WO2022197721A1 - Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly - Google Patents
Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly Download PDFInfo
- Publication number
- WO2022197721A1 WO2022197721A1 PCT/US2022/020409 US2022020409W WO2022197721A1 WO 2022197721 A1 WO2022197721 A1 WO 2022197721A1 US 2022020409 W US2022020409 W US 2022020409W WO 2022197721 A1 WO2022197721 A1 WO 2022197721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow cannula
- bellmouth
- flange
- cannula
- heart
- Prior art date
Links
- 239000008280 blood Substances 0.000 claims abstract description 93
- 210000004369 blood Anatomy 0.000 claims abstract description 93
- 230000002861 ventricular Effects 0.000 claims abstract description 29
- 238000006073 displacement reaction Methods 0.000 claims abstract description 10
- 210000005242 cardiac chamber Anatomy 0.000 claims abstract description 9
- 230000008602 contraction Effects 0.000 claims abstract description 7
- 230000003205 diastolic effect Effects 0.000 claims abstract description 6
- 238000005086 pumping Methods 0.000 claims description 23
- 210000003323 beak Anatomy 0.000 claims description 21
- 210000004165 myocardium Anatomy 0.000 claims description 12
- 230000033764 rhythmic process Effects 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 7
- 230000023597 hemostasis Effects 0.000 claims description 6
- 230000001737 promoting effect Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 210000005240 left ventricle Anatomy 0.000 description 32
- 208000038003 heart failure with preserved ejection fraction Diseases 0.000 description 19
- 238000013461 design Methods 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 12
- 230000000747 cardiac effect Effects 0.000 description 11
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 11
- 229910001000 nickel titanium Inorganic materials 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 210000005241 right ventricle Anatomy 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 210000001174 endocardium Anatomy 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000000541 pulsatile effect Effects 0.000 description 6
- 206010019280 Heart failures Diseases 0.000 description 5
- 208000032843 Hemorrhage Diseases 0.000 description 5
- 208000034158 bleeding Diseases 0.000 description 5
- 230000000740 bleeding effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 230000002107 myocardial effect Effects 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 206010003694 Atrophy Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 208000038002 heart failure with reduced ejection fraction Diseases 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 206010007559 Cardiac failure congestive Diseases 0.000 description 3
- 208000003037 Diastolic Heart Failure Diseases 0.000 description 3
- 208000008253 Systolic Heart Failure Diseases 0.000 description 3
- 208000019269 advanced heart failure Diseases 0.000 description 3
- 210000001765 aortic valve Anatomy 0.000 description 3
- 230000037444 atrophy Effects 0.000 description 3
- 230000001364 causal effect Effects 0.000 description 3
- 238000002788 crimping Methods 0.000 description 3
- 210000005246 left atrium Anatomy 0.000 description 3
- 230000002980 postoperative effect Effects 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 2
- 206010039163 Right ventricular failure Diseases 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000003698 chordae tendineae Anatomy 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000013160 medical therapy Methods 0.000 description 2
- 210000004115 mitral valve Anatomy 0.000 description 2
- 210000003540 papillary muscle Anatomy 0.000 description 2
- 230000007310 pathophysiology Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 208000002815 pulmonary hypertension Diseases 0.000 description 2
- 210000003102 pulmonary valve Anatomy 0.000 description 2
- 210000005245 right atrium Anatomy 0.000 description 2
- 208000037905 systemic hypertension Diseases 0.000 description 2
- 210000000591 tricuspid valve Anatomy 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 208000029549 Muscle injury Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010051077 Post procedural haemorrhage Diseases 0.000 description 1
- 206010037368 Pulmonary congestion Diseases 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 208000005907 mitral valve insufficiency Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000009024 positive feedback mechanism Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000008085 renal dysfunction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004873 systolic arterial blood pressure Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/861—Connections or anchorings for connecting or anchoring pumps or pumping devices to parts of the patient's body
- A61M60/863—Apex rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/152—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel branching on and drawing blood from a blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/161—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel mechanically acting upon the outside of the patient's blood vessel structure, e.g. compressive structures placed around a vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/178—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/247—Positive displacement blood pumps
- A61M60/253—Positive displacement blood pumps including a displacement member directly acting on the blood
- A61M60/268—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/247—Positive displacement blood pumps
- A61M60/253—Positive displacement blood pumps including a displacement member directly acting on the blood
- A61M60/268—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
- A61M60/274—Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/30—Medical purposes thereof other than the enhancement of the cardiac output
- A61M60/31—Medical purposes thereof other than the enhancement of the cardiac output for enhancement of in vivo organ perfusion, e.g. retroperfusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/30—Medical purposes thereof other than the enhancement of the cardiac output
- A61M60/31—Medical purposes thereof other than the enhancement of the cardiac output for enhancement of in vivo organ perfusion, e.g. retroperfusion
- A61M60/32—Medical purposes thereof other than the enhancement of the cardiac output for enhancement of in vivo organ perfusion, e.g. retroperfusion of heart muscle tissues, e.g. using coronary sinus occlusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/424—Details relating to driving for positive displacement blood pumps
- A61M60/427—Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
- A61M60/531—Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/538—Regulation using real-time blood pump operational parameter data, e.g. motor current
- A61M60/546—Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/562—Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
- A61M60/569—Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow synchronous with the native heart beat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/585—User interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/835—Constructional details other than related to driving of positive displacement blood pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/835—Constructional details other than related to driving of positive displacement blood pumps
- A61M60/837—Aspects of flexible displacement members, e.g. shapes or materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/857—Implantable blood tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/857—Implantable blood tubes
- A61M60/859—Connections therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/861—Connections or anchorings for connecting or anchoring pumps or pumping devices to parts of the patient's body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/865—Devices for guiding or inserting pumps or pumping devices into the patient's body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/871—Energy supply devices; Converters therefor
- A61M60/878—Electrical connections within the patient's body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/871—Energy supply devices; Converters therefor
- A61M60/88—Percutaneous cables
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
Definitions
- the application relates in general to an implantable circulatory support system, and in particular to a co-pulsatile support system that includes a sutureless flow cannula assembly.
- VAD ventricular assist device
- LVAD left ventricular assist device
- HF advanced heart failure
- LVAD left ventricular assist device
- HF advanced heart failure
- LVAD left ventricular assist device
- HF advanced heart failure
- the patients indicated for VAD therapy are those who are unresponsive to medical therapy, being classified as terminal stage heart failure with imminent death threat if without heart transplant or mechanical circulatory support.
- the worldwide VAD registry has exceeded 25,000 implants since the approval of the continuous-flow durable LVADs (rotary blood pumps) including HeartMate 2, HeartMate 3 and HeartWare HVAD. It is anticipated that the use of LVADs as advanced heart failure therapy will be increasingly accepted along with further technologies advancement.
- Ejection fraction defined as the blood volume ejected out from the ventricle divided by the maximum blood volume stored in the ventricular chamber, has been used to quantify the contractility of the heart.
- EF Ejection fraction
- EF is generally lower than 40%, manifested with a pathologically dilated ventricular chamber and reduced wall thickness.
- Such enlarged chamber according to Laplace law, consumes more contractile energy in the myocardium to deliver stroke output, hence making ventricular contraction inadequate and inefficient.
- Diastolic heart failure is caused by chamber filling dysfunction, of which the myocardial wall is unusually stiff and thick, causing impaired blood filling capacity leading to cardiac output shortage, albeit the EF is about normal.
- Systolic heart failure, or heart failure with reduced ejection fraction (HFrEF) is understood relatively clearer and the therapies, either by medical or by device treatment, are reasonably well established.
- heart failure with preserved ejection fraction (HFpEF) a broader disease condition encompassing diastolic heart failure and other non-cardiac comorbidities, has gained attention in recent years. However, its pathophysiology is less well understood and available treatments are less effective.
