WO2022176990A1 - マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法 - Google Patents

マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法 Download PDF

Info

Publication number
WO2022176990A1
WO2022176990A1 PCT/JP2022/006756 JP2022006756W WO2022176990A1 WO 2022176990 A1 WO2022176990 A1 WO 2022176990A1 JP 2022006756 W JP2022006756 W JP 2022006756W WO 2022176990 A1 WO2022176990 A1 WO 2022176990A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
rod
main
tip
Prior art date
Application number
PCT/JP2022/006756
Other languages
English (en)
French (fr)
Inventor
良平 福本
勝宏 竹永
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2023500949A priority Critical patent/JPWO2022176990A1/ja
Priority to US18/246,919 priority patent/US20230382779A1/en
Publication of WO2022176990A1 publication Critical patent/WO2022176990A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/11Reshaping by drawing without blowing, in combination with separating, e.g. for making ampoules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/207Uniting glass rods, glass tubes, or hollow glassware
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01251Reshaping the ends
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Definitions

  • the present invention relates to a multi-core optical fiber preform, a method for manufacturing a multi-core optical fiber preform, and a method for manufacturing a multi-core optical fiber.
  • the thickness of the optical fiber coating affects the microbend characteristics, temperature characteristics, etc. of the optical fiber. Therefore, when manufacturing an optical fiber, there is a case where the nonuniformity of the thickness of the coating (hereinafter referred to as thickness nonuniformity) is confirmed. Asymmetry in coating layers can be confirmed by forward scattered light obtained by irradiating the side surface of the optical fiber with laser light (see, for example, Patent Document 1). The position of light and dark in forward scattered light is affected by the thickness distribution of the coating. Therefore, thickness deviation of the coating can be confirmed based on the position of light and dark of the forward scattered light.
  • An object of an aspect of the present invention is to provide a multi-core optical fiber preform, a method for manufacturing a multi-core optical fiber preform, and a method for manufacturing a multi-core optical fiber, which can accurately check uneven coating thickness.
  • a multi-core optical fiber preform according to a first aspect of the present invention comprises a rod-shaped main clad body having one or more main inner holes, a plurality of main core rods inserted into the main inner holes, and the main core rods. a leading end connecting portion connected to one end of the clad body, wherein the leading end connecting portion is a glass rod having no core rod or having one core rod.
  • the multi-core optical fiber preform has a leading end connecting portion that has no core rod or one core rod.
  • the tip connecting portion has a smaller number of cores than the glass material unit (the unit including the main clad body and the main core rod). Since a coated wire having one or less cores can be produced in the leading end connecting portion, uneven thickness of the coating can be confirmed under the condition of less light scattering. Therefore, it is possible to accurately check the uneven thickness of the coating.
  • the plurality of main core rods includes a first core rod and a second core rod having a dimension shorter than the axial dimension of the main clad body, the first core rod being arranged in the center of the main clad body.
  • the tip connecting portion may be a solid glass rod.
  • the tip connecting portion includes a constant diameter portion having a constant outer diameter and a reduced diameter portion protruding from the tip of the constant diameter portion while decreasing in diameter, and the length in the axial direction of the constant diameter portion is , and may be equal to or greater than the length of the reduced diameter portion in the axial direction.
  • the tip connecting portion includes a constant diameter portion having a constant outer diameter and a reduced diameter portion protruding from the tip of the constant diameter portion while decreasing in diameter, and the length in the axial direction of the constant diameter portion is , and may be less than the axial length of the reduced diameter portion.
  • a method of manufacturing a multi-core optical fiber preform according to a second aspect of the present invention prepares a glass material unit in which a plurality of main core rods are inserted into one or a plurality of main inner holes formed in a rod-shaped main clad body. a preparing step; a glass rod connecting step of butt-connecting a glass rod having no core rod or having one core rod to one end of the glass material unit; and a glass rod cutting step of separating the remaining portion of the glass rod by fusion cutting, leaving as a leading end connecting portion continuously connected to the glass rod.
  • the leading end connection portion having no core rod or one core rod since the leading end connection portion having no core rod or one core rod is formed, the number of cores of the coated wire is small, so that the uneven thickness of the coating is generated under the condition of less light scattering. Confirmation can be done. Therefore, it is possible to accurately check the uneven thickness of the coating.
  • the main core rod includes a first core rod and a second core rod having a dimension shorter than the axial dimension of the main clad body, and in the preparation step, the first core rod is inserted into the main bore.
  • a material unit may be prepared, and after the preparation step, the gap may be heated to reduce the diameter of the main clad body to close the gap.
  • the tip connecting portion may be a solid glass rod.
  • the tip connecting part may be a single core unit comprising a rod-shaped tip clad body having one tip inner hole and one tip core rod inserted into the tip inner hole.
  • the tip connecting portion is formed to include a constant diameter portion having a constant outer diameter and a reduced diameter portion protruding from the tip of the constant diameter portion while decreasing in diameter,
  • the axial length of the constant diameter portion may be greater than or equal to the axial length of the reduced diameter portion.
  • the tip connecting portion is formed to include a constant diameter portion having a constant outer diameter and a reduced diameter portion protruding from the tip of the constant diameter portion while decreasing in diameter,
  • the axial length of the constant diameter portion may be less than the axial length of the reduced diameter portion.
  • the method for manufacturing a multi-core optical fiber according to the third aspect of the present invention forms a multi-core optical fiber by drawing the multi-core optical fiber preform obtained by the method for manufacturing a multi-core optical fiber preform.
  • a multi-core optical fiber preform a method for manufacturing a multi-core optical fiber preform, and a method for manufacturing a multi-core optical fiber, which can accurately check uneven coating thickness.
  • FIG. 2 is a cross-sectional view along the axial direction of the multi-core optical fiber preform of the first embodiment; It is process drawing explaining the manufacturing method of a multi-core optical fiber preform.
  • FIG. 3 is a process diagram following FIG. 2 ;
  • FIG. 4 is a process diagram following FIG. 3 ;
  • FIG. 5 is a process diagram following FIG. 4 ;
  • FIG. 6 is a process diagram following FIG. 5 ;
  • FIG. 7 is a process diagram following FIG. 6 ;
  • FIG. 8 is a process diagram following FIG. 7 ;
  • FIG. 2 is a cross-sectional view perpendicular to the axial direction of the multi-core optical fiber preform.
  • 1 is a configuration diagram showing an example of a multi-core optical fiber manufacturing apparatus;
  • FIG. 4 is a process diagram following FIG. 3 ;
  • FIG. 5 is a process diagram following FIG. 4 ;
  • FIG. 6 is a process diagram following FIG. 5 ;
  • FIG. 7 is
  • FIG. 10 is a cross-sectional view along the axial direction of the multi-core optical fiber preform of the second embodiment
  • FIG. 11 is a cross-sectional view along the axial direction of the multi-core optical fiber preform of the third embodiment
  • 14A and 14B are process diagrams illustrating a method of manufacturing the multi-core optical fiber preform of FIG. 13
  • 14A and 14B are process diagrams illustrating a method of manufacturing the multi-core optical fiber preform of FIG. 13
  • 4 is a photograph showing an example of forward scattered light when a single-core covered wire is irradiated with laser light.
  • 4 is a photograph showing an example of forward scattered light when a multi-core covered wire is irradiated with laser light.
  • a multi-core optical fiber preform, a method for manufacturing a multi-core optical fiber preform, and a method for manufacturing a multi-core optical fiber according to embodiments will be described below with reference to the drawings.
  • FIG. 1 is a cross-sectional view along the axial direction of a multi-core optical fiber preform 10 (hereinafter simply referred to as the optical fiber preform 10) of the first embodiment.
  • the optical fiber preform 10 includes a main clad body 1 , a plurality of main core rods 2 , a connecting end portion 3 and a dummy tube 13 .
  • the main clad body 1 is formed in a cylindrical shape (rod shape).
  • the main clad body 1 is made of glass.
  • the main clad body 1 is, for example, an integrally molded product made of quartz glass.
  • a plurality of main inner holes 4 are formed in the main clad body 1 .
  • the main inner hole 4 is formed along the axial direction of the main clad body 1 .
  • the first end 1a is one end of the main clad body 1 on the side where the leading end connecting portion 3 is provided.
  • the second end 1b is the end surface of the main clad body 1 opposite to the first end 1a.
  • shapes that the first end 1a and the second end 1b can take include an end surface shape and a non-end surface shape.
  • the main core rod 2 is formed in a cylindrical shape (rod shape).
  • the main core rod 2 includes a region with a higher refractive index compared to the main clad body 1 .
  • the main core rod 2 is partially doped with a refractive index-increasing dopant (germanium, phosphorus, aluminum, titanium, etc.) (for example, quartz glass) or a refractive index-decreasing dopant (boron, fluorine, etc.). It may be made of glass (for example, quartz glass).
  • a main core rod 2 is inserted into the main bore 4 .
  • the main clad body 1 and the plurality of main core rods 2 constitute a "glass material unit U1".
  • the leading end connecting portion 3 is made of glass (for example, quartz glass).
  • the leading end connecting portion 3 is connected to the first end 1a (one end) of the main clad body 1 by welding.
  • the leading end connecting portion 3 is coaxial with the main clad body 1 .
  • the leading end connecting portion 3 blocks the openings of all the main inner holes 4 of the main clad body 1 .
  • the outer diameter of the leading end connecting portion 3 is preferably the same as the outer diameter of the main clad body 1 .
  • the leading end connecting portion 3 is, for example, a solid glass rod. Since the tip connecting portion 3 is solid, it does not have core rods (that is, the number of core rods is zero).
  • the refractive index of the tip connecting portion 3 may be substantially the same as the refractive index of the main clad body 1 .
  • the number of core rods in the leading end connecting portion may be one. That is, the tip connecting portion has one core rod, or the tip connecting portion does not have a core rod.
  • the tip connecting portion 3 includes a constant diameter portion 5 and a reduced diameter portion 6 .
  • the constant-diameter portion 5 is a portion including an end connected to the first end 1 a of the main clad body 1 .
  • the constant diameter portion 5 is formed in a cylindrical shape (rod shape).
  • the outer diameter of the constant diameter portion 5 is constant.
  • the reduced-diameter portion 6 protrudes from the tip 5a of the constant-diameter portion 5 while decreasing in diameter.
  • the reduced diameter portion 6 is formed in a tapered shape (for example, conical shape).
  • the axial length of the constant diameter portion 5 is defined as A1.
  • the axial length of the reduced diameter portion 6 is defined as A2.
  • the length A1 of the constant diameter portion 5 may be greater than or equal to the length A2 of the reduced diameter portion 6 .
  • the length A1 of the constant diameter portion 5 may be less than the length A2 of the reduced diameter portion 6 .
  • the dummy tube 13 is connected to the second end 1b of the glass material unit U1. Note that the optical fiber preform 10 may be configured without the dummy tube 13 .
  • the method for manufacturing an optical fiber preform shown here includes (1) a hole opening step, (2) a cleaning step, (3) a preparation step, (4) a dummy tube connection step, (5) a sealing step, and (6) glass. It has a rod connecting step and (7) a glass rod cutting step. Each step will be described below.
  • a plurality of through holes 14 are formed in the main clad body 1 using a drill tool or the like.
