WO2022199658A1 - 氢燃料电动车及该氢燃料电动车的管理方法、系统 - Google Patents

氢燃料电动车及该氢燃料电动车的管理方法、系统 Download PDF

Info

Publication number
WO2022199658A1
WO2022199658A1 PCT/CN2022/082768 CN2022082768W WO2022199658A1 WO 2022199658 A1 WO2022199658 A1 WO 2022199658A1 CN 2022082768 W CN2022082768 W CN 2022082768W WO 2022199658 A1 WO2022199658 A1 WO 2022199658A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen fuel
fuel cell
cell assembly
power
lithium battery
Prior art date
Application number
PCT/CN2022/082768
Other languages
English (en)
French (fr)
Inventor
孙祥
岑健
钱程
Original Assignee
永安行科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永安行科技股份有限公司 filed Critical 永安行科技股份有限公司
Publication of WO2022199658A1 publication Critical patent/WO2022199658A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to the technical field of hydrogen fuel cell management, in particular to a hydrogen fuel electric vehicle and a management method and system for the hydrogen fuel electric vehicle.
  • the electronic lock When using a hydrogen-fueled electric vehicle for a shared vehicle, the electronic lock needs to be unlocked and controlled, so the control system needs to have power supply all the time, and a hydrogen-energy electric vehicle needs to start the hydrogen storage device before it can provide power.
  • the fuel cell stack management system provides power to the vehicle through the fuel cell stack and also charges the lithium battery power supply system, supplies power to the control system through the lithium battery, and then unlocks the electronic lock. After the unlocking is successful, the hydrogen storage device is activated to supply hydrogen energy. Electric vehicles provide electrical energy, and the main function of lithium batteries is to start the system or provide auxiliary power. This system does not actually solve the problem of lithium battery power management and how to accurately obtain the hydrogen remaining in the hydrogen storage device.
  • the purpose of the present invention is to provide a management method, system and hydrogen fuel electric vehicle for further managing the power supply process of the hydrogen fuel electric vehicle according to the electric quantity of the lithium battery.
  • the invention discloses a management method for a hydrogen-fueled electric vehicle.
  • the hydrogen-fueled electric vehicle is powered by a hydrogen fuel cell assembly and/or a lithium battery.
  • Control the start and stop of the hydrogen fuel cell assembly ; obtain the load power of the hydrogen fuel electric vehicle, and set the length of the drainage time interval of the hydrogen fuel cell assembly to be inversely proportional to the load power;
  • the total number of water discharges S 1 of the hydrogen fuel cell assembly, the one power supply cycle is the gas supply time of one hydrogen cylinder; the current number of water discharges S 2 of the hydrogen fuel cell assembly is accumulated, and the current hydrogen surplus of the one power supply cycle is obtained by calculating
  • the volume percentage is
  • the obtaining the load power of the hydrogen fuel electric vehicle and adjusting the drainage time interval of the hydrogen fuel cell assembly according to the load power includes: obtaining the real-time load power of the hydrogen fuel electric vehicle; if the current load If the power is greater than the preset load power, the drainage time interval is set as the first time interval; if the current load power is less than or equal to the preset load power, the drainage time interval is set as the second time interval; the first time interval is less than the the second time interval.
  • the acquiring the state of charge of the lithium battery and controlling the start and stop of the hydrogen fuel cell assembly according to the state of charge includes: acquiring the real-time voltage of the lithium battery; when the current voltage of the lithium battery is When the voltage is lower than the first preset voltage, the hydrogen fuel cell assembly is controlled to start supplying power; when the current voltage of the lithium battery is higher than the second preset voltage, the hydrogen fuel cell assembly is controlled to stop supplying power; A predetermined voltage is smaller than the second predetermined voltage.
  • controlling the hydrogen fuel cell assembly to start supplying power includes: controlling the hydrogen gas inlet valve of the hydrogen fuel cell assembly to open.
  • the acquiring the state of charge of the lithium battery and controlling the start and stop of the hydrogen fuel cell assembly according to the state of charge further comprises: adjusting the output of the hydrogen fuel cell assembly according to the state of charge power.
  • the acquiring the state of charge of the lithium battery and controlling the start and stop of the hydrogen fuel cell assembly according to the state of charge further includes: if the power of the hydrogen fuel cell assembly is within a preset time period Continuously higher than the first preset power value, and the power of the lithium battery is continuously lower than the second preset power value, the hydrogen fuel cell assembly starts to charge the lithium battery; the first preset power value higher than the second preset power value.
  • the The starting of the hydrogen fuel cell assembly to charge the lithium battery includes: when the fuel used to supply the hydrogen fuel cell assembly is consumed, or the hydrogen fuel cell assembly fails, or the power of the lithium battery is higher than a second preset value If the electric quantity value is reached, the charging of the lithium battery by the hydrogen fuel cell assembly is stopped.
  • the present invention also has another management method for a hydrogen fuel electric vehicle.
  • the hydrogen fuel electric vehicle is powered by a hydrogen fuel cell assembly and/or a lithium battery, including:
  • the obtaining the load power of the hydrogen fuel electric vehicle and adjusting the drainage time interval of the hydrogen fuel cell assembly according to the load power includes:
  • the first time interval is less than the second time interval.
  • the current output voltage of the hydrogen stack is less than or equal to the preset first low voltage threshold, it is judged whether it has been more than 20 seconds since the last drain, and if it exceeds, the water is drained immediately;
  • the current output voltage of the hydrogen stack is less than or equal to the preset second low voltage threshold, it is judged whether it has been more than 10 seconds since the last drain, and if it exceeds, the water is drained immediately;
  • the first low voltage threshold is greater than the second low voltage threshold.
  • the acquiring the state of charge of the lithium battery and controlling the start and stop of the hydrogen fuel cell assembly according to the state of charge includes:
  • the first preset voltage is smaller than the second preset voltage.
  • the acquiring the vehicle unlocking state and controlling the start-stop of the hydrogen fuel cell assembly according to the vehicle unlocking state includes:
  • the hydrogen fuel cell assembly is controlled to stop power supply
  • controlling the hydrogen fuel cell assembly to start supplying power includes:
  • the fan that controls the hydrogen fuel cell assembly is turned on.
  • the acquiring the state of charge of the lithium battery or the unlocking state of the vehicle, and controlling the start-stop of the hydrogen fuel cell assembly according to the state of charge or the unlocking state of the vehicle further includes:
  • the output power of the hydrogen fuel cell assembly is adjusted according to the state of charge.
  • the acquiring the state of charge of the lithium battery or the unlocking state of the vehicle, and controlling the start-stop of the hydrogen fuel cell assembly according to the state of charge or the unlocking state of the vehicle further includes:
  • the hydrogen fuel cell assembly starts charging the lithium battery
  • the first preset power value is higher than the second preset power value.
  • the The hydrogen fuel cell assembly to begin charging the lithium battery includes:
  • the hydrogen fuel cell assembly is stopped for all fuel cells. to charge the lithium battery.
