WO2022183737A1 - 一种正极极片、正极极片的制备方法和锂离子二次电池 - Google Patents

一种正极极片、正极极片的制备方法和锂离子二次电池 Download PDF

Info

Publication number
WO2022183737A1
WO2022183737A1 PCT/CN2021/123201 CN2021123201W WO2022183737A1 WO 2022183737 A1 WO2022183737 A1 WO 2022183737A1 CN 2021123201 W CN2021123201 W CN 2021123201W WO 2022183737 A1 WO2022183737 A1 WO 2022183737A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
pole piece
current collector
lithium
positive
Prior art date
Application number
PCT/CN2021/123201
Other languages
English (en)
French (fr)
Inventor
韩延林
于哲勋
邹武俊
孔令明
Original Assignee
江苏正力新能电池技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏正力新能电池技术有限公司 filed Critical 江苏正力新能电池技术有限公司
Priority to US18/039,475 priority Critical patent/US20230420639A1/en
Priority to DE112021004900.3T priority patent/DE112021004900T5/de
Publication of WO2022183737A1 publication Critical patent/WO2022183737A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of batteries, in particular, to a positive electrode piece, a method for preparing a positive electrode piece, and a lithium ion secondary battery.
  • Lithium-ion batteries are widely used in new energy vehicles as rechargeable batteries with high energy density, no pollution and long life.
  • DCR Direct Current Resistance
  • One of the objectives of the present invention is to provide a positive electrode plate, which can make lithium ions prepared by the positive electrode plate by controlling the compaction density and areal density of its coating layer and the thickness of the positive electrode current collector.
  • the secondary battery has the characteristics of long life and excellent DCR performance.
  • the second purpose of the present invention is to provide a method for preparing a positive pole piece, which can prepare the above-mentioned positive pole piece through a simple and convenient preparation process.
  • the third object of the present invention is to provide a lithium ion secondary battery, which includes the above-mentioned positive electrode plate, and thus has the advantages of long life and low DCR.
  • the present invention provides a positive pole piece, comprising:
  • the positive electrode current collector and the positive electrode coating layer coated on the positive electrode current collector and containing the positive electrode active material; the positive electrode pole piece satisfies the formula: 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14; wherein, ⁇ is the positive electrode coating layer
  • the positive pole piece satisfies the formula: 0.1 ⁇ 3*10* ⁇ / ⁇ 0.125.
  • the value range of the compaction density of the positive electrode coating layer is 2.6 ⁇ 3.2;
  • the value range of the surface density of the positive electrode coating layer is 0.0070 ⁇ 0.0085;
  • the value range of the thickness of the positive electrode current collector is 10 ⁇ 25.
  • the value range of the compaction density of the positive electrode coating layer is 2.75 ⁇ 3.1;
  • the value range of the surface density of the positive electrode coating layer is 0.0070 ⁇ 0.0075;
  • the value range of the thickness of the positive electrode current collector is 16 ⁇ 20.
  • the positive active material is lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, olivine structure Any of the lithium-containing phosphates.
  • the positive electrode current collector is any one of aluminum foil, carbon-coated aluminum foil, and nickel mesh.
  • the present invention provides a method for preparing a positive electrode piece according to any one of the foregoing embodiments, comprising:
  • the slurry is prepared by mixing the positive active material and the auxiliary agent;
  • the slurry is uniformly coated on the positive electrode current collector, and the positive electrode sheet is obtained after drying and cold pressing.
  • the present invention provides a lithium ion secondary battery, comprising: the positive pole piece according to any one of the preceding embodiments, and the negative pole piece, the separator, and the electrolyte; the positive pole piece, the separator, and the negative pole piece It is used for stacking and winding to obtain a battery core, and the electrolyte is used for injecting the dry battery core to obtain a lithium ion secondary battery.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode coating layer coated on the negative electrode current collector and containing a negative electrode active material; wherein, the compaction density of the negative electrode coating layer is 1.35 g/cm 3 ; The surface density of the negative electrode coating layer is 0.0058g/cm 2 ; the thickness of the negative electrode current collector is 8um.
  • the negative electrode active material is any one of graphite, soft carbon, hard carbon, mesocarbon microspheres, and silicon-based materials.
  • An embodiment of the present invention provides a positive electrode sheet, which includes a positive electrode current collector and a positive electrode coating layer coated on the positive electrode current collector and containing a positive electrode active material; the positive electrode electrode sheet satisfies the formula: 0.07 ⁇ 3*10 * ⁇ / ⁇ 0.14; where ⁇ is the compaction density of the positive electrode coating layer, in g/cm 3 ; ⁇ is the areal density of the positive electrode coating layer, in g/cm 2 ; ⁇ is the density of the positive electrode current collector Thickness, in um.
  • the positive pole piece satisfies the above formula, the lithium ion secondary battery prepared by the positive pole piece can have excellent DCR performance while taking into account the service life.
  • Embodiments of the present invention also provide a method for preparing a positive electrode sheet, which can prepare the above-mentioned positive electrode sheet through simple and convenient operations.
  • An embodiment of the present invention provides a lithium ion secondary battery, comprising: a positive electrode piece, a negative electrode piece, a separator, and an electrolyte; the positive electrode piece, the separator, and the negative electrode piece are stacked in sequence and then rolled to obtain a The battery core, the electrolyte is used to inject the dry battery core to obtain a lithium ion secondary battery.