  • the through hole 14 is formed in the main clad body 1 along the axial direction. Both ends of the through hole 14 are opened to end faces of the main clad body 1 in the axial direction.
  • the through-holes 14 are formed at a plurality of locations at intervals in the direction around the axis so as to surround the central axis of the main clad body 1, for example.
  • a cleaning fluid such as pure water, alcohol (ethanol), or alkaline solution is used. is used to clean the outer surface of the main clad body 1 and the inner surface of the through-hole 14 .
  • the inner surface of the through-hole 14 can also be processed by etching.
  • Etching can remove, for example, foreign matter (such as the metal powder) adhering to the microcracks on the inner surface of the through-hole 14 .
  • the etching may be wet etching or dry etching.
  • an etchant containing hydrofluoric acid such as BHF (buffered hydrofluoric acid), which is a mixture of hydrofluoric acid and ammonium fluoride, can be used.
  • a fluorinated gas such as SF6 (sulfur hexafluoride) gas or C2F6 (hexafluoroethane) gas can be used as an etching gas.
  • SF6 sulfur hexafluoride
  • C2F6 hexafluoroethane
  • an etching gas is introduced into the through holes 14 while heating the main clad body 1 to 1200° C. or higher.
  • the glass material unit U1 is prepared.
  • a glass rod 2 serving as a core (hereinafter referred to as a main core rod) is inserted into each of the plurality of through holes 14 of the main clad body 1 .
  • a glass material unit U1 having a configuration in which the main core rod 2 is inserted into each of the plurality of through holes 14 of the main clad body 1 is obtained.
  • the main core rod 2 is preferably cleaned in advance using a cleaning liquid such as water, alcohol, or alkaline liquid.
  • the main core rod 2 may be etched to remove surface contamination.
  • the preparation step is preferably performed in a room with a high degree of cleanliness. As a result, it is possible to prevent dust, dirt, etc., from adhering to the main core rod 2, which causes transmission loss.
  • a core identification marker glass rod (not shown) may be inserted into one or more of the plurality of through holes 14 of the main clad body 1 instead of the main core rod 2 .
  • the core identification marker glass rod is, for example, a glass rod or the like having a different refractive index for both the main clad body 1 and the main core rod 2 .
  • the outer diameter of the main core rod 2 is, for example, 80-99% of the inner diameter of the through hole 14. From the viewpoint of ensuring stable core position accuracy in the optical fiber, the outer diameter of the main core rod 2 is more preferably 90 to 99% of the inner diameter of the through hole 14, more preferably 95 to 99%.
  • dummy tubes 12 and 13 are connected to both ends of the glass material unit U1 by welding or the like.
  • the dummy tubes 12 and 13 are, for example, cylindrical tubular bodies made of quartz glass.
  • the ends of the glass material unit U1 are heated by flames 16 (for example, oxyhydrogen flames) or the like.
  • the first dummy pipe 12 is connected to the glass unit U1 by abutting one end surface in the axial direction of the glass unit U1.
  • the second dummy tube 13 is connected to the glass unit U1 by abutting its end surface against the other end surface of the glass unit U1. Dummy tubes 12 and 13 can be gripped by chuck 20 .
  • the dummy pipe connection step is performed after the preparation step, but the dummy pipe connection step may be performed before the preparation step.
  • one end of the glass material unit U1 (hereinafter referred to as the first end; the right end in FIG. 5) is exposed to a flame 16 (for example, an oxyhydrogen flame) or the like.
  • the opening of the through-hole 14 is closed (that is, sealed) by heating with and reducing the diameter.
  • the first dummy tube 12 on the first end side of the glass material unit U1 is separated from the glass material unit U1 by fusing.
  • the means for heating the glass material unit U1 is not limited to the flame 16, and an electric furnace or the like may be used.
  • a first end portion of the glass material unit U ⁇ b>1 with the opening of the through hole 14 sealed is called a first end sealing portion 17 .
  • the first end sealing portion 17 is made solid by reducing the diameter of the first end of the main clad body 1 together with the first end of the main core rod 2 .
  • the first end sealing portion 17 is formed, for example, in a tapered shape (for example, conical shape).
  • a decompression pump may be connected to the dummy pipe 13 to decompress the inside of the through hole 14 .
  • the voids (bubbles) in the glass material unit U1 can be reduced.
  • the glass rod 15 is made of quartz glass, for example.
  • Glass rod 15 has a solid structure.
  • the glass rod 15 is formed in a cylindrical shape.
  • the outer diameter of the glass rod 15 is preferably the same as the outer diameter of the main clad body 1 .
  • the glass rod 15 is abutted against the end surface of the first end (one end) of the glass material unit U1, aligned coaxially with the glass material unit U1, and welded and integrated.
  • the glass rod 15 is connected to the first end of the glass material unit U1.
  • the glass rod 15 blocks the openings of all the through holes 14 . Thereby, the glass rod 15 is connected to the first end of the glass material unit U1 (see FIG. 7).
  • the through hole 14 becomes the main inner hole 4 (see FIG. 7).
  • a soldering iron 18 can be applied to the outer peripheral surface of the connecting portion between the glass rod 15 and the glass material unit U1 to reduce the step between the glass rod 15 and the glass material unit U1. . As a result, it is possible to make it difficult for the optical fiber or the glass wire to break during drawing.
  • the intermediate position in the length direction of the glass rod 15 is heated using a flame 16 (for example, an oxyhydrogen flame) or the like to cut the glass rod 15 by fusion cutting.
  • a flame 16 for example, an oxyhydrogen flame
  • a part of the glass rod 15 in the length direction remains as the leading end connecting portion 3 connected to the glass material unit U1.
  • the optical fiber preform 10 shown in FIG. 1 is obtained.
  • the remaining lengthwise portion of the glass rod 15 is separated from the leading end connecting portion 3 .
  • the glass material unit U1 may be sealed at the second end (for example, the left end of the optical fiber preform 10 in FIG. 8) while the inside is decompressed by a decompression pump.
  • a decompression pump As a result, an optical fiber with few voids (bubbles) can be manufactured.
  • the heating unit 101 is not heated to the heating unit 101 in the uneven thickness checking step and the main manufacturing step, which will be described later, with the inside of the glass unit U1 decompressed by the decompression pump.
  • the optical fiber preform 10 may be melt-spun by heating the optical fiber preform 10 by means of .
  • FIG. 9 is a cross-sectional view showing an example of the optical fiber preform 10.
  • FIG. FIG. 9 shows a cross section perpendicular to the axial direction of the optical fiber preform 10 .
  • the number of main inner holes 4 in the optical fiber preform 10 in this example is four, and the four main inner holes 4 are arranged around the central axis of the main clad body 1 at regular intervals.
  • FIG. 10 is a configuration diagram showing a multi-core optical fiber manufacturing apparatus 100 (hereinafter simply referred to as manufacturing apparatus 100).
  • FIG. 11 is a schematic diagram showing the configuration of the first uneven thickness detector 105. As shown in FIG.
  • manufacturing apparatus 100 includes heating unit 101 , cooling unit 102 , first coating unit 103 , first curing unit 104 , first uneven thickness detection unit 105 , and second coating unit 106 . , a second hardened portion 107 , a second uneven thickness detection portion 108 , a pulley 109 , a take-up portion 110 , and a winding portion 111 .
  • the first curing station 104 comprises one or more UV lamps 104a.
  • the second curing station 107 comprises one or more UV lamps 107a.
  • the manufacturing method of the multi-core optical fiber according to the embodiment has (1) thickness variation checking step and (2) main manufacturing step.
  • the optical fiber preform 10 is heated by the heating unit 101 and melt-spun. That is, the tip of the optical fiber preform 10 (the tip of the tip connecting portion 3) is heated to lower (soften) the viscosity of the glass, and the softened glass is drawn. Since the tip connecting part 3 is a solid glass rod (see FIG. 1), the drawn glass is a glass wire 21 without a core. The glass wire 21 is cooled by the cooling section 102 .
  • the first coating unit 103 applies (coates) a coating material such as a urethane acrylate-based resin to the outer periphery of the glass wire 21 to form a first coating.
  • a coating material such as a urethane acrylate-based resin
  • the glass wire 21 on which the first coating is formed is called an intermediate 22 (coated wire).
  • the intermediate body 22 is irradiated with UV by the UV lamp 104a of the first curing section 104 to cure the first coating.
  • the first uneven thickness detector 105 includes a light emitter 112 and a light receiver 113 .
  • the light emitting unit 112 irradiates the intermediate 22 with the laser light L1 (test light).
  • the light receiving unit 113 receives the forward scattered light L2.
  • the first thickness deviation detector 105 can confirm the thickness deviation (thickness deviation) of the first coating based on the forward scattered light L2.
  • the intermediate 22 since the intermediate 22 has no cores, scattering of laser light caused by a plurality of cores does not occur. Therefore, it is possible to easily confirm the uneven thickness of the first coating based on the position of the brightness and darkness of the forward scattered light. When the uneven thickness of the first coating is confirmed, the uneven thickness can be suppressed by adjusting the coating conditions in the first coating portion 103 .
  • the second coating unit 106 applies (coates) a coating material such as a urethane acrylate-based resin to the outer periphery of the intermediate body 22 to form a second coating.
  • a coating material such as a urethane acrylate-based resin
  • the intermediate 22 on which the second coating is formed is called a coated glass wire 23 (coated wire).
  • the coated glass wire 23 is irradiated with UV by the UV lamp 107a of the second curing section 107 to cure the second coating.
  • the second uneven thickness detection unit 108 includes a light emitting unit (not shown) and a light receiving unit (not shown).
  • the second uneven thickness detector 108 can have the same configuration as the first uneven thickness detector 105 (see FIG. 11).
  • the light emitting unit irradiates the covered glass wire 23 with laser light (test light).
  • the light receiving section receives the forward scattered light.
  • the second thickness variation detection unit 108 can confirm the thickness variation of the second coating based on the forward scattered light.
  • the coated glass wire 23 Since the coated glass wire 23 has no core, scattering of laser light caused by multiple cores does not occur. Therefore, it is possible to easily confirm the uneven thickness of the second coating based on the position of the brightness and darkness of the forward scattered light. If uneven thickness of the second coating is confirmed, the uneven thickness can be suppressed by adjusting the coating conditions in the second coating portion 106 .
  • the pulley 109 changes the direction of the coated glass wire 23.
  • the take-off station 110 is, for example, a take-off capstan and determines the draw speed.
  • the winding unit 111 winds the coated glass wire 23 .
  • a second coating is formed on the optical fiber wire intermediate by the second coating unit 106, and the second coating is cured by the second curing unit 107, thereby forming an optical fiber wire.
  • the main clad body 1 of the glass material unit U1 becomes the clad of the optical fiber strand.
  • the main core rod 2 becomes the core of the optical fiber strand. Since there are a plurality of main core rods 2, the optical fiber strand is a multi-core optical fiber.
  • the optical fiber preform 10 of the present embodiment is provided with the leading end connecting portion 3 with no core rod or with one core rod.
  • the leading end connecting portion 3 has a smaller number of cores than the glass material unit U1.
  • the leading end connecting portion 3 can produce the intermediate body 22 and the coated glass wire 23 having one or less cores. Therefore, in the thickness variation detectors 105 and 108, it is possible to check the thickness variation of the coating under the condition of less light scattering. Therefore, it is possible to accurately check the uneven thickness of the coating.
  • the optical fiber preform 10 is a glass rod having a solid tip connecting portion 3
  • the core-free intermediate 22 and the coated glass wire 23 can be produced in the uneven thickness checking step. Therefore, in the thickness variation detectors 105 and 108, it is possible to check the thickness variation of the coating under the condition of less light scattering.
