WO2022198687A1 - 高压开关温升试验方法及系统 - Google Patents

高压开关温升试验方法及系统 Download PDF

Info

Publication number
WO2022198687A1
WO2022198687A1 PCT/CN2021/083730 CN2021083730W WO2022198687A1 WO 2022198687 A1 WO2022198687 A1 WO 2022198687A1 CN 2021083730 W CN2021083730 W CN 2021083730W WO 2022198687 A1 WO2022198687 A1 WO 2022198687A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
test
value
temperature rise
current
Prior art date
Application number
PCT/CN2021/083730
Other languages
English (en)
French (fr)
Inventor
胡德霖
胡醇
赵杰
王俊俊
曹坚
凡海燕
徐秀红
吴金洲
任翔
沈晨华
毛清春
Original Assignee
苏州电器科学研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州电器科学研究院股份有限公司 filed Critical 苏州电器科学研究院股份有限公司
Publication of WO2022198687A1 publication Critical patent/WO2022198687A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests

Definitions

  • the invention relates to the technical field of high-current temperature rise test of power systems, in particular to a high-voltage switch temperature rise test method and system.
  • the temperature rise test is a test to assess whether the components of an electrical product are heated due to resistance loss (temperature rise) under the rated working current of the electrical product, whether it meets certain requirements.
  • the temperature at which the temperature rise increases depends on two factors: heat generation and heat dissipation.
  • the main source of heat generation of components is the conversion of electrical energy from resistance loss into heat energy, but the eddy current loss and hysteresis loss generated by the alternating magnetic field are also important factors for its heat generation.
  • the heat generation is related to the size of the flow I, the cross-sectional area S of the current-carrying conductor, and it is also related to the bonding quality of the contact surface of the connector.
  • the heat dissipation is related to the temperature of the test environment, the humidity of the test environment, and it is also related to the surrounding wind speed.
  • the national standard also makes relevant provisions for gas-insulated metal-enclosed switchgear (GIS): if the electrical products are three-phase common box The product (and the three-phase share one air chamber) should be subjected to a three-phase temperature rise test.
  • the test current is applied to the three-phase of the incoming line end of the test product, and the outgoing line end is short-circuited.
  • thermocouple Most of the temperature collection at the test point of the test product is collected by the thermocouple.
  • the method of fixing the thermocouple in the prior art generally adopts the adhesive fixing method. The specific operation is as follows: first, the measuring end of the thermocouple is welded with a small copper sheet with an electric soldering iron, and the size of 0.1-0.2mm is the most suitable, and then the copper sheet is welded. Apply glue, generally choose 502 glue, and press the small copper sheet on the test point after gluing. After the glue is cured and pasted, it is fixed with tin foil for a second time. However, due to the poor heat resistance of 502 glue, its thermal resistance will cause the measured temperature to be lower than the actual temperature, resulting in lower accuracy of the test results.
  • the technical problem to be solved by the present invention is to overcome the defect of low accuracy of test results in the prior art.
  • an object of the present invention is to provide a kind of high-voltage switch temperature rise test method, comprising:
  • the temperature rise value is calculated according to the second temperature value and the ambient temperature.
  • the temperature rise test includes a rapid temperature rise stage and a temperature stabilization stage.
  • providing the test sample with the current required for the test to perform the temperature rise test includes:
  • test current and the expected temperature value in the rapid heating stage, provide a large current greater than the test current for the test sample, when the temperature rises to the expected temperature value, adjust the large current to the test current until the temperature reaches The temperature is expected value and the temperature is in a stable state, and the temperature information of the test sample is collected in the temperature stabilization stage.
  • the time node for adjusting the large current to the test current is that the current temperature value of the test sample is 75%-85% of the expected temperature value.
  • the time node when the large current is adjusted to the test current is when the current temperature value of the test sample is 75% of the expected temperature value.
  • collecting the temperature information of the test sample includes:
  • the temperature information of the sample is collected by using a thermocouple, and the length of the exposed metal at the test end of the thermocouple is 2-4 mm.
  • the first temperature value is corrected to obtain a second temperature value
  • the correction formula is as follows:
  • T represents the second temperature value
  • T 0 represents the first temperature value
  • represents the correction coefficient
  • the value of the correction coefficient ⁇ is 1.025.
  • the temperature rise value is calculated according to the second temperature value and the ambient temperature, and the calculation formula is as follows:
  • ⁇ T represents the temperature rise value
  • T represents the second temperature value
  • T environment represents the ambient temperature
  • Another object of the present invention is to provide a high-voltage switch temperature rise test system, comprising:
  • a current supply module deploying the test product to be tested on the test circuit, and the current supply module is used to provide the current required for the test for the test product to perform a temperature rise test;
  • a temperature collection module which is used for collecting temperature information of the test sample to obtain a first temperature value
  • a correction module which is used to correct the first temperature value to obtain a second temperature value
  • a temperature rise calculation module configured to calculate a temperature rise value according to the second temperature value and the ambient temperature.