  • the positive pole piece of the lithium ion secondary battery can reasonably match the compaction density and areal density of the positive pole piece and the thickness of the selected current collector, so that the lithium ion secondary battery has excellent DCR performance while taking into account the service life.
  • Embodiments of the present invention provide a positive electrode sheet for manufacturing a lithium ion secondary battery, wherein the positive electrode sheet includes a positive electrode current collector and a positive electrode coating coated on the positive electrode current collector and containing a positive electrode active material layer; the positive pole piece satisfies the formula: 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14; where ⁇ is the compaction density of the positive electrode coating layer, in g/cm 3 ; ⁇ is the surface of the positive electrode coating layer Density, in g/cm 2 ; ⁇ is the thickness of the positive electrode current collector, in um.
  • the compaction density of the positive electrode coating layer of the positive electrode sheet, the areal density of the positive electrode coating layer, and the thickness of the positive electrode current collector all have different effects on the DCR performance of the battery, but the effects are limited and mutually exclusive. Influence, only when the formula is satisfied: 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14, it can have a long life and excellent DCR performance at the same time. Therefore, in the actual manufacturing process, the compaction density of the positive electrode coating layer, the surface density of the positive electrode coating layer and the current collector thickness of the lithium ion secondary battery can also be designed according to the above formula, so that the designed battery can take into account At the same time, it has excellent DCR performance and can avoid a large number of DOE experiments, saving battery development time and cost.
  • the compaction density of the positive electrode coating layer, the areal density of the positive electrode coating layer, and the current collector thickness of the lithium ion secondary battery can be designed according to this formula to ensure that it has the above-mentioned excellent electrochemical performance.
  • is the compaction density of the coating layer of the positive electrode pole piece of the lithium ion secondary battery.
  • the value range of the compaction density of the positive electrode coating layer is 2.6 ⁇ 3.2, and the preferred value range is 2.75 ⁇ 3.1.
  • the basis of its design is that when the lithium ion battery is discharged, the lithium ions are extracted from the negative electrode material and embedded in the positive electrode material, and the process of lithium ion intercalation from the positive electrode is closely related to the compaction density of the positive electrode coating layer.
  • the compaction density is low, the liquid absorption capacity of the positive electrode is improved, and the ion channel is increased, which helps to improve the ion transport; but the compaction density is too low, the ion transport distance increases, the particle spacing increases, and the electronic conductivity decreases, but it will increase the internal conductivity. resistance.
  • high compaction density, close particle contact, good electronic conductivity, and short ion transport channels are beneficial to reduce internal resistance; however, too high compaction density will cause particle breakage, poor liquid absorption of the positive electrode, and blockage of ion transport channels, etc. unfavorable factors. Therefore, when the compaction density of the positive electrode coating layer of the lithium ion secondary battery satisfies the above selection adjustment and the above formula, it can effectively ensure that the lithium ion secondary battery has both a long life and excellent DCR performance. .
  • is the coating areal density of the positive electrode plate of the lithium ion battery.
  • the value range of the areal density of the positive electrode coating layer is 0.0070 ⁇ 0.0085, and the preferred value range is 0.0070 ⁇ 0.0075.
  • the basis of its design is that when the surface density of the pole piece is lower, the porosity of the material increases, the liquid absorption capacity of the pole piece increases, and the contact resistance decreases; and the smaller the surface density, the smaller the thickness of the pole piece, and the shorter the ion transmission distance.
  • the areal density is small, the SEI formed during the formation is thin and stable, and the migration resistance of lithium ions in the SEI film will also be reduced.
  • is the thickness of the cathode current collector of the lithium ion battery.
  • the value range of the thickness of the positive electrode current collector is 10 ⁇ 25, and the preferred value range is 16 ⁇ 20. Its design is based on the fact that the current collector can play the role of electron transport. On the one hand, too low thickness of the current collector will increase the electronic internal resistance of the lithium-ion battery, and at the same time, it is limited by the current collector production process and the coating process of the lithium-ion battery.
  • the thickness of the current collector is too high, although the electronic internal resistance of the lithium-ion battery is reduced, the thickness of the coil core of the lithium-ion battery is correspondingly increased, the margin of the lithium-ion battery group is increased, and the capacity of the lithium-ion battery is affected. Therefore, when the value range of ⁇ is controlled within the above-mentioned range and the above-mentioned requirement formula is satisfied, it can also effectively ensure that the lithium-ion secondary battery has both a long life and excellent DCR performance.
  • the lithium-ion battery can have excellent DCR performance while taking into account the lifespan.
  • the embodiment of the present invention also provides a method for preparing a positive electrode sheet, which includes: preparing a slurry after mixing a positive electrode active material and an auxiliary agent; uniformly coating the slurry on the positive electrode current collector, and drying it The positive pole piece is obtained after cold pressing.
  • the method can be quickly and conveniently prepared to satisfy the formula: 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14, thereby ensuring that the lithium ion secondary battery prepared by the method has a lower DCR value and a longer life. .
  • the auxiliary agent is usually selected from the conductive agent, binder and other substances necessary for its molding, and the selection and ratio of the auxiliary agent are not improved compared with the prior art, and will not be repeated here.
  • the active site of the positive electrode and the type of current collector can also be determined according to conventional choices.
  • the active material of the positive electrode is lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, Any of lithium nickel cobalt aluminum oxide and olivine structure lithium-containing phosphate.