  • the intermediate body 22 having one or less cores and the coated glass wire are prepared prior to the main manufacturing process for manufacturing the multi-core optical fiber. 23 can be made. Therefore, in the thickness variation detectors 105 and 108, it is possible to check the thickness variation of the coating under the condition of less light scattering. Therefore, it is possible to accurately check the uneven thickness of the coating.
  • the leading end connecting portion 3 is a solid glass rod
  • the core-free intermediate 22 and the coated glass wire 23 can be produced in the uneven thickness checking step. Therefore, in the thickness variation detectors 105 and 108, it is possible to check the thickness variation of the coating under the condition of less light scattering.
  • the tip connecting portion 3 includes a constant diameter portion 5 having a constant outer diameter and a reduced diameter portion 6 protruding from the tip 5a of the constant diameter portion 5 while decreasing in diameter.
  • the length A1 of the constant diameter portion 5 may be less than the length A2 of the reduced diameter portion 6.
  • the time required for the process of irradiating the coated wire with a laser beam to check for uneven thickness can be shortened, and the main manufacturing process can be started at an early stage, thereby improving the manufacturing efficiency of the multi-core optical fiber. can be done.
  • FIG. 12 is a cross-sectional view along the axial direction of the optical fiber preform 210 of the second embodiment.
  • Components common to the optical fiber preform 10 (see FIG. 1) of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the optical fiber preform 210 includes a main clad body 1 , a plurality of main core rods 2 , a connecting end portion 203 and a dummy tube 13 .
  • the optical fiber preform 210 differs from the optical fiber preform 10 shown in FIG.
  • the tip connecting portion 203 is a single core unit including a tip clad body 204 and one tip core rod 205 .
  • the outer shape of the tip clad body 204 is the same as the outer shape of the tip connecting portion 3 shown in FIG.
  • the tip clad body 204 is made of glass (eg, quartz glass).
  • One tip bore 206 is formed in the tip clad body 204 .
  • the tip inner hole 206 is formed in the central portion of the tip clad body 204 along the axial direction of the tip clad body 204 .
  • the tip core rod 205 is formed in a cylindrical shape (rod shape).
  • the tip core rod 205 is made of glass (eg, quartz glass).
  • Tip core rod 205 includes a region of higher refractive index than tip cladding body 204 .
  • Distal core rod 205 is inserted into distal bore 206 .
  • the leading end connecting portion 203 is connected to the first end 1a (one end) of the main clad body 1 by welding.
  • the leading end connecting portion 203 is coaxial with the main clad body 1 .
  • the leading end connecting portion 203 closes all the main inner holes 4 of the main clad body 1 .
  • the outer diameter of the leading end connecting portion 203 is preferably the same as the outer diameter of the main clad body 1 . Since the tip connecting portion 203 includes one core rod (tip core rod 205), the number of core rods is one.
  • a multi-core optical fiber can be manufactured in the same manner as the optical fiber preform 10 of the first embodiment (see FIG. 10).
  • the optical fiber preform 210 is provided with the leading end connecting portion 203 having one core rod, it is possible to produce an intermediate and a coated glass wire having one or less cores in the uneven thickness checking process. . Therefore, in the thickness variation detector, it is possible to check the thickness variation of the coating under the condition of less light scattering. Therefore, it is possible to accurately check the uneven thickness of the coating.
  • FIG. 13 is a cross-sectional view along the axial direction of the optical fiber preform 310 of the third embodiment.
  • Components common to the optical fiber preform 10 (see FIG. 1) of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the optical fiber preform 310 includes a main clad body 31 , a plurality of main core rods 32 , a connecting end portion 301 and a dummy tube 13 .
  • the optical fiber preform 310 differs from the optical fiber preform 10 shown in FIG. 1 in the configuration of the glass material unit U2 and the position where the leading end connecting portion 301 is provided.
  • the plurality of main core rods 32 includes first core rods 32a and second core rods 32b.
  • the axial dimension M1 of the first core rod 32 a is the same as the axial dimension MA of the main clad body 31 .
  • the axial dimension M2 of the second core rod 32b is shorter than the axial dimension MA of the main clad body 31 .
  • the axial dimension M2 of the second core rod 32b is shorter than the axial dimension M1 of the first core rod 32a.
  • the first core rod 32 a is arranged in the center of the main clad body 31 .
  • the main core rod 2 shown in FIG. 9 corresponds to the second core rod 32b of this embodiment, and the first core rod 32a is surrounded by four second core rods 32b.
  • the tip connecting portion 301 includes a constant diameter portion 302 and a reduced diameter portion 303 .
  • the length relationship between the constant diameter portion 302 and the reduced diameter portion 303 is the same as in the first embodiment.
  • the tip connecting portion 301 does not have a core rod.
  • the leading end connecting portion 301 is connected to the first end 31a (end surface) of the main clad body 31 by welding.
  • the leading end connecting portion 301 is coaxial with the main clad body 31 .
  • the leading end connecting portion 301 closes the main inner hole 4 of the first core rod 32a.
  • the outer diameter of the leading end connecting portion 301 is slightly larger than the outer diameter of the first core rod 32a.
  • the tip portion of the main clad body 31 has a tapered shape that decreases in diameter toward the first end 31a.
  • the axial dimension M1 of the first core rod 32a is the same as the axial dimension MA of the main clad body 31, but the dimension M1 of the first core rod 32a is the same as the dimension MA can be shorter.
  • the multi-core optical fiber preform 310 compared to the multi-core optical fiber preform 10 of FIG. 1 and the multi-core optical fiber preform 210 of FIG.
  • the heat capacity of the connecting portion 301 is reduced.
  • the leading end connecting portion 301 is easily melted.
  • the end-connected portion 301 of the multi-core optical fiber preform 310 is dropped (dropping step). ) can be shortened. Therefore, especially when the length of the first core rod 32a is long in the axial direction, it is possible to shorten the time from the dropping process to the main drawing process for drawing out the product fiber from the multi-core optical fiber preform 310 .
  • the through-holes 14 are formed at the center of the main clad body 31 and at a plurality of locations surrounding the center of the main clad body 31 at intervals in the axial direction.
  • the cleaning process is the same as in the first embodiment.
  • the glass material unit U2 is prepared.
  • a glass rod 32 a (hereinafter referred to as a first core rod) and a glass rod 32 b (hereinafter referred to as a second core rod) are inserted into each of the plurality of through holes 14 of the main clad body 31 .
  • the first core rod 32a is inserted into the through hole (main inner hole) 14 formed in the center of the main clad body 31, and the through hole 14 formed so as to surround the center of the main clad body 31 is filled with
  • a second core rod 32b is inserted.
  • the axial dimension M1a of the first core rod 32a is the same as the axial dimension MA of the main clad body 31 .
  • the axial dimension M1a of the first core rod 32a is the same as the axial dimension MA of the main clad body 31. It may be shorter than MA.
  • the axial dimension M2a of the second core rod 32b is shorter than the axial dimension MA of the main clad body 31 (dimension of the through hole 14). Further, the axial dimension M2a of the second core rod 32b is shorter than the axial dimension M1a of the first core rod 32a. Therefore, a gap S is formed between the end face of the main clad body 31 and the second core rod 32b. Further, no gap is formed on the second end 31b side of the through hole 14 through which the second core rod 32b is inserted. In this manner, the glass material unit U2 is obtained in which the first core rods 32a and the second core rods 32b are inserted into the plurality of through holes 14 of the main clad body 31, respectively.
  • the leading end connecting portion 301 has an outer diameter slightly smaller than the outer diameter of the main clad body 31 .
  • the outer diameter of the main clad body 31 may be equal to the outer diameter MS1 of the main clad body 31 on the leading end connecting portion 301 side in FIG. 13 . In this case, the gap S is crushed in the state of FIG.
  • the dummy pipe 12 is fused while the gap S of the through hole 14 is provided. At this time, the gap S in the vicinity of the fusion is slightly crushed. Thereafter, in the sealing process or the glass dummy connecting process, the optical fiber preform 310 shown in FIG. 13 is formed by evacuating and crushing the gap S. As shown in FIG. However, it is also possible to create a structure in which the gap is completely collapsed, as shown in FIG. is.
  • the outer diameter of the main clad body 31 is ⁇ 80 mm
  • the inner diameter of the through-hole 14 is ⁇ 20 mm
  • the four gaps S are crushed
  • the outer diameter of the leading end connecting portion 301 is adjusted so as to match the outer diameter of the main clad body 31 after the gap S is crushed.
  • the tip connecting portion 301 is welded to the tip of the main clad body 31 .
  • the front end connecting portion may be formed by fusing the front end of the rod.
  • the gap S is evacuated in the sealing process.
  • the area including the gap S of the main clad body 31 is heated by the flame 16 or the like, and the diameter of the main clad body 31 is reduced to close the gap S.
  • the outer diameter of the main clad body 31 and the outer diameter of the leading end connecting portion 301 become substantially the same when the gap S is collapsed.
  • the optical fiber preform 310 shown in FIG. 13 is formed.
  • a multi-core optical fiber can be manufactured in the same manner as the optical fiber preform 10 of the first embodiment (see FIG. 10).
  • the same effect as in the first embodiment can be obtained. Moreover, even if the first core rod 32a is fused and cut in the sealing step shown in FIG. Since there is only one core at the tip of the tip, it is easy to check the uneven thickness. Further, since the tip of the glass material unit U2 has the same structure as that of the single core fiber, it is possible to easily check the uneven thickness in this region. Further, since the dimension M2 of the second core rod 32b is shorter than the dimension MA of the through hole 14, the gap S is easily crushed by fusing the inside of the hole of the main clad body 31 while drawing a vacuum.
  • the outer diameter of the base material is smaller than that of the area where all the through holes 14 are filled with rods.
  • the time required for fusing is reduced compared to the area where all the through-holes 14 are filled with rods, making fusing easier.
  • FIG. 16 is a photograph showing an example of forward scattered light when a single-core coated wire is irradiated with laser light.
  • FIG. 17 is a photograph showing an example of forward scattered light when a multi-core coated wire is irradiated with laser light.
  • the intermediate and the covered glass wire obtained by drawing the leading end connecting portion 203 shown in FIG. 15 are single-core covered wires. Therefore, as shown in FIG. 16, the forward scattered light exhibits a pattern with distinct bright and dark areas. Therefore, it becomes easy to confirm uneven thickness of the coating.
  • the forward scattered light has multiple bright spots caused by multiple cores. not.
  • the tip connecting portion 203 is a single core unit including a tip clad body 204 and one tip core rod 205 . Therefore, the tip connecting portion 203 can be manufactured using a waste material of an optical fiber preform for a single-core optical fiber. Therefore, the fabrication of the optical fiber preform 210 is facilitated. Also, the optical fiber preform 210 can be manufactured at low cost.
  • a stack-and-draw method may be applied to the optical fiber preform of the embodiment.
  • a stack-and-draw method for example, a plurality of main core rods and a plurality of spacer rods are inserted into one through hole (main inner hole) of the glass tube (main clad body).
  • This results in a glazing unit comprising a glass tube, main core rods and spacer rods.
  • the optical fiber preform is composed of this glass material unit and the tip connecting portion.
  • the rod-in-tube method may be applied to the optical fiber preform of the embodiment.
  • the number of through-holes (main inner holes) in the main clad body is preferably plural, but is not limited to plural.
  • the glass material unit may be composed of a main clad body having one through-hole and a plurality of main core rods inserted into the through-hole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

