムは、非水系電解液との接液層の一部に存在する態様であってもよく、接液層の全部であってもよいが、電池外装の腐食劣化を最大限に抑えて、そして電池のサイクル特性を最大限に向上させるために、接液層の全部がアルミニウムであることがより好ましい。
 また、本実施形態における非水系二次電池の電池外装は、本体がアルミニウム以外の金属からなり、非水電解液との接液層の少なくとも一部にアルミニウムを含有するものでもよい。前記アルミニウムを含む接液層は、メッキ、クラッドなどにより設けることができる。より好ましくはアルミニウムクラッドにより構成されるものである。クラッドとは、二種類以上の異なる金属を貼り合わせた材料のことであり、一般的には異種金属の境界面が拡散結合している(合金層を持っている)ものとされている。クラッドはプレス加工や爆発圧接により作製することができる。
 コイン型非水系二次電池の場合、電池外装は正極側の接液層の少なくとも一部にアルミニウムを含有するものが好ましく、正極側の接液層の少なくとも一部にアルミニウムがクラッドされたものがより好ましい。
 電池外装の本体金属層がアルミニウム以外の金属からなる場合、その本体金属については特に限定されないが、容器の外側の腐食を防止する観点から、SUS304やSUS316、SUS316Lなどのオーステナイト系ステンレス、SUS329J1、SUS329J3Lなどのオーステナイト・フェライト系ステンレス、SUS405、SUS430などのフェライト系ステンレス、SUS403、SUS410などのマルテンサイト系ステンレスであることが好ましい。
<8.電池の作製方法>
 本実施形態における非水系二次電池100は、上述の非水系電解液、集電体の片面又は両面に正極活物質層を有する正極150、集電体の片面又は両面に負極活物質層を有する負極160、及び電池外装110、並びに必要に応じてセパレータ170を用いて、公知の方法により作製される。
 先ず、正極150及び負極160、並びに必要に応じてセパレータ170から成る積層体を形成する。例えば、長尺の正極150と負極160とを、正極150と負極160との間に該長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体を形成する態様;正極150及び負極160を一定の面積と形状とを有する複数枚のシートに切断して得た正極シートと負極シートとを、セパレータシートを介して交互に積層した積層構造の積層体を形成する態様;長尺のセパレータをつづら折りにして、該つづら折りになったセパレータ同士の間に交互に正極体シートと負極体シートとを挿入した積層構造の積層体を形成する態様;等が可能である。
 次いで、電池外装110(電池ケース)内に上述の積層体を収容して、本実施形態に係る電解液を電池ケース内部に注液し、積層体を電解液に浸漬して封印することによって、本実施形態における非水系二次電池を作製することができる。代替的には、電解液を高分子材料から成る基材に含浸させることによって、ゲル状態の電解質膜を予め作製しておき、シート状の正極150、負極160、及び電解質膜、並びに必要に応じてセパレータ170を用いて積層構造の積層体を形成した後、電池外装110内に収容して非水系二次電池100を作製することもできる。
 なお、電極の配置が、負極活物質層の外周端と正極活物質層の外周端とが重なる部分が存在するように、又は負極活物質層の非対向部分に幅が小さすぎる箇所が存在するように設計されている場合、電池組み立て時に電極の位置ずれが生じることにより、非水系二次電池における充放電サイクル特性が低下するおそれがある。よって、該非水系二次電池に使用する電極体は、電極の位置を予めポリイミドテープ、ポリフェニレンスルフィドテープ、ポリプロピレン(PP)テープ等のテープ類、接着剤等により、固定しておくことが好ましい。
 アセトニトリルを含有する非水系電解液において、アセトニトリルの高いイオン伝導性に起因して、非水系二次電池の初回充電時に正極から放出されたリチウムイオンが負極の全体に拡散する可能性がある。非水系二次電池では、正極活物質層よりも負極活物質層の面積を大きくすることが一般的である。しかしながら、負極活物質層のうち正極活物質層と対向していない箇所にまでリチウムイオンが拡散して吸蔵されてしまうと、このリチウムイオンが初回放電時に放出されずに負極に留まることとなる。そのため、該放出されないリチウムイオンの寄与分が不可逆容量となってしまう。こうした理由から、アセトニトリルを含有する非水系電解液を用いた非水系二次電池では、初回充放電効率が低くなってしまう場合がある。
 他方、負極活物質層よりも正極活物質層の面積が大きいか、又は両者が同じである場合には、充電時に負極活物質層のエッジ部分に電流の集中が起こり易く、リチウムデンドライトが生成し易くなる。
 正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比について特に制限はないが、上記の理由により、1.0より大きく1.1未満であることが好ましく、1.002より大きく1.09未満であることがより好ましく、1.005より大きく1.08未満であることが更に好ましく、1.01より大きく1.08未満であることが特に好ましい。アセトニトリルを含有する非水系電解液を用いた非水系二次電池では、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくすることにより、初回充放電効率を改善できる。
 正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくするということは、負極活物質層のうち、正極活物質層と対向していない箇所の面積の割合を制限することを意味している。これにより、初回充電時に正極から放出されたリチウムイオンのうち、正極活物質層とは対向していない負極活物質層の箇所に吸蔵されるリチウムイオンの量(すなわち、初回放電時に負極から放出されずに不可逆容量となるリチウムイオンの量)を可及的に低減することが可能となる。よって、正極活物質層と負極活物質層とが対向する箇所の面積に対する、負極活物質層全体の面積の比を上記の範囲に設計することによって、アセトニトリルを使用することによる電池の負荷特性向上を図りつつ、電池の初回充放電効率を高め、更にリチウムデンドライトの生成も抑えることができるのである。
 本実施形態における非水系二次電池100は、初回充電により電池として機能し得るが、初回充電のときに電解液の一部が分解することにより安定化する。初回充電の方法について特に制限はないが、初回充電は0.001~0.3Cで行われることが好ましく、0.002~0.25Cで行われることがより好ましく、0.003~0.2Cで行われることが更に好ましい。初回充電は、定電圧充電を経由して行われることも好ましい結果を与える。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、安定強固な負極SEIが電極表面に形成され、内部抵抗の増加を抑制すると共に、反応生成物が負極160のみに強固に固定化されることなく、正極150、セパレータ170等の、負極160以外の部材にも良好な効果を与える。このため、非水系電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは、非常に有効である。
 本実施形態における非水系二次電池100は、複数個の非水系二次電池100を直列又は並列に接続した電池パックとして使用することもできる。電池パックの充放電状態を管理する観点から、正極において上記式(Xba)で表される正極活物質を用いる場合には、電池1個当たりの使用電圧範囲は1.5~4.0Vであることが好ましく、2.0~3.8Vであることが特に好ましい。
 また、一般式(a)で表される正極活物質を用いる場合、電池1個当たりの使用電圧範囲は2~5Vであることが好ましく、2.5~5Vであることがより好ましく、2.75V~5Vであることが特に好ましい。
 以下に本実施形態を具体的に説明した実施例を例示する。本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
<I.含フッ素環状スルホニルイミド塩(化合物(1A))組成物の耐熱性試験>
<分析方法>
 実施例及び比較例において使用した分析方法、原材料、反応条件等は、以下のとおりのものであった。
(核磁気共鳴分析(NMR):1H-NMR、及び19F-NMRによる分子構造解析)
 実施例、及び比較例で得られた生成物について、1H-NMR(400MHz)、及び19F-NMR(337MHz)を用いて、下記測定条件にて分子構造解析を行った。
[測定条件]
  測定装置:JNM-ECZ400S型核磁気共鳴装置(日本電子株式会社製)
  観測核:1H、19
  溶媒:重クロロホルム、重ジメチルスルホキシド
  基準物質:テトラメチルシラン(1H、0.00ppm)、トリクロロフルオロメタン(19F、0.00ppm)
  基準物質濃度:5質量%
  測定試料濃度:20質量%
  パルス幅:6.5μ秒
  待ち時間:2秒
  積算回数:8回(1H)、1024回(19F)
<化合物(2)の含有量>
 19F-NMRの測定結果から、化合物(1A)及び化合物(2)の代表的なピークの積分値より化合物(2)の含有量を測定した。
 本実施例においては、下記構造式:
Figure JPOXMLDOC01-appb-C000031
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2))の含有量は、-115.4ppm(4F)のピークの積分値より、HCF2SO2NHLi(化合物(2-1))の含有量は、-122.6ppm(2F)のピークの積分値より算出した。
(ICP発光分光分析法)
 実施例、及び比較例で得られた生成物について、下記測定条件にて分子構造解析を行った。
[測定条件]
  測定装置:SPS3520UV-DD(株式会社日立ハイテクサイエンス製)
  測定原子:Li
  サンプル調製条件:生成物0.1gを超純水9.9gと混合した濃度1質量%の一時希釈液を得た。次いで、一時希釈液1.5gを1質量%硝酸水溶液28.5gと混合し、測定試料とした。
  高周波パワー:1.2kW
  プラズマガス(アルゴン)流量:16L/分
  補助ガス(アルゴン)流量:0.5L/分
  キャリヤーガス(アルゴン)圧力:0.24MPa
  キャリヤーガス(アルゴン)流量:0.3L/分
  測光高さ:12mm
  チャンバーガス(アルゴン)流量:0.6L/分
(質量減少率1質量%、2質量%となる温度)
 実施例、及び比較例で得られた生成物について、下記測定条件にて質量減少率の測定を行った。
 アルミパン(「クリンプセル(オートサンプラ用)品番346-66963-91」、株式会社島津製作所製、尚、測定時にはカバーを使用しなかった。)に5mgの試料を秤量し、示差熱熱重量同時測定装置(「DTG-60A」、株式会社島津製作所製)を使用し、窒素気流下(流量50mL/分)、25℃~100℃まで昇温速度10℃/分で昇温し、100℃で30分間保持した後、測定温度範囲100℃~500℃、昇温速度10℃/分で加熱し、質量減少の様子を観察した。
 上述の100℃で30分間保持した後の100℃からの昇温開始時の質量を基準(100質量%)として、測定温度範囲100℃~500℃、昇温速度10℃/分で加熱する過程で1質量%、2質量%の質量減少率が確認される温度(℃)を観測した。
<使用原材料>
 実施例、及び比較例で使用した原材料を以下に示す。
(フルオロスルホニル基含有カルボン酸(化合物(3)))
・2,2-ジフルオロ-2-(フルオロスルホニル)酢酸(富士フイルム和光純薬株式会社製)(化合物(3-1))
・アンモニア(住友精化株式会社製)
(アルカリ金属塩(化合物(6)))
・水酸化リチウム一水和物(富士フイルム和光純薬株式会社製)
(溶媒)
・アセトニトリル(富士フイルム和光純薬株式会社製、乾燥したモレキュラーシーブ3A 1/16(富士フイルム和光純薬株式会社製)を加え、脱水し、モレキュラーシーブ3A 1/16を除去することにより水分量を調整した)
・テトラヒドロフラン(富士フイルム和光純薬株式会社製、乾燥したモレキュラーシーブ3A 1/16(富士フイルム和光純薬株式会社製)を加え、脱水し、モレキュラーシーブ3A 1/16を除去することにより水分量を調整した)
・活性炭素(富士フイルム和光純薬株式会社製)
<反応温度>
 反応温度は、外部加熱冷却装置を用いず、室温である場合は、室温である。また、ウォーターバスやオイルバス等の外部加熱冷却装置を利用する場合には、外部加熱冷却装置に用いられている媒体の温度が反応温度である。
[実施例I-1]
(電解カップリング反応工程)
 200mLの三口フラスコに窒素雰囲気下、攪拌子、アセトニトリル(59g)、水(75g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、25.7g、144.3mmоl)を加えた。陽極、及び陰極として、白金板電極(25mm×50mm)を6mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5Aの電流を4時間通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。下層を分取すると7.9gの液体が得られた。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))が90.3質量%(収率37.1%)、HCF2SO2F(化合物(5-1))が1.2質量%含まれていることが確認された。
 上記操作により得られた粗製のFO2SCF2CF2SO2F(化合物(4-1))を常圧単蒸留で精製することにより、95.6質量%のFO2SCF2CF2SO2F(化合物(4-1))、及び0.042質量%のHCF2SO2F(化合物(5-1))を含む液体6.9gが得られた。
FO2SCF2CF2SO2F(化合物(4-1))
19F-NMR:δ(ppm)46.1(2F)、-108.7(4F)
HCF2SO2F(化合物(5-1))
1H-NMR:δ(ppm)7.0ppm(1H)
19F-NMR:36.0(1F)、-122.0(2F)
(環化工程)
 3Lオートクレーブを-78℃に冷却し、アンモニアガス(250g、14680mmоl)、及びテトラヒドロフラン(222.3g)を添加した後、前記電解カップリング反応工程で得られたFO2SCF2CF2SO2F(化合物(4-1)、208g、純度95.6質量%、747.2mmоl)のテトラヒドロフラン(222.3g)溶液を3時間かけて滴下した。滴下終了後、室温で12時間攪拌した。攪拌終了後、反応液を加圧濾過し、不溶固体を除去し、濾液を減圧濃縮、乾燥し、肌色固体193.0gを得た。得られた固体をサンプリングし、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000032
で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2))が99.0質量%(収率98.3%)、HCF2SO2NHNH4(化合物(2-2))が0.048質量%含まれていることが確認された。
化合物(1-N-2)
19F-NMR:δ(ppm)-115.4(4F)
HF2CSO2NHNH4(化合物(2-2))
1H-NMR:δ(ppm)6.0ppm(1H)
19F-NMR:36.0(1F)、-122.6(2F)
(カチオン交換工程)
 1Lの三口フラスコに、窒素雰囲気下、攪拌子、テトラヒドロフラン(400g)、実施例I-1で得られた含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、192.7g、純度99.0質量%、733.2mmоl)、及び水酸化リチウム一水和物(34.2g、815.1mmоl)を添加し、70℃で4時間攪拌した。得られた反応液を減圧濃縮した後、水(500mL)、活性炭(65.8g)を添加し、105℃で3時間攪拌した。得られた反応液を加圧濾過し不溶固体を除去した後、減圧濃縮し肌色固体を得た。得られた肌色固体にテトラヒドロフラン(889g)を添加し、50℃で30分攪拌した後加圧濾過により不溶固体を除去し、減圧濃縮することで177.9gの白色固体を得た。得られた固体をサンプリングし、ICP発光分光分析法により分析を行ったところ、アンモニウムカチオンがリチウムカチオンに交換されていることを確認した。さらに、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000033