  • the present invention corrects the collected temperature of the test product, obtains the actual temperature of the test product, and uses the actual temperature to calculate the temperature rise value, which can significantly improve the accuracy of the test result and overcome the thermal resistance of the adhesive material due to poor heat resistance. Defects where the measured temperature is lower than the actual temperature.
  • FIG. 1 is a schematic flowchart of a temperature rise test method for a high-voltage switch in Embodiment 1 of the present invention.
  • FIG. 2 is a structural block diagram of a high-voltage switch temperature rise test system in the second embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a temperature rise test method for a high-voltage switch in Embodiment 1 of the present invention.
  • a method for testing the temperature rise of a high-voltage switch in this embodiment includes the following steps:
  • S100 Deploy the test product to be tested on the test circuit, and provide the test product with the current required for the test to carry out the temperature rise test.
  • the temperature rise test includes a rapid heating stage and a temperature stabilization stage.
  • a rapid heating stage a large current greater than the test current is provided for the test sample, and when the temperature rises to the expected temperature value, the large current is adjusted to the test current until When the temperature reaches the expected temperature value and the temperature is in a stable state, the temperature information of the test sample is collected in the temperature stabilization stage, in which the test current and the expected temperature value are preset values, which can be freely set according to the actual application scenario.
  • the time node when the large current is adjusted to the test current is that the current temperature value of the test product is 75%-85% of the expected temperature value.
  • the time node when the large current is adjusted to the test current is the current temperature of the test product.
  • the temperature value is 75% of the expected value of the temperature, which can ensure the accuracy of the test results while shortening the test time.
  • S200 Collect temperature information of the test product to obtain a first temperature value.
  • thermocouple can be used to collect the temperature information of the test sample.
  • the galvanic wires of the two materials at the test end of the thermocouple must be bare and twisted together or welded together.
  • the length of the bare metal will affect the test results. Therefore, the exposed metal length of the thermocouple test end in this embodiment is 2-4mm, and 2-4mm is a more suitable range, which has less influence on the test result.
  • the first temperature value is corrected to obtain the second temperature value
  • the correction formula is as follows:
  • T represents the second temperature value
  • T 0 represents the first temperature value
  • represents the correction coefficient
  • the value of the correction coefficient ⁇ is 1.025.
  • S400 Calculate the temperature rise value according to the second temperature value and the ambient temperature.
  • the temperature rise value is calculated according to the second temperature value and the ambient temperature, and the calculation formula is as follows:
  • ⁇ T represents the temperature rise value
  • T represents the second temperature value
  • T environment represents the ambient temperature
  • the present invention corrects the collected temperature of the test product, obtains the actual temperature of the test product, and uses the actual temperature to calculate the temperature rise value, which can significantly improve the accuracy of the test results and overcome the heat of the adhesive material due to poor heat resistance. Resistance will cause the measured temperature to be lower than the actual temperature.
  • a high-voltage switch temperature rise test system provided in Embodiment 2 of the present invention is introduced below.
  • a high-voltage switch temperature rise test system described below and a high-voltage switch temperature rise test method described above can be referred to each other correspondingly.
  • FIG. 2 is a structural block diagram of a high-voltage switch temperature rise test system in the second embodiment of the present invention.
  • the second embodiment of a high-voltage switch temperature rise test system includes:
  • the current supply module 10 deploys the test product to be tested on the test circuit, and the current supply module 10 is used to provide the test product with the current required for the test to carry out the temperature rise test;
  • the temperature collection module 20 is used for collecting the temperature information of the test sample to obtain the first temperature value
  • Correction module 30 the correction module 30 is used to correct the first temperature value to obtain the second temperature value
  • a temperature rise calculation module 40 the temperature rise calculation module 40 is configured to calculate a temperature rise value according to the second temperature value and the ambient temperature.
  • the high-voltage switch temperature rise test system of this embodiment is used to implement the aforementioned high-voltage switch temperature rise test method, so the specific implementation of the system can be found in the example section of the high-voltage switch temperature rise test method above. Therefore, its specific implementation Reference may be made to the descriptions of the corresponding respective partial embodiments, which will not be described herein again.
  • the high-voltage switch temperature rise test system of this embodiment is used to implement the aforementioned high-voltage switch temperature rise test method, its function corresponds to the function of the above method, and will not be repeated here.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种高压开关温升试验方法及系统,方法包括将待试验的试品部署在试验线路上,为试品提供试验所需的电流进行温升试验(S100);采集试品的温度信息,得到第一温度值(S200);对第一温度值进行修正,得到第二温度值(S300);根据第二温度值和环境温度计算温升值(S400)。对采集到的试品温度进行修正,得到试品的实际温度,利用实际温度计算温升值,能够显著提高试验结果的准确度,克服胶粘材料因耐热性差而导致其热阻会使测量出的温度比实际温度偏低的缺陷。