マルチコア光ファイバ母材は、1または複数の主内孔が形成されたロッド状の主クラッド体と、主内孔に挿入された複数の主コアロッドと、主クラッド体の一端に連設された先端連設部と、を備える。先端連設部は、コアロッドを有していない、あるいは、1つのコアロッドを有するガラスロッドである。先端連設部は、例えば、中実のガラスロッドである。

Description

マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法
 本発明は、マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法に関する。
 本願は、2021年2月22日に日本に出願された特願2021-026466号について優先権を主張し、その内容をここに援用する。
 光ファイバの被覆の厚さは、光ファイバのマイクロベンド特性、温度特性などに影響する。そのため、光ファイバを製造する際には、被覆の厚さの偏り(以下、偏肉という)を確認することがある。被覆の偏肉(asymmetry in coating layers)は、光ファイバの側面にレーザ光を照射して得られた前方散乱光によって確認することができる(例えば、特許文献1を参照)。前方散乱光の明暗の位置は、被覆の厚さ分布に影響される。そのため、前方散乱光の明暗の位置に基づいて被覆の偏肉を確認することができる。
日本国特開平9-126946号公報
 近年、通信量の増大に伴い、伝送容量を大きくできる光ファイバとして、マルチコア光ファイバが注目されている。
 しかしながら、マルチコア光ファイバは、精度よく被覆の偏肉を確認するのが難しい場合がある。
 本発明の態様は、精度よく被覆の偏肉を確認することができるマルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法を提供することを課題とする。
 本発明の第一の態様のマルチコア光ファイバ母材は、1または複数の主内孔が形成されたロッド状の主クラッド体と、前記主内孔に挿入された複数の主コアロッドと、前記主クラッド体の一端に連設された先端連設部と、を備え、前記先端連設部は、コアロッドを有していない、あるいは、1つのコアロッドを有するガラスロッドである。
 前記マルチコア光ファイバ母材によれば、コアロッドを有していない、あるいは、1つのコアロッドを有する先端連設部を備える。先端連設部は、ガラス材ユニット(主クラッド体と主コアロッドとを備えたユニット)に比べてコア数が少ない。先端連設部は、コア数が1以下である被覆線を作製することができるため、光散乱が少ない条件で被覆の偏肉の確認を行うことができる。よって、被覆の偏肉の確認を精度よく行うことができる。
 前記複数の主コアロッドには、第1コアロッドと、前記主クラッド体の軸線方向の寸法よりも短い寸法を有する第2コアロッドとが含まれ、前記第1コアロッドは、前記主クラッド体の中央に配置されていてもよい。
 前記先端連設部は、中実のガラスロッドであってよい。
 前記先端連設部は、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備え、前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ以上であってもよい。
 前記先端連設部は、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備え、前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ未満であってもよい。
 本発明の第二の態様のマルチコア光ファイバ母材の製造方法は、ロッド状の主クラッド体に形成された1または複数の主内孔に複数の主コアロッドが挿入されたガラス材ユニットを準備する準備工程と、前記ガラス材ユニットの一端部に、コアロッドを有していない、あるいは、1つのコアロッドを有するガラスロッドを突き合わせ接続するガラスロッド接続工程と、前記ガラスロッドの一部を前記ガラス材ユニットに連設された先端連設部として残して、前記ガラスロッドの残りの部分を溶断により分離するガラスロッド切断工程と、を有する。
 前記製造方法によれば、コアロッドを有していない、あるいは、1つのコアロッドを有する先端連設部を形成するため、被覆線のコア数が少ないため、光散乱が少ない条件で被覆の偏肉の確認を行うことができる。よって、被覆の偏肉の確認を精度よく行うことができる。
 前記主コアロッドには、第1コアロッドと、前記主クラッド体の軸線方向の寸法よりも短い寸法を有する第2コアロッドとが含まれ、前記準備工程において、前記主内孔に、前記第1コアロッドが前記主クラッド体の中央に挿入されるとともに、前記主クラッド体の端面と前記第2コアロッドとの間に隙間を有するように、前記第1コアロッドの周囲に前記第2コアロッドが挿入された前記ガラス材ユニットを準備し、前記準備工程後に、前記隙間を加熱し、前記主クラッド体を縮径させて前記隙間を塞いでもよい。
 前記先端連設部は、中実のガラスロッドであってよい。
 前記先端連設部は、1つの先端内孔が形成されたロッド状の先端クラッド体と、前記先端内孔に挿入された1つの先端コアロッドとを備えるシングルコアユニットであってよい。
 前記ガラスロッド切断工程において、前記先端連設部を、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備えるように形成し、前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ以上であってもよい。
 前記ガラスロッド切断工程において、前記先端連設部を、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備えるように形成し、前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ未満であってもよい。
 本発明の第三の態様のマルチコア光ファイバの製造方法は、前記マルチコア光ファイバ母材の製造方法によって得られたマルチコア光ファイバ母材を線引きすることによってマルチコア光ファイバを形成する。
 本発明によれば、精度よく被覆の偏肉を確認することができるマルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法を提供することができる。
第1実施形態のマルチコア光ファイバ母材の軸線方向に沿う断面図である。 マルチコア光ファイバ母材の製造方法を説明する工程図である。 図2に続く工程図である。 図3に続く工程図である。 図4に続く工程図である。 図5に続く工程図である。 図6に続く工程図である。 図7に続く工程図である。 マルチコア光ファイバ母材の軸線方向に直交する断面図である。 マルチコア光ファイバの製造装置の一例を示す構成図である。 第1偏肉検出部の構成を示す模式図である。 第2実施形態のマルチコア光ファイバ母材の軸線方向に沿う断面図である。 第3実施形態のマルチコア光ファイバ母材の軸線方向に沿う断面図である。 図13のマルチコア光ファイバ母材の製造方法を説明する工程図である。 図13のマルチコア光ファイバ母材の製造方法を説明する工程図である。 シングルコアの被覆線にレーザ光を照射したときの前方散乱光の例を示す写真である。 マルチコアの被覆線にレーザ光を照射したときの前方散乱光の例を示す写真である。
 以下、実施形態に係るマルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法について、図面を参照して説明する。
(第1実施形態)
[マルチコア光ファイバ母材]
 図1は、第1実施形態のマルチコア光ファイバ母材10(以下、単に光ファイバ母材10という)の軸線方向に沿う断面図である。
 光ファイバ母材10は、主クラッド体1と、複数の主コアロッド2と、先端連設部3と、ダミー管13とを備える。
 主クラッド体1は、円柱状(ロッド状)に形成されている。主クラッド体1は、ガラスで構成される。主クラッド体1は、例えば、石英ガラス製の一体成形品である。主クラッド体1には、複数の主内孔4が形成されている。主内孔4は、主クラッド体1の軸線方向に沿って形成されている。第1端1aは、主クラッド体1の先端連設部3が設けられている側の一端である。第2端1bは、主クラッド体1の第1端1aとは反対側の端面である。ここで、第1端1a及び第2端1bの取り得る形状としては、例えば、端面状や非端面状が挙げられる。
 主コアロッド2は、円柱状(ロッド状)に形成されている。主コアロッド2は、主クラッド体1に比べて屈折率が高い領域を含む。主コアロッド2は、その一部に屈折率上昇ドーパント(ゲルマニウム、リン、アルミニウム、チタン等)が添加されたガラス(例えば、石英ガラス)や、屈折率減少ドーパント(ホウ素、フッ素等)が添加されたガラス(例えば、石英ガラス)で構成されていてもよい。主コアロッド2は、主内孔4に挿入されている。主クラッド体1と、複数の主コアロッド2とは「ガラス材ユニットU1」を構成する。
 先端連設部3は、ガラス(例えば、石英ガラス)で構成される。先端連設部3は、主クラッド体1の第1端1a(一端)に溶着により連設されている。先端連設部3は、主クラッド体1と同軸とされている。先端連設部3は、主クラッド体1のすべての主内孔4の開口を塞ぐ。先端連設部3の外径は、主クラッド体1の外径と同じであることが好ましい。