  • the invention also discloses a power supply management system for a hydrogen fuel electric vehicle, comprising a hydrogen storage bottle, a hydrogen fuel cell assembly, a lithium battery and a control assembly, and the hydrogen fuel electric vehicle is powered by the hydrogen fuel cell assembly and/or the lithium battery;
  • the hydrogen bottle, the hydrogen fuel cell component and the lithium battery are connected to the control component;
  • the control component obtains the real-time voltage of the lithium battery; when the current voltage of the lithium battery is lower than the first preset voltage, it controls the hydrogen fuel
  • the battery assembly starts to supply power; when the current voltage of the lithium battery is higher than the second preset voltage, the hydrogen fuel cell assembly is controlled to stop supplying power; the first preset voltage is less than the second preset voltage;
  • the The control component obtains the real-time load power of the hydrogen fuel electric vehicle; if the current load power is greater than the preset load power, the drainage time interval is set to the first time interval; if the current load power is less than or equal to the preset load power, the drainage The time interval is set as
  • the hydrogen fuel cell assembly includes a hydrogen fuel cell stack, a fan, a drain solenoid valve and an intake valve; when the hydrogen fuel cell stack starts to supply power, the fan, the drain solenoid valve and the intake valve start It also includes a voltage detection module, which is connected to the control assembly, the lithium battery and the hydrogen fuel cell assembly, and the control assembly obtains the real-time voltage of the lithium battery through the voltage detection module .
  • the invention also discloses a hydrogen fuel electric vehicle, which is powered by any one of the management methods described above; and also includes a drive module and a motor device connected to each other, the motor device includes an electronic lock, and the drive module drives the drive module.
  • a motor arrangement operates to unlock the electronic lock.
  • the lithium battery supplies power to the control components, thereby starting the control components and the hydrogen fuel cell components; in addition, according to the capacity of the hydrogen storage bottle, it is decided whether to use the lithium battery for assistance Power supply, that is, when the gas capacity in the hydrogen storage bottle is insufficient, the lithium battery is used to supply power to ensure stable power supply during the driving process of the vehicle;
  • FIG. 1 is a flowchart of adjusting the drainage time interval according to load power provided by the present invention
  • Fig. 2 is the flow chart of obtaining hydrogen remaining percentage according to the number of times of drainage provided by the present invention
  • FIG. 3 is a flowchart of controlling the start-stop of the hydrogen fuel cell assembly according to the state of charge of the lithium battery provided by the present invention
  • FIG. 4 is a schematic diagram of the structural principle of the hydrogen fuel electric vehicle provided by the present invention.
  • FIG. 5 is one of the schematic flowcharts of Embodiment 2 of the present invention.
  • FIG. 6 is the second schematic flowchart of Embodiment 2 of the present invention.
  • FIG. 7 is a third schematic flowchart of Embodiment 2 of the present invention.
  • FIG. 8 is a fourth schematic flowchart of Embodiment 2 of the present invention.
  • FIG. 9 is a fifth schematic flowchart of Embodiment 2 of the present invention.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the invention discloses a management method for a hydrogen fuel electric vehicle.
  • the hydrogen fuel electric vehicle is jointly powered by a hydrogen fuel cell assembly and/or a lithium battery, including:
  • the present invention determines whether or not according to the state of charge of the lithium battery
  • the hydrogen fuel cell assembly needs to be turned on, that is, when the charge of the lithium battery can meet the current vehicle driving needs, the hydrogen fuel cell assembly will not be turned on to ensure the stable power supply during the driving process of the vehicle;
  • the load power of the hydrogen fuel electric vehicle and set the length of the drainage time interval of the hydrogen fuel cell assembly to be inversely proportional to the load power.
  • the load power is large, the default power supply of the hydrogen fuel cell assembly is also large, so it will react More water is generated, so the drainage time interval is set to be shorter, and when the load power is low, the drainage time interval is correspondingly increased, and the workload of the drainage solenoid valve is also reduced;
  • the drainage time interval is set to the first time interval, for example, 8 seconds; if the current load power is less than is equal to the preset load power, set the drainage time interval as the second time interval, for example, 38 seconds.
  • the first time interval is less than the second time interval, and the specific value is not limited, and can be set flexibly according to actual needs.
  • the upper limit of the water displacement is also lower, that is, the water displacement will not exceed a very high value even in the case of the maximum power, so two time intervals can be set to meet the requirements.
  • the power of the hydrogen fuel cell component is relatively large, and the upper limit of the water displacement is also relatively high.
  • the two time intervals can only correspond to two upper and lower limit values respectively, and the middle value of the used power is used. There is no time interval corresponding, so it may cause drainage failure, so at this time, the time interval should be set to three, corresponding to different power usage, to meet each usage scenario.
  • the drainage process should be very sensitive.
  • the water production amount corresponding to the specific power value can also be calculated, and then the water production amount and the capacity of the water storage part of the hydrogen fuel cell assembly can be calculated.
  • Specific allocation of drainage time intervals In a word, there is no limit to the number of drainage time interval settings, which can be flexibly adjusted according to the power of the hydrogen fuel cell assembly and the water storage capacity of the vehicle.
  • obtaining the real-time load power of the hydrogen fuel electric vehicle is a periodic action, and the obtaining time interval is also flexibly set. You can set the interval to be longer.
  • the hydrogen fuel electric vehicle will perform voltage detection on the lithium battery during use, and when it is detected that the power of the lithium battery is insufficient, the fuel cell stack system will be activated.
  • the real-time voltage of the lithium battery is obtained.
  • the current voltage of the lithium battery is lower than the first preset voltage, the default current lithium battery is too low, and the hydrogen fuel cell assembly is controlled to start supplying power;
  • the current voltage of the lithium battery is higher than the second preset voltage, it is assumed that the current lithium battery has sufficient power, and the hydrogen fuel cell assembly is controlled to stop supplying power.
  • the first preset voltage is smaller than the second preset voltage, and the specific value can be flexibly set according to actual needs, which is not limited here.
  • the hydrogen inlet valve of the hydrogen fuel cell assembly When the hydrogen fuel cell assembly starts to supply power, the hydrogen inlet valve of the hydrogen fuel cell assembly is controlled to open, so that the oxygen in the hydrogen residual air reacts to generate electricity.
  • the drain solenoid valve and the fan are in a motorized state. Usually, the drain solenoid valve is opened periodically according to the set drain time interval, and the number of drains is accumulated for each drain; while the fan follows the whole process of power supply on.
  • the output power of the hydrogen fuel cell assembly is also adjusted according to the state of charge.