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2))が99.9質量%(収率97.3%)、HCF2SO2NHLi(化合物(2))が0.046質量%含まれていることが確認された。
化合物(1-2)
19F-NMR:δ(ppm)-115.4(4F)
HCF2SO2NHLi(化合物(2-1))
1H-NMR:δ(ppm)6.0ppm(1H)
19F-NMR:36.0(1F)、-122.6(2F)
[比較例I-1]
(電解カップリング反応工程)
 電解反応後に蒸留精製を行わなかったこと以外は、実施例I-1と同様にして、FO2SCF2CF2SO2F(化合物(4-1))の製造を行い、90.3質量%のFO2SCF2CF2SO2F(化合物(4-1))、及び1.2質量%のHCF2SO2F(化合物(5-1))を含む液体7.9g(収率37.2%)を得た。
(環化工程)
 前記電解カップリング反応工程で得られたFO2SCF2CF2SO2F(化合物(4-1))を用い、実施例I-1と同様に、含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2))の製造を行い、96.2質量%の含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2))、及び1.43質量%のHCF2SO2NHNH4(化合物(2-2))を含む肌色固体188.0g(収率98.3%)を得た。
(カチオン交換工程)
 前記環化工程で得られた含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2))を用い、実施例I-1と同様にして含フッ素環状スルホンイミドリチウム塩(化合物(1-2))の製造を行い、98.3質量%の含フッ素環状スルホンイミドリチウム塩(化合物(1-2))、及び1.22質量%のHCF2SO2NHLi(化合物(2-1))を含む白色固体170.3g(収率97.2%)を得た。
 実施例I-1、及び比較例I-1で得られた含フッ素環状スルホンイミドリチウム塩(化合物(1-2))の質量減少率1質量%、2質量%となる温度を上述の方法に従い測定した。
Figure JPOXMLDOC01-appb-T000034
 表1より、HF2CSO2NHLi(化合物(2-1))の含有量が低減された実施例I-1の含フッ素環状スルホンイミドリチウム塩(化合物(1-2))は、HCF2SO2NHLi(化合物(2-1))の含有量が多い比較例I-1の含フッ素環状スルホンイミドリチウム塩(化合物(1-2))と比較して、質量減少率2質量%となる温度が上昇し、耐熱特性が向上していることが分かる。これは、熱的に不安定な化合物(2)の含有量が低減したことで、化合物(2)の分解反応に起因する化合物(1A)の分解が抑制された結果、化合物(1A)の耐熱特性が向上したものと考えられる。
<II.非水系電解液>
(1)非水系電解液の調製
 不活性雰囲気下、各種非水系溶媒を、それぞれが所定の濃度になるよう混合した。更に、各種リチウム塩をそれぞれ所定の濃度になるよう添加することにより、非水系電解液(S01)~(S20)を調製した。また、(S01)を母電解液とし、式(2-1)で表される化合物が所定の質量部になるよう添加することにより、非水系電解液(S21)を調製した。これらの非水系電解液組成を表2に示す。
 化合物(1-2)は以下に記載の方法で合成した。ロットAは晶析工程による精製後の化合物、ロットBは電解カップリング反応工程後に蒸留による精製後、環化工程およびカチオン交換工程を経て合成された化合物、ロットCは晶析精製および電解カップリング反応工程後の蒸留精製のいずれも行わなかった化合物である。
 電解液(S02)および(S15)には、精製前の化合物(1-2)(ロットC)由来の、化合物(2-1)とは異なる不溶成分が観測された。そのため、電解液(S02)および(S15)に関しては、不溶成分を容器の底に沈殿させてデカンテーションを行うことで不溶固体を除去した電解液を用いてコイン型非水系二次電池の作製を行った。
 なお、表2における非水系溶媒、リチウム塩の略称は、それぞれ以下の意味である。
 (非水系溶媒)
  AN:アセトニトリル
  PC:プロピレンカーボネート
  EMC:エチルメチルカーボネート
  ES:エチレンサルファイト
  VC:ビニレンカーボネート
  FEC:4-フルオロ-1,3-ジオキソラン-2-オン
 (リチウム塩)
  (1-2):上記式(1-2)で表される化合物
  (1-6):下記式(1-6)で表される化合物
Figure JPOXMLDOC01-appb-C000035
  LiFSI:リチウムビス(フルオロスルホニル)イミド(LiN(SOF)
  LiTFSI:リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF
 (含フッ素スルホンアミド化合物)
  (2-1):上記式(2-1):HCF2SO2NHLiで表される含フッ素スルホンアミド化合物
・化合物(1-2)の作製
<分析方法>
 化合物(1-2)の作製において使用した分析方法、原材料、反応条件等は、以下のとおりのものであった。
(核磁気共鳴分析(NMR):1H-NMR、及び19F-NMRによる分子構造解析)
 化合物(1-2)の作製過程で得られた生成物について、1H-NMR(400MHz)、及び19F-NMR(337MHz)を用いて、下記測定条件にて分子構造解析を行った。
[測定条件]
  測定装置:JNM-ECZ400S型核磁気共鳴装置(日本電子株式会社製)
  観測核:1H、19
  溶媒:重クロロホルム、重ジメチルスルホキシド
  基準物質:テトラメチルシラン(1H、0.00ppm)、トリクロロフルオロメタン(19F、0.00ppm)
  基準物質濃度:5質量%
  測定試料濃度:20質量%
  パルス幅:6.5μ秒
  待ち時間:2秒
  積算回数:8回(1H)、1024回(19F)
<化合物(2-1)の含有量>
 19F-NMRの測定結果から、化合物(1-2)及び化合物(2-1)の代表的なピークの積分値より化合物(2-1)の含有量を測定した。
 本実施例においては、下記構造式:
Figure JPOXMLDOC01-appb-C000036
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2))は、-115.4ppm(4F)のピークの積分値より、およびHCF2SO2NHLi(化合物(2-1))は、-122.6ppm(2F)のピークの積分値より化合物(2-1)の含有量を算出した。
(ICP発光分光分析法)
 作製した化合物(1-2)について、下記測定条件にて分子構造解析を行った。
[測定条件]
  測定装置:SPS3520UV-DD(株式会社日立ハイテクサイエンス製)
  測定原子:Li
  サンプル調製条件:生成物0.1gを超純水9.9gと混合した濃度1質量%の一時希釈液を得た。次いで、一時希釈液1.5gを1質量%硝酸水溶液28.5gと混合し、測定試料とした。
  高周波パワー:1.2kW
  プラズマガス(アルゴン)流量:16L/分
  補助ガス(アルゴン)流量:0.5L/分
  キャリヤーガス(アルゴン)圧力:0.24MPa
  キャリヤーガス(アルゴン)流量:0.3L/分
  測光高さ:12mm
  チャンバーガス(アルゴン)流量:0.6L/分
<使用原材料>
 化合物(1-2)の作製で使用した原材料を以下に示す。
・2,2-ジフルオロ-2-(フルオロスルホニル)酢酸(化合物(3-1)、富士フイルム和光純薬株式会社製)
・アンモニア(住友精化株式会社製)
・水酸化リチウム一水和物(富士フイルム和光純薬株式会社製)
・アセトニトリル(富士フイルム和光純薬株式会社製、乾燥したモレキュラーシーブ3A 1/16(富士フイルム和光純薬株式会社製)を加え、脱水し、モレキュラーシーブ3A 1/16を除去することにより水分量を調整した)
・テトラヒドロフラン(富士フイルム和光純薬株式会社製、乾燥したモレキュラーシーブ3A 1/16(富士フイルム和光純薬株式会社製)を加え、脱水し、モレキュラーシーブ3A 1/16を除去することにより水分量を調整した)
・活性炭素(富士フイルム和光純薬株式会社製)
<反応温度>
 反応温度は、外部加熱冷却装置を用いない場合は、室温である。また、ウォーターバスやオイルバス等の外部加熱冷却装置を利用する場合には、外部加熱冷却装置に用いられている媒体の温度が、反応温度である。
<化合物(1-2)の合成(ロットAおよびC)>
(電解カップリング反応工程)
 200mLの三口フラスコに窒素雰囲気下、攪拌子、アセトニトリル(59g)、水(75g)を添加した後、0℃に冷却し、FOSCFCOH(化合物(3-1)、富士フイルム和光純薬株式会社製、25.7g、144.3mmоl)を加えた。陽極、及び陰極として、白金板電極(25mm×50mm)を6mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5Aの電流を4時間通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。下層を分取すると7.9gの液体が得られた。得られた液体を水洗し、モレキュラーシーブで乾燥することにより、FOSCFCFSOF(化合物(4-1))を含む液体6.9gが得られた。
FOSCFCFSOF(化合物(4-1))
19F-NMR(重クロロホルム):δ(ppm)46.1(2F)、-108.7(4F)
(環化工程)
 3Lオートクレーブを-78℃に冷却し、アンモニアガス(250g、14.68mоl)、及びテトラヒドロフラン(250mL)を添加した後、オートクレーブ内の温度を-55℃以下に保ちつつ、FOSCFCFSOF(化合物(4-1)、208g、0.71mоl)のテトラヒドロフラン(250.0mL)溶液を滴下した。滴下終了後、室温で終夜攪拌した。その後、攪拌を維持しつつ、内圧を常圧に戻し、アルゴンを0.5L/分の速度で1.5時間オートクレーブに吹きこみ、アンモニアを排出した。反応液を濾過することで白色固体を除去し、テトラヒドロフランで数回洗浄した。得られた濾液を3Lのフラスコに移し、減圧濃縮し、さらに40℃で12時間真空乾燥させることで固体188.0gを得た。得られた固体をサンプリングし、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000037
で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、0.7mоl、収率98%)であることが確認された。
19F-NMR(重ジメチルスルホキシド):δ(ppm)-115.4(4F)
(カチオン交換工程)
 1Lの三口フラスコに、窒素雰囲気下、攪拌子、テトラヒドロフラン(450mL)、含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、187.0g、0.69mоl)、及び水酸化リチウム一水和物(32.2g、0.77mоl)を添加し、70℃で4時間攪拌した。得られた反応液を減圧濃縮した後、イオン交換水(500mL)、および活性炭(65.8g)を添加し、105℃で3時間攪拌した。得られた反応液を加圧濾過して不溶固体を除去した後、減圧濃縮して固体(205.8g)を得た。得られた肌色固体にテトラヒドロフラン(1L)を添加し、50℃で30分攪拌した後、加圧濾過により不溶固体を除去し、減圧濃縮した後、70℃で16時間、90℃で10時間真空乾燥することで170.3gの微褐色固体を得た。得られた固体をサンプリングし、ICP発光分光分析法により分析を行ったところ、アンモニウムカチオンがリチウムカチオンに交換されていることを確認した。さらに、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000038
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2)、0.68mоl、収率98%)であることが確認された。得られた結晶をサンプリングし、19F-NMRで分析すると、化合物(1-2)が99.1質量%、HCF2SO2NHLi(化合物(2-1))が6600質量ppm含まれていることが確認された(ロットC)。
化合物(1-2)
19F-NMR(重ジメチルスルホキシド):δ(ppm)-115.4(4F)
HCF2SO2NHLi(化合物(2-1))
1H-NMR(重ジメチルスルホキシド):δ(ppm)6.0(1H)
19F-NMR(重ジメチルスルホキシド):δ(ppm)-122.6(2F)
(晶析工程)
 撹拌子を備えた100mLナスフラスコに、合成した化合物(1-2)10gとtert-ブチルメチルエーテル27gとを秤量し、密栓を取り付けて30分撹拌した。得られた混合液を減圧濾過後、-20℃の冷凍庫で30分間冷却したところ、無色の結晶が生じた。デカンテーションによる液部の除去後、-35℃のtert-ブチルメチルエーテルを添加して薬さじで混ぜることにより結晶を洗浄し、液部をデカンテーションによって除去した。得られた結晶を、無撹拌条件かつ60℃、および40hPaの条件で3時間減圧乾燥した。この結晶を乳鉢と乳棒を用いて粉砕し、バートレル(三井・ケマーズフロロプロダクツ株式会社製、主成分:1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン)20mLを添加し、無撹拌条件かつ100℃、および15hPaの条件で2時間減圧乾燥する操作を4回繰り返す追乾燥工程を行なうことで、4.9g(収率49.0%)の結晶が得られた。得られた結晶をサンプリングし、19F-NMRで分析すると、化合物(1-2)が99.9質量%、HCF2SO2NHLi(化合物(2-1))が462質量ppm含まれていることが確認された(ロットA)。
化合物(1-2)
19F-NMR(重ジメチルスルホキシド):δ(ppm)-115.4(4F)
HCF2SO2NHLi(化合物(2-1))
1H-NMR(重ジメチルスルホキシド):δ(ppm)6.0(1H)
19F-NMR(重ジメチルスルホキシド):δ(ppm)-122.6(2F)
<化合物(1-2)の合成(ロットB)>
(電解カップリング反応工程)
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(4.5g)、水(22.6g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、30.0g、168.2mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を3時間通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。下層を分取すると17.2gの液体が得られた。得られた液体をモレキュラーシーブで乾燥後、蒸留精製し、FOSCFCFSOF(化合物(4-1))を含む液体12.2gが得られた。
FOSCFCFSOF(化合物(4-1))
19F-NMR(重クロロホルム):δ(ppm)46.1(2F)、-108.7(4F)
(環化工程)
 3Lオートクレーブを-78℃に冷却し、アンモニアガス(240g、14.09mоl)、及びテトラヒドロフラン(200mL)を添加した後、オートクレーブ内の温度を-55℃以下に保ちつつ、FOSCFCFSOF(化合物(4-1)、173g、0.59mоl)のテトラヒドロフラン(200.0mL)溶液を滴下した。滴下終了後、室温で終夜攪拌した。その後、攪拌を維持しつつ、内圧を常圧に戻し、アルゴンを0.5L/分の速度で1.5時間オートクレーブに吹きこみ、アンモニアを排出した。反応液を濾過することで白色固体を除去し、テトラヒドロフランで数回洗浄した。得られた濾液を3Lのフラスコに移し、減圧濃縮し、さらに40℃で12時間真空乾燥させることで固体160.2gを得た。得られた固体をサンプリングし、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000039
で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、0.56mоl、収率95%)であることが確認された。
19F-NMR(重ジメチルスルホキシド):δ(ppm)-115.4(4F)
(カチオン交換工程)