先端連設部3は、例えば、中実のガラスロッドである。先端連設部3は、中実であるため、コアロッドを備えていない(すなわち、コアロッドの保有数はゼロである)。先端連設部3の屈折率は、主クラッド体1の屈折率とほぼ同じであってよい。
 なお、後述するように、先端連設部のコアロッドの保有数は1でもよい。すなわち、先端連設部のコアロッドの保有数は1つ、または、先端連設部はコアロッドを有していない。
 先端連設部3は、定径部5と、縮径部6とを備える。定径部5は、主クラッド体1の第1端1aに連設された端部を含む部分である。定径部5は、円柱状(ロッド状)に形成されている。定径部5の外径は一定である。縮径部6は、定径部5の先端5aから縮径しつつ突出する。縮径部6は、先細りのテーパ状(例えば、円錐形状)に形成されている。
 定径部5の軸線方向の長さをA1と定義する。縮径部6の軸線方向の長さをA2と定義する。定径部5の長さA1は、縮径部6の長さA2以上であってもよい。定径部5の長さA1は、縮径部6の長さA2未満であってもよい。
 ダミー管13は、ガラス材ユニットU1の第2端1bに連設されている。なお、光ファイバ母材10は、ダミー管13がない構成としてもよい。
[マルチコア光ファイバ母材の製造方法]
 光ファイバ母材10を製造する方法を、図2~図8を参照して説明する。なお、以下の説明に用いる図面では、部材を認識可能な大きさとするため縮尺を変更している場合がある。
 ここに示す光ファイバ母材の製造方法は、(1)孔開工程、(2)洗浄工程、(3)準備工程、(4)ダミー管接続工程、(5)封止工程、(6)ガラスロッド接続工程、および(7)ガラスロッド切断工程を有する。以下、各工程について説明する。
(1)孔開工程
 図2に示すように、主クラッド体1に、ドリルツールなどを用いて複数の貫通孔14を形成する。貫通孔14は主クラッド体1に軸線方向に沿って形成される。貫通孔14の両端はそれぞれ、主クラッド体1の軸線方向の端面に開口される。貫通孔14は、例えば、主クラッド体1の中心軸を取り囲むように、軸周り方向に間隔をおいて複数箇所に形成される。
(2)洗浄工程
 貫通孔14内には、孔開時に用いた切削液、ドリルツール由来の金属粉などが残っている場合があるため、純水、アルコール(エタノール)、アルカリ液などの洗浄液を用いて、主クラッド体1の外面および貫通孔14の内面の洗浄を行う。
 洗浄工程では、貫通孔14の内面を、エッチングによって処理することもできる。エッチングによって、例えば、貫通孔14の内面のマイクロクラックに付着した異物(前記金属粉など)を除去することができる。エッチングは、ウェットエッチングでもよいし、ドライエッチングでもよい。ウェットエッチングでは、フッ酸を含むエッチング液、例えば、フッ酸とフッ化アンモニウムを混合したBHF(バッファードフッ酸)などを使用できる。ドライエッチングでは、エッチングガスとして、例えばSF6(六フッ化硫黄)ガス、C2F6(六フッ化エタン)ガスなどのフッ化ガスを使用できる。ドライエッチングでは、例えば、主クラッド体1を1200℃以上に加熱ししつつ、貫通孔14にエッチングガスを導入する。
(3)準備工程
 図3に示すように、ガラス材ユニットU1を準備する。主クラッド体1の複数の貫通孔14のそれぞれに、コアとなるガラスロッド2(以下、主コアロッドという)を挿入する。これによって、主クラッド体1の複数の貫通孔14のそれぞれに主コアロッド2が挿入された構成のガラス材ユニットU1が得られる。
 主コアロッド2は、水、アルコール、アルカリ液などの洗浄液を用いて予め洗浄しておくのが好ましい。主コアロッド2は、エッチングを行って表面の汚れを除去してもよい。
準備工程は、クリーン度の高い室内で行うことが好ましい。これにより、伝送損失の原因となる挨、汚れなどが主コアロッド2に付着するのを防ぐことができる。
 主クラッド体1の複数の貫通孔14のうち1つ以上の貫通孔14に、主コアロッド2に代えてコア識別マーカ用ガラスロッド(図示略)を挿入してもよい。コア識別マーカ用ガラスロッドは、例えば、主クラッド体1および主コアロッド2の両方に対して屈折率が異なるガラスロッド等である。
 主コアロッド2の外径は、例えば、貫通孔14の内径の80~99%である。光ファイバにおけるコア位置精度の安定確保の点で、主コアロッド2の外径は、貫通孔14の内径の90~99%であることがより好ましく、95~99%であることがさらに好ましい。
(4)ダミー管接続工程
 図4に示すように、ガラス材ユニットU1の両端に、それぞれダミー管12,13を溶着などにより接続する。ダミー管12,13は、例えば、石英ガラス製の円筒状の管体である。ダミー管12,13を主クラッド体1に溶着するには、ガラス材ユニットU1の端部を火炎16(例えば酸水素炎)等によって加熱する。
 第1ダミー管12は、軸線方向の端面をガラス材ユニットU1の軸線方向の一方の端面に突き合わせてガラス材ユニットU1に接続する。第2ダミー管13は、端面をガラス材ユニットU1の他方の端面に突き合わせてガラス材ユニットU1に接続する。ダミー管12,13は、チャック20により把持することができる。
 なお、本実施形態では、準備工程の後に、ダミー管接続工程を行ったが、ダミー管接続工程は、準備工程の前に行ってもよい。
(5)封止工程
 図5に示すように、ガラス材ユニットU1の一方の端部(以下、第1端部という。図5において右の端部)を、火炎16(例えば酸水素炎)等を用いて加熱し、縮径させることによって、貫通孔14の開口を塞ぐ(すなわち、封止する)。これにより、ガラス材ユニットU1の第1端部側の第1ダミー管12は、溶断によりガラス材ユニットU1から分離される。ダミー管12を使用することによって、溶断を容易に行うことができる。
 なお、ガラス材ユニットU1を加熱する手段は火炎16に限らず、電気炉などを用いてもよい。
 貫通孔14の開口を封止した状態のガラス材ユニットU1の第1端部を、第1端封止部17という。第1端封止部17は、主クラッド体1の第1端部が主コアロッド2の第1端部とともに縮径されて中実化されている。第1端封止部17は、例えば、先細りのテーパ状(例えば、円錐形状)に形成されている。
 ダミー管13に減圧ポンプを接続し、貫通孔14内を減圧してもよい。これによって、ガラス材ユニットU1における空隙(気泡)を小さくできる。
(6)ガラスロッド接続工程
 図6に示すように、ガラス材ユニットU1の第1端封止部17に、ガラスロッド15の端部を溶着、一体化する。ガラスロッド15は、例えば石英ガラス製である。ガラスロッド15は中実構造を有する。ガラスロッド15は、円柱状に形成されている。ガラスロッド15は、ガラスロッド15の外径は、主クラッド体1の外径と同じであることが好ましい。
 ガラスロッド15は、ガラス材ユニットU1の第1端部(一端部)の端面に突き合わせられ、ガラス材ユニットU1に同軸に位置合わせされて溶着、一体化する。ガラスロッド15は、ガラス材ユニットU1の第1端部に接続される。ガラスロッド15は、全ての貫通孔14の開口を塞ぐ。これにより、ガラスロッド15は、ガラス材ユニットU1の第1端部に連設される(図7参照)。貫通孔14は主内孔4となる(図7参照)。
 図7に示すように、必要に応じて、ガラスロッド15とガラス材ユニットU1との接続箇所の外周面にコテ18を当て、ガラスロッド15とガラス材ユニットU1との段差を小さくすることができる。これにより、線引きの際に光ファイバまたはガラス線の断線を起こりにくくすることができる。
(7)ガラスロッド切断工程
 図8に示すように、ガラスロッド15の長さ方向の中間位置を、火炎16(例えば酸水素炎)等を用いて加熱し、ガラスロッド15を溶断により切断する。
 ガラスロッド15の長さ方向の一部は、ガラス材ユニットU1に連設された先端連設部3として残る。これによって、図1に示す光ファイバ母材10が得られる。ガラスロッド15の長さ方向の残りの部分は、先端連設部3から分離される。
 本工程では、ガラス材ユニットU1は、減圧ポンプによって内部を減圧した状態で第2端部(例えば、図8において光ファイバ母材10の左の端部)を封止してもよい。これにより、空隙(気泡)が少ない光ファイバを製造できる。なお、ガラス材ユニットU1の第2端部が封止されていない場合は、減圧ポンプでガラス材ユニットU1の内部を減圧した状態で、後述する偏肉確認工程および本製造工程において、加熱部101によって光ファイバ母材10を加熱して溶融紡糸してもよい。
 図9は、光ファイバ母材10の一例を示す断面図である。図9は、光ファイバ母材10の軸線方向に直交する断面を示す。この例の光ファイバ母材10の主内孔4の数は4つであり、4つの主内孔4は、主クラッド体1の中心軸の周りに等間隔に配列されている。
[マルチコア光ファイバの製造方法]
 光ファイバ母材10を用いたマルチコア光ファイバの製造方法を、図10を参照して説明する。
 図10は、マルチコア光ファイバの製造装置100(以下、単に製造装置100という)を示す構成図である。図11は、第1偏肉検出部105の構成を示す模式図である。
 図10に示すように、製造装置100は、加熱部101と、冷却部102と、第1コーティング部103と、第1硬化部104と、第1偏肉検出部105と、第2コーティング部106と、第2硬化部107と、第2偏肉検出部108と、プーリー109と、引取り部110と、巻取り部111と、を備える。
 第1硬化部104は、1つまたは複数のUVランプ104aを備える。第2硬化部107は、1つまたは複数のUVランプ107aを備える。
 実施形態に係るマルチコア光ファイバの製造方法は、(1)偏肉確認工程、および(2)本製造工程を有する。
(1)偏肉確認工程