  • the remaining electric energy of the hydrogen fuel cell assembly can also be used to charge the lithium battery during the riding process. Specifically, it is determined that if the electric power of the hydrogen fuel cell assembly continues to be higher than the first preset electric power within a preset period of time. value, and the power of the lithium battery is continuously lower than the second preset power value, it is considered that the power in the hydrogen fuel cell assembly is sufficient and the power of the lithium battery is insufficient, and the hydrogen fuel cell assembly is used to start charging the lithium battery at this time.
  • a charging module is arranged between the hydrogen fuel cell assembly and the lithium battery, and the charging power is automatically distributed through the charging module.
  • the output power of the hydrogen fuel cell assembly is P
  • auxiliary loads such as fans and heating devices consume P 1 watt
  • the vehicle consumes P 2 watts during riding
  • the remaining (PP 1 -P 2 ) watts in the stack are used for Power the lithium battery.
  • the first preset power value is set higher than the second preset value. power value.
  • the hydrogen fuel cell assembly is allowed to charge the lithium battery.
  • the first preset power value It is not necessarily higher than the second preset power value, there is no relationship between the two, and they are set independently according to requirements.
  • the setting is: when the fuel used for supplying the hydrogen fuel cell assembly is consumed, or the hydrogen fuel cell assembly fails, Or the power of the lithium battery is higher than the second preset power value, then stop the hydrogen fuel cell assembly from charging the lithium battery.
  • this embodiment discloses another specific management method, a management method for a hydrogen fuel electric vehicle.
  • the hydrogen fuel electric vehicle is powered by a hydrogen fuel cell assembly and/or a lithium battery, including:
  • the acquiring the load power of the hydrogen fuel electric vehicle, and adjusting the drainage time interval of the hydrogen fuel cell assembly according to the load power includes:
  • the first time interval is less than the second time interval.
  • the current output voltage of the hydrogen stack is less than or equal to the preset first low voltage threshold, it is judged whether it has been more than 20 seconds since the last drain, and if it exceeds, the water is drained immediately;
  • the current output voltage of the hydrogen stack is less than or equal to the preset second low voltage threshold, it is judged whether it has been more than 10 seconds since the last drain, and if it exceeds, the water is drained immediately;
  • the first low voltage threshold is greater than the second low voltage threshold.
  • the acquiring the state of charge of the lithium battery and controlling the start and stop of the hydrogen fuel cell assembly according to the state of charge includes:
  • the first preset voltage is smaller than the second preset voltage.
  • the hydrogen fuel cell assembly is controlled to stop power supply
  • the controlling the hydrogen fuel cell assembly to start supplying power includes:
  • the fan that controls the hydrogen fuel cell assembly is turned on.
  • the acquiring the state of charge of the lithium battery or the unlocking state of the vehicle, and controlling the start-stop of the hydrogen fuel cell assembly according to the state of charge or the unlocking state of the vehicle further includes:
  • the output power of the hydrogen fuel cell assembly is adjusted according to the state of charge.
  • the acquiring the state of charge of the lithium battery or the unlocking state of the vehicle, and controlling the start-stop of the hydrogen fuel cell assembly according to the state of charge or the unlocking state of the vehicle further includes:
  • the hydrogen fuel cell assembly starts charging the lithium battery
  • the first preset power value is higher than the second preset power value.
  • the hydrogen fuel cell Components to start charging the lithium battery include:
  • the hydrogen fuel cell assembly is stopped for all fuel cells. to charge the lithium battery.
  • the present invention also discloses a power supply management system for a hydrogen fuel electric vehicle, including:
  • -Hydrogen storage bottle storing hydrogen for supplying hydrogen fuel cell components, connected to the radio frequency identification module;
  • control assembly for detecting the opening condition of the hydrogen fuel cell assembly, the working state and the state of charge of the lithium battery, and controlling the output power of the hydrogen fuel cell assembly according to the state of charge of the lithium battery.
  • the hydrogen storage bottle, the hydrogen fuel cell assembly and the lithium battery are connected to the control assembly.
  • the hydrogen fuel electric vehicle is powered by the hydrogen fuel cell assembly and/or the lithium battery.
  • the lithium battery is powered to power on the processing unit.
  • the processing unit opens the hydrogen inlet valve of the hydrogen fuel cell assembly, so that the hydrogen supplies hydrogen to the fuel cell stack from the outlet of the hydrogen storage device, and the hydrogen reacts with the oxygen in the air to generate electricity. powered by.
  • the control component obtains the real-time voltage of the lithium battery, and when the current voltage of the lithium battery is lower than the first preset voltage, it controls the hydrogen fuel cell component to start supplying power; when the current voltage of the lithium battery is higher than the second preset voltage, it controls the hydrogen fuel The battery pack stops supplying power.
  • the first preset voltage is smaller than the second preset voltage, so that the hydrogen fuel cell assembly is turned on when the power of the lithium battery is insufficient, and the lithium battery is preferentially used for power supply when the power of the lithium battery is sufficient.
  • the control component obtains the real-time load power of the hydrogen fuel electric vehicle. If the current load power is greater than the preset load power, the drainage time interval is set to the first time interval; if the current load power is less than or equal to the preset load power, the drainage time interval is set. Set to the second time interval. The first time interval is less than the second time interval, and the water produced by the hydrogen fuel cell assembly is drained in time.
  • the control component obtains the total number of water drainage times S 1 of the hydrogen fuel cell component in a power supply cycle, and accumulates the current number of water drainage times S 2 of the hydrogen fuel cell component, and calculates the current hydrogen remaining percentage in a power supply cycle as For users to know the hydrogen remaining in the hydrogen storage bottle. It should be noted that, usually, one power supply cycle is the gas supply time of one hydrogen cylinder.
  • the hydrogen fuel cell assembly includes a hydrogen fuel cell stack, a fan, a drain solenoid valve and an intake valve.
  • the fan, the drain solenoid valve and the intake valve enter a motorized working state.
  • the power supply management system also includes a voltage detection module and a power management module.
  • the voltage detection module is a voltage detection circuit and is connected to the control component, the lithium battery and the hydrogen fuel cell component.
  • the control component obtains the real-time voltage of the lithium battery through the voltage detection module.
  • the power management module is connected with the lithium battery and the control assembly, and the power management module is used to control the output power of the hydrogen fuel cell assembly.
  • the present invention also discloses a hydrogen fuel electric vehicle, which is powered by the above management method, and also includes a connected drive module and a motor device, the motor device includes an electronic lock, and the drive module is used in the hydrogen fuel cell.
  • the electric motor device of the electric vehicle is driven by the electric power supply of the components and/or the lithium battery to open the electronic lock and make the vehicle in a usable state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供一种氢燃料电动车及该氢燃料电动车的管理方法、系统,根据锂电池的荷电情况来决定是否需要开启使用氢燃料电池组件;根据负载功率来调整氢燃料电池组件的排水时间间隔,在负载功率较大时,默认氢燃料电池组件的供电功率也较大,故会反应产生较多的水,故将排水时间间隔设置的较短,而负载功率较低时则相应加长排水时间间隔;根据当前实际排水次数在总排水次数的占比,估计当下的氢气的剩余量,方便使用者获取氢气量信息。