- Patients with HFpEF account for approximately half of the mortality count of all-cause heart failure death toll. The epidemiologic burden of mortality and hospitalization caused by HFpEF is rising, and the growing elderly population is predicted to worsen this healthcare burden trend.
- HFrEF heart failure patients with EF ⁇ 40% are taken as HFrEF, and patients having borderline or even normal EF, namely EF>40-50%, are classified as belonging to the HFpEF cohort.
- the causal factor of HFpEF is heterogenous, patients died of both cardiac and non-cardiac reasons.
- HFpEF mortality includes pulmonary hypertension, edema, right ventricle (RV) failure, atrial fibrillation, systemic hypertension, ventricular-vascular stiffening, and non-cardiac factors like obesity, anemia, diabetes mellitus and renal dysfunction.
- RV right ventricle
- an embodiment of the invention configured to connect a heart chamber and a blood pump, including a flow cannula and a pair of male and female fasteners.
- the flow cannula includes a conduit body, a bellmouth and a flange ramp portion, wherein the conduit body is between the bellmouth and the flange ramp portion.
- the bellmouth is at the first end of the flow cannula and is configured to be inserted into the heart chamber;
- the flange ramp portion is at the second end of the flow cannula and is configured to be interfaced to the blood bump assembly.
- the inner surface of the flow cannula is smooth and seamless.
- the pair of male fastener and female fastener is screw interconnected, wherein the male fastener is anchored on the flow cannula, and the female fastener is compressed against the epicardium of the heart.
- the flow cannula has a stent, embedded within the wall of the flow cannula.
- the stent is inside the conduit body and the bellmouth.
- the stent has an array of zig-zag rings, a connecting portion, and cone-shaped stent rings, wherein connecting portion connects the array of zig zag rings which is inside the conduit body and the cone-shaped stent rings which are inside the bellmouth.
- the bellmouth has a gradually thinning wall thickness toward the tip of the bellmouth, and the tip is literally sharp-edged.
- the outer surface of the flow cannula configured for contact with the myocardium of the heart is roughened or is covered with a porous material to promote cell and tissue ingrowth.
- the female fastener has a female fastener cap configured for contact with the epicardium for promoting cell and tissue ingrowth for hemostasis and immobilization purposes, wherein porous materials are attached to the female fastener cap.
- the female fastener has a cushion cuff, wherein the cushion cuff is around and attached an outer rim of the female fastener cap, and is in contact with the epicardium.
- the conduit body has multiple protruded seats protruded from an outside wall of the conduit body; wherein the male fastener has multiple through slots respectively corresponding to the protruded seats; wherein the protruded seats are engaged with the through slots.
- the flow cannula has deformable polymeric material.
- the conduit body of the flow cannula is curved or bendable.
- Another embodiment of the invention provides an implantable circulatory support system, including a valveless displacement blood pump, a deformable polymeric flow cannula, a pair of male and female fasteners, a coupler, a driveline assembly, and a co- pulsatile driver.
- the blood pump includes a blood sac, a blood pump housing, a stem suspension integrating the blood sac within the blood pump housing, a sensor embedded in the blood pump housing to track the cardiac cycle, and an inlet adapter with a beak flange.
- the flow cannula includes a conduit body, a bellmouth and a flange ramp, wherein the conduit body is between the bellmouth and the flange ramp.
- the bellmouth is at the first end of the flow cannula and is configured to be inserted into a heart chamber
- the flange ramp portion is at the second end of the flow cannula and is configured to be interfaced to the inlet adapter, and an inner surface of the flow cannula is smooth and seamless.
- the pair of male and female fasteners is screw interconnected, wherein the male fastener is anchored on the flow cannula, and the female fastener is compressed against the epicardium of the heart.
- the coupler connects the second end of the cannula with the inlet adapter, wherein the coupler includes a flange base and a pair of collars pinned on the flange base, wherein the collars have an internal grooved slot to receive and compress together the flange base, the flange ramp of the flow cannula, and the beak flange of the inlet adapter.
- the driveline assembly pneumatically communicates the blood pump with as well as transmits the sensor signal to the driver.
- the co-pulsatile driver commands filling and pneumatic pumping support according to a sensed cardiac cycle, wherein a co-pulsatile pumping is fulfilled by pump ejection during systolic ventricular contraction and pump fill during diastolic ventricular relaxation.
- the flow cannula has a stent, embedded inside the wall of the flow cannula.
- the bellmouth has a gradually thinning wall thickness tapered toward a tip of bellmouth, and the tip is literally sharp-edged.
- the outer surface of the flow cannula configured for contact with the myocardium of the heart is roughened or is covered with a porous material to promote cell and tissue ingrowth.
- the conduit body of the flow cannula is curved or bendable.
- the female fastener has a female fastener cap configured for contact with the epicardium for promoting cell and tissue ingrowth for hemostasis and immobilization purposes, wherein porous materials are attached to the female fastener cap.
- the beak flange of the inlet adapter has a beak interfacing with the flange ramp, and an inner diameter of the beak slightly larger than the inner diameter of the conduit body, and the flange ramp is inclined 30 to 60 degrees to a centerline of the flow cannula.
- the coupler includes an anti-decoupling latch and a collar contour that catches simultaneously onto the entire peripheral rim of the flange base of the coupler during the collars closing for achieving a connection having minimal discontinuities in blood-contacting surfaces.
- the co-pulsatile pumping is fulfilled by referencing to the electrocardiogram.
- the co-pulsatile pumping is fulfilled by referencing to a pressure waveform acquired by the sensor, wherein the sensor is a pressure sensor.
- the stem suspension has a pair of axi-symmetric stems, and the blood sac of the blood pump is made axi-symmetric and supported by the pair of axi-symmetric stems to prolong the durability of the blood pump.
- FIG. 1 is a system representation of an implantable epi-ventricular assist device invention comprising a flow cannula, an epi-ventricular blood pump (EVBP), a percutaneous driveline and an external wearable driver.
- EVBP epi-ventricular blood pump
- FIG. 2 is an exploded view of implantable subsystems of the epi-ventricular assist device shown in FIG. 1.
- FIG. 3 is an illustration of an epi-ventricular assist device of FIG. 1 with the flow cannula implanted into a left ventricle (wherein LV: left ventricle, RV: right ventricle).
- FIG. 4A is a perspective view of the flow cannula assembly. For clarity, the porous material attached on the outer surface of the flow cannula for tissue ingrowth is temporarily removed.
- FIG. 4B is a cross-sectional view of the flow cannula shown in FIG. 4A.
- FIG. 5 is a perspective, transparent view of a Nitinol stent reinforcement embedded in the flow cannula as another embodiment of the present invention.
- FIG. 6 A shows a lateral view of a Nitinol stent embedment of FIG. 5.
- FIG. 6B shows a perspective view of a Nitinol stent embedment of FIG. 5.
- FIG. 7A is a perspective view of the male fastener component shown in FIG. 3.
- FIG. 7B is a sectional view of the male fastener component shown in FIG. 3.
- FIG. 8A is a perspective (frontal and rear) view of the female fastener component shown in FIG. 3.
- FIG. 8B is a sectional view of the female fastener component shown in FIG. 3.
- FIG. 8C shows a variant of the female fastener design depicted in FIGs. 8A, of which the cuff is additionally supported by a Nitinol stent.
- FIG. 8D shows a variant of the female fastener design depicted in FIGs. 8B, of which the cuff is additionally supported by a Nitinol stent.
- FIG. 9 is a sectional view of an integrated fastener pair in locking position with respect to the bellmouth and conduit body of an embodiment shown in FIG. 3. Note that porous material attached on the outside surface of the flow cannula for tissue ingrowth is not shown for clarity.
- FIG. 10A is a perspective view of a blood pump inlet adapter pertinent to connect with the present flow cannula.