 加熱部101によって光ファイバ母材10を加熱して溶融紡糸する。すなわち、光ファイバ母材10の先端部(先端連設部3の先端部)を加熱することによってガラス粘度を低下(軟化)させ、軟化したガラスを線引きする。先端連設部3は中実のガラスロッドであるため(図1参照)、線引きされたガラスは、コアをもたないガラス線21である。冷却部102によって、ガラス線21を冷却する。
 第1コーティング部103によって、ガラス線21の外周に、ウレタンアクリレート系の樹脂などの被覆材を塗布(コーティング)して第1被覆を形成する。第1被覆が形成されたガラス線21を、中間体22(被覆線)という。
 第1硬化部104のUVランプ104aによって中間体22にUVを照射し、第1被覆を硬化させる。
 図11に示すように、第1偏肉検出部105は、発光部112と、受光部113とを備える。発光部112は、レーザ光L1(試験光)を中間体22に照射する。受光部113は、前方散乱光L2を受光する。第1偏肉検出部105では、前方散乱光L2に基づいて第1被覆の厚さの偏り(偏肉)を確認できる。
 図10に示すように、中間体22はコアがないため、複数のコアを原因とするレーザ光の散乱は起こらない。そのため、前方散乱光の明暗の位置に基づいて第1被覆の偏肉を容易に確認することができる。第1被覆の偏肉が確認された場合には、第1コーティング部103におけるコーティングの条件を調整することによって、偏肉を抑制することができる。
 第2コーティング部106によって、中間体22の外周に、ウレタンアクリレート系の樹脂などの被覆材を塗布(コーティング)して第2被覆を形成する。第2被覆が形成された中間体22を、被覆ガラス線23(被覆線)という。
 第2硬化部107のUVランプ107aによって被覆ガラス線23にUVを照射し、第2被覆を硬化させる。
 第2偏肉検出部108は、発光部(図示略)と、受光部(図示略)とを備える。第2偏肉検出部108は、第1偏肉検出部105(図11参照)と同様の構成とすることができる。発光部は、レーザ光(試験光)を被覆ガラス線23に照射する。受光部は、前方散乱光を受光する。第2偏肉検出部108では、前方散乱光に基づいて第2被覆の偏肉を確認できる。
 被覆ガラス線23はコアがないため、複数のコアを原因とするレーザ光の散乱は起こらない。そのため、前方散乱光の明暗の位置に基づいて第2被覆の偏肉を容易に確認することができる。第2被覆の偏肉が確認された場合には、第2コーティング部106におけるコーティングの条件を調整することによって、偏肉を抑制することができる。
 プーリー109は、被覆ガラス線23の方向を変換する。引取り部110は、例えば、引取りキャプスタンであり、線引き速度を決定する。巻取り部111は、被覆ガラス線23を巻き取る。
(2)本製造工程
 線引きにより先端連設部3が消費されると、線引き端はガラス材ユニットU1に移行する(図1参照)。ガラス材ユニットU1から線引きされた光ファイバ裸線は、第1コーティング部103によって第1被覆が形成され、第1硬化部104によって第1被覆が硬化され、光ファイバ素線中間体となる。
 光ファイバ素線中間体は、第2コーティング部106によって第2被覆が形成され、第2硬化部107によって第2被覆が硬化され、光ファイバ素線となる。
 図1に示すように、ガラス材ユニットU1の主クラッド体1は、光ファイバ素線のクラッドとなる。主コアロッド2は、光ファイバ素線のコアとなる。主コアロッド2は複数あるため、光ファイバ素線はマルチコア光ファイバである。
[実施形態の光ファイバ母材およびマルチコア光ファイバの製造方法が奏する効果]
 本実施形態の光ファイバ母材10には、コアロッドが設けられていない、あるいは、コアロッドが一つ設けられている先端連設部3を備える。先端連設部3は、ガラス材ユニットU1に比べてコア数が少ない。先端連設部3は、コア数が1以下である中間体22および被覆ガラス線23を作製することができる。そのため、偏肉検出部105,108において、光散乱が少ない条件で被覆の偏肉の確認を行うことができる。よって、被覆の偏肉の確認を精度よく行うことができる。
 光ファイバ母材10は、先端連設部3が中実のガラスロッドであるため、偏肉確認工程において、コアがない中間体22および被覆ガラス線23を作製することができる。そのため、偏肉検出部105,108において、より光散乱が少ない条件で被覆の偏肉の確認を行うことができる。
 前記製造方法によれば、先端連設部3を備える光ファイバ母材10を線引きするため、マルチコア光ファイバを作製する本製造工程に先だって、コア数が1以下である中間体22および被覆ガラス線23を作製することができる。そのため、偏肉検出部105,108において、光散乱が少ない条件で被覆の偏肉の確認を行うことができる。よって、被覆の偏肉の確認を精度よく行うことができる。
 前記製造方法では、先端連設部3が中実のガラスロッドであるため、偏肉確認工程において、コアがない中間体22および被覆ガラス線23を作製することができる。そのため、偏肉検出部105,108において、より光散乱が少ない条件で被覆の偏肉の確認を行うことができる。
 先端連設部3は、外径が一定である定径部5と、定径部5の先端5aから縮径しつつ突出する縮径部6とを備える。定径部5の長さA1が縮径部6の長さA2以上であると、中間体22および被覆ガラス線23に、偏肉確認のための十分な長さが与えられる。そのため、より精度の高い被覆の偏肉確認を行うことができる。
 定径部5の長さA1は、縮径部6の長さA2未満であってもよい。この場合、被覆線にレーザ光を照射して偏肉を確認する工程(偏肉確認工程)に要する時間を短くし、早期に本製造工程に移行できるため、マルチコア光ファイバの製造効率を高めることができる。
(第2実施形態)
[マルチコア光ファイバ母材]
 図12は、第2実施形態の光ファイバ母材210の軸線方向に沿う断面図である。第1実施形態の光ファイバ母材10(図1参照)との共通構成については、同じ符号を付して説明を省略する。
 光ファイバ母材210は、主クラッド体1と、複数の主コアロッド2と、先端連設部203と、ダミー管13とを備える。光ファイバ母材210は、先端連設部3に代えて先端連設部203を用いる点で、図1に示す光ファイバ母材10と異なる。
 先端連設部203は、先端クラッド体204と、1つの先端コアロッド205と、を備えるシングルコアユニットである。
 先端クラッド体204の外形は、図1に示す先端連設部3の外形と同様である。先端クラッド体204は、ガラス(例えば、石英ガラス)で構成される。先端クラッド体204には、1つの先端内孔206が形成されている。先端内孔206は、先端クラッド体204の中央部に、先端クラッド体204の軸線方向に沿って形成されている。
 先端コアロッド205は、円柱状(ロッド状)に形成されている。先端コアロッド205は、ガラス(例えば、石英ガラス)で構成される。先端コアロッド205は、先端クラッド体204に比べて屈折率が高い領域を含む。先端コアロッド205は、先端内孔206に挿入されている。
 先端連設部203は、主クラッド体1の第1端1a(一端)に溶着により連設されている。先端連設部203は、主クラッド体1と同軸とされている。先端連設部203は、主クラッド体1のすべての主内孔4を塞ぐ。先端連設部203の外径は、主クラッド体1の外径と同じであることが好ましい。先端連設部203は、1つのコアロッド(先端コアロッド205)を備えるため、コアロッドの保有数は1である。
 光ファイバ母材210を線引きすることによって、第1実施形態の光ファイバ母材10と同様にしてマルチコア光ファイバを製造することができる(図10参照)。
 光ファイバ母材210は、コアロッドの保有数が1つである先端連設部203を備えるため、偏肉確認工程において、コア数が1以下である中間体および被覆ガラス線を作製することができる。そのため、偏肉検出部において、光散乱が少ない条件で被覆の偏肉の確認を行うことができる。よって、被覆の偏肉の確認を精度よく行うことができる。
(第3実施形態)
[マルチコア光ファイバ母材]
 図13は、第3実施形態の光ファイバ母材310の軸線方向に沿う断面図である。第1実施形態の光ファイバ母材10(図1参照)との共通構成については、同じ符号を付して説明を省略する。
 光ファイバ母材310は、主クラッド体31と、複数の主コアロッド32と、先端連設部301と、ダミー管13とを備える。光ファイバ母材310は、ガラス材ユニットU2の構成及び先端連設部301が設けられている位置において、図1に示す光ファイバ母材10と異なる。
 複数の主コアロッド32には、第1コアロッド32aと、第2コアロッド32bとが含まれている。
 第1コアロッド32aの軸線方向の寸法M1は、主クラッド体31の軸線方向の寸法MAと同じである。第2コアロッド32bの軸線方向の寸法M2は、主クラッド体31の軸線方向の寸法MAよりも短い。また、第2コアロッド32bの軸線方向の寸法M2は、第1コアロッド32aの軸線方向の寸法M1より短い。
 第1コアロッド32aは、主クラッド体31の中央に配置されている。例えば、図9に示す主コアロッド2が本実施形態の第2コアロッド32bに相当し、第1コアロッド32aが、4つの第2コアロッド32bに囲まれて構成されている。
 先端連設部301は、定径部302と、縮径部303とを備える。定径部302と、縮径部303との長さ関係は第1実施形態と同様である。
 先端連設部301は、コアロッドを有していない。