Description

高压开关温升试验方法及系统 技术领域
本发明涉及电力系统大电流温升试验技术领域,尤其是指一种高压开关温升试验方法及系统。
背景技术
温升试验是考核电气产品在通其额定工作电流下,其零部件由于电阻损耗而发热(温度升高)是否满足一定要求的试验。温升升高的温度取决于两方面因素:发热和散热。零部件的发热主要原因来源与电阻损耗电能转变成热能,但对于交流的交变磁场产生的涡流损耗和磁滞损耗也是其发热的重要因素。发热与通流I大小、载流导体的截面积S有关,其还与连接件接触面的结合质量有关。散热与试验环境的温度、试验环境的湿度有关,其还与周围的风速有关。
国标中规定温升试验是高压开关设备的型式试验项目也是强制型的试验项目,国标对于气体绝缘金属封闭式开关设备(GIS)也做出了相关的规定:如果电器产品是三相共箱的产品(及三相共用一个气室)应进行三相温升试验,试验电流在试品的进线端三相上施加,出线端短接。对于三相非共箱或是单相产品只进行单相温升试验即可。大多数单相温升试验电流一般从主导体进线端引入,出线端与外壳相连,电流从主导体进线端流入壳体引出形成回路。
试品测试点的温度采集绝大部分是由热电偶进行采集,在固定热电偶的热端(即测量端)时,应使其与被测点部件表面之间有良好的热传导,且尽 可能不影响测温点的温升。现有技术固定热电偶的方法一般采用胶粘固定法,其具体操作为:首先要把电热偶的测量端用电烙铁焊接上小铜片,0.1-0.2mm大小为最合适,然后在铜片上涂抹胶水,胶水一般选择502胶,小铜片涂胶后压在测试点,等胶水固化粘贴好后再用锡箔纸二次固定。但是由于502胶的耐热性较差,导致其热阻会使测量出的温度与实际温度偏低,从而导致试验结果的准确度较低。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中试验结果准确度较低的缺陷。
为解决上述技术问题,本发明的一个目的是提供一种高压开关温升试验方法,包括:
将待试验的试品部署在试验线路上,为所述试品提供试验所需的电流进行温升试验;
采集所述试品的温度信息,得到第一温度值;
对所述第一温度值进行修正,得到第二温度值;
根据所述第二温度值和环境温度计算温升值。
在本发明的一个实施例中,所述温升试验包括快速升温阶段和温度稳定阶段。
在本发明的一个实施例中,为所述试品提供试验所需的电流进行温升试验包括:
预设试验电流和温度预期值,在快速升温阶段时,为所述试品提供大于试验电流的大电流,在温度升高至温度预期值时,将所述大电流调整为试验 电流直至温度达到温度预期值且温度处于稳定状态,在温度稳定阶段采集所述试品的温度信息。
在本发明的一个实施例中,将所述大电流调整为试验电流的时间节点为试品当前温度值是温度预期值的75%-85%。
在本发明的一个实施例中,将所述大电流调整为试验电流的时间节点为试品当前温度值是温度预期值的75%。
在本发明的一个实施例中,采集所述试品的温度信息包括:
使用热电偶采集所述试品的温度信息,所述热电偶测试端的裸露金属长度为2-4mm。
在本发明的一个实施例中,对所述第一温度值进行修正,得到第二温度值,修正公式如下:
T=αT 0
式中,T表示第二温度值,T 0表示第一温度值,α表示修正系数。
在本发明的一个实施例中,所述修正系数α的取值为1.025。
在本发明的一个实施例中,根据所述第二温度值和环境温度计算温升值,计算公式如下:
ΔT=T-T 环境
式中,ΔT表示温升值,T表示第二温度值,T 环境表示环境温度。
本发明的另一个目的是提供一种高压开关温升试验系统,包括:
电流供给模块,将待试验的试品部署在试验线路上,所述电流供给模块 用于为所述试品提供试验所需的电流进行温升试验;
温度采集模块,所述温度采集模块用于采集所述试品的温度信息,得到第一温度值;
修正模块,所述修正模块用于对所述第一温度值进行修正,得到第二温度值;