- FIG. 10B is a sectional view of a blood pump inlet adapter pertinent to connect with the present flow cannula.
- FIG. 11 A is an exploded view showing the components of the coupler.
- FIG. 1 IB is a perspective view of the coupler in an unlatched open state.
- FIG. 11C is a perspective view of the coupler in a locked form with latch closed.
- FIG. 12 is a perspective view of a preferred embodiment of a displacement type blood pump suitable for use in the epi-ventricular assist device system disclosed in FIG. 3.
- FIG. 13 is a sectional view of a preferred embodiment of a displacement type blood pump suitable for use in the epi-ventricular assist device system disclosed in FIG. 3.
- FIG. 14 depicts a representative multi-layered distal driveline (percutaneous lead) that is able to transfer pneumatic pressure pulse and electrical signal between the blood pump and the external driver system.
- FIG. 15 is a sectional view of the assembled EVBP modules showing coupler in a locked position connecting flow cannula, coupler flange base, and EVBP inlet adapter. Note that the outside surface covering of the flow cannula is not shown for clarity.
- FIG. 16A illustrates the LV chamber extension effect provided by the co- pulsatile EVBP invention during heart diastole (wherein, LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle, AoV: aortic valve, MV: mitral valve, TV: tricuspid valve, and PV: pulmonary valve).
- FIG. 16B illustrates the LV ejection augmentation and stroke volume enhancement effect provided by the co-pulsatile EVBP invention during heart systole (wherein, LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle, AoV: aortic valve, MV: mitral valve, TV: tricuspid valve, and PV: pulmonary valve).
- FIG. 17A is a schematic of an electromechanical actuator and a motor controller controlling EVBP pumping in reference to the signal obtained from a pressure sensor embedded in the EVBP housing.
- FIG. 17B is a schematic of an electromechanical actuator and a motor controller controlling EVBP pumping in reference to the signal obtained from an electrocardiogram sensor system equipped with the EVBP.
- FIG. 18 shows the co-pulsatile relationships among left ventricular pressure (LVP), aortic pressure (AoP), electrocardiogram (ECG) and the piston displacement trajectory of the electromechanical actuator in driving the EVBP circulatory support system. Solid and dotted lines represent assisted and unassisted conditions, respectively.
- FIG. 1 A representative embodiment of invention is shown in FIG. 1, which comprises a flow cannula assembly 30A, a coupler 40, an epi-ventricular blood pump (EVBP or blood pump) 50, a driveline assembly 60A, and an external driver 70.
- the EVBP 50 is connected via the coupler 40 to a flow cannula 30 of the flow cannula assembly 30A which is implanted in a left ventricle 20.
- an embodiment of the present invention innovates a mechanical volume compensator by adding the actively-regulated blood pump 50, the EVBP, appended to the LV.
- the anastomotic connection of such EVBP 50 is via a novel flow connector invention (including the flow cannula assembly 30A, the coupler 40) and the operation of the present circulatory support is conducted by a co-pulsatile driving of the EVBP 50, as described below.
- the flow cannula assembly 30A has a flow cannula (or a cannula) 30 and the fastener pair 33, 34.
- the distal end (first end) 30S1 of the flow cannula 30 is funnel-shaped, and the fastener pair 33, 34 is mounted around the flow cannula 30 to achieve a leakage-free fixation of the flow cannula 30 with the heart 20, to be described later.
- an integration mechanism incorporating a minimal interface discontinuity design is adopted for connecting the flow cannula 30 with an inlet adapter 51 (see FIG. 10A) of the EVBP 50.
- the flow cannula 30 is a deformable polymeric flow cannula.
- the implantation of the epi-ventricular assist device 100 is shown in FIG. 3.
- the connection of EVBP 50 to the left ventricle is accomplished by a sutureless connection method.
- the flow cannula 30 has a bellmouth (or a funnel-shaped conduit) 31 flush- mounted with the endocardium and locked by the female fastener cap 34 exerting compression force to the epicardium, using the bellmouth 31 as a backstop, for a leakage- free device connection with the heart 20.
- FIGs. 3 and 4A An embodiment of the flow cannula assembly 30A for connecting the EVBP 50 to a heart 20 is depicted in FIGs. 3 and 4A.
- FIG. 3 which shows how the flow cannula 30 and the blood pump 50 is connected to left ventricle (LV), in which a sectional view depicting the artificially created flow passage and the interconnected cannula components inserted through a hole 21 cored in the ventricular wall.
- This flow cannula assembly 30A includes a bellmouth 31, a conduit body 32, a pair of male fastener 33 and female fastener 34, and a flange ramp 36.
- the bellmouth 31 is configured to be inserted into a heart chamber of the heart 20.
- the coupler 40 is configured to connect the flange ramp 36 of the flow cannula 30 to the inlet adapter 51 of the EVBP 50.
- the ramp surface 38 of the flange ramp 36 is connected to or in contact with the inlet adapter 51.
- FIG. 4A and 4B Further shown in FIG. 4A and 4B are the detail illustrations of the flow cannula 30.
- a distal orifice defined as the farther cannula end viewed from the connected circulatory support system 10, is configured in a bellmouth shape with gradually increasing cone diameter.
- the cone angle of the bellmouth 31 is typically 30-75 degrees relative to the axis of revolution of the conduit body 32.
- the central portion of the flow cannula 30 is a straight conduit body 32 with a uniform cross-sectional configuration, wherein the conduit body 32 is curved or bendable.
- the cannula material is semi-rigid and flexible, which is usually constructed by mold injectable polymeric materials.
- the funnel-shaped flow cannula 30 constitutes a geometric locking mechanism when inserted across a cored through-hole 21 of the heart 20 (see FIG. 3) near the ventricular apex.
- the blood-contacting inner surface of the flow cannula 30 is configured to have a smooth geometric transition to the inlet adapter 51 of the connected blood pump 50.
- a surface portion 320 of the conduit body 32 in contact with the cored myocardium can be textured to promote tissue ingrowth during the wound healing period.
- the textured surface portion 320 can be made by attaching a fabric material with appropriate porosity or by depositing a thin layer of polymeric filaments generated, for example, by electro spinning. This textured surface portion 320 can help adherence or seal the implanted flow cannula 30 via tissue ingrowth and hence maintain postoperatively the long-term hemostasis property required for a safe implant.
- FIGs. 4A, 4B, and FIG. 5 Two embodiments of the aforementioned funnel-shaped cannula are shown in FIGs. 4A, 4B, and FIG. 5, respectively.
- polymeric elastomer such as silicone or polyurethane can be adopted as the material, which can be mold casted or injected into a seamless cannula with smooth blood-contacting surface.
- a sharp-edged tip 310 At the distal end of the bellmouth 31 is a sharp-edged tip 310 that can be attached to the endocardium with minimal geometric discontinuity.
- the rigidity of the bellmouth 31 reduces in proportion to the wall thickness toward the tip, rendering the bellmouth 31 flexible and shape-conformal when compressed against the endocardium.
- FIG. 5 Another embodiment is to have the previous embodiment (FIGs. 4A and 4B) embedded with a metallic stent 311 (such as a Nitinol stent reinforcement), as shown in FIG. 5.
- the stent 311 is embedded inside the cannula wall 30W of the flow cannula 30.
- the stent 311 is inside the conduit body 32 and the bellmouth 31 to provide stiffness.
- the cannula wall thickness can be further thinned to decrease the outer conduit diameter.
- the implantability of the stent embedded cannula 30 would be upgraded without compromising the hemodynamic performance which is dominated by the inner diameter 35.
- the stent 311 made by Nitinol reinforcement may share a substantial amount of the pulsatile pressure loading exerted on the conduit body 32, hence enhancing the conduit durability and safety.