 1Lの三口フラスコに、窒素雰囲気下、攪拌子、テトラヒドロフラン(564mL)、含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、242.0g、0.93mоl)、及び水酸化リチウム一水和物(42.9g、1.02mоl)を添加し、75℃で4時間攪拌した。得られた反応液を減圧濃縮した後、イオン交換水(628mL)、および活性炭(82.7g)を添加し、105℃で3時間攪拌した。得られた反応液を加圧濾過して不溶固体を除去した後、減圧濃縮して固体(245g)を得た。得られた肌色固体にテトラヒドロフラン(1.27L)を添加し、50℃で30分攪拌した後、加圧濾過により不溶固体を除去し、減圧濃縮した後、70℃で16時間、90℃で6時間真空乾燥することで212gの白色固体を得た。得られた固体をサンプリングし、ICP発光分光分析法により分析を行ったところ、アンモニウムカチオンがリチウムカチオンに交換されていることを確認した。さらに、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000040
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2)、0.85mоl、収率91%)であることが確認された。得られた結晶をサンプリングし、19F-NMRで分析すると、化合物(1-2)が99.8質量%、HCF2SO2NHLi(化合物(2-1))が761質量ppm含まれていることが確認された(ロットB)。
化合物(1-2)
19F-NMR(重ジメチルスルホキシド):δ(ppm)-115.4(4F)
HCF2SO2NHLi(化合物(2-1))
1H-NMR(重ジメチルスルホキシド):δ(ppm)6.0(1H)
19F-NMR(重ジメチルスルホキシド):δ(ppm)-122.6(2F)
Figure JPOXMLDOC01-appb-T000041
(2)コイン型非水系二次電池の作製
(2-1)正極(P1)の作製
 正極活物質として、リチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi0.33Mn0.33Co0.33)と、導電助剤として、カーボンブラック粉末と、バインダーとして、ポリフッ化ビニリデン(PVDF)とを、94:3:3の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを投入してさらに混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μmのアルミニウム箔の片面に、この正極合剤含有スラリーを目付量が11.4mg/cmになるように調節しながら塗布し、溶剤を乾燥除去した。その後、ロールプレスで正極活物質層の密度が2.71g/cmになるよう圧延して、正極活物質層と正極集電体から成る正極(P1)を得た。
(2-2)負極(N1)の作製
 負極活物質として、グラファイト粉末と、導電助剤として、カーボンブラック粉末と、バインダーとして、ポリフッ化ビニリデン(PVDF)とを、90:3:7の質量比で混合し、負極合剤を得た。
 得られた負極合剤に溶剤として水を投入してさらに混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ8μmの銅箔の片面に、この負極合剤含有スラリーを目付量が5.4mg/cmになるように調節しながら塗布し、溶剤を乾燥除去した。その後、ロールプレスで負極活物質層の密度が1.31g/cmになるよう圧延して、負極活物質層と負極集電体から成る負極(N1)を得た。
(2-3)コイン型非水系二次電池の組み立て
 CR2032タイプの電池ケース(SUS304/Alクラッド)にポリプロピレン製ガスケットをセットし、その中央に、上述のようにして得られた正極(P1)を直径15.958mmの円盤状に打ち抜いたものを、正極活物質層を上向きにしてセットした。その上から、ガラス繊維濾紙(GA-100;アドバンテック社製)を直径16.156mmの円盤状に打ち抜いたものをセットして、非水系電解液(S01~S21)を150μL注入した後、上述のようにして得られた負極(N1)を直径16.156mmの円盤状に打ち抜いたものを、負極活物質層を下向きにしてセットした。さらに、電池ケース内にスペーサーとスプリングをセットした後に電池キャップをはめ込み、カシメ機でかしめた。溢れた非水系電解液はウエスで拭き取った。正極とガラス繊維濾紙と負極の積層体、及び非水系電解液を含むアセンブリを25℃で12時間保持し、積層体に非水系電解液を十分馴染ませてコイン型非水系二次電池を得た。
(3)コイン型非水系二次電池の評価
 上述のようにして得られたコイン型非水系二次電池について、まず、下記(3-1)の手順に従って初回充電処理及び初回充放電容量測定を行った。次に下記(3-2)の手順に従って、それぞれの非水系二次電池を評価した。なお、充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。
 ここで、1Cとは、満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。下記(3-1)~(3-2)の評価では、1Cは、具体的には、4.2Vの満充電状態から定電流で3.0Vまで放電して1時間で放電終了となることが期待される電流値を意味する。
 上記(2-3)の手順に従って組み立てられた小型非水系二次電池は、3mAh級セルであり、満充電状態となる電池電圧を4.2Vと定め、1C相当の電流値は3.0mAとする。以降、特に断らない限り、便宜上、電流値、電圧の表記は省略する。
(3-1)初回充放電処理
 コイン型非水系二次電池の周囲温度を25℃に設定し、0.025Cに相当する0.075mAの定電流で充電して3.1Vに到達した後、4.2Vの定電圧で電流が0.025mAに減衰するまで充電を行った。続いて3時間休止後、0.05Cに相当する0.15mAの定電流で電池を充電して4.2Vに到達した後、4.2Vの定電圧で電流が0.025Cに減衰するまで充電を行った。このときの充電容量(3.1Vまでの充電容量と4.2Vまでの充電容量の和)を初回充電容量(X)とした。その後、0.15Cに相当する0.45mAの定電流で3.0Vまで電池を放電した。このときの放電容量を初回放電容量(Y)とした。また、以下の式に基づき、初回充放電効率を算出した。
  初回充放電効率=(初回放電容量(Y)/初回充電容量(X))×100[%]
 次に、0.2Cに相当する0.6mAの定電流で4.2Vに到達した後、4.2Vの定電圧で電流が0.025Cに減衰するまで充電を行った。その後、0.2Cに相当する0.6mAの電流値で3Vまで放電した。その後、上記と同様の充放電を1サイクル行った。
(3-2)25℃サイクル試験
 上記(3-1)に記載の方法で初回充放電処理を行ったコイン型非水系二次電池について、周囲温度を25℃に設定し、1Cに相当する3mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で電流が0.025Cに減衰するまで充電を行った。その後、1Cに相当する3mAの定電流で電池電圧3.0Vまで放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。このときの放電容量を100サイクル目放電容量(以後、(T)と表記する場合がある)とした。以下の式に基づき、サイクル容量維持率を算出した。
 サイクル容量維持率=(25℃サイクル試験での100サイクル目放電容量(T)/初回充放電処理における初回放電容量(Y))×100[%]
 なお、25℃サイクル試験前に電圧が2V以下に低下していた場合、電圧異常としてサイクル試験を行わなかった。
(4)負極のICP発光分光分析
 25℃サイクル試験終了後、25℃環境下で電池電圧が2.5Vとなるまで0.1Cに相当する定電流で放電を行った。その後、アルゴン雰囲気下でコイン型非水系二次電池を解体して負極を取り出した。アセトニトリルで負極を洗浄した後、乾燥した。さらに、以下に示される前処理を行なった後に、負極のICP発光分光分析を行った。
 前処理として、試料をテフロン(登録商標)分解容器に取り、68%硝酸:3mLと98%硫酸:5mLの混合溶媒を加えてマイクロウェーブによる220℃45分間の加熱分解後(1段目反応)、68%硝酸:2mLを追添して、再度マイクロウェーブによる230℃40分間の加熱分解後(2段目反応)、超純水で全量を約100gに調製した。黒鉛が残渣として残ったため、ろ過した液をICP測定に用いた。マイクロウェーブ前処理装置はマイルストーンゼネラル製ETHOS oneを用い、マイクロウェーブ出力は1000Wとした。
 ICP発光分光分析は、下記条件にて行い、負極(負極集電箔含む)1g当たりの負極Al溶出量を測定した。
 装置:SII(エスアイアイ)ナノテクノロジー社製SPS3520UV-DD
 高周波パワー:1.2(Kw)
 プラズマガス(Ar)流量:16(L/min)
 補助ガス(Ar)流量 :0.5(L/min)
 キャリヤーガス(Ar)圧力:0.24(MPa)
 キャリヤーガス(Ar)流量:0.3(L/min)
 チャンバーガス(Ar)流量:0.6(L/min)
 パージガス(N)流量:5(L/min)
 測光高さ:12(mm)
 元素:Al
 分光器:R
 波長:167.079(nm)
 パージガス:ON
 検量線は、Al標準液100mg/Lを、酸水溶液(試料の分解液と同様の酸濃度になるように、超純水に68%硝酸と98%硫酸を加えて調製)で希釈して調製した、0、0.01、0.05、0.1、0.5、1、2mg/Lの6点の検量線用標準液を用いて作成した。
(5)正極Al集電体の表面SEM解析
 25℃サイクル試験終了後、25℃環境下で電池電圧が2.5Vとなるまで0.1Cに相当する定電流で放電を行った。その後、アルゴン雰囲気下でコイン型非水系二次電池を解体して正極を取り出した。正極Al集電体上の正極活物質を、N-メチル-2-ピロリドン(NMP)に浸した綿棒で除去した。アセトニトリルで正極Al集電体を洗浄した後、乾燥した。その後、アルゴン雰囲気下で正極Al集電体を適切な大きさに切り出し、走査電子顕微鏡(SEM)観察用試料台に固定し、表面SEM観察試料とした。試料は専用のトランスファーベッセルを用いて、雰囲気遮断した状態でSEM装置に導入した。
 SEM観察は、日立製SU8220を用いた。測定条件は加速電圧1kVとした。
 実施例II-1に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真を図3(倍率40倍)及び図4(倍率1000倍)に示す。
 また、比較例II-1に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真を図5(倍率40倍)及び図6(倍率1000倍)に示す。
 また、比較例II-3に用いた非水系電解液で作製されたコイン型非水系二次電池のサイクル試験後の正極Al集電体の表面SEM写真を図7(倍率40倍)、図8(倍率1000倍)及び図9(倍率10000倍)に示す。
 ここで、各試験の解釈について述べる。
 初回効率は、初回充電容量に対する初回放電容量の割合を示すが、一般的に2回目以降の充放電効率より低い。これは、初回充電時にLiイオンが利用されて負極SEIが形成するためである。それによって放電できるLiイオンが少なくなる。ここで、初期充放電初回効率は84%以上であれば問題はなく、85%以上であることが望ましい。
 25℃サイクル容量維持率は、繰り返し使用による電池劣化の指標となる。この値が大きいほど、繰り返し使用による容量低下が少なく、長期使用を目的とする用途に使用可能であると考えられる。
 従って、25℃サイクル容量維持率は70%以上であることが望ましい。
 また、25℃サイクル試験前に電圧が2V以下に低下した場合、電池内で微短絡が生じていると考えられ、長期使用を目的とする用途に使用するのは困難であると考えられる。
 負極Al溶出量は、繰り返し使用による電池劣化の指標となる。この値が小さいほど、繰り返し使用による正極Al集電箔の腐食が抑制され、Alの負極での還元析出による負極SEIの劣化が抑制され、長期使用を目的とする用途に使用可能であると考えられる。
 従って、負極Al溶出量は1000質量ppm以下であることが望ましく、500質量ppm以下であることがさらに望ましい。
 初回充放電処理、25℃サイクル試験、負極のICP発光分光分析の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000042
 表3に示すように、実施例II-1~II-13では、初回効率、サイクル容量維持率、負極Al溶出量ともに好ましい範囲の値となった。一方、比較例II-2、II-3、II-4、II-5、II-7は初回効率が84%未満の値を示した。比較例II-3、II-4、II-7、II-8はサイクル容量維持率が70%未満の値を示した。比較例II-1、II-3、II-6は、負極Al溶出量が1000質量ppmより大きい値を示した。
 実施例II-1と比較例II-1~II-3を比較すると、リチウム塩として含フッ素環状スルホニルイミド塩を用い、かつ、含フッ素スルホンアミド化合物の量を好ましい範囲に調節することで、初回効率が向上している。これは、初回充電時の正極でのAl腐食反応、及び、負極でのAlの還元析出反応が抑制され、不可逆容量の増加を抑制したためだと考えられる。初回充電容量及び初回放電容量に関して、比較例II-1~II-3と比較して実施例II-1の初回充電容量が低下しているのにも関わらず、比較例II-1~II-3と比較して実施例II-1の初回放電容量は低下していないことからも、Al腐食に起因する不可逆反応が抑制されていることが示唆される。
 また、実施例II-1と比較例II-1、II-3を比較すると、リチウム塩として含フッ素環状スルホニルイミド塩を用い、かつ、含フッ素スルホンアミド化合物の量を好ましい範囲に調節することで、サイクル容量維持率が向上するとともに、負極Al溶出量が低減されている。これは、サイクル試験時に継続的な正極でのAl腐食反応、及び、負極でのAl還元析出反応が抑制され、不可逆容量の増加が抑制されるとともに、負極で還元析出したAlによる負極SEIの物理的損傷が抑制されたためだと考えられる。
 なお、リチウム塩としてLiFSIを用いた比較例II-2ではサイクル試験開始前に電圧が2V以下に低下し、電圧異常を起こしている。これは、初回充放電時に激しい正極でのAl腐食反応、及び、負極でのAl還元析出反応が起き、負極で還元析出したAlにより微短絡が起こったためだと考えられる。
 また、図7より、Al集電体表面に多数の孔食が観測された。図8、9では孔食の1つが拡大されており、図9では孔食内部の外縁が歪であるのに加え、孔食内部にさらなる孔が観測された。これは、リチウム塩として含フッ素環状スルホニルイミド塩を用いなかった場合に、正極Al集電体が激しく腐食したためだと考えられる。一方、図3~4ではAl集電体表面に孔食が見られず、リチウム塩として含フッ素環状スルホニルイミド塩を用いることで、正極Al集電体の激しい腐食を抑制することができる。
 また、実施例II-1と実施例II-2を比較すると、含フッ素環状スルホニルイミド塩としてロットAを用いた場合、ロットBを用いた場合と比べてサイクル容量維持率が向上するとともに、負極Al溶出量が低減されている。これは、晶析精製が電解カップリング反応工程後の蒸留精製に比べて含フッ素スルホンアミド化合物低減効果が高く、含フッ素環状スルホニルイミド塩および電解液中の含フッ素スルホンアミド化合物が低減されたため、サイクル試験時に継続的な正極でのAl腐食反応、及び、負極でのAl還元析出反応が抑制され、不可逆容量の増加が抑制されるとともに、負極で還元析出したAlによる負極SEIの物理的損傷が抑制されたためだと考えられる。
(6)25℃サイクル試験での100サイクル後放電IRドロップ増加率
 各サイクルにおいて、放電開始前の電圧と放電開始から10秒後の電圧の差(単位:V)を、放電電流値である3.0(単位:mA)で割ることで求められる値(単位:kΩ)を各サイクルにおける放電IRドロップとし、内部抵抗の指標とした。
 1サイクル目における放電IRドロップを1サイクル目放電IRドロップとし、100サイクル目における放電IRドロップを100サイクル目放電IRドロップとした。以下の式に基づき、100サイクル後放電IRドロップ増加率を算出した。
 100サイクル後IRドロップ増加率=(25℃サイクル試験での100サイクル目放電IRドロップ/1サイクル目放電IRドロップ)×100[%]
 100サイクル後放電IRドロップ増加率は、繰り返し使用による電池劣化の指標となる。この値が小さいほど、繰り返し使用による内部抵抗の増加が少なく、長期使用を目的とする用途に使用可能であると考えられる。従って、アセトニトリルを含有する非水系電解液を含む非水系二次電池において、100サイクル後放電IRドロップ増加率は400%以下であることが好ましく、200%以下であることがより好ましい。得られた評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000043