  • the positive electrode current collector can also be selected from any of aluminum foil, carbon-coated aluminum foil, and nickel mesh. Regardless of the selection of components and the ratio of dosage, when the above formula 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14 is satisfied in the preparation process, the lithium-ion secondary battery prepared by it can be guaranteed to have a long life. and better DCR performance.
  • the embodiment of the present invention also provides a lithium ion secondary battery, which includes: a positive electrode piece, a negative electrode piece, a separator and an electrolyte; A battery core is obtained by winding, and the electrolyte is injected into the dry battery core to obtain a lithium ion secondary battery. Since the lithium ion secondary battery is prepared by the above-mentioned positive electrode, it has a lower DCR value and a longer service life.
  • the negative pole piece is also coated with negative active material, and the negative pole piece also includes components such as negative active material, conductive agent, binder, dispersant and current collector.
  • the anode active material can be selected from graphite, soft carbon, hard carbon, mesocarbon microspheres, silicon-based materials, etc.
  • the current collector can be selected from copper foil, etc.
  • the compaction density of the negative electrode coating layer is 1.35 g/cm 3 ; the areal density of the negative electrode coating layer is 0.0058 g/cm 2 ; the thickness of the negative electrode current collector is 8um.
  • the compaction density of the negative electrode coating layer, the areal density of the negative electrode coating layer and the thickness of the negative electrode current collector are controlled to the above-mentioned values to match the positive electrode pole piece, so that the above-mentioned positive electrode pole piece and negative electrode pole piece are prepared to obtain long life and DCR. Lithium-ion secondary battery with excellent performance.
  • the types and components of the negative electrode active material, conductive agent, binder, dispersant, and current collector can also be selected according to the preparation requirements, so that they meet the requirements of the above formula.
  • the type of the isolation film is not limited, and can be selected according to actual needs.
  • the isolation film can be selected from polyethylene film, polypropylene film, polyvinylidene fluoride film, non-woven fabric and other materials.
  • the electrolyte includes a lithium salt solute and a solvent.
  • the types of lithium salts and solvents are not specifically limited, and can be selected according to actual needs.
  • lithium salts can be selected from LiPF6, LiTFSI, LiBF4, etc., which are not limited in this embodiment.
  • An embodiment of the present invention also provides a preparation method of the above-mentioned lithium ion secondary battery, which specifically includes the following steps:
  • step S1 specifically includes the preparation of the negative pole piece, the preparation of the positive pole piece, the preparation of the separator, and the preparation of the battery core, and specifically includes:
  • the preparation process of the positive electrode sheet includes: after mixing the positive electrode active material, the conductive agent and the binder according to a certain mass ratio, adding NMP and stirring to form a first slurry with uniform and stable mixing; uniformly coating the first slurry On the positive electrode current collector, after drying and cold pressing, the positive electrode pole piece is obtained; wherein, the mass ratio can be selected as the ratio of the conventional preparation of the existing lithium ion secondary battery, which will not be repeated here;
  • the preparation process of the negative pole piece includes: after mixing the negative electrode active material, the conductive agent, the binder and the dispersing agent according to a certain mass ratio, adding deionized water, and stirring to form a second slurry that is evenly mixed and stably mixed; The second slurry is uniformly coated on the negative electrode current collector, and is dried and cold-pressed to obtain a negative electrode pole piece; wherein, the mass ratio can be selected as the ratio of conventional preparation of the existing lithium ion secondary battery, which will not be repeated here;
  • the preparation process of the isolation film includes: selecting a polypropylene film as the isolation film;
  • the preparation process of the battery cell includes: stacking the above-prepared positive electrode piece, separator film and negative electrode piece, and winding to obtain the battery core.
  • step S2 specifically includes the preparation process of electrolyte solution and battery, and specifically includes the following steps:
  • Electrolyte Mix ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 1:1:1 to obtain an organic solvent, and then fully dry the The lithium salt LiPF6 is dissolved in the mixed organic solvent to prepare an electrolyte with a concentration of 1.2 mol/L;
  • Embodiments 1-10 all provide a lithium ion secondary battery, and all are prepared by the following methods:
  • Electrolyte Mix ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 1:1:1 to obtain an organic solvent, and then fully dry the The lithium salt LiPF6 is dissolved in the mixed organic solvent to prepare an electrolyte with a concentration of 1.2 mol/L;
  • Examples 1-10 The difference between Examples 1-10 is that, as shown in Table 1, the positive electrode plates of Examples 1-10 were prepared by selecting different compaction densities of the positive electrode coating layers, surface densities of the positive electrode coating layers, and positive electrodes in the preparation process. The thickness of the current collector.
  • the lithium-ion secondary batteries prepared in Examples 1-10 were subjected to DCR test.
  • the test method included charging the lithium-ion battery with a constant current and constant voltage at 25°C with a current of 1C, and after standing for 5 minutes, discharging at 1C for 30 minutes. After standing for 5min, discharge at 60C for 10s.
  • the DCR is calculated by the formula (voltage V1 before 60C discharge - voltage V2 after discharge at 60C)/60C current.
  • Table 1 According to the data in Table 1, it can be seen that the design of the positive pole pieces in Example 2 and Example 3 is unreasonable. , the compaction density is too large, the ion diffusion is hindered, and the DCR is large.
  • Example 10 the design of the positive pole piece is unreasonable, the compaction density is too low, the electron conductance is affected, and the DCR is slightly larger.