Description

氢燃料电动车及该氢燃料电动车的管理方法、系统 技术领域
本发明涉及氢燃料电池管理技术领域,尤其涉及一种氢燃料电动车及该氢燃料电动车的管理方法、系统。
背景技术
目前市场上共享电动车辆普遍采用铅酸电池或者锂离子电池作为动力源,普遍续航里程在40-60km,充电慢,充电一次往往需要4-6个小时。而采用燃料电池作为电动车辆的动力源,续航里程不低于现有解决方案且极易扩充,同时加氢只需要4-6分钟,使用便利性大幅提高。
对氢燃料电动车进行共享车辆使用时,需要先对电子锁进行解锁控制,因此控制系统需要一直有电能提供,而氢能源电动车需要先启动储氢装置才可以提供电能,现有技术的氢燃料电池电堆管理系统通过燃料电池电堆给车辆提供动力的同时也给锂电池供电系统充电,通过锂电池给控制系统供电,然后给电子锁解锁,解锁成功后,启动储氢装置给氢能源电动车提供电能,锂电池的主要作用是启动系统或者提供辅助动力,该系统中没有实际解决锂电池电量的管理问题以及如何精准获得储氢装置内的氢气余量。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种根据锂电池的电量进一步管理氢燃料电动车的供电过程的管理方法、系统及氢燃料电动车。
本发明公开了一种氢燃料电动车的管理方法,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电,包括:获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停;获取所述氢燃料电动车的负载功率,将所述氢燃料电池组件的排水时间间隔的长短设置为与负载功率成反比;获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,所述一个供电周期为一个氢气瓶的供气时间;累计当前所述氢燃料 电池组件的排水次数S 2,计算获取所述一个供电周期的当前氢气余量百分比为
Figure PCTCN2022082768-appb-000001
优选地,所述获取所述氢燃料电动车的负载功率,并根据所述负载功率调整所述氢燃料电池组件的排水时间间隔包括:获取所述氢燃料电动车的实时负载功率;若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;所述第一时间间隔小于所述第二时间间隔。
优选地,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停包括:获取所述锂电池的实时电压;当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;所述第一预设电压小于所述第二预设电压。
优选地,所述控制所述氢燃料电池组件开始供电包括:控制所述氢燃料电池组件的氢气进气阀开启。
优选地,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停还包括:根据所述荷电状态调整所述氢燃料电池组件的输出功率。
优选地,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停还包括:若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电;所述第一预设电量值高于所述第二预设电量值。
优选地,所述若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电包括:当用于供应所述氢燃料电池组件的燃料消耗完毕、或所述氢燃料电池组件故障、或所述锂电池的电量高于第二预设电量值,则停止所述氢燃料电池组件对所述锂电池充电。
同时,本发明还有另一种氢燃料电动车的管理方法,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电,包括:
获取所述车辆解锁状态,并根据所述车辆解锁状态控制所述氢燃料电池组件的启停;或
获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停;
获取所述氢燃料电动车的负载功率,将所述氢燃料电池组件的排水时间间隔的长短设置为与负载功率成反比;
获取所述氢燃料电动车的氢堆输出电压,并根据氢堆输出电压控制所述氢燃料电池组件的排水阀开关;
获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,所述一个供电周期为一个氢气瓶的供气时间;累计当前所述氢燃料电池组件的排水次数S 2,计算获取所述一个供电周期的当前氢气余量百分比为
Figure PCTCN2022082768-appb-000002
优选地,所述获取所述氢燃料电动车的负载功率,并根据所述负载功率调整所述氢燃料电池组件的排水时间间隔包括:
获取所述氢燃料电动车的实时负载功率;
若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;
若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;
所述第一时间间隔小于所述第二时间间隔。
优选地,所述获取所述氢燃料电动车的氢堆输出电压,并根据所述氢燃料电动车的氢堆输出电压控制所述氢燃料电池组件的排水阀的开关:
获取所述燃料电动车的氢堆输出电压;
若当前氢堆输出电压小于等于预设第一低电压阈值,则判断距离上次排水是否超过20秒,若超过则立即排一次水;
若当前氢堆输出电压小于等于预设第二低电压阈值,则判断距离上次排水是否超过10秒,若超过则立即排一次水;
所述第一低电压阈值大于所述第二低电压阈值。
优选地,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停包括:
获取所述锂电池的实时电压;
当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;
当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;
所述第一预设电压小于所述第二预设电压。
优选地,所述获取所述车辆解锁状态,并根据所述车辆解锁状态控制所述氢燃料电池组件的启停包括:
获取所述车辆解锁状态;
当所述车辆解锁成功后,则控制所述氢燃料电池组件开始供电;
当所述车辆关锁成功后,则控制所述氢燃料电池组件停止供电;
优选地,所述控制所述氢燃料电池组件开始供电包括:
控制所述氢燃料电池组件的氢气进气阀开启。
控制所述氢燃料电池组件的风扇开启。
控制所述氢燃料电池组件的排水阀的开关。
优选地,所述获取所述锂电池的荷电状态或车辆解锁状态,并根据所述荷电状态或车辆解锁状态控制所述氢燃料电池组件的启停还包括:
根据所述荷电状态调整所述氢燃料电池组件的输出功率。
优选地,所述获取所述锂电池的荷电状态或车辆解锁状态,并根据所述荷电状态或车辆解锁状态控制所述氢燃料电池组件的启停还包括:
若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电;
所述第一预设电量值高于所述第二预设电量值。
优选地,所述若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电包括:
当用于供应所述氢燃料电池组件的燃料消耗完毕、或所述氢燃料电池组件故障、或所述锂电池的电量高于第二预设电量值,则停止所述氢燃料电池组件对所述锂电池充电。
本发明还公开了一种氢燃料电动车的供电管理系统,包括储氢瓶、氢燃料电池组件、锂电池和控制组件,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电;储氢瓶、氢燃料电池组件和锂电池与控制组件连接;所述控制组件获取所述锂电池的实时电压;当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;所述第一预设电压小于所述第二预设电压;所述控制组件获取所述氢燃料电动车的实时负载功率;若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;所述第一时间间隔小于所述第二时间间隔;所述控制组件获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,并累计当前所述氢燃料电池组件的排水次数S 2,计算获取一个供 电周期的当前氢气余量百分比为
Figure PCTCN2022082768-appb-000003
所述一个供电周期为一个氢气瓶的供气时间。
优选地,所述氢燃料电池组件包括氢燃料电池电堆、风扇、排水电磁阀和进气阀;当所述氢燃料电池电堆开始供电,则所述风扇、排水电磁阀和进气阀开始工作;还包括电压检测模块,所述电压检测模块与所述控制组件、所述锂电池和所述氢燃料电池组件连接,所述控制组件通过所述电压检测模块获取所述锂电池的实时电压。
本发明还公开了一种氢燃料电动车,通过上述任一所述的管理方法进行供电;还包括相连接的驱动模块和电机装置,所述电机装置包括电子锁,所述驱动模块驱动所述电机装置运行以开启所述电子锁。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.当氢燃料电动车启动时,由锂电池对控制组件进行供电,从而启动控制组件和氢燃料电池组件;另外,根据所述储氢瓶内的容量情况来决定是否需要使用锂电池进行辅助供电,即当所述储氢瓶内的气体容量不足时,使用锂电池供电,保证车辆的行驶过程中的供电稳定;
2.根据负载功率来调整氢燃料电池组件的排水时间间隔,在负载功率较大时,默认氢燃料电池组件的供电功率也较大,故会反应产生较多的水,故将排水时间间隔设置的较短,而负载功率较低时则相应加长排水时间间隔;
3.根据当前实际排水次数在总排水次数的占比,估计当下的氢气的剩余量,方便使用者获取氢气量信息;
4.还设置当锂电池电量不足而氢燃料电池组件的电量很足的情况下,通过氢燃料电池组件对锂电池进行充电,保证氢燃料电动车在启动时的可靠性。
附图说明
图1为本发明提供的根据负载功率调整排水时间间隔的流程图;
图2为本发明提供的根据排水次数获取氢气余量百分比的流程图;
图3为本发明提供的根据锂电池的荷电状态控制氢燃料电池组件的启停的流程图;
图4为本发明提供的氢燃料电动车的结构原理示意图。
图5为本发明实施例2的流程示意图之一。
图6为本发明实施例2的流程示意图之二。
图7为本发明实施例2的流程示意图之三。
图8为本发明实施例2的流程示意图之四。
图9为本发明实施例2的流程示意图之五。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可 以混合地使用。
(实施例1)
本发明公开了一种氢燃料电动车的管理方法,氢燃料电动车通过氢燃料电池组件和/或锂电池共同进行供电,包括:
获取锂电池的荷电状态,并根据荷电状态控制氢燃料电池组件的启停,由于锂电池的供电模式较氢燃料电池组件更为稳定,故本发明根据锂电池的荷电情况来决定是否需要开启使用氢燃料电池组件,即当锂电池的荷电量能够满足当下车辆行驶需要,则不开启使用氢燃料电池组件,保证车辆的行驶过程中的供电稳定;
获取氢燃料电动车的负载功率,将氢燃料电池组件的排水时间间隔的长短设置为与负载功率成反比,在负载功率较大时,默认氢燃料电池组件的供电功率也较大,故会反应产生较多的水,故将排水时间间隔设置的较短,而负载功率较低时则相应加长排水时间间隔,也减小排水电磁阀的工作量;
参见附图1,获取一个供电周期内氢燃料电池组件的总排水次数S 1,一个供电周期为一个氢气瓶的供气时间;累计当前氢燃料电池组件的排水次数S 2,计算获取一个供电周期的当前氢气余量百分比为
Figure PCTCN2022082768-appb-000004
方便使用者获取当下的氢气的估计剩余量,有助于及时更换氢气瓶或是改变车辆的使用方式,将长途使用计划改为短途使用。
参见附图2,具体地,获取氢燃料电动车的实时负载功率,若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔,例如取8秒;若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔,例如取38秒。第一时间间隔小于第二时间间隔,具体数值不限制,根据实际需求灵活设置。
更佳的,一般对于功率较小的氢燃料电池组件,排水量的上限也较低,即,即使是功率最大的情况下排水量也不会超过很高的数值,故设置两个时间间隔即可满足要求;而对于某些特殊应用场景,氢燃料电池组件的功率较大,排水量的上限也较高,此时两个时间间隔只能分别对应两个上、下限值,而使用功率的中间值没有时间间隔对应,故可能造成排水故障,故此时应该将时间间隔设置为三个,分别对应不同的使用功率,以满足各个使用场景。
甚至,对于某些排水精度要求较高的情况,排水过程要十分灵敏,此时也可通过计算具体功率值所对应的产水量,再依据产水量和氢燃料电池组件的储水部件的容量来具体分配排水时间间隔。总之,排水时间间隔设置的数量不限,根据氢燃料电池组件的功 率和车辆的储水能力来灵活调整。
需要说明的是,获取氢燃料电动车的实时负载功率为周期性动作,获取时间间隔也灵活设置,若需要获取信息的灵敏度高,则将间隔时间设置短一些,若不要求获取信息的灵敏度,则可将间隔时间设置的长一些。
较佳地,氢燃料电动车在使用过程中会对锂电池进行电压检测,当检测到锂电池的电量不足时,则启动燃料电池电堆系统。
具体的,参见附图3,获取锂电池的实时电压,当锂电池当前电压低于第一预设电压时,则默认当前锂电池的电量过低,则控制氢燃料电池组件开始供电;而当锂电池当前电压高于第二预设电压时,则默认当前锂电池的电量充足,则控制氢燃料电池组件停止供电。第一预设电压小于第二预设电压,具体数值根据实际需求灵活设置,此处不做限制。
氢燃料电池组件开始供电时,控制氢燃料电池组件的氢气进气阀开启,使得氢气余空气中的氧气进行反应产生电能。当氢燃料电池组件开始供电时,排水电磁阀和风扇处于机动状态,通常,排水电磁阀根据设定的排水时间间隔周期性打开,且每排一次水则累计排水次数;而风扇跟随供电全过程开启。
在排水过程中,未反应的多余的气体会随排水过程排出。
较佳地,获取锂电池的荷电状态后,还根据荷电状态调整氢燃料电池组件的输出功率。
较佳地,在骑行过程中还可利用氢燃料电池组件剩余的电能给锂电池进行充电,具体的,判断若一预设时间段内氢燃料电池组件的电量持续高于第一预设电量值,且锂电池的电量持续低于第二预设电量值,则认为氢燃料电池组件内的电量充足而锂电池的电量不足,则此时利用氢燃料电池组件开始对锂电池充电。氢燃料电池组件与锂电池之间设有充电模块,充电电量通过充电模块自动完成分配。例如,氢燃料电池组件的输出功率为P,风扇和加热装置等辅助负载消耗P 1瓦,骑行过程中车辆消耗了P 2瓦,则剩余电堆中(P-P 1-P 2)瓦用于给锂电池供电。