 表4に示すように、実施例II-14、II-15では、100サイクル後放電IRドロップ増加率が好ましい範囲の値となった。一方、比較例II-9では100サイクル後放電IRドロップ増加率が400%より大きい値を示した。これは、サイクル試験時に継続的な正極でのAl腐食反応、及び、負極でのAl還元析出反応が抑制され、内部抵抗の増加が抑制されたためだと考えられる。
 また、実施例II-14と実施例II-15を比較すると、含フッ素環状スルホニルイミド塩としてロットAを用いた場合、ロットBを用いた場合と比べて100サイクル後放電IRドロップ増加率が低減されている。これは、晶析精製が電解カップリング反応工程後の蒸留精製に比べて含フッ素スルホンアミド化合物低減効果が高く、含フッ素環状スルホニルイミド塩および電解液中の含フッ素スルホンアミド化合物が低減されたため、サイクル試験時に継続的な正極でのAl腐食反応、及び、負極でのAl還元析出反応が抑制され、内部抵抗の増加が抑制されたためだと考えられる。
(7)小型非水系二次電池の作製
(7-1)正極(P2)の作製
 正極活物質として、リチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi0.8Mn0.1Co0.1)と、導電助剤として、カーボンブラック粉末と、バインダーとして、ポリフッ化ビニリデン(PVDF)とを、94:3:3の質量比で混合し、正極合剤を得た。
 得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを投入してさらに混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μmのアルミニウム箔の片面に、この正極合剤含有スラリーを目付量が16.6mg/cmになるように調節しながら塗布し、溶剤を乾燥除去した。その後、ロールプレスで正極活物質層の密度が2.91g/cmになるよう圧延して、正極活物質層と正極集電体から成る正極(P2)を得た。
(7-2)負極(N2)の作製
 (A)負極活物質として、黒鉛粉末と、(B)導電助剤としてカーボンブラック粉末と、(C)バインダーとして、ポリフッ化ビニリデン(PVDF)とを、90:3:7の固形分質量比で混合し、負極合剤を得た。
 得られた負極合剤に溶剤として水を投入してさらに混合して、負極合剤含有スラリーを調製した。このスラリーを、負極集電体となる厚さ8μmの銅箔の片面に、この負極合剤含有スラリーを目付量が10.3mg/cmになるように調節しながら塗布し、溶剤を乾燥除去した。その後、ロールプレスで負極活物質層の密度が1.36g/cmになるよう圧延して、負極活物質層と負極集電体から成る負極(N2)を得た。
(7-3)小型非水系二次電池の組み立て
 上述のようにして得られた正極(P2)を直径18mmの円盤状に打ち抜いたものと、上述のようにして得られた負極(N2)を直径18mmの円盤状に打ち抜いたものと、セパレータ内蔵絶縁スリーブ(EL-Cell社製、ECC1-00-0210-W/X)の両側に重ね合わせ、非水系電解液(S19~S20)を120μL注入した後、正極側をアルミニウム製プランジャー、負極側をSUS製プランジャーで押さえることで積層体を得た。その積層体を電池ケース(EL-Cell社製、PAT-Cell)に挿入して組み立てた後、電池ケースを密閉して25℃で12時間保持し、積層体に非水系電解液を十分馴染ませて小型非水系二次電池を得た。
(8)小型非水系二次電池の評価
 上述のようにして得られた小型非水系二次電池について、まず、下記(8-1)の手順に従って初回充放電処理、及び初回充放電容量測定を行った。次に下記(8-2)の手順に従って、それぞれの小型非水系二次電池を評価した。なお、充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)、及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。
 本明細書では、1Cとは満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。下記(8-1)~(8-2)の評価では、1Cは、具体的には、4.2Vの満充電状態から定電流で3.0Vまで放電して1時間で放電終了となることが期待される電流値を意味する。
 上記(7-3)の手順に従って組み立てられた小型非水系二次電池は、7.4mAh級セルであり、満充電状態となる電池電圧を4.2Vと定め、1C相当の電流値は7.4mAとする。以降、特に断らない限り、便宜上、電流値、電圧の表記は省略する。
(8-1)小型非水系二次電池の初回充放電処理
 小型非水系二次電池の周囲温度を25℃に設定し、0.025Cに相当する0.185mAの定電流で充電して3.1Vに到達した後、3.1Vの定電圧で1.5時間充電を行った。続いて3時間休止後、0.05Cに相当する0.37mAの定電流で電池を充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。その後、0.15Cに相当する1.11mAの定電流で3.0Vまで電池を放電した。
(8-2)小型非水系二次電池の50℃サイクル試験
 上記(8-1)に記載の方法で初回充放電処理を行った小型非水系二次電池について、周囲温度を50℃に設定し、0.5Cに相当する3.7mAの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。その後、0.5Cに相当する3.7mAの電流値で3.0Vまで電池を放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。
 各サイクルにおいて、放電開始前の電圧と放電開始から10秒後の電圧の差(単位:V)を、放電電流値である3.7(単位:mA)で割ることで求められる値(単位:kΩ)を各サイクルにおける放電IRドロップとし、内部抵抗の指標とした。
 1サイクル目における放電IRドロップを1サイクル目放電IRドロップとし、100サイクル目における放電IRドロップを100サイクル目放電IRドロップとした。以下の式に基づき、100サイクル後放電IRドロップ増加率を算出した。
 100サイクル後IRドロップ増加率=(50℃サイクル試験での100サイクル目放電IRドロップ/1サイクル目放電IRドロップ)×100[%]
 100サイクル後放電IRドロップ増加率は、繰り返し使用による電池劣化の指標となる。この値が小さいほど、繰り返し使用による内部抵抗の増加が少なく、長期使用を目的とする用途に使用可能であると考えられる。従って、アセトニトリルを含有しない非水系電解液を含む非水系二次電池において、100サイクル後放電IRドロップ増加率は200%以下であることが望ましく、130%以下であることがより望ましい。得られた評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000044
 表5に示すように、実施例II-16では、100サイクル後放電IRドロップ増加率が130%以下の値を示した一方、実施例II-17は、100サイクル後放電IRドロップ増加率が130%を超える値を示した。
 実施例II-16と実施例II-17を比較すると、非水系電解液がLiPFを含有することで、100サイクル後放電IRドロップ増加率が改善している。これは、LiPFを含有することでアルミニウム不働態及び負極SEIの形成に必要なフッ化水素(HF)量を満足するとともに、環状アニオンの分解物が負極SEI成分として働いたためだと考えられる。
 また、実施例II-16と実施例II-17を比較すると、LiPFの含有量がビニレンカーボネートの含有量に対してモル比で0.01以上4以下の範囲にあることで、100サイクル後放電IRドロップ増加率が改善している。これは、LiPFの含有量がビニレンカーボネートの含有量に対して好ましい範囲にあることで、負極SEIにおける環状アニオン含有リチウム塩及び環状カーボネート由来の有機成分と、LiPF由来の無機成分の割合が適切に制御されたためだと考えられる。
<III.電解カップリング反応(β/αの関係および反応容器―電極の関係)>
<分析方法>
 実施例及び比較例において使用し分析方法、原材料、反応条件等は、以下の通りのものであった。
(核磁気共鳴分析(NMR):1H-NMR、及び19F-NMRによる分子構造解析)
 実施例、及び比較例で得られた生成物について、1H-NMR(400MHz)、及び19F-NMR(337MHz)を用いて、下記測定条件にて分子構造解析を行った。
[測定条件]
  測定装置:JNM-ECZ400S型核磁気共鳴装置(日本電子株式会社製)
  観測核:1H、19
  溶媒:重クロロホルム、重ジメチルスルホキシド
  基準物質:テトラメチルシラン(1H、0.00ppm)、トリクロロフルオロメタン(19F、0.00ppm)
  基準物質濃度:5質量%
  測定試料濃度:20質量%
  パルス幅:6.5μ秒
  待ち時間:2秒
  積算回数:8回(1H)、1024回(19F)
<使用原材料>
 実施例及び比較例で使用した原材料を以下に示す。
(フルオロスルホニル基含有カルボン酸化合物(3))
・2,2-ジフルオロ-2-(フルオロスルホニル)酢酸(富士フイルム和光純薬株式会社製)(化合物(3-1))
・アンモニア(住友精化株式会社製)
(アルカリ金属塩(6))
・水酸化リチウム一水和物(富士フイルム和光純薬株式会社製)
(溶媒)
・アセトニトリル(富士フイルム和光純薬株式会社製、乾燥したモレキュラーシーブ3A 1/16(富士フイルム和光純薬株式会社製)を加え、脱水し、モレキュラーシーブ3A 1/16を除去することにより水分量を調整した)
・テトラヒドロフラン(富士フイルム和光純薬株式会社製、乾燥したモレキュラーシーブ3A 1/16(富士フイルム和光純薬株式会社製)を加え、脱水し、モレキュラーシーブ3A 1/16を除去することにより水分量を調整した)
・活性炭素(富士フイルム和光純薬株式会社製)
・オクタフルオロトルエン(東京化成工業株式会社製)
<反応温度>
 反応温度は、外部加熱冷却装置を用いず、室温である場合は、室温である。また、ウォーターバスやオイルバス等の外部加熱冷却装置を利用する場合には、外部加熱冷却装置に用いられている媒体の温度が反応温度である。
<β/αに関する実施例>
[実施例III-1]
 100mLの三口フラスコに窒素雰囲気下、攪拌子、アセトニトリル(12.9g)、水(17.1g)を添加した後(β/α=0.75)、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.0g、28.1mmоl)を加えた。陽極、及び陰極として、白金板電極(25mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5Aの電流を0.5時間通電した。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.9であった。
FO2SCF2CF2SO2F(化合物(4-1))
19F-NMR:δ(ppm)46.1(2F)、-108.7(4F)
HCF2SO2F(化合物(5-1))
1H-NMR:δ(ppm)7.7ppm(1H)
19F-NMR:37.0(1F)、-120.3(2F)
[実施例III-2]
 アセトニトリル(10.0g)、水(20.0g)を使用したこと以外は、実施例III-1と同様にして通電を行った(β/α=0.50)。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.8であった。
[実施例III-3]
 アセトニトリル(5.0g)、水(25.0g)を使用したこと以外は、実施例III-1と同様にして通電を行った(β/α=0.20)。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.4であった。
[実施例III-4]
(電解カップリング反応)
 アセトニトリル(2.5g)、水(27.5g)を使用したこと以外は、実施例III-1と同様にして通電を行った(β/α=0.09)。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.3であった。
(環化工程)
 1Lオートクレーブを-78℃に冷却し、アンモニアガス(60.0g、3523.2mmоl)、及びテトラヒドロフラン(110.0g)を添加した後、電解カップリング反応で得られたFO2SCF2CF2SO2F(化合物(3-1)、50g、187.5mmоl)のテトラヒドロフラン(50.0g)溶液を3時間かけて滴下した。滴下終了後、室温で12時間攪拌した。攪拌終了後、反応液を加圧濾過し、不溶固体を除去し、濾液を減圧濃縮、乾燥し、肌色固体49.1gを得た。得られた固体をサンプリングし、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000045
で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、収率99.1%)であることが確認された。
19F-NMR:δ(ppm)-115.4(4F)
(カチオン交換工程)
 1Lの三口フラスコに、窒素雰囲気下、攪拌子、テトラヒドロフラン(100g)、環化工程で得られた含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、45.0g、170.4mmоl)、及び水酸化リチウム一水和物(8.1g、193.0mmоl)を添加し、70℃で4時間攪拌した。得られた反応液を減圧濃縮した後、水(120mL)、活性炭(16.5g)を添加し、105℃で3時間攪拌した。得られた反応液を加圧濾過し不溶固体を除去した後、減圧濃縮し肌色固体を得た。得られた肌色固体にテトラヒドロフラン(220g)を添加し、50℃で30分攪拌した後加圧濾過により不溶固体を除去し、減圧濃縮することで40.9gの白色固体を得た。得られた固体をサンプリングし、ICP発光分光分析法により分析を行ったところ、アンモニウムカチオンがリチウムカチオンに交換されていることを確認した。さらに、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000046
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2)、収率95.9%)であることが確認された。
19F-NMR:δ(ppm)-115.4(4F)
[実施例III-5]
 アセトニトリル(13.0g)、水(17.0g)を使用したこと以外は、実施例III-1と同様にして通電を行った(β/α=0.76)。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:1.6であった。
[実施例III-6]
 アセトニトリル(15.0g)、水(15.0g)を使用したこと以外は、実施例III-1と同様にして通電を行った(β/α=1.00)。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:4.4であった。
[実施例III-7]
 アセトニトリル(20.0g)、水(10.0g)を使用したこと以外は、実施例III-1と同様にして通電を行った(β/α=2.00)。通電終了後、得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:8.4であった。
[実施例III-8]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(5g)、水(25g)を添加した後(β/α=0.2)、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.2g、29.4mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を0.5時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、HCF2SO2F(化合物(5-1))が収率0.4%、HO2CCF2SO3Hが収率0.2%生成し、FO2SCF2CO2Hが23%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率49%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、49%であった。FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.8であった。