  • Examples 1, 4, 5, 6, 7, 8 and 9 all meet the requirement of 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14, so they can improve the DCR performance of lithium ion secondary batteries, especially the examples The data in 4, 5, 6, 7 and 8 also meet the preferred requirement of 0.1 ⁇ 3*10* ⁇ / ⁇ 0.125, which can significantly improve the DCR performance of the lithium ion secondary battery.
  • the embodiments of the present invention provide a positive pole piece, a method for preparing a positive pole piece, and a lithium ion secondary battery.
  • the thickness is limited so that the positive electrode piece of the lithium ion secondary battery satisfies the formula of 0.07 ⁇ 3*10* ⁇ / ⁇ 0.14, so that the lithium ion secondary battery can have excellent DCR performance while taking into account the lifespan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种正极极片、正极极片的制备方法和锂离子二次电池,涉及电池技术领域。该正极极片包括正极集流体和涂覆在正极集流体上且含有正极活性物质的正极涂覆层;正极极片满足公式:0.07<α^3*10*β/γ<0.14;其中,α为正极涂覆层的压实密度;β为正极涂覆层的面密度;γ为正极集流体的厚度。该正极极片满足上述公式时,能合理搭配正极极片压实密度、面密度及集流体厚度,使其满足公式:0.07<α^3*10*β/γ<0.14要求,从而能使得通过其制备得到的锂离子二次电池兼顾寿命的同时具有优秀的DCR性能。

Description

一种正极极片、正极极片的制备方法和锂离子二次电池
本申请要求于2021年03月05日提交中国专利局、申请号为202110254395.8、发明名称为“一种正极极片、正极极片的制备方法和锂离子二次电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池技术领域,具体而言,涉及一种正极极片、正极极片的制备方法和锂离子二次电池。
背景技术
随着全球尾气排放要求提升,新能源汽车成为汽车行业发展新方向。锂离子电池作为能量密度高、无污染、寿命长的可充电电池被广泛应用于新能源汽车。锂离子电池作为新能源汽车动力源,功率输出必须要有保障,而锂离子电池内阻(Directive Current Resistance,DCR)是锂离子电池功率输出的重要限制因素之一。
有鉴于此,提供一种在保持较长寿命同时又能持续提供大功率输出动力的锂离子电池是促进新能源汽车行业发展的必要条件。
发明内容
本发明的目的之一在于提供了一种正极极片,其通过对其涂覆层的压实密度、面密度以及正极集流体的厚度的控制,可使得通过该正极极片制备得到的锂离子二次电池具有寿命长且DCR性能优异的特点。
本发明的目的之二在于提供一种正极极片的制备方法,其能通过简单便捷的制备过程制备得到上述的正极极片。
本发明的目的之三在于提供一种锂离子二次电池,其包括上述的正极极片,因而其具有寿命长,且DCR较低的优点。
本发明的实施例可以这样实现:
第一方面,本发明提供一种正极极片,包括:
正极集流体和涂覆在正极集流体上且含有正极活性物质的正极涂覆层;正极极片满足公式:0.07<α^3*10*β/γ<0.14;其中,α为正极涂覆层的压实密度,单位为g/cm 3;β为正极涂覆层的面密度,单位为g/cm 2;γ为正极集流体的厚度,单位为um。
在可选的实施方式中,正极极片满足公式:0.1<α^3*10*β/γ<0.125。
在可选的实施方式中,正极涂覆层的压实密度的取值范围为2.6≤α≤3.2;
正极涂覆层的面密度的取值范围为0.0070≤β≤0.0085;
正极集流体的厚度的取值范围为10≤γ≤25。
在可选的实施方式中,正极涂覆层的压实密度的取值范围为2.75≤α≤3.1;
正极涂覆层的面密度的取值范围为0.0070≤β≤0.0075;
正极集流体的厚度的取值范围为16≤γ≤20。
在可选的实施方式中,正极活性物质为锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物、橄榄石结构的含锂磷酸盐中的任一种。
在可选的实施方式中,正极集流体为铝箔、涂炭铝箔、镍网中的任一种。
第二方面,本发明提供一种前述实施方式中任一项的正极极片的制备方法,包括:
将正极活性物质与助剂混合后制备得到浆料;
将浆料均匀涂敷在正极集流体上,并进行烘干冷压后得到正极极片。
第三方面,本发明提供一种锂离子二次电池,包括:前述实施方式中任一项的正极极片,以及负极极片、隔离膜和电解液;正极极片、隔离膜、负极极片用于依次叠好后卷绕得到电芯,电解液用于注入干燥的电芯后得到锂离子二次电池。
在可选的实施方式中,负极极片包括负极集流体和涂覆在负极集流体上且含有负极活性物质的负极涂覆层;其中,负极涂覆层的压实密度为1.35g/cm 3;负极涂覆层的面密度为0.0058g/cm 2;负极集流体的厚度为8um。
在可选的实施方式中,负极活性物质为石墨、软碳、硬碳、中间相碳微球、硅基材料中的任一种。
本发明的实施例至少包括以下优点或有益效果:
本发明的实施例提供了一种正极极片,其包括正极集流体和涂覆在正极集流体上且含有正极活性物质的正极涂覆层;正极极片满足公式:0.07<α^3*10*β/γ<0.14;其中,α为正极涂覆层的压实密度,单位为g/cm 3;β为正极涂覆层的面密度,单位为g/cm 2;γ为正极集流体的厚度,单位为um。当正极极片满足上述公式时,通过其制备得到的锂离子二次电池能在兼顾寿命的同时具有优异的DCR性能。
本发明的实施例还提供了一种正极极片的制备方法,其通过简单便捷的操作即可制备得到上述的正极极片。
本发明的实施例提供了一种锂离子二次电池,包括:正极极片、负极极片、隔离膜以及电解液;正极极片、隔离膜、负极极片用于依次叠好后卷绕得到电芯,电解液用于注入干燥的电芯后得到锂离子二次电池。该锂离子二次电池的正极极片能合理搭配正极极片压实密度、面密度及选用集流体厚度,使锂离子二次电池兼顾寿命的同时具有优秀的DCR性能。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
本发明的实施例提供了一种正极极片,其用于锂离子二次电池的 制造,其中,正极极片包括正极集流体和涂覆在正极集流体上且含有正极活性物质的正极涂覆层;正极极片满足公式:0.07<α^3*10*β/γ<0.14;其中,α为正极涂覆层的压实密度,单位为g/cm 3;β为正极涂覆层的面密度,单位为g/cm 2;γ为正极集流体的厚度,单位为um。
详细地,正极极片的正极涂覆层的压实密度、正极涂覆层的面密度以及正极集流体的厚度均对电池的DCR性能有不同的影响,但是其影响是具有一定局限性和相互影响性的,只有当满足公式:0.07<α^3*10*β/γ<0.14时,其才能同时具有较长的寿命和优异的DCR性能。因而,在实际的生产制造过程中,也可以根据上述的公式设计锂离子二次电池的正极涂覆层的压实密度、正极涂覆层的面密度和集流体厚度,从而使得所设计电池兼顾优良寿命性能同时,具有优秀的DCR性能,同时也可避免大量DOE实验,节约电池研发时间与成本。
作为优选的方案,其满足公式:0.1<α^3*10*β/γ<0.125时具有更长的寿命和更优异的DCR性能。可以根据此公式设计锂离子二次电池的正极涂覆层的压实密度、正极涂覆层的面密度和集流体厚度,以保证其具有上述优异的电化学性能。
更详细地,在本发明的实施例中,α为锂离子二次电池正极极片涂覆层的压实密度。正极涂覆层的压实密度的取值范围为2.6≤α≤3.2,优选的取值范围为2.75≤α≤3.1。其设计的依据在于,当锂离子电池放电时,锂离子从负极材料中脱出嵌入正极材料,锂离子从正极嵌入过程与正极涂覆层的压实密度密切相关。一方面,压实密度低,正极吸液能力提高,离子通道增加,有助于提高离子传输;但压实密度过低,离子传输距离增加,颗粒间距增大电子导电性降低,反而会增加内阻。另一方面,压实密度高,颗粒接触紧密,电子导电性好,离子传输通道短,有利于降低内阻;但压实密度过高会引起颗粒破碎,正极吸液性差,离子传输通道堵塞等不利因素。因而当锂离子二次电池的正极涂覆层的压实密度满足上述选择调节和上述公式的前提下,其能有效地保证锂离子二次电池既具有较长的寿命,也具有优异的DCR性能。
更详细地,在本发明的实施例中,β为锂离子电池正极极片涂敷 面密度。正极涂覆层的面密度的取值范围为0.0070≤β≤0.0085,优选的取值范围为0.0070≤β≤0.0075。其设计的依据在于,当极片面密度越低时,材料的孔隙率增大,极片吸液能力提高,接触电阻减小;而较小的面密度,极片厚度较小,离子传输距离也缩短;同时,面密度较小,化成时形成的SEI薄而稳定,也会减少锂离子在SEI膜中的迁移阻力。但如果面密度过低则会影响锂离子电池容量发挥,且受涂敷工艺限制。因而当β的取值范围控制在0.0070~0.0085之间时,其能有效地保证锂离子二次电池既具有较长的寿命,也具有优异的DCR性能。
更详细地,γ为锂离子电池正极集流体厚度。正极集流体的厚度的取值范围为10≤γ≤25,优选的取值范围为16≤γ≤20。其设计依据在于,集流体能起到电子传输的作用。一方面,集流体厚度过低会增加锂离子电池电子内阻,同时受集流体生产工艺及锂离子电池涂敷工艺限制。另一方面,集流体厚度过高虽然降低锂离子电池电子内阻,但相应增加锂离子电池卷芯厚度,增加锂离子电池群裕度,影响锂离子电池容量。因而当γ的取值范围控制在上述的范围内,且满足上述的要求公式时,其也能有效地保证锂离子二次电池既具有较长的寿命,也具有优异的DCR性能。
因此,综上所述,当正极极片压实密度、面密度及选用集流体厚度满足上述的要求时,可以使得锂离子电池兼顾寿命的同时具有优秀的DCR性能。
本发明的实施例还提供了一种正极极片的制备方法,其包括:将正极活性物质与助剂混合后制备得到浆料;将浆料均匀涂敷在正极集流体上,并进行烘干冷压后得到正极极片。该方法能快速且便捷地制备得到满足公式:0.07<α^3*10*β/γ<0.14,从而能保证通过其制备得到的锂离子二次电池具有较低的DCR值以及较长的寿命。
需要说明的是,助剂通常选择为其成型所必须的导电剂、粘结剂等物质其选择和配比相较于现有技术而言无改进,此处不再赘述。而正极活性位置以及集流体种类等也能根据常规选择进行确定,例如正极活性物质为锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、 锂镍钴锰氧化物、锂镍钴铝氧化物、橄榄石结构的含锂磷酸盐中的任一种。正极集流体也可以选择为铝箔、涂炭铝箔、镍网中的任一种。无论其成分选择和用量配比如何,其在制备过程中满足上述的公式0.07<α^3*10*β/γ<0.14时,即可保证其制备得到的锂离子二次电池具有较长寿命和较为优异的DCR性能。
本发明的实施例还提供了一种锂离子二次电池,其包括:正极极片、负极极片、隔离膜以及电解液;正极极片、隔离膜、负极极片用于依次叠好后卷绕得到电芯,电解液用于注入干燥的电芯后得到锂离子二次电池。该锂离子二次电池由于是通过上述的正极极片制备得到的,因而其具有较低的DCR值,同时也具有较长的使用寿命。