温升计算模块,所述温升计算模块用于根据所述第二温度值和环境温度计算温升值。
本发明的上述技术方案相比现有技术具有以下优点:
本发明对采集到的试品温度进行修正,得到试品的实际温度,利用实际温度计算温升值,能够显著提高试验结果的准确度,克服胶粘材料因耐热性差而导致其热阻会使测量出的温度与实际温度偏低的缺陷。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明实施例一中一种高压开关温升试验方法的流程示意图。
图2是本发明实施例二中一种高压开关温升试验系统的结构框图。
附图标记说明:10、电流供给模块;20、温度采集模块;30、修正模块;40、温升计算模块。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
图1是本发明实施例一中一种高压开关温升试验方法的流程示意图。
请参阅图1所示,本实施例一种高压开关温升试验方法包括以下步骤:
S100:将待试验的试品部署在试验线路上,为试品提供试验所需的电流进行温升试验。
示例地,温升试验包括快速升温阶段和温度稳定阶段,在快速升温阶段时,为试品提供大于试验电流的大电流,在温度升高至温度预期值时,将大电流调整为试验电流直至温度达到温度预期值且温度处于稳定状态,在温度稳定阶段采集试品的温度信息,其中试验电流和温度预期值为预先设定值,这里可以根据实际的应用场景自由设定。
示例地,在快速升温阶段为试品提供大电流用于试品快速升温,使得试品的温度能够在较快的时间内达到预设的温度预期值,如此能够缩短试验时间。但是在实际操作时,温升的显示会有一定的滞后性,即如果在试品当前温度达到温度预期值时才将大电流转换为试验电流,那么在电流转换节点的温度必然是大于温度预期值的,会对试验结果造成一定的干扰。因此本发明将大电流调整为试验电流的时间节点为试品当前温度值是温度预期值的75%-85%,在优选的一个方案中,大电流调整为试验电流的时间节点为试品当前温度值是温度预期值的75%,如此在缩短试验时间的同时,能够确保试验结果的准确性。
S200:采集试品的温度信息,得到第一温度值。
示例地,可以使用热电偶采集试品的温度信息,热电偶的测试端两种材料的电偶丝必须裸绞在一起或是裸绞在一起后进行焊接,其裸露金属长度会对试验结果造成一定的影响,因此本实施例热电偶测试端的裸露金属长度为2-4mm,2-4mm是一个较为合适的范围,其对试验结果的影响较小。
S300:对第一温度值进行修正,得到第二温度值。
示例地,对第一温度值进行修正,得到第二温度值,修正公式如下:
T=αT 0
式中,T表示第二温度值,T 0表示第一温度值,α表示修正系数,修正系数α的取值为1.025。
S400:根据第二温度值和环境温度计算温升值。
示例地,根据第二温度值和环境温度计算温升值,计算公式如下:
ΔT=T-T 环境
式中,ΔT表示温升值,T表示第二温度值,T 环境表示环境温度。
综上,本发明对采集到的试品温度进行修正,得到试品的实际温度,利用实际温度计算温升值,能够显著提高试验结果的准确度,克服胶粘材料因耐热性差而导致其热阻会使测量出的温度与实际温度偏低的缺陷。
下面对本发明实施例二提供的一种高压开关温升试验系统进行介绍,下文描述的一种高压开关温升试验系统与上文描述的一种高压开关温升试验方法可相互对应参照。
实施例二
图2是本发明实施例二中一种高压开关温升试验系统的结构框图。
请参阅图2所示,本实施例二一种高压开关温升试验系统,包括:
电流供给模块10,将待试验的试品部署在试验线路上,电流供给模块10用于为试品提供试验所需的电流进行温升试验;
温度采集模块20,温度采集模块20用于采集试品的温度信息,得到第一 温度值;
修正模块30,修正模块30用于对第一温度值进行修正,得到第二温度值;
温升计算模块40,温升计算模块40用于根据第二温度值和环境温度计算温升值。