[実施例III-9]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(10g)、水(20g)を添加した後(β/α=0.5)、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.1g、28.7mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を0.5時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率0.5%、FO2SCF2CF2SO3Hが収率0.8%、HCF2SO2F(化合物(5-1))が収率1%、HO2CCF2SO3Hが収率0.2%生成し、FO2SCF2CO2H(化合物(3-1))が16%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率53%、HCF2SO2Fが痕跡量生成していることが明らかになった。電流効率は、53%であった。FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:1.9であった。
[実施例III-10]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(4.17g)、水(20.85g)を添加した後(β/α=0.2)、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、10.1g、56.9mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を1時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、HCF2SO2F(化合物(5-1))が収率0.3%、HO2CCF2SO3Hが収率0.6%生成し、FO2SCF2CO2H(化合物(3-1))が17%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率57%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、57%であった。FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.5であった。
[実施例III-11]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(3.3g)、水(16.7g)を添加した後(β/α=0.2)、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、15.2g、85.2mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を1.5時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、HCF2SO2F(化合物(5-1))が収率0.1%、HO2CCF2SO3Hが収率0.6%生成し、FO2SCF2CO2H(化合物(3-1))が13%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率62%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、62%であった。FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.2であった。
[実施例III-12]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(4.5g)、水(22.5g)を添加した後(β/α=0.2)、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、30.0g、168.5mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を3時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、HCF2SO2F(化合物(5-1))が収率0.1%、HO2CCF2SO3Hが収率0.7%生成し、FO2SCF2CO2H(化合物(3-1))が9%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率72%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、72%であった。FO2SCF2CF2SO2F(化合物(4-1))とHCF2SO2F(化合物(5-1))の生成比は100:0.1であった。
<反応容器―電極の関係>
[実施例III-13]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(15g)、水(15g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.0g、28.3mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を0.25時間(0.5F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率8%、FO2SCF2CF2SO3Hが収率1%、HCF2SO2F(化合物(5-1))が収率3%、HO2CCF2SO3Hが収率0.3%生成し、FO2SCF2CO2H(化合物(3-1))が41%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率22%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、60%であった。反応容器と電極の関係について、高さTLは75mmであり、最高位TEが65mm、高さTSが8mm、最低位TE’が15mmであったため、TL>TEを満たし、TE’>TSを満たしていた。反応中、電圧が急激に上昇することはなく、ハンチングは発生しなかった。
FO2SCF2CF2SO3
19F-NMR:δ(ppm)44.3(1F)、-106.2(2F)、-113.7(2F)
HCF2SO2F(化合物(5-1))
19F-NMR:δ(ppm)37.0(1F)、-120.3(2F)
1H-NMR:δ(ppm)6.5(1H)
HO2CCF2SO3
19F-NMR:δ(ppm)-111.5(2F)
FO2SCF2CO2H(化合物(3-1))
19F-NMR:δ(ppm)37.1(1F)、-102.0(2F)
[実施例III-14]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(15g)、水(15g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.1g、28.4mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を0.5時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率8%、FO2SCF2CF2SO3Hが収率2%、HCF2SO2F(化合物(5-1))が収率2%生成し、FO2SCF2CO2Hが11%残存していることが明らかになった。下相を分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率41%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、49%であった。反応容器と電極の関係について、高さTLは75mmであり、最高位TEが65mm、高さTSが8mm、最低位TE’が15mmであったため、TL>TEを満たし、TE’>TSを満たしていた。反応中、電圧が急激に上昇することはなく、ハンチングは発生しなかった。
[実施例III-15]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(15g)、水(15g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.1g、28.5mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を0.75時間(1.5F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率7%、FO2SCF2CF2SO3Hが収率3%、HCF2SO2F(化合物(5-1))が収率1%、HO2CCF2SO3Hが痕跡量生成し、FO2SCF2CO2H(化合物(3-1))が5%残存していることが明らかになった。下相を分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率38%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、30%であった。反応容器と電極の関係について、高さTLは75mmであり、最高位TEが65mm、高さTSが5mm、最低位TE’が15mmであったため、TL>TEを満たし、TE’>TSを満たしていた。反応中、電圧が急激に上昇することはなく、ハンチングは発生しなかった。
[実施例III-16]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(15g)、水(15g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、5.0g、28.3mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を1時間(2F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率7%、FO2SCF2CF2SO3Hが収率3%、HCF2SO2F(化合物(5-1))が収率1%、HO2CCF2SO3Hが痕跡量生成し、FO2SCF2CO2H(化合物(3-1))が2%残存していることが明らかになった。下相を19F-NMRで分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率44%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、26%であった。反応容器と電極の関係について、高さTLは75mmであり、最高位TEが65mm、高さTSが8mm、最低位TE’が15mmであったため、TL>TEを満たし、TE’>TSを満たしていた。反応中、電圧が急激に上昇することはなく、ハンチングは発生しなかった。
 FO2SCF2CO2H(化合物(3-1))の貯蔵安定性を、下記方法に従い測定した。
[貯蔵安定性評価]
 30mLのスクリュー管にFO2SCF2CO2H(化合物(3-1)、10.0g)、アセトニトリル(1.5g)、水(7.5g)、及び19F―NMR用内部標準物質としてオクタフルオロトルエン(0.3g)を添加し、振とうした後19F-NMRを測定し、オクタフルオロトルエンの-57.4ppmの三重線のピークの積分値を3、としたときの化合物(3-1)の-102.0ppmの二重線のピークの積分値を算出した結果、88.72であった。本数値を経過時間0時間の化合物(3-1)の基準含有量、とした。続いて、上記溶液を3本の10mLスクリュー管に分割し、それぞれのスクリュー管を-20℃、-3℃、23℃で静置し、所定時間経過後に19F-NMRを測定し、オクタフルオロトルエンの-57.4ppmの三重線のピークの積分値を3、としたときの化合物(3-1)の-102.0ppmの二重線のピークの積分値を算出し下式より化合物(3-1)の残存率を算出した。
   化合物(3-1)の残存率=(-102.0ppmの二重線のピークの積分値)/88.72×100
Figure JPOXMLDOC01-appb-T000047
 表6より、FO2SCF2CO2H(化合物(3-1))、アセトニトリル、及び水の混合物は、3℃以下で貯蔵することにより、安定性が飛躍的に向上することが分かる。したがって、電解カップリング反応が、低温(例えば、-35℃~10℃の範囲)で行われることで原料の安定性が担保され副生成物の生成が抑制されると考えられる。
<IV.電解カップリング反応(δ/γの関係および反応容器―電極の関係)>
[実施例IV-1]
 100mLの三口フラスコに窒素雰囲気下、攪拌子、アセトニトリル(4.0g)、水(18.5g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(3-1)、15.0g、84.2mmоl)を加えた(δ/γ=1.5)。陽極、及び陰極として、白金板電極(25mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5Aの電流を1.5時間通電した。通電終了後、攪拌を止めると反応液が2相に分離した。このうち下相を分液し、9.0gの液体を得た。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1)、純度90.5%、収率72.7%)であることが分かった。
FO2SCF2CF2SO2F(化合物(4-1))
19F-NMR:δ(ppm)46.1(2F)、-108.7(4F)
[実施例IV-2]
 アセトニトリル(3.3g)、水(16.7g)、FO2SCF2CO2H(化合物(3-1)、15.0g、84.2mmоl)を使用したこと以外は、実施例IV-1と同様にして通電を行った(δ/γ=1.3)。通電終了後、攪拌を止めると反応液が2相に分離した。このうち下相を分液し、9.4gの液体を得た。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1)、純度92.4%、収率77.5%)であることが分かった。
[実施例IV-3]
(電解カップリング反応)
 アセトニトリル(4.5g)、水(22.5g)、FO2SCF2CO2H(化合物(3-1)、30.0g、168.5mmоl)を使用し、通電時間を3時間としたこと以外は、実施例IV-1と同様にして通電を行った(δ/γ=0.9)。通電終了後、攪拌を止めると反応液が2相に分離した。このうち下相を分液し、20.6gの液体を得た。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1)、純度92.4%、収率84.9%)であることが分かった。
(環化工程)
 1Lオートクレーブを-78℃に冷却し、アンモニアガス(60.0g、3523.2mmоl)、及びテトラヒドロフラン(110.0g)を添加した後、電解カップリング反応で得られたFO2SCF2CF2SO2F(化合物(4-1)、50g、純度92.4%、173.6mmоl)のテトラヒドロフラン(50.0g)溶液を3時間かけて滴下した。滴下終了後、室温で12時間攪拌した。攪拌終了後、反応液を加圧濾過し、不溶固体を除去し、濾液を減圧濃縮、乾燥し、肌色固体45.4gを得た。得られた固体をサンプリングし、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000048
で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、純度97.7%、収率98.2%)であることが確認された。
化合物(1-N-2)
19F-NMR:δ(ppm)-115.4(4F)
(カチオン交換工程)1Lの三口フラスコに、窒素雰囲気下、攪拌子、テトラヒドロフラン(100g)、環化工程で得られた含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、45.0g、169.0mmоl)、及び水酸化リチウム一水和物(8.0g、190.7mmоl)を添加し、70℃で4時間攪拌した。得られた反応液を減圧濃縮した後、水(120mL)、活性炭(16.5g)を添加し、105℃で3時間攪拌した。得られた反応液を加圧濾過し不溶固体を除去した後、減圧濃縮し肌色固体を得た。得られた肌色固体にテトラヒドロフラン(220g)を添加し、50℃で30分攪拌した後加圧濾過により不溶固体を除去し、減圧濃縮することで41.7gの白色固体を得た。得られた固体をサンプリングし、ICP発光分光分析法により分析を行ったところ、アンモニウムカチオンがリチウムカチオンに交換されていることを確認した。さらに、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000049