还需要说明的是,本实施例中,负极极片上也涂覆有负极活性物质,负极极片也包括负极活性物质、导电剂、粘结剂、分散剂和集流体等成分,其各成分的选择与现有技术相同,例如负极活性物质可选石墨、软碳、硬碳、中间相碳微球、硅基材料等,集流体可以选择为铜箔等。
同时,在本发明的实施例中,负极涂覆层的压实密度为1.35g/cm 3;负极涂覆层的面密度为0.0058g/cm 2;负极集流体的厚度为8um。将负极涂覆层的压实密度、负极涂覆层的面密度以及负极集流体的厚度控制为上述数值,以搭配正极极片,使得通过上述正极极片和负极极片制备得到寿命长且DCR性能优异的锂离子二次电池。当然,在本发明的其他实施例中,负极活性物质、导电剂、粘结剂、分散剂和集流体的种类和成分还可以根据制备需求进行选择,使其满足上述的公式需求即可。
另外,在本发明的实施例中,隔离膜的种类不受限制,可根据实际需求进行选择,例如隔离膜可选择为聚乙烯膜、聚丙烯膜、聚偏氟乙烯膜和无纺布等材质。电解液包括锂盐溶质和溶剂。其中,锂盐和溶剂种类均不受具体限制,可根据实际需求进行选择,例如锂盐可选择为LiPF6、LiTFSI、LiBF4等,本实施例不做限定。
本发明的实施例还提供了一种上述提及的锂离子二次电池的制 备方法,其具体包括以下步骤:
S1:将正极极片、隔离膜以及负极极片叠好后卷绕得到电芯;
其中,步骤S1具体包括负极极片的制备、正极极片的制备、隔离膜的制备以及电芯的制备,具体包括:
S11:正极极片的制备过程包括:将正极活性物质、导电剂、粘结剂按照一定质量比混合后,加入NMP并搅拌成混合均匀稳定的第一浆料;将第一浆料均匀涂敷在正极集流体上,并进行烘干冷压后得到正极极片;其中,质量比可选择为现有锂离子二次电池常规制备的比例,此处不再赘述;
S12:负极极片的制备过程包括:将负极活性物质、导电剂、粘结剂、分散剂按照一定质量比混合后,加入去离子水,并搅拌成混合均匀稳定的第二浆料;将第二浆料均匀涂覆在负极集流体上,并烘干和冷压后得到负极极片;其中,质量比可选择为现有锂离子二次电池常规制备的比例,此处不再赘述;
S13:隔离膜的制备过程包括:选用聚丙烯膜作为隔离膜;
S14:电芯的制备过程包括:将上述制备好的正极极片、隔离膜以及负极极片叠好后卷绕得到电芯。
S2:将电解液注入干燥后的电芯,并经过真空封装、静止、化成以及整形后得到锂离子二次电池。
其中,步骤S2具体包括电解液的制备和电池的制备过程,且具体为以下步骤:
S21:电解液的制备:将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照按体积比1:1:1进行混合得到有机溶剂,接着将充分干燥的锂盐LiPF6溶解于混合后的有机溶剂中,配制成浓度为1.2mol/L的电解液;
S21:电池的制备:将电芯置于外包装壳中,干燥后注入电解液,经过真空封装、静置、化成、整形等工序,获得锂离子电池。
下面通过具体的实施例对上述制备方法和过程进行详细地说明:
实施例1-10
实施例1-10均提供了一种锂离子二次电池,且均通过以下方法制备得到:
S11:正极极片的制备:将正极活性物质NCM111、导电剂SP、粘结剂PVDF按照一定质量比混合后,加入NMP并搅拌成混合均匀稳定的第一浆料;将第一浆料均匀涂敷在正极集流体上,并进行烘干冷压后得到满足表1要求的正极极片;
S12:负极极片的制备:将负极活性物质石墨、导电剂SP、粘结剂LA133、分散剂CMC按照一定质量比混合后,加入去离子水,并搅拌成混合均匀稳定的第二浆料;将第二浆料均匀涂覆在负极集流体上,并烘干和冷压后得到满足表1要求的负极极片;
S13:隔离膜的制备:选用聚丙烯膜作为隔离膜;
S14:电芯的制备:将上述制备好的正极极片、隔离膜以及负极极片叠好后卷绕得到电芯。
S21:电解液的制备:将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照按体积比1:1:1进行混合得到有机溶剂,接着将充分干燥的锂盐LiPF6溶解于混合后的有机溶剂中,配制成浓度为1.2mol/L的电解液;
S21:电池的制备:将电芯置于外包装壳中,干燥后注入电解液,经过真空封装、静置、化成、整形等工序,获得锂离子电池。
实施例1-10的区别在于,如表1所示,实施例1-10的正极极片在制备过程中选用了不同的正极涂覆层的压实密度、正极涂覆层的面密度以及正极集流体的厚度。
Figure PCTCN2021123201-appb-000001
实验例
将实施例1-10所制备得到的锂离二次电池进行DCR测试,测试方法包括在25℃下,用1C电流将锂离子电池恒流恒压满充,静置5min后,1C放电30min,静置5min后,60C放电10s。通过公式(60C放电前电压V1-60C放电后电压V2)/60C电流计算出DCR,测试结果显示于表1中,根据表1的数据可知,实施例2和实施例3正极极片设计不合理,压实密度过大导致离子扩散受阻,DCR较大。实施例10正极极片设计不合理,压实密度过低电子电导受影响,DCR略大。实施例1、4、5、6、7、8以及9均符合0.07<α^3*10*β/γ<0.14的要求,因而其可改善锂离子二次电池的DCR性能,尤其是实施例4、5、6、7以及8中的数据还符合优选的0.1<α^3*10*β/γ<0.125的要求,更能显著地改善锂离子二次电池的DCR性能。
综上所述,本发明的实施例提供了一种正极极片、正极极片的制备方法以及锂离子二次电池,通过对正极极片的正极极片压实密度、面密度及选用集流体厚度进行限定,使该锂离子二次电池的正极极片满足0.07<α^3*10*β/γ<0.14公式,从而能使锂离子二次电池兼顾寿命的同时具有优秀的DCR性能。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种正极极片,其特征在于,包括:
    正极集流体和涂覆在所述正极集流体上且含有正极活性物质的正极涂覆层;所述正极极片满足公式:0.07<α^3*10*β/γ<0.14;其中,α为所述正极涂覆层的压实密度,单位为g/cm 3;β为所述正极涂覆层的面密度,单位为g/cm 2;γ为所述正极集流体的厚度,单位为um。
  2. 根据权利要求1所述的正极极片,其特征在于:
    所述正极极片满足公式:0.1<α^3*10*β/γ<0.125。