需要说明的是,为了设定只有当氢燃料电池组件的电量高于锂电池的电量时才允许氢燃料电池组件为锂电池进行充电,将第一预设电量值设置为高于第二预设电量值。而其他实施例中,即使氢燃料电池组件的电量低于锂电池的电量,为了保证锂电池的电量充足,也允许氢燃料电池组件为锂电池进行充电,则此时,第一预设电量值不一定高于 第二预设电量值,两者之间不存在关联,彼此根据需求单独设置。
较佳地,为了保证锂电池内的电量满足一定量值,在氢燃料电池组件为锂电池进行充电时,设置为:当用于供应氢燃料电池组件的燃料消耗完毕、或氢燃料电池组件故障、或锂电池的电量高于第二预设电量值,则停止氢燃料电池组件对锂电池充电。
(实施例2)
见图5-图9,本实施例公开了另一种具体的管理方法,一种氢燃料电动车的管理方法,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电,包括:
获取所述车辆解锁状态,并根据所述车辆解锁状态控制所述氢燃料电池组件的启停;或
获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停;
获取所述氢燃料电动车的负载功率,将所述氢燃料电池组件的排水时间间隔的长短设置为与负载功率成反比;
获取所述氢燃料电动车的氢堆输出电压,并根据氢堆输出电压控制所述氢燃料电池组件的排水阀开关;
获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,所述一个供电周期为一个氢气瓶的供气时间;累计当前所述氢燃料电池组件的排水次数S 2,计算获取所述一个供电周期的当前氢气余量百分比为
Figure PCTCN2022082768-appb-000005
所述获取所述氢燃料电动车的负载功率,并根据所述负载功率调整所述氢燃料电池组件的排水时间间隔包括:
获取所述氢燃料电动车的实时负载功率;
若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;
若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;
所述第一时间间隔小于所述第二时间间隔。
所述获取所述氢燃料电动车的氢堆输出电压,并根据所述氢燃料电动车的氢堆输出电压控制所述氢燃料电池组件的排水阀的开关:
获取所述燃料电动车的氢堆输出电压;
若当前氢堆输出电压小于等于预设第一低电压阈值,则判断距离上次排水是否超过20秒,若超过则立即排一次水;
若当前氢堆输出电压小于等于预设第二低电压阈值,则判断距离上次排水是否超过10秒,若超过则立即排一次水;
所述第一低电压阈值大于所述第二低电压阈值。
所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停包括:
获取所述锂电池的实时电压;
当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;
当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;
所述第一预设电压小于所述第二预设电压。
根据权利要求1所述的管理方法,其特征在于,所述获取所述车辆解锁状态,并根据所述车辆解锁状态控制所述氢燃料电池组件的启停包括:
获取所述车辆解锁状态;
当所述车辆解锁成功后,则控制所述氢燃料电池组件开始供电;
当所述车辆关锁成功后,则控制所述氢燃料电池组件停止供电;
所述控制所述氢燃料电池组件开始供电包括:
控制所述氢燃料电池组件的氢气进气阀开启。
控制所述氢燃料电池组件的风扇开启。
控制所述氢燃料电池组件的排水阀的开关。
所述获取所述锂电池的荷电状态或车辆解锁状态,并根据所述荷电状态或车辆解锁状态控制所述氢燃料电池组件的启停还包括:
根据所述荷电状态调整所述氢燃料电池组件的输出功率。
所述获取所述锂电池的荷电状态或车辆解锁状态,并根据所述荷电状态或车辆解锁状态控制所述氢燃料电池组件的启停还包括:
若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电;
所述第一预设电量值高于所述第二预设电量值。
所述若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电包括:
当用于供应所述氢燃料电池组件的燃料消耗完毕、或所述氢燃料电池组件故障、或 所述锂电池的电量高于第二预设电量值,则停止所述氢燃料电池组件对所述锂电池充电。
(实施例3)
参见附图4,本发明还公开了一种氢燃料电动车的供电管理系统,包括:
-储氢瓶,存储有用于向氢燃料电池组件提供的氢气,与射频识别模块连接;
-氢燃料电池组件,用于将空气中的氧气与储氢瓶中的氢气进行反应产生电能;
-锂电池,用于提供初始电能供应;
-控制组件,用于检测氢燃料电池组件的开启条件、以及所述锂电池的工作状态、和荷电状态,并根据锂电池的荷电状态控制氢燃料电池组件的输出功率。
储氢瓶、氢燃料电池组件和锂电池与控制组件连接,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电,氢燃料电动车在启动阶段,通过锂电池进行供电使得处理单元通电,处理单元将氢燃料电池组件的氢气进气阀打开,使得氢气从储氢器的出气口给燃料电池电堆供应氢气,氢气与空气中的氧气反应产生电能,此时电动车辆使用氢燃料进行供电。
控制组件获取锂电池的实时电压,当锂电池当前电压低于第一预设电压时,则控制氢燃料电池组件开始供电;当锂电池当前电压高于第二预设电压时,则控制氢燃料电池组件停止供电。第一预设电压小于第二预设电压,使得在锂电池的电量不足的情况下开启使用氢燃料电池组件,而在锂电池的电量充足的情况下优先使用锂电池进行供电。
控制组件获取氢燃料电动车的实时负载功率,若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔。第一时间间隔小于第二时间间隔,以及时排出氢燃料电池组件产生的水。
控制组件获取一个供电周期内氢燃料电池组件的总排水次数S 1,并累计当前氢燃料电池组件的排水次数S 2,计算一个供电周期的当前氢气余量百分比为
Figure PCTCN2022082768-appb-000006
供使用者获知储氢瓶内的氢气余量。需要说明的是,通常一个供电周期即为一个氢气瓶的供气时间。
较佳地,氢燃料电池组件包括氢燃料电池电堆、风扇、排水电磁阀和进气阀,当氢燃料电池电堆开始供电,则风扇、排水电磁阀和进气阀进入机动工作状态。
供电管理系统还包括电压检测模块和电源管理模块,电压检测模块为电压检测电路, 与控制组件、锂电池和氢燃料电池组件连接,控制组件通过电压检测模块获取锂电池的实时电压。电源管理模块与锂电池和控制组件连接,电源管理模块用于控制氢燃料电池组件的输出功率。
参见附图4,本发明还公开了一种氢燃料电动车,通过上述的管理方法进行供电,还包括相连接的驱动模块和电机装置,电机装置包括电子锁,驱动模块用于在氢燃料电池组件和/或锂电池的电能供应下驱动电动车辆的电机装置,以打开电子锁,使车辆处于可以使用的状态。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (19)