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2)、純度99.1%、収率98.2%)であることが確認された。
化合物(1-2)
19F-NMR:δ(ppm)-115.4(4F)
[実施例IV-4]
 アセトニトリル(4.1g)、水(20.9g)、FO2SCF2CO2H(化合物(3-1)、10.0g、56.2mmоl)を使用し(δ/γ=2.5)、通電時間を1時間としたこと以外は、実施例IV-1と同様にして通電を行った。通電終了後、攪拌を止めると反応液が2相に分離した。このうち下相を分液し、4.8gの液体を得た。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1)、純度91.0%、収率58.5%)であることが分かった。
[実施例IV-52]
 アセトニトリル(5.0g)、水(25.0g)、FO2SCF2CO2H(化合物(3-1)、5.0g、28.1mmоl)を使用し(δ/γ=6.0)、通電時間を0.5時間としたこと以外は、実施例IV-1と同様にして通電を行った。通電終了後、攪拌を止めると反応液が2相に分離した。このうち下相を分液し、2.2gの液体を得た。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1)、純度89.1%、収率51.5%)であることが分かった。
[実施例IV-6]
 アセトニトリル(4.0g)、水(20.0g)、FO2SCF2CO2H(化合物(3-1)、15.0g、84.2mmоl)を使用したこと以外は、実施例IV-1と同様にして通電を行った(δ/γ=1.6)。通電終了後、攪拌を止めると反応液が2相に分離した。このうち下相を分液し、8.3gの液体を得た。得られた液体をサンプリングし、19F-NMRで測定すると、FO2SCF2CF2SO2F(化合物(4-1)、純度91.1%、収率67.5%)であることが分かった。
[実施例IV-7]
 外形が、直径30mm、高さ170mmであり、容量が50mLのシュレンク管に窒素雰囲気下、攪拌子、アセトニトリル(4.5g)、水(22.5g)を添加した後、0℃に冷却し、FO2SCF2CO2H(化合物(4-1)、30.0g、168.5mmоl)を加えた。陽極、及び陰極として、白金板電極(13mm×50mm)を3mmの間隔で設置し、溶液中に浸漬させた。0℃冷却下で攪拌を維持しつつ、電極に1.5A(231mA/cm2)の電流を3時間(1F/mоl)通電した。通電終了後、攪拌を止めると、反応液が2相に分離した。上層を分析すると、HCF2SO2F(化合物(5-1)が収率0.1%、HO2CCF2SO3Hが収率0.7%生成し、FO2SCF2CO2H(化合物(3-1))が9%残存していることが明らかになった。下相を分析すると、FO2SCF2CF2SO2F(化合物(4-1))が収率72%、HCF2SO2F(化合物(5-1))が痕跡量生成していることが明らかになった。電流効率は、72%であった。
[実施例IV-8]
(環化工程)
 3Lオートクレーブを-78℃に冷却し、アンモニアガス(250g、14.68mоl)、及びテトラヒドロフラン(250mL)を添加した後、オートクレーブ内の温度を-55℃以下に保ちつつ、実施例IV-3の電解カップリング反応で得られたFO2SCF2CF2SO2F(化合物(4-1)、208g、0.71mоl)のテトラヒドロフラン(250.0mL)溶液を滴下した。滴下終了後、室温で終夜攪拌した。その後、攪拌を維持しつつ、内圧を常圧に戻し、アルゴンを0.5L/分の速度で1.5時間オートクレーブに吹きこみ、アンモニアを排出した。反応液を濾過することで白色固体を除去し、テトラヒドロフランで数回洗浄した。得られた濾液を3Lのフラスコに移し、減圧濃縮し、さらに40℃で12時間真空乾燥させることで固体188.0gを得た。得られた固体をサンプリングし、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000050
で表される含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、0.7mоl、収率98%)であることが確認された。
(カチオン交換工程) 1Lの三口フラスコに、窒素雰囲気下、攪拌子、テトラヒドロフラン(450mL)、環化工程で得られた含フッ素環状スルホニルイミドアンモニウム塩(化合物(1-N-2)、187.0g、0.69mоl)、及び水酸化リチウム一水和物(32.2g、0.77mоl)を添加し、70℃で4時間攪拌した。得られた反応液を減圧濃縮した後、イオン交換水(500mL)、活性炭(65.8g)を添加し、105℃で3時間攪拌した。得られた反応液を加圧濾過し不溶固体を除去した後、減圧濃縮し固体(205.8g)を得た。得られた肌色固体にテトラヒドロフラン(1L)を添加し、50℃で30分攪拌した後加圧濾過により不溶固体を除去し、減圧濃縮、70℃で16時間、90℃で10時間真空乾燥することで170.3gの微褐色固体を得た。得られた固体をサンプリングし、ICP発光分光分析法により分析を行ったところ、アンモニウムカチオンがリチウムカチオンに交換されていることを確認した。さらに、19F-NMRで分析すると、下記構造式:
Figure JPOXMLDOC01-appb-C000051
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2)、0.68mоl、収率98%)であることが確認された。
<V.晶析>
<分析方法>
 実施例及び比較例において使用した分析方法は、以下のとおりのものであった。
(核磁気共鳴分析(NMR):1H-NMR、19F-NMRによる分子構造解析)
 実施例及び比較例で得られた生成物について、1H-NMR(400MHz)、19F-NMR(376MHz)を用いて、下記測定条件にて分子構造解析を行った。
[測定条件]
  測定装置:JNM-ECZ400S型核磁気共鳴装置(日本電子株式会社製)
  観測核:1H又は19
  溶媒:重クロロホルム、重ジメチルスルホキシド
  基準物質:テトラメチルシラン(1H,0.00ppm),トリクロロフルオロメタン(19F,0.00ppm)
  基準物質濃度:5質量%
  測定試料濃度:20質量%
  パルス幅:6.5μ秒
  待ち時間:2秒
  積算回数:8回(1H)又は1024回(19F)。
 尚、以下の実施例において、19F-NMR測定によって得られたスペクトルにおいて、含フッ素環状スルホニルイミド塩のピークの積分値の和をT1と、-115ppm~-125ppmの領域に単一のまたは複数の二重線ピークとして現れることに特徴的な不純物のピークの積分値の和をT2、T1とT2との比をT1/T2と表記し、これを含フッ素環状スルホニルイミドの純度を示す指標として用いる。また、19F-NMRにおける含フッ素環状スルホニルイミド塩、及び不純物のピークは、純度や残存溶媒量、測定条件等によって化学シフト値が±5ppm程度変動する場合がある。本発明に係る含フッ素環状スルホニルイミド塩は、このような化学シフト値の変動に伴う帰属の誤りに制限を受けるものではない。
[実施例V-1]
 特許文献2(国際公開第2006/106960号)の実施例[例2]及び[例4]から[例6]に記載された方法に従い、市販の2,2-ジフルオロ-2-フルオロスルホニル酢酸(富士フイルム和光純薬株式会社製)を原料として、電解カップリング反応工程、アンモニアによる環化工程、水酸化リチウムによるカチオン交換工程を経て、下記構造式:
Figure JPOXMLDOC01-appb-C000052
で表される含フッ素環状スルホンイミドリチウム塩(化合物(1-2))を合成した。撹拌子を備えた100mLナスフラスコに、合成した化合物(1-2)10gと、tert-ブチルメチルエーテル27gとを秤量し、密栓を取り付けて30分撹拌した。得られた混合液を減圧濾過後、-20℃の冷凍庫で30分間冷却したところ、無色の結晶が生じた。デカンテーションによって液部を除去後、-35℃のtert-ブチルメチルエーテルを添加して薬さじで混ぜることにより結晶を洗浄し、液部をデカンテーションによって除去した。得られた結晶を無撹拌条件で60℃、40hPaの条件で3時間減圧乾燥した。乾燥後の結晶の質量は4.9gであり、使用量に基づく収率は49%であった。19F-NMRにおいて、化合物(1-2)のピーク(δ(ppm)-110.0(4F))と、-117.2ppmに単一の二重線として見られた不純物のピークに関して、T1/T2は3170であった。ベンゾトリフルオリドを内部標準とした1H-NMRの測定から、tert-ブチルメチルエーテルの残存量は0.72質量%であり、これらの結果から化合物(1-2)の純度は99.2質量%であった。得られた乾燥後の結晶は薬さじで砕くことで容易に全量をナスフラスコから取り出すことが可能であった。
[比較例V-1]
 実施例V-1と同様に化合物(1-2)を合成したが、その後に晶析による精製を行なわなかった。19F-NMRにおいて、化合物(1-2)のピーク(δ(ppm)-115.4(4F))と、-122ppm~-125ppmの領域に複数の二重線として見られた不純物のピークの積分値の和に関して、T1/T2は215と低純度であり、破砕乾燥後に得られた粉体は褐色に着色していた。
[比較例V-2]
 実施例V-1と同様に化合物(1-2)を合成した。次いで、20mLナスフラスコに合成した化合物(1-2)1gとアセトン(沸点56℃)2gを秤量し、密栓を取り付けて30分撹拌した。混合液を-50℃で一晩冷却したが、結晶は生じず、高純度化はできなかった。回収のため60℃、10hPaの条件で3時間減圧乾燥したところ、内容物は壁面の一部が固化したのみで、底部には高粘性の液体が残存しており、薬さじで固体として回収することは不可能であった。低沸点のアセトンを用いても多量の溶媒が残存したのは、アセトンとリチウムとの高い親和性により、アセトンの留去が阻害されたためと考えられる。
[比較例V-3]
 実施例V-1と同様に化合物(1-2)を合成した。次いで、50mLナスフラスコに合成した化合物(1-2)1gと炭酸ジメチル2gを秤量し、密栓を取り付けて30分撹拌した。混合物を濾過後、得られた液にシクロヘキサン20gを添加したところ、内容液は2相に分離し、結晶は生じなかった。相分離した内容液を-20℃で一晩冷却したが、化合物(1-2)の結晶は生じず、高純度化はできなかった。炭酸ジメチルとリチウムとの高い親和性により結晶化が抑制されたためと考えられる。
[実施例V-2]
 実施例V-1と同様に化合物(1-2)を合成した。次いで、200mLナスフラスコに合成した化合物(1-2)10gと炭酸ジメチル20gを秤量し、密栓を取り付けて30分撹拌した。混合物を濾過後、液を-50℃で一晩冷却したが、結晶は生じなかった。回収のため100℃、5hPaの条件で10時間減圧乾燥したところ、混合物全体が白濁したゲル状物となり、その後更に乾燥を続けることで高粘性の固体状となった。ここにtert-ブチルメチルエーテル27gを加えて溶解させた後に、-50℃で一晩冷却したところ、無色の結晶が生じた。液部をデカンテーションにより除去した後、-35℃のtert-ブチルメチルエーテルを添加して薬さじで混ぜることにより結晶を洗浄し、液部をデカンテーションによって除去した。得られた結晶を無撹拌条件で60℃、40hPaの条件で3時間減圧乾燥した。得られた結晶を回収すべく薬さじで砕いて取り出すことを試みたが、ナスフラスコ底部への固着が顕著であり、薬さじでの粉砕で得られた結晶は2.7g(収率27%)に留まった。固着による損失は2.0gであった。リチウムとの親和性の高い炭酸ジメチルが残存したことで乾燥時に結晶が部分溶解し、ナスフラスコ壁面に固着したものと考えられる。結晶同士の固着による試料の不均一性が予想されたことから、回収できた結晶を更に100℃、20hPaの条件で3時間乾燥させ、乳棒で粉砕することで最終的に結晶2.4gを取得した。19F-NMRによるT1/T2は1550であった。ベンゾトリフルオリドを内部標準とした1H-NMRの測定から、tert-ブチルメチルエーテルの残存量は0.29質量%、炭酸ジメチルの残存量は0.13質量%であり、これらの結果から化合物(1-2)の純度は99.5質量%であった。
[比較例V-4]
 実施例V-1と同様に化合物(1-2)を合成した。次いで、20mLナスフラスコに合成した化合物(1-2)1.0gとテトラヒドロフラン(沸点65℃)1.3gを秤量し、密栓を取り付けて30分撹拌した。混合液を-50℃で一晩冷却したが結晶は生成せず、高純度化はできなかった。回収のため60℃、10hPaの条件で3時間減圧乾燥したところ、内容物は壁面の一部が固化したのみで、底部には高粘性の液体が残存しており、薬さじで固体として回収することは不可能であった。低沸点のエーテル溶媒であるテトラヒドロフランを用いても多量の溶媒が残存したのは、テトラヒドロフランの環状構造に伴うリチウムへの強い配位力により、テトラヒドロフランの留去が阻害されたためと考えられる。
[実施例V-5]
 実施例V-1と同様に化合物(1-2)の合成、晶析および乾燥を行い、4.9gの結晶を得た。次いで、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン30mLを添加して薬さじで混ぜることにより結晶を洗浄し、100℃、15hPa条件で7時間乾燥した。この洗浄および乾燥操作を計5回繰り返し、最終的に結晶4.6gを取得した。19F-NMRによるT1/T2は3355であった。ベンゾトリフルオリドを内部標準とした1H-NMRの測定から、tert-ブチルメチルエーテルの残存量は0.072質量%であり、これらの結果から化合物(1-2)の純度は99.9質量%であった。得られた乾燥後の結晶は薬さじで砕くことで容易に全量をナスフラスコから取り出すことが可能であった。
 本発明に係る構成要件の範囲内の非水系電解液は、高温耐久性の向上および金属腐食性の低減が求められる電池に利用できる為、特に本発明の非水系電解液を用いた非水系二次電池は、例えば、携帯電話機、携帯オーディオ機器、パーソナルコンピュータ、IC(Integrated Circuit)タグ等の携帯機器用の充電池;ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等の自動車用充電池;12V級電源、24V級電源、48V級電源等の低電圧電源;住宅用蓄電システム、IoT機器等としての利用等が期待される。また、本発明の非水系電解液を用いた非水系二次電池は、寒冷地用の用途、及び夏場の屋外用途等にも適用することができる。
 本発明に係る含フッ素環状スルホニルイミド塩(1A)は、耐熱特性が高く、広い温度領域で使用可能なものであるため、帯電防止剤、有機電解質等のイオン電導材料や難燃剤として好適に利用可能である。
 本発明に係る製造方法により、界面活性剤、帯電防止剤、電解質、イオン液体、触媒等の原材料となるビス(フルオロスルホニル)化合物を、副生成物であるフルオロスルホニル基含有化合物の含有量を低減しつつ製造することができる。
 本発明に係る製造方法により、界面活性剤、帯電防止剤、電解質、イオン液体、触媒等の原材料となるビス(フルオロスルホニル)化合物を、高い収率で安定して製造することができる。
 本発明に係る製造方法により、残存溶媒量、及びフッ素系不純物の少ない含フッ素環状スルホニルイミド塩を高効率に製造することができる。残存溶媒量の低減により、より簡易な設備、低コスト、熱履歴での製造が可能である。また、不純物量の低減により着色の抑制が可能である。したがって、本発明に係る製造方法により得られる含フッ素環状スルホニルイミド塩は、イオン電導材料、帯電防止剤、難燃剤等として好適に利用可能である。
 1   反応容器
 2   一対の電極
 3   水相(上層)
 4   有機相(下層)
 TL  反応容器底部から反応液の液面までの高さ(距離)
 TE  反応容器底部から電極上部(最高位)までの高さ(距離)
 TE’ 反応容器底部から電極下部(最低位)までの高さ(距離)
 TS  反応容器底部から、有機相と水相の間の界面までの高さ(距離)
 100 非水系二次電池
 110 電池外装
 120 電池外装の空間
 130 正極リード体
 140 負極リード体
 150 正極
 160 負極
 170 セパレータ