 先端連設部301は、主クラッド体31の第1端31a(端面)に溶着により連設されている。先端連設部301は、主クラッド体31と同軸とされている。先端連設部301は、第1コアロッド32aの主内孔4を塞ぐ。先端連設部301の外径は、第1コアロッド32aの外径よりやや大きい。
 また、主クラッド体31の先端部は、第1端31aに向かって縮径するテーパ状である。
 なお、実施形態では、第1コアロッド32aの軸線方向の寸法M1は、主クラッド体31の軸線方向の寸法MAと同じとしたが、第1コアロッド32aの寸法M1は、主クラッド体31の寸法MAより短くてもよい。
 本実施形態に係るマルチコア光ファイバ母材310によれば、図1のマルチコア光ファイバ母材10、図12のマルチコア光ファイバ母材210に比べ、先端連設部301の外径が小さいため、先端連設部301の熱容量が小さくなる。その結果、先端連設部301が溶けやすくなる。このため、図13のマルチコア光ファイバ母材310を線引装置に設置して、先端連設部301を加熱した時に、マルチコア光ファイバ母材310の先端連設部301を落下させる工程(落とし工程)の時間を短縮することができる。したがって、特に第1コアロッド32aの長さが軸線方向に長い場合において、落とし工程から、マルチコア光ファイバ母材310から製品となるファイバを繰り出す本引き工程までの時間を短縮することができる。
[マルチコア光ファイバ母材の製造方法]
 光ファイバ母材310を製造する方法を、図14及び図15を参照して説明する。なお、以下の説明に用いる図面では、部材を認識可能な大きさとするため縮尺を変更している場合がある。第1実施形態と同様の工程については、説明を省略する。
 孔開工程では、貫通孔14は、主クラッド体31の中央と、主クラッド体31の中央を取り囲むように軸周り方向に間隔を置いて複数箇所とに形成される。
 洗浄工程は、第1実施形態と同様である。
 準備工程では、図14に示すように、ガラス材ユニットU2を準備する。主クラッド体31の複数の貫通孔14のそれぞれに、コアとなるガラスロッド32a(以下、第1コアロッドという)と、ガラスロッド32b(以下、第2コアロッドという)を挿入する。具体的には、主クラッド体31の中央に形成された貫通孔(主内孔)14に第1コアロッド32aが挿入され、主クラッド体31の中央を取り囲むように形成された貫通孔14に、第2コアロッド32bが挿入されている。
 第1コアロッド32aの軸線方向の寸法M1aは、主クラッド体31の軸線方向の寸法MAと同じである。なお、本実施形態では、第1コアロッド32aの軸線方向の寸法M1aは、主クラッド体31の軸線方向の寸法MAと同じとしたが、第1コアロッド32aの寸法M1aは、主クラッド体31の寸法MAより短くてもよい。
 第2コアロッド32bの軸線方向の寸法M2aは、主クラッド体31の軸線方向の(貫通孔14の寸法)寸法MAよりも短い。また、第2コアロッド32bの軸線方向の寸法M2aは、第1コアロッド32aの軸線方向の寸法M1aより短い。このため、主クラッド体31の端面と第2コアロッド32bとの間には隙間Sが形成されている。また、第2コアロッド32bが挿通されている貫通孔14の第2端31b側には、隙間が形成されていない。
 このように、主クラッド体31の複数の貫通孔14のそれぞれに第1コアロッド32a、第2コアロッド32bが挿入された構成のガラス材ユニットU2が得られる。
 その後、第1実施形態と同様に、ダミー管接続工程を行う。
 次に、真空状態のまま、封止工程において以下の処理が施される。
 図15に示すように、先端連設部301は、主クラッド体31の外径よりも若干小さい外径を有する。この構成により、後述する封止工程において、隙間Sが潰れた際に主クラッド体31の外径と、先端連設部301の外径がほぼ同一とすることが可能となる。
 また、図15の主クラッド体31の先端連設部301側の外径寸法MS3が、図13の主クラッド体31の先端連設部301側の外径寸法MS1と等しくてもよい。この場合、図14の状態で隙間Sを潰し、先端連設部301を設けている。
 また、図14の主クラッド体31の外径寸法MS2が最も大きく、次に図15の主クラッド体31の外径寸法MS3が大きく、図13の主クラッド体31の外径寸法MS1が最も小さくてもよい(MS2>MS3>MS1)。この場合、図14に示すように、貫通孔14の隙間Sが設けられている状態で、ダミー管12を溶断する。このときに溶断した付近の隙間Sは若干潰れる。この後、封止工程、あるいはガラスダミー接続工程において、真空引きを行い、隙間Sを潰すことにより図13の光ファイバ母材310が形成される。
 ただし、真空引きを行うタイミングを隙間Sが設けられている状態からダミー管12を溶断する際に途中に行うことで、図13に示すように、隙間が完全に潰れた構造にすることも可能である。
 例えば、主クラッド体31の外径が、φ80mmであり、貫通孔14の内径がφ20mmであり、4か所の隙間Sが潰れた場合、潰れた後の主クラッド体31の外径は、φ70(2×√((80/2)^2×π-4×(20/2)^2×π))mmとなる。すなわち、主クラッド体31の外径は、主クラッド体31の外径をφ1とし、貫通孔14の内径をφ2とすると、潰れた後の主クラッド体31の外径は2×√((φ1/2)^2-Σi(φ2/2)^2)(Σはi=1~N)で表すことが可能である。
 すなわち、隙間Sが潰れた後の主クラッド体31の外径と一致するように、先端連設部301の外径を調整する。
 なお、本実施形態では、主クラッド体31の先端に先端連設部301を溶着した。この他に、主クラッド体31の先端に細いロッド(先端連設部)を取り付けた後、ロッドの先端を溶断して先端連設部を形成してもよい。
 図15に示すように、封止工程において、隙間Sを真空にする。次いで、火炎16等によって主クラッド体31の隙間Sを含む領域を加熱し、主クラッド体31を縮径させて隙間Sを塞ぐ。これにより、隙間Sが潰れた際に主クラッド体31の外径と、先端連設部301の外径がほぼ同一となる。このようにして、図13に示す光ファイバ母材310が形成される。
 光ファイバ母材310を線引きすることによって、第1実施形態の光ファイバ母材10と同様にしてマルチコア光ファイバを製造することができる(図10参照)。
 本実施形態の光ファイバ母材310においても、第1実施形態と同様の効果を得ることができる。また、仮に、図15に示す封止工程において、第1コアロッド32aを溶断してしまい、第2コアロッド32bより突出している第1コアロッド32aが先端連設部となった場合でも、ガラス材ユニットU2の先端部にはコアが一つしかない状態であるため、偏肉を確認しやすい。
 また、ガラス材ユニットU2の先端部がシングルコアファイバと同じ構成になるため、この領域で偏肉の確認を容易に行うことが可能となる。また、第2コアロッド32bの寸法M2が貫通孔14の寸法MAよりも短いため、主クラッド体31の孔の内部を真空に引きながら溶断することで、隙間Sが容易に潰れる。すなわち、すべての貫通孔14にロッドが入っている領域に比べて、母材の外径が小さくなる。その結果、すべての貫通孔14にロッドが入っている領域に比べて溶断に掛かる時間が減り、溶断が容易となる。
 図16は、シングルコアの被覆線にレーザ光を照射したときの前方散乱光の例を示す写真である。図17は、マルチコアの被覆線にレーザ光を照射したときの前方散乱光の例を示す写真である。
 図15に示す先端連設部203を線引きして得た中間体および被覆ガラス線は、シングルコアの被覆線である。そのため、図16に示すように、前方散乱光は明所および暗所がはっきりしたパターンを示す。そのため、被覆の偏肉の確認は容易となる。
 これに対し、図17に示すように、被覆線がマルチコアである場合には、前方散乱光には、複数のコアを原因とする複数の明所があるため、被覆の偏肉の確認は容易でない。
 図15に示すように、先端連設部203は、先端クラッド体204と、1つの先端コアロッド205と、を備えるシングルコアユニットである。そのため、シングルコアの光ファイバ用の光ファイバ母材の廃材を利用して先端連設部203を作製することができる。
 したがって、光ファイバ母材210の作製は容易となる。また、光ファイバ母材210を低コストで作製することができる。
 以上、本発明を最良の形態に基づいて説明してきたが、本発明は上述の最良の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 実施形態の光ファイバ母材は、スタックアンドドロー法を適用してもよい。スタックアンドドロー法を適用する場合には、例えば、ガラス管(主クラッド体)の1つの貫通孔(主内孔)内に複数の主コアロッドおよび複数のスペーサロッドを挿入する。これによって、ガラス管と主コアロッドとスペーサロッドとを備えたガラス材ユニットを得る。光ファイバ母材は、このガラス材ユニットと先端連設部とによって構成される。
 実施形態の光ファイバ母材は、ロッドインチューブ法を適用してもよい。その場合、主クラッド体の貫通孔(主内孔)の数は複数が好ましいが、複数には限定されない。すなわち、ガラス材ユニットは、1つの貫通孔を有する主クラッド体と、貫通孔に挿通する複数の主コアロッドとによって構成されてもよい。
 1…主クラッド体、2…主コアロッド、3,203…先端連設部、4…主内孔、10,210…マルチコア光ファイバ母材、22…中間体(被覆線)、23…被覆ガラス線(被覆線)、204…先端クラッド体、205…先端コアロッド、206…先端内孔、A1…定径部の長さ、A2…縮径部の長さ、L1…レーザ光(試験光)、L2…前方散乱光