  1. 一种氢燃料电动车的管理方法,其特征在于,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电,包括:
    获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停;
    获取所述氢燃料电动车的负载功率,将所述氢燃料电池组件的排水时间间隔的长短设置为与负载功率成反比;
    获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,所述一个供电周期为一个氢气瓶的供气时间;累计当前所述氢燃料电池组件的排水次数S 2,计算获取所述一个供电周期的当前氢气余量百分比为
    Figure PCTCN2022082768-appb-100001
  2. 根据权利要求1所述的管理方法,其特征在于,所述获取所述氢燃料电动车的负载功率,并根据所述负载功率调整所述氢燃料电池组件的排水时间间隔包括:
    获取所述氢燃料电动车的实时负载功率;
    若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;
    若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;
    所述第一时间间隔小于所述第二时间间隔。
  3. 根据权利要求1所述的管理方法,其特征在于,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停包括:
    获取所述锂电池的实时电压;
    当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;
    当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;
    所述第一预设电压小于所述第二预设电压。
  4. 根据权利要求3所述的管理方法,其特征在于,所述控制所述氢燃料电池组件开始供电包括:
    控制所述氢燃料电池组件的氢气进气阀开启。
  5. 根据权利要求1所述的管理方法,其特征在于,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停还包括:
    根据所述荷电状态调整所述氢燃料电池组件的输出功率。
  6. 根据权利要求1所述的管理方法,其特征在于,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停还包括:
    若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电;
    所述第一预设电量值高于所述第二预设电量值。
  7. 根据权利要求6所述的管理方法,其特征在于,所述若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电包括:
    当用于供应所述氢燃料电池组件的燃料消耗完毕、或所述氢燃料电池组件故障、或所述锂电池的电量高于第二预设电量值,则停止所述氢燃料电池组件对所述锂电池充电。
  8. 一种氢燃料电动车的管理方法,其特征在于,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电,包括:
    获取所述车辆解锁状态,并根据所述车辆解锁状态控制所述氢燃料电池组件的启停;或
    获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停;
    获取所述氢燃料电动车的负载功率,将所述氢燃料电池组件的排水时间间隔的长短设置为与负载功率成反比;
    获取所述氢燃料电动车的氢堆输出电压,并根据氢堆输出电压控制所述氢燃料电池组件的排水阀开关;
    获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,所述一个供电周期为一个氢气瓶的供气时间;累计当前所述氢燃料电池组件的排水次数S 2,计算获取所述一个供电周期的当前氢气余量百分比为
    Figure PCTCN2022082768-appb-100002
  9. 根据权利要求8所述的管理方法,其特征在于,所述获取所述氢燃料电动车的负载功率,并根据所述负载功率调整所述氢燃料电池组件的排水时间间隔包括:
    获取所述氢燃料电动车的实时负载功率;
    若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;
    若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;
    所述第一时间间隔小于所述第二时间间隔。
  10. 根据权利要求8所述的管理方法,其特征在于,所述获取所述氢燃料电动车的 氢堆输出电压,并根据所述氢燃料电动车的氢堆输出电压控制所述氢燃料电池组件的排水阀的开关:
    获取所述燃料电动车的氢堆输出电压;
    若当前氢堆输出电压小于等于预设第一低电压阈值,则判断距离上次排水是否超过20秒,若超过则立即排一次水;
    若当前氢堆输出电压小于等于预设第二低电压阈值,则判断距离上次排水是否超过10秒,若超过则立即排一次水;
    所述第一低电压阈值大于所述第二低电压阈值。
  11. 根据权利要求8所述的管理方法,其特征在于,所述获取所述锂电池的荷电状态,并根据所述荷电状态控制所述氢燃料电池组件的启停包括:
    获取所述锂电池的实时电压;
    当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;
    当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;
    所述第一预设电压小于所述第二预设电压。
  12. 根据权利要求1所述的管理方法,其特征在于,所述获取所述车辆解锁状态,并根据所述车辆解锁状态控制所述氢燃料电池组件的启停包括:
    获取所述车辆解锁状态;
    当所述车辆解锁成功后,则控制所述氢燃料电池组件开始供电;
    当所述车辆关锁成功后,则控制所述氢燃料电池组件停止供电;
  13. 根据权利要求11所述的管理方法,其特征在于,所述控制所述氢燃料电池组件开始供电包括:
    控制所述氢燃料电池组件的氢气进气阀开启。
    控制所述氢燃料电池组件的风扇开启。
    控制所述氢燃料电池组件的排水阀的开关。
  14. 根据权利要求8所述的管理方法,其特征在于,所述获取所述锂电池的荷电状态或车辆解锁状态,并根据所述荷电状态或车辆解锁状态控制所述氢燃料电池组件的启停还包括:
    根据所述荷电状态调整所述氢燃料电池组件的输出功率。
  15. 根据权利要求8所述的管理方法,其特征在于,所述获取所述锂电池的荷电状态或车辆解锁状态,并根据所述荷电状态或车辆解锁状态控制所述氢燃料电池组件的启停 还包括:
    若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电;
    所述第一预设电量值高于所述第二预设电量值。
  16. 根据权利要求14所述的管理方法,其特征在于,所述若一预设时间段内所述氢燃料电池组件的电量持续高于第一预设电量值,且所述锂电池的电量持续低于第二预设电量值,则所述氢燃料电池组件开始对所述锂电池充电包括:
    当用于供应所述氢燃料电池组件的燃料消耗完毕、或所述氢燃料电池组件故障、或所述锂电池的电量高于第二预设电量值,则停止所述氢燃料电池组件对所述锂电池充电。
  17. 一种氢燃料电动车的供电管理系统,其特征在于,包括储氢瓶、氢燃料电池组件、锂电池和控制组件,氢燃料电动车通过氢燃料电池组件和/或锂电池进行供电;储氢瓶、氢燃料电池组件和锂电池与控制组件连接;
    所述控制组件获取所述锂电池的实时电压;当所述锂电池当前电压低于第一预设电压时,则控制所述氢燃料电池组件开始供电;当所述锂电池当前电压高于第二预设电压时,则控制所述氢燃料电池组件停止供电;所述第一预设电压小于所述第二预设电压;
    所述控制组件获取所述氢燃料电动车的实时负载功率;若当前负载功率大于预设负载功率,则将排水时间间隔设置为第一时间间隔;若当前负载功率小于等于预设负载功率,则将排水时间间隔设置为第二时间间隔;所述第一时间间隔小于所述第二时间间隔;
    所述控制组件获取一个供电周期内所述氢燃料电池组件的总排水次数S 1,并累计当前所述氢燃料电池组件的排水次数S 2,计算获取一个供电周期的当前氢气余量百分比为
    Figure PCTCN2022082768-appb-100003
    所述一个供电周期为一个氢气瓶的供气时间。
  18. 根据权利要求17所述的供电管理系统,其特征在于,所述氢燃料电池组件包括氢燃料电池电堆、风扇、排水电磁阀和进气阀;
    当所述氢燃料电池电堆开始供电,则所述风扇、排水电磁阀和进气阀开始工作;
    还包括电压检测模块,所述电压检测模块与所述控制组件、所述锂电池和所述氢燃料电池组件连接,所述控制组件通过所述电压检测模块获取所述锂电池的实时电压。
  19. 一种氢燃料电动车,其特征在于,通过上述1-16任一所述的管理方法进行供电;
    还包括相连接的驱动模块和电机装置,所述电机装置包括电子锁,所述驱动模块驱动所述电机装置运行以开启所述电子锁。
PCT/CN2022/082768 2021-03-26 2022-03-24 氢燃料电动车及该氢燃料电动车的管理方法、系统 WO2022199658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110324208.9 2021-03-26
CN202110324208.9A CN113071375B (zh) 2021-03-26 2021-03-26 氢燃料电动车及该氢燃料电动车的管理方法、系统