Claims (38)

  1.  非水系電溶媒及びリチウム塩を含有する非水系電解液であって、
     前記非水系溶媒はカーボネート溶媒を含み、
     前記リチウム塩が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又は炭素数4以下のパーフルオロ基を表す}
    で表される含フッ素環状スルホニルイミド塩を含有し、かつ
     下記一般式(2):
       H(CR2m-SO2NHM2   (2)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、M2は、Li、Na、K、H又はNH4であり、そしてmは、1又は2である}
    で表される含フッ素スルホンアミド化合物を前記非水系電解液の全量に対して、1000質量ppm以下含有する、非水系電解液。
  2.  前記一般式(1)で表される含フッ素環状スルホニルイミド塩が、下記式(1-1)~(1-5):
    Figure JPOXMLDOC01-appb-C000002
    のいずれか一つを含む、請求項1に記載の非水系電解液。
  3.  前記一般式(2)で表される含フッ素スルホンアミド化合物を、前記非水系電解液の全量に対して、0.1質量ppm以上含有する、請求項1又は2に記載の非水系電解液。
  4.  前記非水系溶媒が、アセトニトリルを、前記非水系溶媒の全量に対して、3体積%以上97体積%以下含有する、請求項1~3のいずれか一項に記載の非水系電解液。
  5.  前記アセトニトリルの含有量が、前記非水系溶媒の全量に対して、20体積%以上95体積%以下である、請求項4に記載の非水系電解液。
  6.  前記一般式(2)で表される含フッ素スルホンアミド化合物を、前記非水系電解液の全量に対して、1質量ppm以上200質量ppm以下含有する、請求項1~5のいずれか一項に記載の非水系電解液。
  7.  前記一般式(1)で表される含フッ素環状スルホニルイミド塩の含有量が、前記非水系溶媒1Lに対して、0.8モル以上1.5モル以下である、請求項1~6のいずれか一項に記載の非水系電解液。
  8.  前記一般式(2)で表される含フッ素スルホンアミド化合物を、前記非水系電解液の全量に対して、80質量ppm以上120質量ppm以下含有する、請求項1~7のいずれか一項に記載の非水系電解液。
  9.  前記リチウム塩が、前記一般式(1)で表される含フッ素環状スルホニルイミド塩と、LiPFとを含有し、
     前記非水系溶媒が、ビニレンカーボネート及び/またはフルオロエチレンカーボネートを含有し、
     前記一般式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、前記LiPFの含有量に対してモル比で2.5以上であり、かつ
     前記LiPFの含有量は、ビニレンカーボネート及びフルオロエチレンカーボネートの含有量に対してモル比で0.01以上4以下である、請求項1~8のいずれか一項に記載の非水系電解液。
  10.  前記一般式(1)で表される含フッ素環状スルホニルイミド塩の含有量は、前記LiPFの含有量に対してモル比で10より大きい、請求項1~9のいずれか一項に記載の非水系電解液。
  11.  請求項1~10のいずれか一項の非水系電解液を備えた、非水系二次電池。
  12.  前記非水系二次電池は電池外装を備え、前記電池外装が、正極側の、前記非水系電解液との接液層の少なくとも一部にアルミニウムを含む、請求項11に記載の非水系二次電池。
  13.  下記一般式(3):
       MO2C-(CR2m-SO2F   (3)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、前記一般式(1)で表される含フッ素環状スルホニルイミド塩を製造し、
     前記一般式(1)で表される含フッ素環状スルホニルイミド塩と非水系溶媒とを混合する混合工程を含み、
     該電解カップリング反応工程後に下記一般式(5):
       H-(CR2m-SO2F   (5)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である}で表されるフルオロスルホニル基含有化合物を、該反応液中0.1質量%以下まで低下させる精製工程、を含むことを特徴とする請求項1~10のいずれか一項に記載の非水系電解液の製造方法。
  14.  下記一般式(3):
       MO2C-(CR2m-SO2F   (3)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、前記一般式(1)で表される含フッ素環状スルホニルイミド塩を製造し、
     前記カチオン交換工程後に得られる前記一般式(1)で表される含フッ素環状スルホニルイミド塩を、単座配位性の鎖状エーテル溶媒に、溶解させた後に晶析して、精製された含フッ素環状スルホニルイミド塩を得る晶析工程と、
     前記晶析工程で得られた前記一般式(1)で表される含フッ素環状スルホニルイミド塩と非水系溶媒とを混合する混合工程とを含む、請求項1~10のいずれか一項に記載の非水系電解液の製造方法。
  15.  下記一般式(1A):
    Figure JPOXMLDOC01-appb-C000003
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na、K、又はNH4である}で表される含フッ素環状スルホニルイミド塩を含む含フッ素環状スルホニルイミド塩組成物であって、
     窒素気流下、100℃より10℃/分の昇温速度で加熱したときに、質量減少率が2質量%となる温度が385℃以上であることを特徴とする含フッ素環状スルホニルイミド塩組成物。
  16.  下記一般式(2):
       H(CR2m-SO2NHM2   (2)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、M2は、Li、Na、K、H又はNH4であり、そしてmは、1又は2である}
    で表される含フッ素スルホンアミド化合物を5000質量ppm以下含有する、請求項15に記載の含フッ素環状スルホニルイミド塩組成物。
  17.  前記一般式(1A)中、nが2である、請求項16に記載の含フッ素環状スルホニルイミド塩組成物。
  18.  前記一般式(1A)と(2)中、Rがフッ素原子である、請求項16又は17に記載の含フッ素環状スルホニルイミド塩組成物。
  19.  前記一般式(1A)中、M1がLiであり、かつ、前記一般式(2)中、M2がLiである、請求項16~18のいずれか一項に記載の含フッ素環状スルホニルイミド塩組成物。
  20.  前記含フッ素環状スルホニルイミド塩が、下記式:
    Figure JPOXMLDOC01-appb-C000004
    で表される、請求項15~19のいずれか一項に記載の含フッ素環状スルホニルイミド塩組成物。
  21.  下記一般式(3):
       MO2C-(CR2m-SO2F   (3)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、下記一般式(1A):
    Figure JPOXMLDOC01-appb-C000005
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na又はKである}で表される含フッ素環状スルホニルイミド塩を製造する方法において、該電解カップリング反応工程後に下記一般式(5):
       H-(CR2m-SO2F   (5)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である}で表されるフルオロスルホニル基含有化合物を、該反応液中0.1質量%以下まで低下させる精製工程を特徴とする前記製造方法。
  22.  下記一般式(3):
       MO2C-(CR2m-SO2F   (3)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2であり、そしてMは、H、Li、Na、K又はNH4である}で表されるフルオロスルホニル基含有カルボン酸化合物から出発して、電解カップリング反応工程、環化工程、及びカチオン交換工程を経て、下記一般式(1A):
    Figure JPOXMLDOC01-appb-C000006
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、nは、1~4の整数であり、そしてM1は、Li、Na又はKである}で表される含フッ素環状スルホニルイミド塩を製造する方法において、カチオン交換工程後に得られる含フッ素環状スルホニルイミド塩を、単座配位性の鎖状エーテル溶媒に、溶解させた後に晶析して、精製された含フッ素環状スルホニルイミド塩を得る晶析工程を含む、前記方法。
  23.  前記晶析に用いる単座配位性の鎖状エーテル溶媒が、エチルエーテル、プロピルメチルエーテル、プロピルエチルエーテル、プロピルエーテル、イソプロピルメチルエーテル、イソプロピルエチルエーテル、イソプロピルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、イソブチルメチルエーテル、イソブチルエチルエーテル、sec-ブチルメチルエーテル、sec-ブチルエチルエーテル、tert-ブチルメチルエーテル、tert-ブチルエチルエーテル、ペンチルメチルエーテル、イソペンチルメチルエーテル、sec-ペンチルメチルエーテル、tert-ペンチルメチルエーテル、ネオペンチルメチルエーテル、及びシクロペンチルメチルエーテルからなる群から選ばれる少なくとも1種の溶媒である、請求項22に記載の方法。
  24.  前記一般式(1A)中のnが2である、請求項22又は23に記載の方法。
  25.  前記一般式(1A)中のRがFである、請求項22~24のいずれか一項に記載の方法。
  26.  前記一般式(1A)中のMがLiである、請求項22~25のいずれか一項に記載の方法。
  27.  前記電解カップリング反応工程において、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水の質量(α)とニトリル基含有溶媒の質量(β)の比率(β/α)が0.80以下である水とニトリル基含有溶媒との混合溶媒の存在下、電解カップリング反応させる、請求項21~26のいずれか一項に記載の方法。
  28.  前記水の質量(α)とニトリル基含有溶媒の質量(β)の比率(β/α)が0.75以下である、請求項27に記載の方法。
  29.  前記電解カップリング反応工程において、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水とニトリル基含有溶媒との混合溶媒の存在下、反応容器中で、電解カップリング反応させ、
     反応中、前記反応容器底部から反応液の液面までの高さ(距離)TLと前記反応容器底部から電極上部(最高位)までの高さ(距離)TEとが、TL>TEの関係を満たし、かつ、反応後には、前記反応容器底部から、有機相と水相の間の界面までの高さ(距離)TSと、前記反応容器底部から電極下部(最低位)までの高さ(距離)TE’とが、TE’>TSの関係を満たす、請求項21~28のいずれか一項に記載の方法。
  30.  前記TE’と前記TSの関係が、TE’×0.6>TSの関係である、請求項29に記載の方法。
  31.  前記電解カップリング反応における反応液中のアルカリ金属の含有量が2000質量ppm以下である、請求項27~30のいずれか一項に記載の方法。
  32.  前記電解カップリング反応工程において、上記一般式(5)で表される化合物の生成モル比が、下記一般式(4):
       FO2S-(CR2m-SO2F   (4)
    {式中、Rは、それぞれ、同一であっても異なっていてもよく、フッ素原子又はトリフルオロメチル基であり、mは、1又は2である}で表されるビス(フルオロスルホニル)化合物(4)の生成量1モルに対し、0.01以下とする、請求項27~31のいずれか一項に記載の方法。
  33.  前記電解カップリング反応工程において、上記一般式(3)で表されるフルオロスルホニル基含有カルボン酸化合物を、水とニトリル基含有溶媒との混合溶媒存在下、電解カップリング反応させ、該フルオロスルホニル基含有カルボン酸化合物の質量(γ)と、該混合溶媒の質量(δ)の比率(δ/γ)が1.5以下であることを特徴とする、請求項27~32のいずれか一項に記載の方法。
  34.  前記電解カップリング反応において、陽極と陰極との極板間隔が0.001mm~9.9mmである、請求項27~33のいずれか一項に記載の方法。
  35.  前記電解カップリング反応において、前記化合物(4)の収率を、70%以上とする、請求項33又は34に記載の方法。
  36.  前記ニトリル基含有溶媒が、アセトニトリル、プロピオニトリル、ブチロニトリル、及びベンゾニトリルからなる群より選ばれる少なくとも1種である、請求項27~35のいずれか一項に記載の方法。
  37.  前記ニトリル基含有溶媒がアセトニトリルである、請求項36に記載の方法。
  38.  前記電解カップリング反応が、-35℃以上10℃以下の範囲の反応温度で行われる、請求項27~37のいずれか一項に記載の方法。
PCT/JP2022/014660 2021-03-26 2022-03-25 含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液、非水系二次電池 WO2022203074A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237032198A KR20230146646A (ko) 2021-03-26 2022-03-25 불소 함유 환상 술포닐이미드염, 및 그의 제법, 비수계 전해액, 비수계 이차 전지
JP2023509346A JPWO2022203074A1 (ja) 2021-03-26 2022-03-25
US18/283,573 US20240194948A1 (en) 2021-03-26 2022-03-25 Fluorine-containing cyclic sulfonylimide salt, and method for producing same, non-aqueous electrolyte, non-aqueous secondary battery
CN202280024482.7A CN117121258A (zh) 2021-03-26 2022-03-25 含氟环状磺酰亚胺盐和其制备方法、非水系电解液、非水系二次电池
EP22775855.4A EP4317129A1 (en) 2021-03-26 2022-03-25 Fluorine-containing cyclic sulfonylimide salt, and method for producing same, non-aqueous electrolyte, non-aqueous secondary battery