- super-elastic Nitinol stent is preferred because of its ability to endure large deformation without structural yielding that meets the foldability requirement of the present cannula.
- FIG. 6A and FIG. 6B A lateral and perspective view of a representative stent 311 insert is illustrated in FIG. 6A and FIG. 6B, respectively.
- the array of zig-zag rings 312 is responsible for resisting the radial load whereas the connecting portion 313 clusters the rings 312 together to resist the axial force.
- Several cone-shaped stent rings 314 are embedded in the wall of bellmouth 31. For a thin-walled bellmouth 31 the radial strength is gradually weakened along with the increase of the cone diameter toward the tip 310. The wall thickness of the bellmouth 31 tapers toward the tip 310.
- Nitinol stent reinforcement 311 can improve the stiffness of this polymeric material by providing sufficient anti-buckling capability without a need to increase the wall thickness of the bellmouth 31.
- a through-hole 21 in the range of 10-15 mm in diameter is required, which is intentionally kept smaller than the outer diameter of the inserted conduit body 32.
- Deformability of the present cannula invention is hence essential, which allows the bellmouth 31 and flow cannula 30 to be crimped into a much smaller prepacked form to facilitate insertion.
- the folded cannula 30 will resume its original form and diameter, and expand snuggly against the cut surface of the undersized cored myocardial through-hole 21.
- the intake of the bellmouth 31, after being freed from crimping constraint will expand and hence constitute an anti dislodging anchorage against the cored endocardium.
- Surgical implantation of LVAD has been routinely using LV apex as a connection location.
- the cored hole size (10-15 mm in diameter) required for the present cannula implant 30 can be substantially smaller when compared to that of a rigid-walled inflow conduit (20-30 mm in diameter) pertaining to the contemporary rotary blood pumps.
- Excising lesser amount of tissue mass from the cardiac wall is surgically and anatomically advantageous. It not only reduces a permanent loss of contractile muscle, but also mitigates the risk of injury to papillary muscle and chordae tendineae that are responsible for atrioventricular valvular function. Notice that mitral valve regurgitation would lead to pulmonary congestion and hypertension, causing pulmonary edema and death-threatening right heart failure.
- Coring-induced chordae tendineae and papillary muscle injury should be avoided, and a smaller cored hole can significantly reduce this surgical risk as well as the resultant pulmonary complications. Furthermore, it would fractionally increase the restricted internal diameter of the LV commonly encountered in HFpEF, thus reducing the possibility of cannula tip obstruction during pump fill (or LV “suck-down”).
- the present invention innovates a sutureless fixation approach.
- Conventional suture fixation relies on the tension force generated in the suture string by pulling tight the opposingly anchored suture pair.
- the present sutureless pump attachment adopts a completely different fixation force generation method provided by the fastener pair 33, 34. This new attachment design locks together and anchors the bellmouth of the flow cannula 30 circumferentially onto the connection site myocardium.
- FIG. 9 shows the integrated fasteners 33, 34 as mounted on the flow cannula 30.
- the flange ramp 36 at the second end 30S2 of the flow cannula 30 ought to be compressed or folded into a smaller crimped profile to pass through the fasteners 33, 34 sequentially.
- the male fastener 33 is first mounted and seated onto the conduit body 32 via an engagement of the multiple (two) through slots 330 with the multiple (two) protruded seats 37 protruded outside of the wall of the conduit body
- two protruded seats 37 are located on the opposite sides of the conduit body 32.
- the female fastener 34 is inserted following the same crimping and release of the flange ramp 36 and then screwed onto the male counterpart 33.
- the female fastener 34 is then advanced forward until in contact with the epicardium. Suitable compression force required for device fixation and leakage seal can be applied and the locking tightness is determined by the surgeon or controlled by a torque wrench.
- FIGs. 7A and 7B Depicted in FIGs. 7A and 7B are the perspective and sectional views of the male fastener 33. Screw threads 331 are carved on the external surface of the male fastener
- the inner diameter of the male fastener 33 is substantially equal, with a small clearance, to the outer diameter of the cannula conduit body 32.
- the protruded seats 37 on the conduit body will interlock with the through slots 330 and thereby work as anchor supports to provide counteracting axial and lateral forces required for screw locking with the female fastener 34.
- the embodiments of female fastener 34 are illustrated in FIGs. 8A, 8B, as well as in 8C and 8D, respectively.
- the female fastener 34 is a lock nut having a funnel-shaped distal cap (female fastener cap) 340 to be compressed against the epicardium for locking and seal purposes.
- the cap angle of the cap 340 corresponds to the bellmouth angle of the bellmouth 31.
- compression force will be evenly distributed in the sandwiched myocardium between the cap 340 and the bellmouth 31.
- the cone of bellmouth 31 will deform, in compliance with the fitted endocardium terrain, to simultaneously achieve the functions of bleeding prevention and pump fixation.
- the cap 340 has a cushion cuff 341 (configured for contact with the epicardium), which is around and attached the outer rim of the cap 340.
- the cushion cuff 341 is made of a surgical felt.
- the thread 342 is to be matched with its counterpart 331 on the male fastener 33.
- a number of knurled recesses 343 are made around the external body of the female fastener 34 for an easy exertion of screwing torque.
- the present sutureless flow cannula implantation may encounter postoperative tissue atrophy at the clamped connection site. Such tissue atrophy will jeopardize the seal effectiveness and potentially causes bleeding at the connection site.
- FIGs 8C and 8D are shown another embodiment of the female fastener 34 intended to mitigate this atrophy- induced postoperative bleeding.
- the cuff 341 is additionally supported by a cone-shaped Nitinol stent 341N similar to that of the bellmouth 313, 314 illustrated in FIGs. 6A and 6B.
- the deformed super-elastic Nitinol stent 34 IN will provide a contact spring load to assure that the cuff 341 always adheres to the epicardium during the wound healing process, hence obviating the risk of postoperative atrophy-induced blood leak.
- the bellmouth 31 and the cap 340 of the female fastener 34 clamp the sandwiched myocardium from both sides of the cored hole 21 of the heart 20 to accomplish the fixation and leak-free requirements. It is worth noticing that the bellmouth 31 is shape-conformal to endocardium when compressed.
- the semi-rigid bellmouth 31 can adaptively fit itself against the endocardial terrain, forming a seal barrier to obviate blood leak concern.
- the male fastener 33 is anchored on the protruded seat 37 of the conduit body 32, working as a base to counteract the screwing locking force generated.
- a cone-shaped felt cuff 341 is attached with the cap 340, which, when locked, provides a non-traumatic cushion between the cap 340 and the contacted epicardium.
- the soft-contact feature provided by felt cushion is another guarantee of hemostasis. Tissues or cells grow inward into the cuff material 341 along with the postoperative wound healing process.
- the cuff 341 can thus work as a long term fixation mechanism for immobilizing the implanted flow cannula 30. Moreover, a couple of stay sutures can be sewn around the cuff 341 to prevent unscrew of the female fastener 34.
- the embodiment of the sutureless attachment possesses a built-in positive feedback mechanism for improving the seal against the heart.
- the LV chamber pressure is elevated and further augmented by co-pulsatile pumping assistance, increasing the compression force on the bellmouth 31 pushing it onto the sloping heart muscle surface which will better seal around the attached flow cannula 30.
- This positive feedback effect namely the larger the LV pressure the better the seal effectiveness that is provided by the bellmouth 31, is lacking in the conventional device fixation by means of suturing.
- Compression type locking mechanism enables a distributed force to be exerted around the clamped myocardial area in contact.
- the present epi-ventricular assist device is operated in a co-pulsatile manner with respect to the native heartbeat.
- LV systole the intraventricular pressure and the systolic arterial blood pressure will both be raised owing to the co-pulsatile pumping support.
- This support characteristic is vastly different from the situation with rotary blood pump operation which decreases LV pressure during support.