本实施例的高压开关温升试验系统用于实现前述的高压开关温升试验方法,因此该系统的具体实施方式可见前文中的高压开关温升试验方法的实施例部分,所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此不再展开介绍。
另外,由于本实施例的高压开关温升试验系统用于实现前述的高压开关温升试验方法,因此其作用与上述方法的作用相对应,这里不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种高压开关温升试验方法,其特征在于,包括:
    将待试验的试品部署在试验线路上,为所述试品提供试验所需的电流进行温升试验;
    采集所述试品的温度信息,得到第一温度值;
    对所述第一温度值进行修正,得到第二温度值;
    根据所述第二温度值和环境温度计算温升值。
  2. 根据权利要求1所述的高压开关温升试验方法,其特征在于:所述温升试验包括快速升温阶段和温度稳定阶段。
  3. 根据权利要求1所述的高压开关温升试验方法,其特征在于:为所述试品提供试验所需的电流进行温升试验包括:
    预设试验电流和温度预期值,在快速升温阶段时,为所述试品提供大于试验电流的大电流,在温度升高至温度预期值时,将所述大电流调整为试验电流直至温度达到温度预期值且温度处于稳定状态,在温度稳定阶段采集所述试品的温度信息。
  4. 根据权利要求3所述的高压开关温升试验方法,其特征在于:将所述大电流调整为试验电流的时间节点为试品当前温度值是温度预期值的75%-85%。
  5. 根据权利要求4所述的高压开关温升试验方法,其特征在于:将所述大电流调整为试验电流的时间节点为试品当前温度值是温度预期值的75%。
  6. 根据权利要求1所述的高压开关温升试验方法,其特征在于:采集 所述试品的温度信息包括:
    使用热电偶采集所述试品的温度信息,所述热电偶测试端的裸露金属长度为2-4mm。
  7. 根据权利要求1所述的高压开关温升试验方法,其特征在于:对所述第一温度值进行修正,得到第二温度值,修正公式如下:
    T=αT 0
    式中,T表示第二温度值,T 0表示第一温度值,α表示修正系数。
  8. 根据权利要求7所述的高压开关温升试验方法,其特征在于:所述修正系数α的取值为1.025。
  9. 根据权利要求1所述的高压开关温升试验方法,其特征在于:根据所述第二温度值和环境温度计算温升值,计算公式如下:
    ΔT=T-T 环境
    式中,ΔT表示温升值,T表示第二温度值,T 环境表示环境温度。
  10. 一种高压开关温升试验系统,其特征在于,包括:
    电流供给模块,将待试验的试品部署在试验线路上,所述电流供给模块用于为所述试品提供试验所需的电流进行温升试验;
    温度采集模块,所述温度采集模块用于采集所述试品的温度信息,得到第一温度值;
    修正模块,所述修正模块用于对所述第一温度值进行修正,得到第二温度值;
    温升计算模块,所述温升计算模块用于根据所述第二温度值和环境温度计算温升值。
PCT/CN2021/083730 2021-03-25 2021-03-30 高压开关温升试验方法及系统 WO2022198687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110322015.XA CN113030718A (zh) 2021-03-25 2021-03-25 高压开关温升试验方法及系统
CN202110322015.X 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022198687A1 true WO2022198687A1 (zh) 2022-09-29