  3. 根据权利要求1所述的正极极片,其特征在于:
    所述正极涂覆层的所述压实密度的取值范围为2.6≤α≤3.2;
    所述正极涂覆层的所述面密度的取值范围为0.0070≤β≤0.0085;
    所述正极集流体的厚度的取值范围为10≤γ≤25。
  4. 根据权利要求3所述的正极极片,其特征在于:
    所述正极涂覆层的所述压实密度的取值范围为2.75≤α≤3.1;
    所述正极涂覆层的所述面密度的取值范围为0.0070≤β≤0.0075;
    所述正极集流体的厚度的取值范围为16≤γ≤20。
  5. 根据权利要求1至4中任一项所述的正极极片,其特征在于:
    所述正极活性物质为锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物、橄榄石结构的含锂磷酸盐中的任一种。
  6. 根据权利要求1至4中任一项所述的正极极片,其特征在于:
    所述正极集流体为铝箔、涂炭铝箔、镍网中的任一种。
  7. 一种权利要求1至6中任一项所述的正极极片的制备方法,其特征在于,包括:
    将所述正极活性物质与助剂混合后制备得到浆料;
    将所述浆料均匀涂敷在所述正极集流体上,并进行烘干冷压后得到所述正极极片。
  8. 一种锂离子二次电池,其特征在于,包括:
    权利要求1至6中任一项所述的正极极片,以及负极极片、隔离膜和电解液;所述正极极片、所述隔离膜、所述负极极片用于依次叠好后卷绕得到电芯,所述电解液用于注入干燥的所述电芯后得到所述锂离子二次电池。
  9. 根据权利要求8所述的锂离子二次电池,其特征在于:
    所述负极极片包括负极集流体和涂覆在所述负极集流体上且含有负极活性物质的负极涂覆层;其中,所述负极涂覆层的压实密度为1.35g/cm 3;所述负极涂覆层的面密度为0.0058g/cm 2;所述负极集流体的厚度为8um。
  10. 根据权利要求9所述的锂离子二次电池,其特征在于:
    所述负极活性物质为石墨、软碳、硬碳、中间相碳微球、硅基材料中的任一种。
PCT/CN2021/123201 2021-03-05 2021-10-12 一种正极极片、正极极片的制备方法和锂离子二次电池 WO2022183737A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/039,475 US20230420639A1 (en) 2021-03-05 2021-10-12 Positive Electrode Plate, Preparation Method therefore and Lithium-Ion Secondary Battery
DE112021004900.3T DE112021004900T5 (de) 2021-03-05 2021-10-12 Positivelektrodenpolstück, herstellungsverfahren für ein positivelektrodenpolstück und lithium-ionen-sekundärbatterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110254395.8A CN113036082B (zh) 2021-03-05 2021-03-05 一种正极极片、正极极片的制备方法和锂离子二次电池
CN202110254395.8 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022183737A1 true WO2022183737A1 (zh) 2022-09-09

Family

ID=76467193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123201 WO2022183737A1 (zh) 2021-03-05 2021-10-12 一种正极极片、正极极片的制备方法和锂离子二次电池

Country Status (4)

Country Link
US (1) US20230420639A1 (zh)
CN (1) CN113036082B (zh)
DE (1) DE112021004900T5 (zh)
WO (1) WO2022183737A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036082B (zh) * 2021-03-05 2022-06-03 江苏正力新能电池技术有限公司 一种正极极片、正极极片的制备方法和锂离子二次电池
CN114766067A (zh) * 2021-10-25 2022-07-19 宁德新能源科技有限公司 正极极片、电化学装置及电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409369A (zh) * 2008-11-14 2009-04-15 东莞市迈科科技有限公司 大容量高功率聚合物磷酸铁锂动力电池及其制备方法
CN102760909A (zh) * 2012-07-17 2012-10-31 李永康 一种动力电池及其制造方法
CN103515616A (zh) * 2012-06-27 2014-01-15 万向电动汽车有限公司 一种锂离子动力电池正极片及其制备方法
CN104538627A (zh) * 2015-01-05 2015-04-22 天津市捷威动力工业有限公司 一种纳米磷酸铁锂正极浆料的制备方法
JP2018170113A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 正極及びリチウムイオン二次電池
CN112018428A (zh) * 2020-08-27 2020-12-01 湖北亿纬动力有限公司 一种锂离子电池及其制备方法和用途