- Such device-induced hypertension demands a far superior seal around the ventricular cannulation site and calls for particular attention in designing a flow cannula for a co-pulsatile assist device.
- the inlet adapter 51 of the connected blood pump 50 has the beak flange 56 and the adapter body 57.
- the beak flange 56 has a beak 52 that has an inner diameter 53 slightly larger than the inner diameter 35 of the conduit body 32 (FIG. 4B).
- the present surface of the joint 54 of the beak 52 is ramped with an inclination angle 55 to the stream direction (or the contact plane). In some embodiments, the angle has a range of 30-60 degrees.
- Such ramp interface design averts step or gap being generated at the joint due to limited manufacturing precision or matching concentricity associated with conventional butt connection.
- the adapter body 57 has multiple eyelets 58 which are equipped for joining the inlet adapter 51 with the blood pump 50.
- FIGs. 11A to 11C show the detailed structure of the coupler 40, which is designed herein to connect the flange ramp 36 with the pump inlet adapter 51.
- FIG. 11A is an exploded view of the components of the coupler 40 that integrate together the flow cannula 30 and the blood pump 50.
- the coupler 40 includes a flange base 42, a pair of collars 43, and hinges (or a hinge assembly) 44 that join together the collars 43 with the flange base 42.
- Spring coils (or a spring coil assembly) 45 are loaded in a hinge joint 46, maintaining the collars 43 in an open position when unlocked (FIG. 1 IB).
- the locking mechanism is an anti-decoupling latch 47, made of slotted leaf spring and fixed by a slab 471 welded to one of the ends of the collars 43.
- the flange base 42 has a substantially circular- shaped structure, and each collar 43 has an arc-shaped structure.
- the hinge joint 46 is located at the side of flange base 42, and the collars 43 are pivotally connected to the hinge joint 46 and rotatable to the hinge joint 46 and the flange base 42.
- the internal grooved slot 431 of the collars 43 is configured to receive the flange base 42, the flange ramp 36 of the flow cannula 30, and the beak flange 56 of the inlet adapter 30 (described later).
- a concentric coupling of flow cannula 30 with blood pump 50 will minimize the interface discontinuities which is important for generating a thromboresistant coupling.
- a simultaneous catching of the collar 43 around the entire peripheral rim of flange base 42 is critical.
- the collar contour 41 of the collar 43 plays an essential role in accomplishing such simultaneous catching.
- a leaf spring type latch 47 is installed at the tip of one collar 43, fixed by welding with a slab 471. This said latch 47 will be bent as it slides on a ramp 48 on the opposing collar in the course of locking. As said latch 47 clears the top of the ramp 48, it will drop down to the base of said ramp 48 by elastic restoring force, working as a safety catch to prevent accidental latch unlock or collar opening caused by pump vibration or rocking in long-term use.
- the latch 47 can be bent and lifted upward by a special tool, permitting an unlocking force to be exerted to rotationally open the collars 43 and hence disengage the blood pump 50 from the cannula 30.
- Such interface connection between pump and cannula described above has two hemodynamic merits for reducing thrombus formation in-situ.
- Second, flow stasis located at the interface of the beak leading-edge 540 (FIG. 10B) of the joint 54 can be minimized.
- blood stream flowing over the connection interface will be maintained with high-speed, substantially superior to the butt connection with either forward- or backward-facing step at the interface that predisposes to flow stasis and promotes thrombus formation in-situ.
- the present EVBP invention particularly requires a long-term reliable sensor system that can continuously track the heart rhythm.
- signals that can sense ventricular contraction and relaxation is required for pumping control.
- ECG electrocardiogram
- ventricular pressure waveforms can be used as the reference signal to reflect the heart rhythm. Since a great percentage (30- 40%) of advanced heart failure patients suffer from arrhythmia, pumping control based on ECG waveform meets with practical difficulty in application. Pressure-based pumping control, hence, is more advantageous, albeit the trigger detection algorithm is more complex to design.
- An exemplary embodiment of the blood pump 50 is a pressure sensor- embedded valveless displacement pump, as illustrated in FIGs. 12 and 13.
- This EVBP 50 includes a rigid housing (blood pump housing) 501, a blood sac 504, a stem suspension (such as including a pair of axi-symmetric stems 505, 506) suspending the sac 504 with the housing 501, and a sensor or a miniature pressure sensor (assembly) 507 embedded in the proximal shell 502 of the pump housing 501 to represent a heart rhythm.
- the inlet adapter 51 is equipped at the distal end of the blood pump 50.
- a distal driveline (or percutaneous lead) 60 is also included to incorporate pneumatic power transport and pressure signal transmission between the blood pump 50 and the external driver 70.
- the distal driveline 60 is connected with the distal shell 503 via a feedthrough 508.
- the stem suspension (stems 505, 506) can be asymmetric.
- FIG. 14 shows the structure and components of an exemplary distal driveline 60.
- the inner lumen 601 is for pneumatic power transport
- the first middle layer 602 has a coil reinforcement 605 to prevent driveline kinking
- a tether 607 is disposed in between the second middle lumen 603 and outer silicone jacket 604 for stretch limitation.
- the electrical wires 606 are spirally wrapped between the first 602 and second 603 middle lumens.
- There exist numerous designs for pneumatically and electrically communicating blood pump 50 with driver 70 Illustrated in FIG.
- 1 is an exemplified embodiment which includes the driveline assembly 60A having a distal driveline 60, a proximal driveline 61 and a driveline interconnector 62.
- the rationale and detail design of this blood pump and driveline modules is disclosed in US application number 63/162,086 and US application number 63/125,093.
- FIG. 15 illustrates the integration of the present EVBP 50 in connection with the flow cannula 30 by the coupler 40.
- the internal grooved slot 431 of the collars 43 receives and compresses together the flange base 42, the flange ramp 36 of the flow cannula 30, and the beak flange 56 of the inlet adapter 30.
- the collars 43 clamp together flange base 42 and the beak flange 56 while the sandwiched flange ramp 36 is compressed with a predetermined strain. It is observed that the flange ramp 36 of the flow cannula 30 serves as a “gasket” compressed with a controlled strain to attain the sealing effect.
- Co- pulsatile cardiac support augments LV systolic pressure by design, therefore, having a reliable seal at joint interface is of paramount importance.
- the fastener pair 33, 34 exerting compression locking mechanism against the clamped epicardium, and the coupler 40 imposing sealed coupling with the semi-rigid cannula are the two novel interface designs to accomplish the purpose of a reliable, leakage-free connection.
- the blood sac of the connected EVBP 50 becomes an extension of the LV cavity, compensating for the chamber volume loss due to thickened and stiffened LV wall associated with HFpEF.
- the EVBP 50 is able to act as a reservoir to accommodate blood flowing in from the left atrium during diastole, thereby compensate for the LV filling dysfunction.
- This reservoir of blood is then pumped back into the LV during systole, as shown in FIG. 16B, thereby increases the LV stroke volume and the cardiac out.
- a representative embodiment of the co-pulsatile driver system design is schematically disclosed in FIGs.
- the pneumatic energy converter is disposed in the driver 70, comprising an electromechanical actuator (EMA) 71, a motor controller unit 72, a micro controller unit (MCU) 73, a power management unit 76, a battery module 75 including a main battery and a reserve battery.
- EMA electromechanical actuator
- MCU micro controller unit
- a battery module 75 including a main battery and a reserve battery.
- the signal acquisition, transmission, processing, and the control logic and command generation and EMA actuation to produce pressure pulse to drive the blood pump is illustrated in FIGs. 17A and 17B for the exemplified embodiments.
- FIG. 17A shows a pressure-based co-pulsatile pumping scheme.