Claims (12)

  1.  1または複数の主内孔が形成されたロッド状の主クラッド体と、
     前記主内孔に挿入された複数の主コアロッドと、
     前記主クラッド体の一端に連設された先端連設部と、
     を備え、
     前記先端連設部は、コアロッドを有していない、あるいは、1つのコアロッドを有するガラスロッドである、
     マルチコア光ファイバ母材。
  2.  前記複数の主コアロッドには、第1コアロッドと、前記主クラッド体の軸線方向の寸法よりも短い寸法を有する第2コアロッドとが含まれ、
     前記第1コアロッドは、前記主クラッド体の中央に配置されている、請求項1に記載のマルチコア光ファイバ母材。
  3.  前記先端連設部は、中実のガラスロッドである、請求項1または請求項2に記載のマルチコア光ファイバ母材。
  4.  前記先端連設部は、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備え、
     前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ以上である、請求項1から請求項3のうちいずれか1項に記載のマルチコア光ファイバ母材。
  5.  前記先端連設部は、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備え、
     前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ未満である、請求項1から請求項3のうちいずれか1項に記載のマルチコア光ファイバ母材。
  6.  ロッド状の主クラッド体に形成された1または複数の主内孔に複数の主コアロッドが挿入されたガラス材ユニットを準備する準備工程と、
     前記ガラス材ユニットの一端部に、コアロッドを有していない、あるいは、1つのコアロッドを有するガラスロッドを突き合わせ接続するガラスロッド接続工程と、
     前記ガラスロッドの一部を前記ガラス材ユニットに連設された先端連設部として残して、前記ガラスロッドの残りの部分を溶断により分離するガラスロッド切断工程と、
     を有する、マルチコア光ファイバ母材の製造方法。
  7.  前記複数の主コアロッドには、第1コアロッドと、前記主クラッド体の軸線方向の寸法よりも短い寸法を有する第2コアロッドとが含まれ、
     前記準備工程において、
     前記主内孔に、前記第1コアロッドが前記主クラッド体の中央に挿入されるとともに、前記主クラッド体の端面と前記第2コアロッドとの間に隙間を有するように、前記第1コアロッドの周囲に前記第2コアロッドが挿入された前記ガラス材ユニットを準備し、
     前記準備工程後に、前記隙間を加熱し、前記主クラッド体を縮径させて前記隙間を塞ぐ、請求項6に記載のマルチコア光ファイバ母材の製造方法。
  8.  前記先端連設部は、中実のガラスロッドである、請求項6または請求項7に記載のマルチコア光ファイバ母材の製造方法。
  9.  前記先端連設部は、1つの先端内孔が形成されたロッド状の先端クラッド体と、前記先端内孔に挿入された1つの先端コアロッドとを備えるシングルコアユニットである、請求項6記載のマルチコア光ファイバ母材の製造方法。
  10.  前記ガラスロッド切断工程において、前記先端連設部を、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備えるように形成し、
     前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ以上である、請求項6から請求項9のうちいずれか1項に記載のマルチコア光ファイバ母材の製造方法。
  11.  前記ガラスロッド切断工程において、前記先端連設部を、外径が一定である定径部と、前記定径部の先端から縮径しつつ突出する縮径部と、を備えるように形成し、
     前記定径部の軸線方向の長さは、前記縮径部の軸線方向の長さ未満である、請求項6から請求項9のうちいずれか1項に記載のマルチコア光ファイバ母材の製造方法。
  12.  請求項6から請求項11のうちいずれか1項に記載のマルチコア光ファイバ母材の製造方法によって得られたマルチコア光ファイバ母材を線引きすることによってマルチコア光ファイバを製造する、マルチコア光ファイバの製造方法。
PCT/JP2022/006756 2021-02-22 2022-02-18 マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法 WO2022176990A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500949A JPWO2022176990A1 (ja) 2021-02-22 2022-02-18
US18/246,919 US20230382779A1 (en) 2021-02-22 2022-02-18 Multi-core optical fiber preform, multi-core optical fiber preform production method, and multi-core optical fiber production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-026466 2021-02-22
JP2021026466 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176990A1 true WO2022176990A1 (ja) 2022-08-25

Family

ID=82930640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006756 WO2022176990A1 (ja) 2021-02-22 2022-02-18 マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法

Country Status (3)

Country Link
US (1) US20230382779A1 (ja)
JP (1) JPWO2022176990A1 (ja)
WO (1) WO2022176990A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137615A (ja) * 2010-12-27 2012-07-19 Sumitomo Electric Ind Ltd 光ファイバ製造方法
JP2016175779A (ja) * 2015-03-18 2016-10-06 住友電気工業株式会社 光ファイバ製造方法
JP2019031427A (ja) * 2017-08-09 2019-02-28 株式会社フジクラ 光ファイバ母材の製造方法、光ファイバ母材、光ファイバの製造方法
JP2019172480A (ja) * 2018-03-27 2019-10-10 住友電気工業株式会社 マルチコア光ファイバの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137615A (ja) * 2010-12-27 2012-07-19 Sumitomo Electric Ind Ltd 光ファイバ製造方法
JP2016175779A (ja) * 2015-03-18 2016-10-06 住友電気工業株式会社 光ファイバ製造方法
JP2019031427A (ja) * 2017-08-09 2019-02-28 株式会社フジクラ 光ファイバ母材の製造方法、光ファイバ母材、光ファイバの製造方法
JP2019172480A (ja) * 2018-03-27 2019-10-10 住友電気工業株式会社 マルチコア光ファイバの製造方法

Also Published As

Publication number Publication date
JPWO2022176990A1 (ja) 2022-08-25
US20230382779A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
EP0359351B1 (en) Optical fibre coupler and method of making such a coupler
JP6986095B2 (ja) 中空コアフォトニック結晶ファイバ及びこれを製造する方法
JP5649973B2 (ja) 光ファイバへの光結合手段とカプラ製造方法
EP2071376A1 (en) Optical fibre combiner with a preform comprising capillary bores and method of manufacturing thereof
US6705771B2 (en) Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
US20130287338A1 (en) Optical Couplers And Methods For Making Same
EP2458415B1 (en) Methods for modifying a selected portion of optical fiber microstructure
EP3180293B1 (en) Method for forming a quartz glass optical component and system
JP2002145634A (ja) 光ファイバの製造方法、及び、光ファイバ
JP2008078629A (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
US6738549B2 (en) Polarization maintaining optical fiber and production method for polarization maintaining optical fiber preform
JP4929833B2 (ja) 光ファイバ製造方法
US20040008955A1 (en) Methods of processing of air-clad and photonic-crystal fibers
CN103153889B (zh) 预成形体的制作方法、光纤的制造方法及光纤
WO2022176990A1 (ja) マルチコア光ファイバ母材、マルチコア光ファイバ母材の製造方法およびマルチコア光ファイバの製造方法
WO2013140688A1 (ja) 光ファイバの製造方法
JP2003167145A (ja) 光ファイバとその接続構造及び接続方法
JP2009124014A (ja) 光コンバイナの製造方法
AU618108B2 (en) Method of reproducibly making fiber optic coupler
CN108919416B (zh) 一种光纤耦合方法、系统、光纤和信号传输装置
US20030231845A1 (en) Methods of processing of air-clad and photonic-crystal fibers
KR20020093106A (ko) 광 파이버 및 그 제조 방법
JP2005289766A (ja) 光学素子用母材およびそれを用いて製造される光学素子、並びに光学素子用母材の製造方法
CN110304823B (zh) 多芯光纤的制造方法
RU2301782C1 (ru) Способ изготовления одномодового волоконного световода, сохраняющего поляризацию излучения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500949

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18246919

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756307

Country of ref document: EP

Kind code of ref document: A1