Family

ID=76474016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083730 WO2022198687A1 (zh) 2021-03-25 2021-03-30 高压开关温升试验方法及系统

Country Status (2)

Country Link
CN (1) CN113030718A (zh)
WO (1) WO2022198687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116662763A (zh) * 2023-07-25 2023-08-29 华夏天信智能物联股份有限公司 一种用于变频器温升测试的数据处理方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084472A (ja) * 2004-09-17 2006-03-30 Toshiba Corp バーンインテスト制御のためのシステム及び方法
CN201247108Y (zh) * 2008-08-18 2009-05-27 天津市电力公司 高压开关温升试验仪
CN102175939A (zh) * 2011-01-25 2011-09-07 国网电力科学研究院 一种电力电容器温升试验的方法
CN106482853A (zh) * 2015-09-02 2017-03-08 何东升 一种电力设备中温升试验的热电偶固定装置
CN112379260A (zh) * 2020-12-07 2021-02-19 江苏省电力试验研究院有限公司 一种开关设备快速温升试验方法及平台

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202693639U (zh) * 2012-05-29 2013-01-23 苏州电器科学研究院股份有限公司 低压大电流温升试验用可连续调节阻抗装置
CN103728555A (zh) * 2013-12-20 2014-04-16 浙江三辰电器有限公司 一种低压成套开关设备的温升试验回路及其测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084472A (ja) * 2004-09-17 2006-03-30 Toshiba Corp バーンインテスト制御のためのシステム及び方法
CN201247108Y (zh) * 2008-08-18 2009-05-27 天津市电力公司 高压开关温升试验仪
CN102175939A (zh) * 2011-01-25 2011-09-07 国网电力科学研究院 一种电力电容器温升试验的方法
CN106482853A (zh) * 2015-09-02 2017-03-08 何东升 一种电力设备中温升试验的热电偶固定装置
CN112379260A (zh) * 2020-12-07 2021-02-19 江苏省电力试验研究院有限公司 一种开关设备快速温升试验方法及平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘清春 等 (LIU, QINGCHUN ET AL.): "GB763-90交流高压电器在长期工作时的发热 (Non-official translation: Heating of GB763-90 AC High-Voltage Electrical Appliances During Long-term Work)", 中国国家标准分类汇编电工卷12 (NON-OFFICIAL TRANSLATION: CHINA NATIONAL STANDARDS AND COMPILATION OF CLASSIFICATION ELECTRICAL VOLUME 12), 31 October 1993 (1993-10-31), XP009541554 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116662763A (zh) * 2023-07-25 2023-08-29 华夏天信智能物联股份有限公司 一种用于变频器温升测试的数据处理方法和系统
CN116662763B (zh) * 2023-07-25 2023-10-20 华夏天信智能物联股份有限公司 一种用于变频器温升测试的数据处理方法和系统

Also Published As

Publication number Publication date
CN113030718A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN102608511B (zh) 一种金属氧化物半导体管的结温和热阻测量方法
CN107655940B (zh) 一种变压器绕组材质检测设备及系统
CN106872898B (zh) 动力电池单体界面热阻快速测试方法
WO2022198687A1 (zh) 高压开关温升试验方法及系统
CN104459412A (zh) 一种变压器热老化实时模拟测量装置及其应用
CN107655941B (zh) 一种变压器绕组材质检测方法
JP2014182005A (ja) 半導体装置の検査方法及びその方法を用いた半導体装置の製造方法
Dragomir et al. Considerations regarding infrared thermal stresses monitoring of electrical equipment
CN102445466B (zh) 确定电路板耐热性的方法和设备
CN115184785B (zh) 测试方法、测试系统以及电子设备
Hanss et al. Failure identification in LED packages by transient thermal analysis and calibrated FE models
Tzimas et al. Qualitative analysis of PEA and TSM techniques on a 200kV extruded cable during a VSC ageing program
CN109579998B (zh) 光伏连接器接触电阻的检测方法
JP2023005270A (ja) 電子部品試験装置
CN112729607B (zh) 变电站一次设备载流元件发热温度预测监控方法和系统
CN114460449A (zh) 电磁继电器低温测试装置及方法
JP3858690B2 (ja) 半導体パッケージの試験方法
TWI706137B (zh) 測試系統及其操作方法
JP2012256799A (ja) 半導体検査装置
CN209264886U (zh) 一种导体间电气连接质量的检测系统
Dragomir et al. Infrared Procedure for Monitoring Long-term Thermal Stresses of Electrical Equipment
Stojčić et al. Detecting high-resistance connection asymmetries in inverter fed AC drive systems
DEKHANDJI et al. Theoretical and experimental investigation of the supply voltage unbalance effects on squirrel cage induction motors
JP2015065715A (ja) 金属閉鎖形スイッチギヤの検査装置
CN210464701U (zh) 一种封闭母线测温装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932305

Country of ref document: EP

Kind code of ref document: A1