Publications (1)

Publication Number Publication Date
WO2022199658A1 true WO2022199658A1 (zh) 2022-09-29

Family

ID=76610376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082768 WO2022199658A1 (zh) 2021-03-26 2022-03-24 氢燃料电动车及该氢燃料电动车的管理方法、系统

Country Status (2)

Country Link
CN (1) CN113071375B (zh)
WO (1) WO2022199658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116093383A (zh) * 2023-04-11 2023-05-09 北京新研创能科技有限公司 一种用于氢燃料电池的进气控制方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071375B (zh) * 2021-03-26 2023-03-24 永安行科技股份有限公司 氢燃料电动车及该氢燃料电动车的管理方法、系统
CN114475365B (zh) * 2022-01-19 2023-04-07 广东技术师范大学 用于新能源汽车的氢燃料电池异常监控方法和系统
CN114889791B (zh) * 2022-04-02 2023-06-13 广东逸动科技有限公司 一种用于增程式能源系统的控制方法、系统及新能源船舶

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396447A (zh) * 2002-07-30 2003-02-12 天津海蓝德能源技术发展有限公司 储氢器剩余氢气量的测量方法及其装置
US20100167144A1 (en) * 2007-06-20 2010-07-01 Nissan Motor Co., Ltd. Fuel cell system and operation method thereof
CN102893436A (zh) * 2010-05-07 2013-01-23 丰田自动车株式会社 可计算液态水体积的燃料电池系统
CN108539222A (zh) * 2018-06-06 2018-09-14 同济大学 一种车载燃料电池多模块并联氢气循环系统及其控制方法
CN111029619A (zh) * 2019-11-27 2020-04-17 中国第一汽车股份有限公司 一种燃料电池氢气循环系统、氢气回路控制方法及排氢排水方法
CN111038330A (zh) * 2019-12-31 2020-04-21 永安行科技股份有限公司 氢燃料电池电堆的供电方法、系统、氢能源助力车及其传动方法、系统
CN113071375A (zh) * 2021-03-26 2021-07-06 永安行科技股份有限公司 氢燃料电动车及该氢燃料电动车的管理方法、系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564015B1 (ko) * 2018-05-17 2023-08-07 현대자동차주식회사 연료전지 시스템 및 그의 제어방법
CN108550880B (zh) * 2018-05-31 2020-11-03 安徽江淮汽车集团股份有限公司 氢燃料电池汽车氢气控制系统
CN110474072A (zh) * 2019-08-30 2019-11-19 深圳市海太阳实业有限公司 一种新型氢燃料电池及储氢罐
CN110696682A (zh) * 2019-10-31 2020-01-17 无锡市产品质量监督检验院 电动自行车用氢燃料电池动力控制方法、装置及系统
CN111332155A (zh) * 2020-03-11 2020-06-26 永安行科技股份有限公司 一种氢燃料电池电堆的控制系统
CN111993909A (zh) * 2020-09-02 2020-11-27 江苏集萃安泰创明先进能源材料研究院有限公司 氢燃料电池助力自行车的动力系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396447A (zh) * 2002-07-30 2003-02-12 天津海蓝德能源技术发展有限公司 储氢器剩余氢气量的测量方法及其装置
US20100167144A1 (en) * 2007-06-20 2010-07-01 Nissan Motor Co., Ltd. Fuel cell system and operation method thereof
CN102893436A (zh) * 2010-05-07 2013-01-23 丰田自动车株式会社 可计算液态水体积的燃料电池系统
CN108539222A (zh) * 2018-06-06 2018-09-14 同济大学 一种车载燃料电池多模块并联氢气循环系统及其控制方法
CN111029619A (zh) * 2019-11-27 2020-04-17 中国第一汽车股份有限公司 一种燃料电池氢气循环系统、氢气回路控制方法及排氢排水方法
CN111038330A (zh) * 2019-12-31 2020-04-21 永安行科技股份有限公司 氢燃料电池电堆的供电方法、系统、氢能源助力车及其传动方法、系统
CN113071375A (zh) * 2021-03-26 2021-07-06 永安行科技股份有限公司 氢燃料电动车及该氢燃料电动车的管理方法、系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116093383A (zh) * 2023-04-11 2023-05-09 北京新研创能科技有限公司 一种用于氢燃料电池的进气控制方法及系统
CN116093383B (zh) * 2023-04-11 2023-06-30 北京新研创能科技有限公司 一种用于氢燃料电池的进气控制方法及系统

Also Published As

Publication number Publication date
CN113071375A (zh) 2021-07-06
CN113071375B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2022199658A1 (zh) 氢燃料电动车及该氢燃料电动车的管理方法、系统
JP4811626B2 (ja) 車両用の燃料電池システム及び電気自動車
KR100685214B1 (ko) 연료 전지 시스템 및 제어 방법
JP3928154B2 (ja) 燃料電池電源装置
US7576512B2 (en) Secondary battery charging system capable of preventing drop of charged electric power
CN102369622A (zh) 燃料电池系统、用于燃料电池系统的控制方法以及配备有燃料电池系统的车辆
JP2003249236A (ja) 電源装置
CN210733896U (zh) 电动自行车用氢燃料电池动力系统
CN112172607A (zh) 电动汽车充电完成电池保温控制系统
US9455481B2 (en) Battery temperature control device
CN110696682A (zh) 电动自行车用氢燃料电池动力控制方法、装置及系统
CN110594069A (zh) 一种发动机起动及能量回收系统及其控制方法
CN105723552A (zh) 燃料电池系统
KR102316963B1 (ko) 연료 전지 시스템
TWI253196B (en) Double cell electric energy manager of electrically driven equipment with fuel cell
CN111890989A (zh) 一种插电式燃料电池汽车预热控制方法及装置
CN112918323B (zh) 用于增程式车辆的充电方法、系统及车辆
WO2014171291A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2006185907A (ja) 燃料電池システム
CN100488000C (zh) 燃料电池适配器
CN110416640A (zh) 组合动力电池充放电控制方法、系统及汽车
CN112537227A (zh) 一种氢燃料商用车电控系统及方法
JP4666130B2 (ja) 燃料電池システム
JP2007026822A (ja) 燃料電池システムの制御装置
CN110789475A (zh) 一种复合电源管理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774312

Country of ref document: EP

Kind code of ref document: A1