CN113036082A (zh) * 2021-03-05 2021-06-25 东莞塔菲尔新能源科技有限公司 一种正极极片、正极极片的制备方法和锂离子二次电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626099A (zh) * 2009-08-08 2010-01-13 东莞市迈科科技有限公司 一种聚合物磷酸钒锂动力电池及其制备方法
CN102610852A (zh) * 2011-07-29 2012-07-25 深圳市中星动力电池技术有限公司 一种聚合物镍钴锰钒锂动力电池及其制备方法
CN106848378A (zh) * 2017-02-13 2017-06-13 浙江钱江锂电科技有限公司 一种高能量密度软包叠片电池
CN109244339A (zh) * 2018-08-24 2019-01-18 台州钱江新能源研究院有限公司 一种高安全高能量密度的三元锂离子电池
CN110265627B (zh) * 2018-09-28 2020-09-29 宁德时代新能源科技股份有限公司 正极极片及锂离子二次电池
CN111200113B (zh) * 2018-11-16 2021-01-12 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN112151755A (zh) * 2020-09-08 2020-12-29 江苏塔菲尔新能源科技股份有限公司 一种正极片及电池
CN112216814B (zh) * 2020-12-09 2021-04-27 江苏时代新能源科技有限公司 电极极片、二次电池及其制备方法和含有二次电池的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409369A (zh) * 2008-11-14 2009-04-15 东莞市迈科科技有限公司 大容量高功率聚合物磷酸铁锂动力电池及其制备方法
CN103515616A (zh) * 2012-06-27 2014-01-15 万向电动汽车有限公司 一种锂离子动力电池正极片及其制备方法
CN102760909A (zh) * 2012-07-17 2012-10-31 李永康 一种动力电池及其制造方法
CN104538627A (zh) * 2015-01-05 2015-04-22 天津市捷威动力工业有限公司 一种纳米磷酸铁锂正极浆料的制备方法
JP2018170113A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 正極及びリチウムイオン二次電池
CN112018428A (zh) * 2020-08-27 2020-12-01 湖北亿纬动力有限公司 一种锂离子电池及其制备方法和用途
CN113036082A (zh) * 2021-03-05 2021-06-25 东莞塔菲尔新能源科技有限公司 一种正极极片、正极极片的制备方法和锂离子二次电池

Also Published As

Publication number Publication date
CN113036082A (zh) 2021-06-25
DE112021004900T5 (de) 2023-06-29
CN113036082B (zh) 2022-06-03
US20230420639A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2020177623A1 (zh) 负极片、二次电池及其装置
CN110165284B (zh) 锂离子二次电池
US20230282836A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
CN110707287B (zh) 一种金属锂负极及其制备方法和锂电池
CN105513828B (zh) 一种锂离子电容器复合负极片及其制备方法、锂离子电容器
KR20200029961A (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
US20230307618A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
CN113823849A (zh) 锂离子电池的补锂正极片和锂离子电池
WO2022183737A1 (zh) 一种正极极片、正极极片的制备方法和锂离子二次电池
CN114566610A (zh) 一种具有补锂功能的正极及其制备方法和应用
CN114335428B (zh) 一种正极片及制备方法、电池
CN115295767A (zh) 一种正极片和锂离子电池
CN110600680A (zh) 一种正极浆料及包括该正极浆料的正极片、锂离子电池
WO2022268153A1 (zh) 一种电极组件及二次电池
JP2012084426A (ja) 非水電解質二次電池
KR20230150863A (ko) 리튬 이온 배터리 및 동력 차량
CN114497773A (zh) 一种正极片及其制备方法和电池
JP2005158623A (ja) 非水電解液二次電池
CN113823851A (zh) 锂离子电池的补锂负极片和锂离子电池
CN109817467B (zh) 一种复合正极材料及其制备方法以及一种化学电源及其制备方法
WO2023130926A1 (zh) 一种负极片及包括该负极片的电池
JP6457272B2 (ja) 二次電池の充電ムラ低減方法及び二次電池の製造方法
JPH11126600A (ja) リチウムイオン二次電池
CN105024113B (zh) 一种基于嵌锂石墨的可充放锂离子氧气电池的制备方法
CN115207281A (zh) 电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039475

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21928811

Country of ref document: EP

Kind code of ref document: A1