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2021-053666 2021-03-26
JP2021053666 2021-03-26
JP2021108912 2021-06-30
JP2021-108939 2021-06-30
JP2021-108940 2021-06-30
JP2021108940 2021-06-30
JP2021-108912 2021-06-30
JP2021108939 2021-06-30
JP2021-140158 2021-08-30
JP2021140158 2021-08-30
JP2021-161369 2021-09-30
JP2021161468 2021-09-30
JP2021161369 2021-09-30
JP2021-161468 2021-09-30
JP2021-201100 2021-12-10
JP2021201100 2021-12-10

Publications (1)

Publication Number Publication Date
WO2022203074A1 true WO2022203074A1 (ja) 2022-09-29

Family

ID=83397576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014660 WO2022203074A1 (ja) 2021-03-26 2022-03-25 含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液、非水系二次電池

Country Status (5)

Country Link
US (1) US20240194948A1 (ja)
EP (1) EP4317129A1 (ja)
JP (1) JPWO2022203074A1 (ja)
KR (1) KR20230146646A (ja)
WO (1) WO2022203074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024184682A1 (en) * 2023-03-08 2024-09-12 Ses Holdings Pte. Ltd. Electrolytes containing sulfonamide-type cyclic salts, and energy-storage cells and batteries made therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106960A1 (ja) 2005-04-01 2006-10-12 Asahi Glass Company, Limited ジスルホニルフロリド化合物の製造方法
WO2009025246A1 (ja) * 2007-08-17 2009-02-26 Asahi Glass Company, Limited 精製された含フッ素ビススルホニルイミドのアンモニウム塩の製造方法
WO2010110388A1 (ja) * 2009-03-27 2010-09-30 旭硝子株式会社 蓄電デバイス用電解液および蓄電デバイス
WO2020262670A1 (ja) * 2019-06-28 2020-12-30 旭化成株式会社 非水系電解液、及び非水系二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021517A (ja) 2006-07-12 2008-01-31 Sony Corp 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106960A1 (ja) 2005-04-01 2006-10-12 Asahi Glass Company, Limited ジスルホニルフロリド化合物の製造方法
WO2009025246A1 (ja) * 2007-08-17 2009-02-26 Asahi Glass Company, Limited 精製された含フッ素ビススルホニルイミドのアンモニウム塩の製造方法
WO2010110388A1 (ja) * 2009-03-27 2010-09-30 旭硝子株式会社 蓄電デバイス用電解液および蓄電デバイス
WO2020262670A1 (ja) * 2019-06-28 2020-12-30 旭化成株式会社 非水系電解液、及び非水系二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Research report", vol. 60, 2010, ASAHI GLASS CO., LTD., pages: 13 - 21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024184682A1 (en) * 2023-03-08 2024-09-12 Ses Holdings Pte. Ltd. Electrolytes containing sulfonamide-type cyclic salts, and energy-storage cells and batteries made therewith

Also Published As

Publication number Publication date
KR20230146646A (ko) 2023-10-19
JPWO2022203074A1 (ja) 2022-09-29
EP4317129A1 (en) 2024-02-07
US20240194948A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP6265217B2 (ja) リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ
CN107431247B (zh) 非水系电解液和非水系二次电池
JP7019062B2 (ja) 非水系電解液及び非水系二次電池
WO2020262670A1 (ja) 非水系電解液、及び非水系二次電池
JP5977573B2 (ja) 非水系二次電池
JP7359868B2 (ja) 非水系二次電池及び非水系電解液
CN112602224A (zh) 非水系二次电池
JP2014010909A (ja) 複合酸化物及びその製造方法、並びに非水系二次電池
KR102630408B1 (ko) 비수계 전해액, 셀 팩 및 셀 팩의 제조 방법
WO2022203074A1 (ja) 含フッ素環状スルホニルイミド塩、及びその製法、非水系電解液、非水系二次電池
JP2022150959A (ja) 非水系電解液及び非水系二次電池
JP6231775B2 (ja) 正極活物質及びその製造方法、正極、並びに非水系二次電池
JP6564336B2 (ja) 非水系電解液及び非水系二次電池
JP6451638B2 (ja) 新規化合物、電解液及び二次電池、並びに電気自動車及び電力システム
JP6398984B2 (ja) 新規化合物、電解液及び二次電池
WO2022203072A1 (ja) 非水系電解液及び非水系二次電池
JP6879799B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7339921B2 (ja) 非水系電解液及び非水系二次電池
JP7233323B2 (ja) 非水系電解液、及び非水系二次電池
JP2023146966A (ja) 非水系二次電池及びその製造方法
JP2017045722A (ja) 電池用非水電解液及びリチウム二次電池
JP2016225294A (ja) 電池用非水電解液及びリチウム二次電池
CN117121258A (zh) 含氟环状磺酰亚胺盐和其制备方法、非水系电解液、非水系二次电池
EP3605698A1 (en) New components for electrolyte compositions
JP2024060500A (ja) 非水系電解液及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509346

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237032198

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032198

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202317063669

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022775855

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775855

Country of ref document: EP

Effective date: 20231026