- the blood pump pressure sensor assembly 507 is built into the proximal blood pump shell 502 (FIG. 13), allowing a continuous monitoring of the blood pump pressure.
- a distal driveline (percutaneous lead) 60 is attached to the pump housing 501 and provides timed air pressure pulses to command ejection and filling of the blood sac.
- the distal and proximal drivelines 60, 61 provide a pneumatically driven pressure, generated by the EMA 71 inside the driver 70, to the blood pump 50; and transmits an electric blood pressure signal, generated by the blood pump pressure sensor 507, to the driver 70.
- the controller circuit can include a motor controller unit 72 for driving the brushless motor and a micro controller unit (MCU) 73 as a central processor to process the received pressure signal and generate control commands for motor controller to actuate piston motion.
- MCU micro controller unit
- the co-pulsatile driver 70 commanding a pneumatic pumping support according to a sensed heart rhythm waveform, wherein a co-pulsatile pumping is fulfilled by a pump ejection during systolic ventricular contraction and pump fill during diastolic ventricular relaxation.
- the co-pulsatile pumping is fulfilled by referencing to the ECG waveform acquired by the embedded ECG leads with electrodes disposed around or on the outer surface of the blood pump housing 501.
- the driver is powered by a main battery and a reserve battery, whereas the reserve battery ensures a continuous power supply of the driver when the main battery is exhausted or removed for recharging. Power can also be supplied to the driver by an AC adapter for the convenience of the patient implanted with the device when mobility is not required.
- the EMA 71 is a pneumatic actuator consisting of a brushless servo motor and a ball screw piston/cylinder assembly. Atmospheric air is used as a driving medium to reciprocally eject and fill the blood pump 50.
- the driver receives blood pump pressure or ECG signal (electric signal) and processes the signal using trigger detection algorithm to generate trigger signal that commands the driver actuation in synchronization with the heart rhythm.
- ECG signal electrical signal
- the MCU Upon receiving the assigned trigger timing, the MCU sends commands to the motor controller 72 to drive the piston, from eject-to-fill or from fill-to-eject positions, to provide co-pulsatile circulatory support.
- the motor controller unit 72 is a motor servo control system that responds to serial commands sent from MCU to drive the motor with specified position, velocity and acceleration parameters.
- the EMA 71 is housed within the driver 70 carried by the implant recipient.
- the EMA 71 consists of a motor and a ball screw/nut unit that drive a reciprocating piston motion in a cylinder.
- the stroke motion of the piston drives air to and from the implanted blood pump 50 via a pneumatic driveline 60.
- the EMA 71 incorporates a pressure equalization valve connected to the cylinder chamber for air replenishment and moisture reduction. The said valve is opened periodically, allowing air mass transport between the cylinder and the ambient until air pressure in the cylinder chamber equals the atmospheric pressure.
- the EMA incorporates position and optical sensors to acquire reference signals for the electronic controller to generate control command to drive the piston motion.
- FIG. 18 depicts the trigger commands for EMA piston position in relation to the co-pulsatile pumping.
- the design of the trigger detection algorithm is guided by the co- pulsatile requirement, namely, upon detection of ventricular end-diastolic timing, pump ejects when LV starts ejection, followed by pump fill when aortic valve closes and LV starts to undergo isovolumic relaxation until the end-diastolic time point is detected.
- the unassisted aortic pressure (AoP) waveform is expressed in dotted line whereas solid line represents the assisted aortic pressure waveform.
- the MCU 73 monitors blood pump pressure (BPP) or ECG signal (electric signal) and detects the left ventricle end-diastole (LVED) timing or the R-wave. Upon detection of LVED timing, the MCU generates a E_Trig signal. The time interval between two consecutive E_Trig signals represents an instantaneous cardiac cycle interval (or period). Based on an estimated heart rate calculated from the cycle intervals, the MCU determines the timing, the F_Trig signal, for blood pump filling. When the ejection stroke is completed and after an optimized dwell time elapse (or pause), the EMA is commanded to perform a fill action with a prespecified filling speed upon receiving the F_Trig signal.
- BPP blood pump pressure
- ECG signal electric signal
- LVED left ventricle end-diastole
- an embodiment of the present invention provides a flow cannula assembly, configured to connect a ventricular chamber of a heart and a blood bump assembly, including a flow cannula and a pair of male fastener and female fastener.
- the flow cannula includes a conduit body, a bellmouth and a flange ramp portion, wherein the conduit body is between the bellmouth and the flange ramp portion.
- the bellmouth is at a first end of the flow cannula and is configured to be inserted into the ventricular chamber
- the flange ramp portion is at a second end of the flow cannula and is configured to be interfaced to the blood bump assembly, and an inner surface of the flow cannula is smooth and seamless.
- the pair of male fastener and female fastener is screw interconnected, wherein the male fastener is anchored on the flow cannula, and the female fastener is compressed against an epicardium of the heart. Imposing sealed coupling with both ends of the semi-rigid cannula constitutes the two novel interface designs to accomplish the purpose of a reliable, leakage-free connection.
- the blood pump includes a blood sac, a blood pump housing, a stem suspension integrating the blood sac within the blood pump housing, a sensor embedded in the blood pump housing to represent a heart rhythm, and an inlet adapter with a beak flange.
- the flow cannula includes a conduit body, a bellmouth and a flange ramp, wherein the conduit body is between the bellmouth and the flange ramp.
- the bellmouth is at a first end of the flow cannula and is configured to be inserted into a heart chamber
- the flange ramp portion is at a second end of the flow cannula and is configured to be interfaced to the inlet adapter, and an inner surface of the flow cannula is smooth and seamless.
- the pair of male and female fasteners is screw interconnected, wherein the male fastener is anchored on the flow cannula, and the female fastener is compressed against the epicardium of the heart.
- the coupler connects the second end of the flow cannula with the inlet adapter, wherein the coupler includes a flange base and a pair of collars pinned on the flange base, wherein the collars have an internal grooved slot to receive and compress together the flange base, the flange ramp of the flow cannula, and the beak flange of the inlet adapter.
- the driveline assembly pneumatically communicates the blood pump with as well as transmits a heart rhythm signal to the driver.
- the co-pulsatile driver commands a pneumatic pumping support according to a sensed heart rhythm waveform, wherein a co-pulsatile pumping is fulfilled by pump ejection during systolic ventricular contraction and pump fill during diastolic ventricular relaxation.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Mechanical Engineering (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Anesthesiology (AREA)
- Medical Informatics (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- External Artificial Organs (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280002629.2A CN115666708A (en) | 2021-03-17 | 2022-03-15 | Implantable ventricular epitaxy co-pulsation circulation support system with seamless flow guide pipe assembly |
KR1020237021961A KR20230117173A (en) | 2021-03-17 | 2022-03-15 | Implantable Synchronous Ventricular Circulatory Support System with Sealless Flow Cannula Assembly |
IL300331A IL300331A (en) | 2021-03-17 | 2022-03-15 | Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly |
BR112023013596A BR112023013596A2 (en) | 2021-03-17 | 2022-03-15 | IMPLANTABLE COPULSATILE EPIVENTRICULAR CIRCULATORY CIRCULATORY SUPPORT SYSTEM WITH SUTURELESS FLOW CANNULA ASSEMBLY |
AU2022238306A AU2022238306B2 (en) | 2021-03-17 | 2022-03-15 | Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly |
GB2212467.1A GB2616929A (en) | 2021-03-17 | 2022-03-15 | Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly |
EP22754756.9A EP4093483A4 (en) | 2021-03-17 | 2022-03-15 | Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly |
JP2023541966A JP7527695B2 (en) | 2021-03-17 | 2022-03-15 | Implantable extraventricular copulsatile cycle support system with sutureless cannula assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163162086P | 2021-03-17 | 2021-03-17 | |
US202163162098P | 2021-03-17 | 2021-03-17 | |
US63/162,086 | 2021-03-17 | ||
US63/162,098 | 2021-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022197721A1 true WO2022197721A1 (en) | 2022-09-22 |
Family
ID=83285516
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2022/020409 WO2022197721A1 (en) | 2021-03-17 | 2022-03-15 | Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly |
PCT/US2022/020403 WO2022197716A1 (en) | 2021-03-17 | 2022-03-15 | Para-aortic blood pump device |
PCT/US2022/020414 WO2022197725A1 (en) | 2021-03-17 | 2022-03-15 | Sutureless inflow cannula assembly for connecting ventricular assist devices to human circulation |
PCT/US2022/051699 WO2023177428A1 (en) | 2021-03-17 | 2022-12-02 | Ventricular assist device having pressure sensor embedded durable displacement blood pump |
PCT/US2022/051705 WO2023177429A1 (en) | 2021-03-17 | 2022-12-02 | Endo-leak free aortic adapter assembly and method of device delivery |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2022/020403 WO2022197716A1 (en) | 2021-03-17 | 2022-03-15 | Para-aortic blood pump device |
PCT/US2022/020414 WO2022197725A1 (en) | 2021-03-17 | 2022-03-15 | Sutureless inflow cannula assembly for connecting ventricular assist devices to human circulation |
PCT/US2022/051699 WO2023177428A1 (en) | 2021-03-17 | 2022-12-02 | Ventricular assist device having pressure sensor embedded durable displacement blood pump |
PCT/US2022/051705 WO2023177429A1 (en) | 2021-03-17 | 2022-12-02 | Endo-leak free aortic adapter assembly and method of device delivery |
Country Status (11)
Country | Link |
---|---|
US (5) | US20220296874A1 (en) |
EP (3) | EP4251257A4 (en) |
JP (3) | JP7527695B2 (en) |
KR (3) | KR20230116861A (en) |
CN (1) | CN115666708A (en) |
AU (2) | AU2022238306B2 (en) |
BR (2) | BR112023013587A2 (en) |
GB (3) | GB2610487A (en) |
IL (2) | IL300331A (en) |
TW (5) | TWI826961B (en) |
WO (5) | WO2022197721A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60230633D1 (en) | 2002-11-08 | 2009-02-12 | Procter & Gamble | Absorbent disposable article with dirt-concealing cover layer |
US12102816B2 (en) * | 2018-08-24 | 2024-10-01 | Sun Medical Technology Research Corporation | Conduit forming unit and tube joint |
US11745004B1 (en) * | 2022-07-15 | 2023-09-05 | Vitalmex Internacional S.A. De C.V. | Ventricular assist devices and methods |
CN116271501B (en) * | 2023-04-26 | 2024-06-11 | 心擎医疗(苏州)股份有限公司 | Catheter pump |
CN116889679B (en) * | 2023-06-08 | 2024-07-19 | 上海心恒睿医疗科技有限公司 | Ventricular assist system |
CN118022165B (en) * | 2024-03-28 | 2024-09-17 | 深圳市万至达电机制造有限公司 | Interventional axial blood pump |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060167333A1 (en) * | 2002-08-09 | 2006-07-27 | Moore Daniel R | Inflow conduit for ventricular assist device |
US20060235357A1 (en) * | 2003-03-21 | 2006-10-19 | Woodward John C | Cannula |
US20070055358A1 (en) * | 2005-08-22 | 2007-03-08 | Krolik Jeffrey A | Axially compressible flared stents and apparatus and methods for delivering them |
US20080300447A1 (en) * | 2006-01-30 | 2008-12-04 | Pong-Jeu Lu | Dual-Pulsation Bi-Ventricular Assist Device |
US20110118766A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment System, Device and Method |
US20150104331A1 (en) * | 2011-05-13 | 2015-04-16 | Mayo Foundation For Medical Education And Research | Cannula apparatus and ventricular assist systems using the cannula apparatus |
US20180050143A1 (en) * | 2016-08-22 | 2018-02-22 | Tc1 Llc | Heart pump cuff |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1514319A (en) * | 1967-01-11 | 1968-02-23 | Device for implantation in the apical region of the heart of an artificial ventricle | |
US4240409A (en) * | 1979-02-21 | 1980-12-23 | Thermo Electron Corporation | Apparatus for assisting circulation of blood |
US5332403A (en) * | 1992-08-17 | 1994-07-26 | Jack Kolff | LVAD with t-shape and unidirectional valve |
US6371982B2 (en) * | 1997-10-09 | 2002-04-16 | St. Jude Medical Cardiovascular Group, Inc. | Graft structures with compliance gradients |
US6146325A (en) * | 1999-06-03 | 2000-11-14 | Arrow International, Inc. | Ventricular assist device |
US6942672B2 (en) * | 2001-10-23 | 2005-09-13 | Vascor, Inc. | Method and apparatus for attaching a conduit to the heart or a blood vessel |
US7217236B2 (en) * | 2003-05-30 | 2007-05-15 | Innovamedica S.A. De C.V. | Universal pneumatic ventricular assist device |
AU2003903726A0 (en) * | 2003-07-18 | 2003-07-31 | Ventracor Limited | A device for detecting heart pumping state |
US7066874B2 (en) * | 2004-01-06 | 2006-06-27 | Bay Innovation Group, Llc | Devices and methods for blood flow assistance |
US20060036313A1 (en) | 2004-08-11 | 2006-02-16 | Vassiliades Thomas A | Apicoaortic conduit connector and method for using |
US9138228B2 (en) * | 2004-08-11 | 2015-09-22 | Emory University | Vascular conduit device and system for implanting |
CA2611313A1 (en) * | 2005-06-06 | 2006-12-14 | The Cleveland Clinic Foundation | Blood pump |
ITMI20051420A1 (en) * | 2005-07-22 | 2007-01-23 | A N B Technology S R L | CARDIOCIRCULATORY ASSISTANCE DEVICE |
EP3520834B1 (en) * | 2006-03-23 | 2022-04-27 | The Penn State Research Foundation | Heart assist device with expandable impeller pump |
US7846123B2 (en) | 2007-04-24 | 2010-12-07 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
GB0718943D0 (en) * | 2007-09-28 | 2007-11-07 | Univ Nottingham | Mechanical support |
JP5815516B2 (en) * | 2009-07-01 | 2015-11-17 | ザ・ペン・ステイト・リサーチ・ファウンデイションThe Penn State Research Foundation | Blood pump with expandable cannula |
WO2012018917A1 (en) * | 2010-08-03 | 2012-02-09 | World Heart Corporation | Conformal cannula device and related methods |
US20120138533A1 (en) * | 2010-12-01 | 2012-06-07 | Curtis James R | Dialysis system control system with user interface |
PL217321B1 (en) * | 2011-02-28 | 2014-07-31 | Fundacja Rozwoju Kardiochirurgii Im Prof Zbigniewa Religi | Blood pump, especially pneumatic ventricular assist device |
US9199019B2 (en) | 2012-08-31 | 2015-12-01 | Thoratec Corporation | Ventricular cuff |
WO2014044287A1 (en) * | 2012-09-21 | 2014-03-27 | Rheinisch-Westfälische Technische Hochschule Aachen | Method of controlling the speed of an ventricular assist device (vad) and ventricular assist device. |
WO2014145667A2 (en) * | 2013-03-15 | 2014-09-18 | Vascor, Inc. | Thoracic aorta ventricular assist system |
ES2745467T3 (en) * | 2014-02-26 | 2020-03-02 | Tecpharma Licensing Ag | Device to administer a fluid product |
US10716572B2 (en) * | 2015-03-20 | 2020-07-21 | Université D'aix-Marseille | Blood flow reducer and method using the same |
WO2017004175A1 (en) * | 2015-06-29 | 2017-01-05 | Thoratec Corporation | Ventricular assist devices having a hollow rotor and methods of use |
EP3135326A1 (en) * | 2015-08-24 | 2017-03-01 | Berlin Heart GmbH | Heart pump and method for operating a heart pump |
CN109475671B (en) * | 2016-07-19 | 2021-08-03 | 心脏器械股份有限公司 | Ventricular assist device and integrated sensor therefor |
DK3287154T3 (en) * | 2016-08-23 | 2019-11-18 | Abiomed Europe Gmbh | VENTRICULAR ASSISTANCE |
CN109963601B (en) * | 2016-10-20 | 2022-06-07 | 心脏器械股份有限公司 | Inflow cannula |
FR3059907B1 (en) | 2016-12-09 | 2019-05-24 | Fineheart | DEVICE FOR ANCHORING WITHOUT SUTURING A HEART PUMP |
WO2018183568A1 (en) * | 2017-03-29 | 2018-10-04 | Tc1 Llc | Pressure sensing ventricular assist devices and methods of use |
US10905808B2 (en) * | 2018-01-10 | 2021-02-02 | Magenta Medical Ltd. | Drive cable for use with a blood pump |
US11141580B2 (en) * | 2018-05-15 | 2021-10-12 | Cardiovascular Systems, Inc. | Intravascular blood pump system with integrated conductor(s) in housing and methods thereof |
FR3081333B1 (en) | 2018-05-22 | 2020-06-05 | Fineheart | ANCHORING DEVICE FOR A HEART PUMP |
CN113710308A (en) * | 2019-02-01 | 2021-11-26 | 卡迪埃泰科股份公司 | Pressure-relieved left ventricular assist device and method for assisting a human heart |
WO2020176170A1 (en) | 2019-02-28 | 2020-09-03 | Tc1 Llc | Inflow cannula including expandable sleeve and methods of implanting same |
TR201923195A2 (en) * | 2019-12-31 | 2021-07-26 | Ahmet Elibol | VACUUM ASSISTED SEAMLESS ENTRY CANNULA IMPLANTATION OF VENTRICULAR SUPPORT DEVICES |
US11896814B2 (en) * | 2020-05-04 | 2024-02-13 | Heartware, Inc. | Toolless quick connect sewing ring |
-
2022
- 2022-03-15 US US17/695,390 patent/US20220296874A1/en active Pending
- 2022-03-15 AU AU2022238306A patent/AU2022238306B2/en active Active
- 2022-03-15 WO PCT/US2022/020409 patent/WO2022197721A1/en active Application Filing
- 2022-03-15 US US17/695,376 patent/US20220296878A1/en active Pending
- 2022-03-15 GB GB2212460.6A patent/GB2610487A/en active Pending
- 2022-03-15 IL IL300331A patent/IL300331A/en unknown
- 2022-03-15 EP EP22772072.9A patent/EP4251257A4/en active Pending
- 2022-03-15 JP JP2023541966A patent/JP7527695B2/en active Active
- 2022-03-15 WO PCT/US2022/020403 patent/WO2022197716A1/en active Application Filing
- 2022-03-15 AU AU2022239445A patent/AU2022239445B2/en active Active
- 2022-03-15 BR BR112023013587A patent/BR112023013587A2/en unknown
- 2022-03-15 US US17/695,344 patent/US20220296877A1/en active Pending
- 2022-03-15 CN CN202280002629.2A patent/CN115666708A/en active Pending
- 2022-03-15 KR KR1020237021964A patent/KR20230116861A/en unknown
- 2022-03-15 JP JP2023541970A patent/JP7511956B2/en active Active
- 2022-03-15 GB GB2212467.1A patent/GB2616929A/en active Pending
- 2022-03-15 BR BR112023013596A patent/BR112023013596A2/en unknown
- 2022-03-15 EP EP22754757.7A patent/EP4093482A4/en active Pending
- 2022-03-15 JP JP2023557126A patent/JP2024511386A/en active Pending
- 2022-03-15 EP EP22754756.9A patent/EP4093483A4/en active Pending
- 2022-03-15 KR KR1020237021961A patent/KR20230117173A/en unknown
- 2022-03-15 WO PCT/US2022/020414 patent/WO2022197725A1/en active Application Filing
- 2022-03-15 IL IL300325A patent/IL300325A/en unknown
- 2022-03-15 GB GB2309839.5A patent/GB2616240A/en active Pending
- 2022-03-15 KR KR1020237031562A patent/KR20230155467A/en active Search and Examination
- 2022-03-16 TW TW111109722A patent/TWI826961B/en active
- 2022-03-16 TW TW111109721A patent/TWI826960B/en active
- 2022-03-16 TW TW111109720A patent/TWI826959B/en active
- 2022-03-16 TW TW111109719A patent/TWI835091B/en active
- 2022-03-16 TW TW111109723A patent/TWI835092B/en active
- 2022-12-02 WO PCT/US2022/051699 patent/WO2023177428A1/en active Application Filing
- 2022-12-02 US US18/074,201 patent/US20230264013A1/en active Pending
- 2022-12-02 US US18/074,180 patent/US20230100925A1/en active Pending
- 2022-12-02 WO PCT/US2022/051705 patent/WO2023177429A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060167333A1 (en) * | 2002-08-09 | 2006-07-27 | Moore Daniel R | Inflow conduit for ventricular assist device |
US20060235357A1 (en) * | 2003-03-21 | 2006-10-19 | Woodward John C | Cannula |
US20070055358A1 (en) * | 2005-08-22 | 2007-03-08 | Krolik Jeffrey A | Axially compressible flared stents and apparatus and methods for delivering them |
US20080300447A1 (en) * | 2006-01-30 | 2008-12-04 | Pong-Jeu Lu | Dual-Pulsation Bi-Ventricular Assist Device |
US20110118766A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment System, Device and Method |
US20150104331A1 (en) * | 2011-05-13 | 2015-04-16 | Mayo Foundation For Medical Education And Research | Cannula apparatus and ventricular assist systems using the cannula apparatus |
US20180050143A1 (en) * | 2016-08-22 | 2018-02-22 | Tc1 Llc | Heart pump cuff |
Non-Patent Citations (1)
Title |
---|
See also references of EP4093483A4 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2022238306B2 (en) | Implantable co-pulsatile epi-ventricular circulatory support system with sutureless flow cannula assembly | |
US5139517A (en) | Orthotopic intraventricular heart pump | |
JP5449615B2 (en) | Device and method for controllably assisting mitral valve movement | |
US5957977A (en) | Activation device for the natural heart including internal and external support structures | |
WO2022151622A1 (en) | Valve prosthesis and valve prosthesis system | |
US20070185369A1 (en) | Cardiac assist device and method | |
JPH09509595A (en) | Reciprocating pump device | |
CN115697463A (en) | Seamless-wire inflow catheter assembly for attaching ventricular assist devices to the circulation of the body | |
CN201572358U (en) | Cardiac impulse assisting device and cardiac impulse assisting system | |
AU2022430006B2 (en) | Ventricular assist device having pressure sensor embedded durable displacement blood pump | |
CN216168098U (en) | Diastole auxiliary system implanted through apex of heart | |
EP4271462A1 (en) | Endo-leak free aortic adapter assembly and method of device delivery | |
CN115957042A (en) | Heart assisting device for treating diastolic heart failure | |
US20140249356A1 (en) | Intelligent Nanomagnetic Cardiac Assist Device for a Failing Heart |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202212467 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220315 |
|
ENP | Entry into the national phase |
Ref document number: 2022754756 Country of ref document: EP Effective date: 20220825 |
|
ENP | Entry into the national phase |
Ref document number: 2022238306 Country of ref document: AU Date of ref document: 20220315 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317014092 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20237021961 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541966 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023013596 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112023013596 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230706 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |