WO2022172789A1 - 製鉄所設備用測定システム、コークス炉、およびコークス製造方法 - Google Patents

製鉄所設備用測定システム、コークス炉、およびコークス製造方法 Download PDF

Info

Publication number
WO2022172789A1
WO2022172789A1 PCT/JP2022/003403 JP2022003403W WO2022172789A1 WO 2022172789 A1 WO2022172789 A1 WO 2022172789A1 JP 2022003403 W JP2022003403 W JP 2022003403W WO 2022172789 A1 WO2022172789 A1 WO 2022172789A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement system
coke oven
sensor
temperature
signal
Prior art date
Application number
PCT/JP2022/003403
Other languages
English (en)
French (fr)
Inventor
高志 黒木
聡 青島
健史 野田
康一 堤
悟郎 奥山
敏充 河合
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280011846.8A priority Critical patent/CN116888651A/zh
Priority to KR1020237022805A priority patent/KR20230116040A/ko
Priority to EP22752618.3A priority patent/EP4276159A4/en
Priority to JP2022517704A priority patent/JP7276604B2/ja
Publication of WO2022172789A1 publication Critical patent/WO2022172789A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/40Remote control systems using repeaters, converters, gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/886Providing power supply at the sub-station using energy harvesting, e.g. solar, wind or mechanical

Definitions

  • the present invention relates to a measurement system for steel plant equipment, a coke oven, and a coke production method.
  • sensors are used for various purposes such as checking the operating status, detecting abnormalities, and maintaining equipment.
  • wireless transmission of signals output from sensors has also been practiced. Transmitting signals wirelessly eliminates the need to lay cables for transmitting signals, which has the advantage of increasing the degree of freedom in sensor installation.
  • a technology has been proposed that allows a sensor that wirelessly transmits a signal (hereinafter sometimes referred to as a "wireless sensor") to have a power generation function to enable independent power supply for a long period of time.
  • Patent Document 1 proposes a wireless sensor in which a vibration power generation element, a sensor, and an antenna for wireless transmission are mounted in an airtight package.
  • Patent Document 2 proposes a wireless sensor in which a solar cell module, a sensor, and an antenna for wireless transmission are mounted in a package.
  • Patent Document 3 proposes a thermoelectric power transmitter that includes a thermoelectric power module, a sensor, and a wireless module.
  • the measurement target is often extremely wide, and the environment is generally harsh, such as high temperatures. Therefore, there is no need for maintenance work such as laying power supply cables or replacing batteries.
  • Patent Document 2 since the wireless sensor proposed in Patent Document 2 uses a solar battery as a power source, it can only be used in an environment and a time period where sufficient light is incident. Patent Document 2 proposes to provide a power storage unit that stores the power generated by the solar cell module in order to solve the above problem, but the operation continues stably even in an environment where light does not enter, such as at night. In order to do so, a large power storage unit is required, which poses a problem of increasing the size of the wireless sensor.
  • Patent Document 3 describes the use of thermoelectric power generation, it does not specifically disclose how it is applied to steelworks equipment.
  • the present invention is based on the above findings, and the gist thereof is as follows.
  • thermoelectric generator a thermoelectric generator; a sensor; a conversion device that converts a signal output from the sensor into a signal that can be wirelessly transmitted; a wireless transmission device that wirelessly transmits the signal converted by the conversion device; a relay device that relays a signal transmitted from the wireless transmission device; a receiving device that receives one or both of a signal transmitted from the radio transmitting device and a signal relayed by the relay device; A measurement system for steel plant equipment, wherein the conversion device and the wireless transmission device are driven by electric power generated by the thermoelectric generator.
  • a coke oven comprising the measurement system for steel plant equipment according to any one of 1 to 4 above.
  • a coke production method for producing coke using a coke oven A method for producing coke, wherein the temperature of the coke oven is measured using the measurement system for steel plant equipment according to any one of 1 to 4 above.
  • the measurement system for steelworks equipment of the present invention can be operated by autonomous power supply in various equipment of steelworks where wiring and maintenance are difficult, and the measurement results can be reliably monitored at a position distant from the installation location of the sensor. can do.
  • INDUSTRIAL APPLICABILITY The measuring system for steel plant equipment of the present invention can be suitably applied to various manufacturing equipment including coke ovens.
  • FIG. 1 is a schematic diagram showing a measurement system for steelworks equipment according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the arrangement of relay devices in one embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the arrangement of relay devices in one embodiment of the present invention
  • FIG. 2 is a schematic diagram showing an installation state of a relay device on a charging car in one embodiment of the present invention.
  • the measurement system includes the following components (1) to (6), and (3) the conversion device and (4) the wireless transmitter are configured by (1) the thermoelectric generator Driven by generated electricity.
  • a thermoelectric generator (2) a sensor (3) a conversion device that converts a signal output from the sensor into a signal that can be wirelessly transmitted (4) a wireless transmission device that wirelessly transmits the signal converted by the conversion device ( 5) a relay device that relays the signal transmitted from the radio transmission device; and (6) a reception device that receives one or both of the signal transmitted from the radio transmission device and the signal relayed by the relay device.
  • thermoelectric generator is a device that can generate electricity using the temperature difference between one side (high temperature side) and the other side (low temperature side) of the thermoelectric generator. It has a thermoelectric element that combines a type semiconductor and an n-type semiconductor.
  • thermoelectric generator can be used without any particular limitation as the thermoelectric generator.
  • thermoelectric generator it is possible to generate electricity using heat from various facilities in a steelworks, and use the obtained electric power to drive a conversion device or a wireless transmission device.
  • thermoelectric generator Any heat source can be used as the heat source for generating electricity with the thermoelectric generator, but it is preferable to use the high-temperature part of the steelworks equipment as the heat source. That is, it is preferable to directly or indirectly install the high temperature side of the thermoelectric generator in the high temperature section of the steelworks equipment. From the viewpoint of enhancing the utilization efficiency of heat from the heat source, the thermoelectric generator preferably has a heat receiving plate on the high temperature side. As the heat receiving plate, for example, a metal plate or a ceramic plate can be used.
  • thermoelectric generator has cooling means on the low temperature side.
  • the cooling means for example, one or both of a heat radiating member such as a radiating fin and a heat exchanger that performs cooling by exchanging heat with a cooling medium such as water or oil can be used.
  • the sensor is not particularly limited, and any sensor can be used according to the object to be measured.
  • the sensor for example, at least one selected from the group consisting of a temperature sensor, a pressure sensor, a flow sensor, a vibration sensor, and an acceleration sensor can be used.
  • the temperature sensor include thermocouples, resistance temperature detectors, and thermistors.
  • the number of sensors is not particularly limited, and can be any number of 1 or 2 or more. From the viewpoint of obtaining information about the distribution of measured values, it is preferable to arrange a plurality of sensors at different points. Moreover, from the viewpoint of redundancy and accuracy improvement, it is also possible to arrange a plurality of sensors at the same point. From the viewpoint of measuring the distribution of the measured values in more detail, the larger the number of sensors, the better. Therefore, the upper limit of the number of sensors is not limited. However, as the number of sensors increases, so does the cost. Therefore, from the viewpoint of cost effectiveness, it is preferable to set the number of sensors to 1000 or less.
  • a signal output from the sensor is converted into a wirelessly transmittable signal by a conversion device.
  • the conversion device is not particularly limited, and any device such as a commercially available converter can be used.
  • a signal converted by the conversion device is wirelessly transmitted by a wireless transmission device.
  • the wireless transmission device is not particularly limited, and any device such as a commercially available device can be used as long as it can transmit a signal.
  • thermoelectric generators, sensors, converters, and wireless transmitters included in the measurement system for steelworks equipment of the present invention may be the same or different.
  • one thermoelectric generator may power multiple converters and wireless transmitters.
  • signals output from a plurality of sensors can be collectively transmitted by one conversion device and wireless transmission device.
  • thermoelectric generator the converter
  • wireless transmitter it is also preferable to mount the thermoelectric generator, the converter, and the wireless transmitter in one package. Mounting these constituent elements in one package facilitates handling, and also facilitates installation of a heat radiating member and a light shielding member, as will be described later.
  • thermoelectric generator, converter, and wireless transmitter mounted in one package will be referred to as a "thermoelectric-wireless transmitter unit" for convenience.
  • the measurement system for steelworks equipment of the present invention comprises a heat dissipation member for cooling one or both of the conversion device and the wireless transmission device.
  • a heat dissipation member for example, a heat dissipation fin or the like can be used.
  • thermoelectric generator can also serve as cooling means for the low temperature side of the thermoelectric generator.
  • thermoelectric generator when a thermoelectric generator, a converter, and a wireless transmitter are mounted in one package (thermoelectric-wireless transmitter unit), the thermoelectric generator, the converter, and the and wireless transmitters can be cooled.
  • the measurement system for steelworks equipment of the present invention preferably includes a light shielding member for blocking direct sunlight.
  • a light shielding member for blocking direct sunlight For example, if the measurement system is installed outdoors, such as on top of a coke oven, direct sunlight can raise the temperature of the device. Therefore, the temperature rise can be suppressed by blocking sunlight with a light shielding member.
  • the light shielding member is configured to block direct sunlight to at least one of the thermoelectric generator, the converter and the wireless transmitter.
  • thermoelectric-wireless transmitter unit when a thermoelectric generator, a converter, and a wireless transmitter are mounted in one package (thermoelectric-wireless transmitter unit), by providing a light shielding member in the thermoelectric-wireless transmitter unit, the thermoelectric generator, converter, And the temperature rise of the wireless transmitter can be suppressed.
  • the measurement system for steelworks equipment of the present invention preferably includes both a heat radiation member and a light shielding member.
  • the light shielding member is installed above the heat radiating member.
  • the measurement system of the present invention further includes a relay device that relays the signal transmitted from the radio transmission device.
  • a relay device that relays the signal transmitted from the radio transmission device.
  • the relay means is not particularly limited, and any means can be used as long as it can relay the signal transmitted from the radio transmission device.
  • the number of relay devices is not particularly limited, and any number of relay devices of 1 or 2 or more can be used.
  • the distance between the sensor and the receiving device is long, or when the condition of radio waves used for wireless transmission is poor, it is preferable to use a plurality of relay devices.
  • a signal relayed by the relay device is received by a receiving device.
  • the signal transmitted from the radio transmission device is basically relayed by the relay device, it is not always necessary to relay the signal by the relay device. Signals and the like can also be received directly by the receiving device without going through the relay device.
  • the receiving device is configured to receive one or both of a signal transmitted from the radio transmitting device and a signal relayed by the relaying device.
  • the receiving device is not particularly limited, and any device such as a commercially available receiving device can be used as long as it can receive a signal.
  • the conversion device and the wireless transmission device are driven by the power generated by the thermoelectric generator. This eliminates the need for wires, batteries, and the like for supplying power to the conversion device and the wireless transmission device. Therefore, the measurement system of the present invention can be easily installed and operated even in a place where maintenance such as wiring and battery replacement is difficult.
  • the measurement system of the present invention preferably further comprises a capacitor for temporarily storing the power generated by the thermoelectric generator.
  • the senor When applying the above measurement system to a coke oven, the sensor is preferably used to measure the temperature of the combustion chamber.
  • a thermocouple is preferably used as the sensor because the temperature of the coke oven, particularly the combustion chamber, is considerably high.
  • Signals can be sent at any interval.
  • the power generated by the thermoelectric generator may be temporarily stored in a capacitor, and a signal may be transmitted when the stored power exceeds a certain amount.
  • the transmission interval depends on the temperature of the heat source. Therefore, it is desirable to adjust the installation position of the thermoelectric generator so that the transmission interval does not become excessively long.
  • the transmission interval is preferably 600 s or less, more preferably 60 s or less.
  • the transmission interval is preferably 0.1 s or longer, more preferably 1 s or longer.
  • each device constituting the measurement system of the present invention since the furnace top temperature becomes considerably high during operation of the coke oven, it is preferable to install each device constituting the measurement system of the present invention at a position where the temperature during operation does not exceed the heat resistant temperature of the device.
  • electronic devices such as converters and wireless transmitters are preferably installed at locations where the temperature is 80° C. or less.
  • the oven top temperature of the coke oven in operation in advance and install it at a position where the temperature is 80° C. or less.
  • electronic devices such as converters and wireless transmitters are preferably installed at locations where the temperature is 0° C. or higher.
  • the distance from the wireless transmitter to the place where the temperature of the coke oven is managed is several tens of meters or more.
  • the distance from the wireless transmitter to the place where the temperature of the coke oven is managed is several tens of meters or more.
  • there are many obstacles that hinder wireless communication such as coal charging vehicles that charge coal into the coke oven.
  • the relay device By using the relay device, stable signal transmission/reception is possible even in such an environment.
  • the number of relay devices is preferably two or more, and more preferably three or more.
  • the number of relay devices is preferably 10 or less, more preferably 5 or less. From the balance between cost and stability, it is more preferable to set the number of relay devices to four.
  • a deck for maintenance and inspection is provided on top of a typical coke oven. Therefore, it is preferable to install the relay device on the deck.
  • the receiving device can be installed in any position.
  • the receiving device may be installed at a location remote from the coke oven, for example, at a location (control room, etc.) for controlling the temperature of the coke oven.
  • the receiver may be installed at a position closer to the coke oven, for example, on the upper deck of the coke oven.
  • the measurement system described above can be used to measure the temperature of the coke oven, for example the temperature of the combustion chamber. By controlling the combustion state of the coke oven based on the measured temperature, coke with stable quality can be produced.
  • the method of controlling the combustion state is not particularly limited, and any method, such as adjusting the amount of fuel supplied to the combustion chamber, can be used.
  • the adjustment of the combustion state is preferably performed for each combustion chamber.
  • a target temperature can be predetermined for each combustion chamber, and the combustion state of the combustion chamber can be adjusted based on the difference between the measured temperature of the combustion chamber and the target temperature.
  • Determination of the target temperature is not particularly limited, and can be performed by any method including various known methods. For example, for each coking chamber provided in the coke oven, the time required for coking (actual coking time) is obtained from actual operation results, and the target temperature can be determined from the difference from the target coking time. .
  • a plurality of coking chambers and combustion chambers are arranged alternately and continuously as shown in FIG. affected by Therefore, in determining the target temperature of each combustion chamber, it is preferable to consider the influence of the plurality of coking chambers affected by the temperature of the combustion chamber.
  • the measurement system for steel plant equipment of the present invention is used to collect the relationship between the temperature of each combustion chamber and the time actually required for coking (coking time).
  • a database may be created and control may be performed based on the database. By using such a database, it is possible to perform control considering the characteristics that differ from one kiln to another.
  • coking time refers to the time from charging coal into the coking chamber until the coal is carbonized and turned into coke.
  • Fig. 1 is a schematic diagram showing an example of the structure of a coke oven.
  • the coke oven 100 is configured by alternately arranging a carbonization chamber 101 for containing and carbonizing coal and a combustion chamber 102 for supplying heat to the carbonization chamber 101 in the width direction of the furnace. Heat is supplied from the combustion chamber 102 to the coking chamber 101 through a refractory separating the chambers from the combustion chamber.
  • a common coke oven in a steel plant has dozens or more of coking chambers, and the length L in the oven width direction is several hundred meters.
  • the size of the coking chamber 101 and the combustion chamber 102 is, for example, about 7 m in height H and about 16 m in depth D.
  • a charging car rail 103 is laid on the coke oven, and a charging car 107 for inserting coal into the coking chamber 101 runs on the charging car rail 103 .
  • a coal tower 108 for supplying coal to a coal charging car 107 is provided between or at the end of the plurality of furnace banks.
  • thermocouple In coke ovens with a large number of combustion chambers, it is necessary to measure the temperature in order to control the temperature of each combustion chamber. Therefore, a sensor (thermocouple) is installed in each combustion chamber, and the temperature is measured by the measurement system of the present invention.
  • FIG. 2 is a schematic diagram showing a measurement system 1 for steelworks equipment (hereinafter referred to as measurement system 1) in one embodiment of the present invention.
  • the measurement system 1 includes a thermoelectric-wireless transmission unit 10 in which a thermoelectric generator, a converter, and a wireless transmitter are mounted in one package, a thermocouple 20 as a sensor, and a relay device 30.
  • the measurement system 1 is installed above the coke oven 100 on the coke oven 100 .
  • the temperature on the coke oven 100 is high, there is a risk of damage if the device is installed directly on the oven.
  • the coal charging car rail 103 is laid on the furnace of the coke oven, and the coal charging car 107 for inserting the coal into the coking chamber 101 runs on the coal charging car rail 103. . Therefore, it is necessary to install the device so as not to hinder the running of the cartoning car 107 . Therefore, in this embodiment, the thermoelectric-wireless transmission unit 10 is installed on the rail girders 104 of the rail car for the car charging car, which are laid as supporting members for laying the rail 103 for the car car.
  • thermoelectric-wireless transmission unit 10 is provided with heat radiation fins 11 and a light blocking member 12 for blocking direct sunlight. Thereby, the temperature rise of the thermoelectric-wireless transmission unit 10 can be suppressed.
  • the heat radiation fins 11 also serve to cool the low-temperature side of the thermoelectric power generation device housed in the thermoelectric-wireless transmission unit 10 .
  • thermocouple 20 is inserted inside the combustion chamber 102 through an inspection hole 105 provided in the upper part of the combustion chamber 102 .
  • the thermocouple 20 is connected to the conversion device of the thermoelectric-wireless transmission unit 10 , and the temperature measured by the thermocouple 20 is transmitted by the wireless transmitter of the thermoelectric-wireless transmission unit 10 .
  • a furnace deck 106 which is a corridor for performing equipment maintenance and inspection, is installed above the coke oven 100.
  • the relay device 30 is installed on the furnace deck 106 .
  • each part is represented by a different scale for convenience. Since the upper deck of an actual coke oven is located at a height of about 8 m above the oven, it is possible to receive wireless signals from a wide range without being affected by the heat of the coke oven.
  • FIG. 2 shows the installation state of one thermocouple 20
  • the actual coke oven 100 has many combustion chambers 102 as shown in FIG. Therefore, it is preferable to install at least one sensor per combustion chamber to monitor the temperature of each combustion chamber 102 .
  • one thermoelectric-wireless transmission unit may be used for one sensor, or signals from a plurality of sensors may be processed by one thermoelectric-wireless transmission unit.
  • the number of relay devices included in the measurement system is preferably less than the number of wireless transmitters, more preferably 1/2 or less of the number of wireless transmitters, and 1/5 or less of the number of wireless transmitters. is more preferable. More preferably, the number of repeaters included in the measurement system is 1/10 or less of the number of wireless transmitters from the viewpoint of cost effectiveness.
  • a total of 130 sensors and thermoelectric-wireless transmission units are arranged, two per combustion chamber, and four relay devices are used to relay radio waves. can.
  • one receiving device may be installed at the end of the coke oven, and the receiving device may be installed in a control room for controlling the coke oven.
  • the measurement system of the present invention can be additionally introduced into a coke oven that already has temperature measurement means and a temperature control system.
  • an existing temperature control system can be used to implement temperature control based on the temperature measured by the measurement system of the present invention.
  • the temperature measured by the existing temperature measuring means and the temperature measured by the measuring system of the present invention do not match.
  • the relationship between the temperature measured by the existing temperature measuring means and the temperature measured by the measurement system of the present invention is obtained in advance, and based on the relationship, the measurement system of the present invention It is also possible to convert the measured temperature into a temperature measured by existing temperature measuring means, and perform temperature management based on the converted temperature.
  • the measuring system according to the second embodiment of the present invention has the same configuration as the measuring system according to the first embodiment. It is arranged more than the part where the staying time of the object is short.
  • the measurement results can be reliably monitored even at a position distant from the installation location of the sensor by using the relay device.
  • these devices may interfere with wireless communication and interfere with signal relaying by relay devices.
  • a coal charging vehicle for charging the raw material coal into the coking chamber of the coke oven travels on the rails.
  • the presence of large equipment, such as a charging car hinders wireless communication. Therefore, by arranging the relay devices in the number (density) corresponding to the stay time of such moving obstacles, the influence of the obstacles can be reduced, and more stable measurement data can be received.
  • a portion where an obstacle stays for a long time refers to an area where an obstacle such as a coal charging vehicle stays for a long time
  • a portion where an obstacle stays for a short time indicates an area where the obstacle stays for a shorter time than the "portion where the obstacle stays for a long time”.
  • the entire area in which the relay devices are installed may be divided into a plurality of sections, and the number of relay devices to be installed in each section may be determined according to the staying time of the obstacle in each section.
  • the number (total number) of the relay devices is not particularly limited, and can be any number as long as the arrangement is as described above. Normally, it is sufficient to use a number (plurality) of relay devices according to the distance between the sensor and the receiving device, the state of radio waves, and the like.
  • coke ovens generally have a large number of combustion chambers.
  • a coke oven (bundle) with 65 combustion chambers, 2 per combustion chamber, a total of 130 sensors and thermoelectric-wireless transmission units are arranged, and 2 to 5 relay devices are used. can relay radio waves.
  • one receiving device may be installed at the end of the coke oven, and the receiving device may be installed in a control room for controlling the coke oven. An example of arrangement of relay devices will be further described with reference to FIG.
  • FIG. 3 is a schematic diagram showing the arrangement of relay devices in one embodiment of the present invention.
  • a coal tower 108 is provided at one end of the coke oven 100 and an intermediate deck 111 is provided between a furnace bank 109 near the coal tower 108 and a furnace bank 110 remote from the coal tower 108 .
  • a coal charging car rail beam (not shown) and a coal charging car rail 103 laid on the coal charging car rail beam are installed.
  • thermoelectric-wireless transmission unit 10 Two sensors are installed in each combustion chamber of the coke oven 100, and the thermoelectric-wireless transmission unit 10 corresponding to each sensor is attached as described in FIG. Further, as described above, a plurality of relay devices 30 are installed on the upper furnace deck 106 , and the receiving device 40 is installed near the coal tower 108 at the end of the coke oven 100 .
  • a coal charging car runs on the coal charging car rail 103 and charges coal into each combustion chamber. shorter than staying on the nearby furnace bank 109. Therefore, the number (N1) of the relay devices 30 installed in the reactor bank 109 is made larger than the number (N2) of the relay devices 30 installed in the reactor bank 110 .
  • N2 is preferably 1 to 2, preferably 2 to 4 and more than N2.
  • the number of relay devices 30 installed in furnace bank 109 is three, and the number of relay devices 30 installed in furnace bank 110 is two.
  • a plurality of repeaters are installed spaced apart in the oven width direction of the coke oven (the direction of arrow L in FIG. 1), and each furnace bundle
  • the arrangement density of the repeaters in the coal tower is higher in the furnace clusters closer to the coal tower.
  • the number of repeaters to be installed is set for each furnace group, but the area for setting the number of repeaters to be installed is not limited to this and can be selected arbitrarily.
  • a measurement system according to a third embodiment of the present invention has the same configuration as the measurement system according to the first or second embodiment, and at least one of the relay devices is installed on a moving obstacle. It is
  • the measurement results can be reliably monitored even at a position distant from the installation location of the sensor by using the relay device.
  • these devices may interfere with wireless communication and interfere with signal relaying by relay devices.
  • a coal charging vehicle for charging the raw material coal into the coking chamber of the coke oven travels on the rails.
  • the presence of large equipment, such as a charging car hinders wireless communication. Therefore, by arranging the relay device on such a moving obstacle itself, it is possible to stably receive the measurement data without being hindered by the obstacle.
  • relay devices other than the relay device installed on the obstacle can be installed in any position without any particular limitation, but normally, they should be installed in places where they do not move.
  • a furnace deck 106 which is a corridor for performing equipment maintenance and inspection, is installed above the coke oven 100.
  • a portion of repeater 30 may be installed on furnace deck 106 . Since the upper deck of an actual coke oven is located at a height of about 8 m above the oven, it is possible to receive wireless signals from a wide range without being affected by the heat of the coke oven. And, in this embodiment, another relay device is installed on a moving obstacle such as a coal charging car.
  • FIG. 4 is a schematic diagram showing the arrangement of relay devices in one embodiment of the present invention.
  • a coal tower 108 is provided at one end of the coke oven 100 and an intermediate deck 111 is provided between a furnace bank 109 near the coal tower 108 and a furnace bank 110 remote from the coal tower 108 .
  • Above the coke oven 100 there are installed a charging car rail girder (not shown) and a charging car rail 103 laid on the charging car rail girder.
  • a coal charging car 107 for charging coal is running.
  • thermoelectric-wireless transmission unit 10 Two sensors are installed in each combustion chamber of the coke oven 100, and the thermoelectric-wireless transmission unit 10 corresponding to each sensor is attached as described in FIG. Further, as described above, a plurality of relay devices 30 are installed on the upper furnace deck 106 , and the receiving device 40 is installed near the coal tower 108 at the end of the coke oven 100 . Furthermore, in the present embodiment, the relay device 30 is also installed on the charging car 107 as a moving obstacle as described below.
  • FIG. 5 is a schematic diagram showing the installation state of the relay device on the charging car 107 in one embodiment of the present invention.
  • a thermoelectric-radio transmission unit 10 is installed on top.
  • a relay device 30 is also installed on a charging car 107 running on the charging car rail 103 . It is preferable that the relay device 30 installed in the coal loading car 107 is installed on the same side of the coal loading car rail 103 as the wireless transmission device.
  • the thermoelectric-wireless transmission unit 10 is installed inside the charging car rail 103 . Therefore, the relay device 30 installed in the charging car 107 is also installed inside the wheel 112 of the charging car 107 so as to be close to the thermoelectric-wireless transmission unit 10 .
  • the relay device 30 installed on the charging car 107 is also installed outside the wheel 112 of the charging car 107 .
  • the relay device may be integrated with an antenna for transmission and reception, it is also preferable to use a relay device in which the main body portion and the antenna portion can be separated via a cable or the like and installed.
  • the antenna could be placed at position 30 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

配線や保守が困難な場所に置いても自律給電により稼働することができ、かつ、センサの設置場所から離れた位置において確実に測定結果をモニターすることができる製鉄所設備用測定システムを提供する。前記製鉄所設備用測定システムは、熱電発電装置と、センサと、前記センサから出力される信号を無線送信可能な信号に変換する変換装置と、前記変換装置によって変換された信号を無線送信する無線送信装置と、前記無線送信装置から送信された信号を中継する中継装置と、前記無線送信装置から送信された信号および前記中継装置によって中継された信号の一方または両方を受信する受信装置とを備え、前記変換装置および無線送信装置は、前記熱電発電装置によって発電された電力によって駆動される。

Description

製鉄所設備用測定システム、コークス炉、およびコークス製造方法
 本発明は、製鉄所設備用測定システム、コークス炉、およびコークス製造方法に関する。
 製鉄所を始めとする各種工場の製造設備においては、操業状態の確認、異常検知、装置保全など、様々な目的のためにセンサによる測定が行われている。そして、近年では、センサから出力される信号を無線で送信することも行われている。無線で信号を送信すれば、信号を送信するためのケーブルを敷設する必要がなくなるため、センサ設置の自由度が高くなるというメリットがある。
 しかし、そのようなセンサにおいても、センサ自体や無線送信のための装置への給電を行う必要がある。例えば、有線で給電を行う場合には、給電のためのケーブルが必要となることから、上述した無線送信を利用するメリットが薄れてしまう。また、バッテリーにより給電すればケーブルは不要となるものの、バッテリー交換などの保守作業が必要となる。
 そこで、信号を無線送信するセンサ(以下、「無線センサ」という場合がある)自体に発電機能を持たせ、長期にわたり自立給電を可能とする技術が提案されている。
 例えば、特許文献1では、振動発電素子と、センサと、無線送信用のアンテナとを気密構造のパッケージ内に実装した無線センサが提案されている。
 また、特許文献2では、太陽電池モジュールと、センサと、無線送信用のアンテナとをパッケージ内に実装した無線センサが提案されている。
 特許文献3では、熱電発電モジュールと、センサと、無線モジュールとを備える熱電発電トランスミッタが提案されている。
特開2013-122718号公報 特開2016-157356号公報 特開2018-200518号公報
 特許文献1~3で提案されているような無線センサによれば、センサと一体に実装された発電装置から該センサに給電が可能であるため、給電ケーブルの敷設やバッテリー交換などの保守作業が不要となると考えられる。
 特に、製鉄所の設備においては、測定対象が極めて広範囲となる場合が多いことに加え、高温であるなど過酷な環境であることが一般的である。そのため、給電ケーブルの敷設やバッテリー交換などの保守作業が不要となるメリットは大きい。
 しかし、特許文献1で提案されている無線センサは、電源として振動発電素子を用いているため、定常的にある程度の振動が発生する場所でしか使用できないという問題がある。
 また、特許文献2で提案されている無線センサは、電源として太陽電池を用いているため、そのままでは十分な光が入射する環境、時間帯にしか使用できない。特許文献2では、前記問題を解決するために太陽電池モジュールで発電された電力を蓄電する蓄電部を設けることも提案されているが、夜間などの光が入射しない環境でも動作を安定して継続させるためには大きな蓄電部が必要となり、無線センサが大型化するという問題がある。
 特許文献3には、熱電発電を利用することは記載されているものの、どのようにして製鉄所設備に適用するかについて具体的な開示はない。
 本発明は、上記課題を解決することを目的としたものであり、配線や保守が困難な製鉄所の各種設備において、自律給電により稼働することができ、かつ、センサの設置場所から離れた位置において確実に測定結果をモニターすることができる製鉄所設備用測定システムを提供することを目的とする。また、本発明は前記製鉄所設備用測定システムを利用したコークス炉およびコークス製造方法を提供することを目的とする。
 本発明は上記知見に基づくものであり、その要旨は以下の通りである。
1.熱電発電装置と、
 センサと、
 前記センサから出力される信号を無線送信可能な信号に変換する変換装置と、
 前記変換装置によって変換された信号を無線送信する無線送信装置と、
 前記無線送信装置から送信された信号を中継する中継装置と、
 前記無線送信装置から送信された信号および前記中継装置によって中継された信号の一方または両方を受信する受信装置とを備え、
 前記変換装置および無線送信装置は、前記熱電発電装置によって発電された電力によって駆動される、製鉄所設備用測定システム。
2.前記中継装置は、障害物の滞在時間が長い部分に、前記障害物の滞在時間が短い部分よりも多く配置されている、上記1に記載の製鉄所設備用測定システム。
3.前記中継装置の少なくとも1つが、移動する障害物に設置されている、上記1または2に記載の製鉄所設備用測定システム。
4.前記センサが温度センサである、上記1~3のいずれか一項に記載の製鉄所設備用測定システム。
5.上記1~4のいずれか一項に記載の製鉄所設備用測定システムを備えたコークス炉。
6.コークス炉を用いてコークスを製造するコークス製造方法であって、
 上記1~4のいずれか一項に記載の製鉄所設備用測定システムを用いて前記コークス炉の温度を測定する、コークス製造方法。
 本発明の製鉄所設備用測定システムは、配線や保守が困難な製鉄所の各種設備において、自律給電により稼働することができ、かつ、センサの設置場所から離れた位置において確実に測定結果をモニターすることができる。本発明の製鉄所設備用測定システムは、コークス炉を初めとする様々な製造設備に好適に適用することができる。
コークス炉の構造の一例を示す模式図である。 本発明の一実施形態における製鉄所設備用測定システムを示す模式図である。 本発明の一実施形態における中継装置の配置を示す模式図である。 本発明の一実施形態における中継装置の配置を示す模式図である。 本発明の一実施形態における装炭車への中継装置の設置状態を示す模式図である。
(第1の実施形態)
 以下、本発明の第1の実施形態における測定システムについて説明する。なお、以下の説明において、「製鉄所設備用測定システム」を単に「測定システム」という場合がある。
 本発明の第1の実施形態における測定システムは、下記(1)~(6)の構成要素を備えており、(3)変換装置および(4)無線送信装置は、(1)熱電発電装置によって発電された電力によって駆動される。
(1)熱電発電装置
(2)センサ
(3)前記センサから出力される信号を無線送信可能な信号に変換する変換装置
(4)前記変換装置によって変換された信号を無線送信する無線送信装置
(5)前記無線送信装置から送信された信号を中継する中継装置
(6)前記無線送信装置から送信された信号および前記中継装置によって中継された信号の一方または両方を受信する受信装置
 以下、上記測定システムの各部について説明する。
[熱電発電装置]
 熱電発電装置は、該熱電発電装置の一方の側(高温側)と他方の側(低温側)との間の温度差を利用して発電することができる装置であり、一般的には、p型半導体とn型半導体を組み合わせた熱電素子を備えている。
 前記熱電発電装置としては、とくに限定されることなく任意の熱電発電装置を用いることができる。熱電発電装置を用いることにより、製鉄所の各種設備の熱を利用して発電し、得られた電力を用いて変換装置や無線送信装置を駆動することができる。
 熱電発電装置で発電する際の熱源としては、とくに限定されることなく任意の熱源を利用することができるが、製鉄所設備の高温となる部分を熱源とすることが好ましい。すなわち、前記熱電発電装置の高温側を、製鉄所設備の高温部に直接または間接的に設置することが好ましい。熱源からの熱の利用効率を高めるという観点からは、前記熱電発電装置は高温側に受熱板を備えることが好ましい。前記受熱板としては、例えば、金属板やセラミック板を用いることができる。
 一方、発電効率を高めるという観点からは、前記熱電発電装置は低温側に冷却手段を備えることが好ましい。前記冷却手段としては、例えば、放熱フィンなどの放熱部材、および水や油などの冷却媒体との熱交換により冷却を行う熱交換器の、一方または両方を用いることができる。
[センサ]
 前記センサとしては、とくに限定されることなく測定対象に応じて任意のセンサを用いることができる。前記センサとしては、例えば、温度センサ、圧力センサ、流量センサ、振動センサ、加速度センサからなる群より選択される少なくとも1つを用いることができる。前記温度センサとしては、例えば、熱電対、測温抵抗体、サーミスタなどが挙げられる。
 前記センサの数はとくに限定されることなく、1または2以上の任意の数とすることができる。測定値の分布に関する情報を得るという観点からは、異なる地点に複数のセンサを配置することが好ましい。また、冗長性や精度向上の観点からは、同一地点に複数のセンサを配置することもできる。より詳細に測定値の分布を測定するという観点からは、前記センサの数は多ければ多いほどよく、したがって、前記センサの数の上限は限定されない。しかし、センサの数が多くなるとそれにともなってコストも増加する。そのため、費用対効果の観点からは、前記センサの数を1000個以下とすることが好ましい。
[変換装置]
 前記センサから出力される信号は、変換装置によって無線送信可能な信号に変換される。前記変換装置としては、特に限定されることなく、市販の変換器等、任意の装置を用いることができる。
[無線送信装置]
 前記変換装置によって変換された信号は、無線送信装置により無線送信される。前記無線送信装置としては、特に限定されることなく、市販の装置等、信号を送信できるものであれば任意の装置を用いることができる。
 本発明の製鉄所設備用測定システムが備える熱電発電装置、センサ、変換装置、および無線送信装置の数は、同じであってもよく、異なっていてもよい。例えば、1つの熱電発装置で、複数の変換装置および無線送信装置に給電してもよい。また、複数のセンサから出力された信号を、1つの変換装置と無線送信装置でまとめて送信することもできる。
 また、前記熱電発電装置、変換装置、および無線送信装置は、1つのパッケージに実装することも好ましい。これらの構成要素を1つのパッケージに実装すれば、取り扱いが容易になることに加え、後述するように放熱部材や遮光部材を設置することも容易となる。なお、以降の説明では、熱電発電装置、変換装置、および無線送信装置を1つのパッケージに実装したものを、便宜的に「熱電-無線送信ユニット」と呼ぶ。
[放熱部材]
 本発明の製鉄所設備用測定システムは、上記変換装置および無線送信装置の一方または両方を冷却するための放熱部材を備えることが好ましい。上述したように、製鉄所の設備は高温である場合が多い。そこで、放熱部材を用いることにより、変換装置および無線送信装置の温度上昇を抑制することができる。前記放熱部材としては、例えば、放熱フィンなどを用いることができる。
 なお、前記放熱部材は、熱電発電装置の低温側の冷却手段を兼ねることもできる。例えば、熱電発電装置、変換装置、および無線送信装置を1つのパッケージ(熱電-無線送信ユニット)に実装する場合、当該熱電-無線送信ユニットに放熱部材を設けることで、熱電発電装置、変換装置、および無線送信装置を冷却することができる。
[遮光部材]
 また、本発明の製鉄所設備用測定システムは、直射日光を遮るための遮光部材を備えることが好ましい。例えば、コークス炉の上部など、屋外に測定システムを設置する場合、直射日光による装置温度の上昇が問題となる場合がある。そこで、遮光部材を用いて日光を遮ることによって温度上昇を抑制することができる。前記遮光部材は、熱電発電装置、変換装置、および無線送信装置の少なくとも1つへの直射日光を遮るよう構成されることが好ましい。例えば、熱電発電装置、変換装置、および無線送信装置を1つのパッケージ(熱電-無線送信ユニット)に実装する場合、当該熱電-無線送信ユニットに遮光部材を設けることで、熱電発電装置、変換装置、および無線送信装置の温度上昇を抑制することができる。
 より効果的に温度上昇を防止するという観点からは、本発明の製鉄所設備用測定システムは、放熱部材と遮光部材の両者を備えることが好ましい。その場合、前記遮光部材は、放熱部材の上部に設置することが好ましい。そうすることにより、放熱部材が直射日光にさらされることを防止し、その結果、より効果的に放熱部材を機能させることができる。
[中継装置]
 本発明の測定システムは、前記無線送信装置から送信された信号を中継する中継装置をさらに備えている。これにより、センサを設置した場所から離れた位置においても安定して信号を受信することができる。前記中継手段としては、とくに限定されることなく、無線送信装置から送信された信号を中継できるものであれば任意のものを用いることができる。
 前記中継装置の数はとくに限定されず、1または2以上の任意の数の中継装置を用いることができる。センサと受信装置と間の距離が大きい場合や、無線送信に使用する電波などの状態が悪い場合には、複数の中継装置を用いることが好ましい。
[受信装置]
 前記中継装置によって中継された信号は受信装置により受信される。なお、無線送信装置から送信された信号は、基本的には中継装置によって中継されるが、必ずしも中継装置で中継する必要は無く、例えば、受信装置に近い位置に設置された無線送信装置からの信号などについては中継装置を介さずに、直接受信装置で受信することもできる。したがって、前記受信装置は、前記無線送信装置から送信された信号および前記中継装置によって中継された信号の一方または両方を受信するよう構成される。前記受信装置としては、とくに限定されることなく、市販の受信装置等、信号を受信できるものであれば任意の装置を用いることができる。
 本発明の測定システムにおいては、前記変換装置および無線送信装置が、前記熱電発電装置によって発電された電力によりよって駆動される。これにより、変換装置および無線送信装置への給電のための配線やバッテリーなどが不要となる。したがって、本発明の測定システムは、配線の敷設やバッテリー交換などの保守が困難な場所にも容易に設置、運用することができる。
 また、本発明の測定システムは、前記熱電発電装置によって発電された電力を一時的に蓄えるためのコンデンサ(キャパシタ)をさらに備えることが好ましい。
 次に、上記測定システムをコークス炉に適用する場合について、具体的に説明する。
 上記測定システムをコークス炉に適応する場合、センサは燃焼室の温度の測定に用いることが好ましい。コークス炉、特に燃焼室の温度は相当な高温となるため、前記センサとしては、熱電対を用いることが好ましい。
 信号の送信は任意の間隔で行うことができる。例えば、熱電発電装置で発電した電力をコンデンサに一時的に蓄電し、蓄電された電力が一定の量を超えた時点で信号を送信してもよい。この場合、送信間隔は熱源の温度に依存する。そのため、送信間隔が過度に長くならないために、熱電発電装置の設置位置を調整することが望ましい。送信間隔は、600s以下とすることが好ましく、60s以下とすることが好ましい。一方、送信間隔が過度に短いと消費電力が過剰となるため、送信間隔は0.1s以上とすることが好ましく、1s以上とすることがより好ましい。
 また、コークス炉の操業時には炉上温度がかなりの高温となるため、本発明の測定システムを構成する各装置は、操業時温度が装置の耐熱温度を超えない位置に設置することが好ましい。特に、変換装置や無線送信装置などの電子機器は、80℃以下の温度となる位置に設置することが好ましい。例えば、事前に操業中のコークス炉の炉上温度を測定し、温度が80℃以下である位置に設置することもできる。一方、変換装置や無線送信装置などの電子機器は、0℃以上の温度となる位置に設置することが好ましい。
 一般的なコークス炉において、炉上に無線送信装置を設置した場合、前記無線送信装置から、コークス炉の温度を管理する場所(制御室など)までは、数十メートル以上離れることになる。また、コークス炉の炉上は、コークス炉に石炭を装入する装炭車などが往来し、無線通信の障害となる障害物が多数存在する。中継装置を用いることにより、このような環境においても安定した信号の送受信が可能となる。送受信の安定性の観点からは、中継装置の個数を2個以上とすることが好ましく、3個以上とすることがより好ましい。一方、中継装置を過度に多くすると効果が飽和することに加え、コストが増加する。そのため、中継装置の個数は10個以下とすることが好ましく、5個以下とすることがより好ましい。コストと安定性のバランスからは、中継装置の個数を4個とすることがさらに好ましい。
 なお、一般的なコークス炉の炉上には、保守点検のためのデッキが設けられている。したがって、中継装置は前記デッキに設置することが好ましい。
 受信装置は、任意の位置に設置することができる。前記受信装置は、コークス炉から離れた位置、例えば、コークス炉の温度を管理する場所(制御室など)に設置するしてもよい。また、必要な中継装置の個数を減らしつつ、安定した受信を可能とするという観点からは、よりコークス炉に近い位置、例えば、炉上デッキに受信装置を設置してもよい。
 本発明の一実施形態におけるコークス製造方法では、上述した測定システムを使用して、コークス炉の温度、例えば、燃焼室の温度を測定することができる。測定した温度に基づいてコークス炉の燃焼状態を制御することで、品質の安定したコークスを製造することができる。
 燃焼状態を制御する方法はとくに限定されず、例えば、燃焼室への燃料の供給量を調節するなど、任意の方法で行うことができる。前記燃焼状態の調整は、燃焼室ごとに行うことが好ましい。例えば、燃焼室ごとに目標温度を予め決定し、測定された燃焼室の温度と前記目標温度との差に基づいて、当該燃焼室の燃焼状態を調整することができる。前記目標温度の決定は、とくに限定されず、各種公知の方法を始めとする任意の方法で行うことができる。例えば、コークス炉が備える炭化室のそれぞれについて、実際の操業実績からコークス化に要する時間(実績コークス化時間)を求め、目標とするコークス化時間との差から、目標温度を決定することができる。
 なお、実際のコークス炉では、図1に示したように複数の炭化室と燃焼室が交互に連続して配置されているため、ある炭化室におけるコークス化は、隣接する複数の燃焼室の温度の影響を受ける。そのため、各燃焼室の目標温度の決定においては、当該燃焼室の温度が影響する複数の炭化室の影響を考慮することが好ましい。
 上記のような制御を行うために、本発明の製鉄所設備用測定システムを用いて、各燃焼室の温度と、実際にコークス化に要した時間(コークス化時間)との関係を収集してデータベース化し、前記データベースを元に制御を行ってもよい。このようなデータベースを利用することにより、窯ごとに異なる特性を考慮した制御を行うことができる。なお、ここで「コークス化時間」とは、石炭を炭化室に装入してから、当該石炭が乾留されてコークスになるまでの時間を指すものとする。
 次に、本願明細書の実施形態の一例について、図面を参照してさらに具体的に説明する。なお、以下の説明においても、引き続き上記測定システムをコークス炉に適用する場合について説明する。
 図1は、コークス炉の構造の一例を示す模式図である。コークス炉100は、石炭を収容して乾留するための炭化室101と、炭化室101に熱を供給するための燃焼室102とを炉幅方向に交互に配置することによって構成されており、炭化室と燃焼室とを隔てる耐火物を介して燃焼室102から炭化室101へ熱が供給される。製鉄所における一般的なコークス炉は、数十以上の炭化室を備えており、その炉幅方向長さLは数百メートルに及ぶ。また、炭化室101および燃焼室102のサイズは、例えば、高さHが7m程度、奥行きDが16m程度である。
 一般的なコークス炉においては、隣接する炭化室と燃焼室の一組を「1窯」または「1門」と呼び、50前後の窯を1ブロックとして「炉団」と呼ぶ。コークス炉の炉上には、装炭車レール103が敷設されており、炭化室101に石炭を挿入するための装炭車107が装炭車レール103の上を走行している。また、複数の炉団の間または端部には、装炭車107に石炭を供給するための石炭塔108が設けられている。
 このように多数の燃焼室を備えるコークス炉においては、各燃焼室の温度を管理するために温度を測定することが求められる。そこで、各燃焼室内にセンサ(熱電対)を設置し、本発明の測定システムにより温度を測定する。
 図2は、本発明の一実施形態における製鉄所設備用測定システム1(以下、測定システム1)を示す模式図である。測定システム1は、熱電発電装置、変換装置、および無線送信装置を1つのパッケージに実装した熱電-無線送信ユニット10と、センサとしての熱電対20と、中継装置30とを備えている。
 測定システム1は、コークス炉100の炉上、コークス炉100の上に設置されている。しかし、コークス炉100の炉上は高温となるため、装置を炉上に直接設置すると破損のおそれがある。また、上述したように、コークス炉の炉上には、装炭車レール103が敷設されており、炭化室101に石炭を挿入するための装炭車107が装炭車レール103の上を走行している。そのため、装炭車107の走行の妨げにならないよう装置を設置する必要がある。そこで、本実施形態においては、装炭車レール103を敷設するための支持部材として敷設されている装炭車軌条桁104に熱電-無線送信ユニット10を設置している。
 また、熱電-無線送信ユニット10の上面には、放熱フィン11と、直射日光を遮るための遮光部材12が備えられている。これにより、熱電-無線送信ユニット10の温度上昇を抑制することができる。また、放熱フィン11は、熱電-無線送信ユニット10内に収容されている熱電発電装置の低温側の冷却を兼ねている。
 一方、熱電対20は、燃焼室102の上部に設けられた点検孔105を通して、燃焼室102の内部に挿入されている。熱電対20は、熱電-無線送信ユニット10の変換装置に接続されており、熱電対20で測定された温度は、熱電-無線送信ユニット10の無線送信装置により送信される。
 また、コークス炉100の炉上には、設備の保守点検などを行うための歩廊である炉上デッキ106が設置されている。本実施形態では、中継装置30を炉上デッキ106に設置する。なお、図2においては便宜上、各部を異なる縮尺で表している。実際のコークス炉において炉上デッキは、炉上から8m程度の高さにあるため、コークス炉の熱の影響を受けることなく、広い範囲からの無線信号を受信することが可能である。
 なお、図2では1つの熱電対20の設置状態を示したが、実際のコークス炉100には図1に示したように多数の燃焼室102が存在する。そのため、各燃焼室102の温度をモニターするために、燃焼室1つあたり、センサを少なくとも1つ設置することが好ましい。その際、センサ1つに対して、熱電-無線送信ユニットを1つ使用してもよいし、複数のセンサからの信号を1つの熱電-無線送信ユニットで処理してもよい。
 また、より正確に燃焼室内の温度を確認するという観点からは、燃焼室1つあたり2以上のセンサを設置することがより好ましい。1つの燃焼室に複数のセンサを設置する場合、燃焼室の奥行き方向(図1における矢印Dの方向)に離間した位置に設置することが好ましい。
 一方、中継装置は、1台の中継装置で複数の無線送信装置からの信号を中継できるため、無線送信装置(熱電-無線送信ユニット)と同数使用する必要は無い。したがって、測定システムが備える中継装置の数は、無線送信装置の数より少ないことが好ましく、無線送信装置の数の1/2以下であることがより好ましく、無線送信装置の数の1/5以下であることがさらに好ましい。測定システムが備える中継装置の数は、費用対効果の観点から無線送信装置の数の1/10以下であることがよりさらに好ましい。
 例えば、65個の燃焼室を備えるコークス炉の場合、燃焼室1つあたり2個、合計130個のセンサおよび熱電-無線送信ユニットを配置し、4つの中継装置を用いて電波を中継することができる。一方、受信装置はコークス炉の末端部に1つ設置する、受信装置は、コークス炉を制御するための制御室などに設置することもできる。
 なお、既に温度測定手段および温度管理システムを備えているコークス炉に対し、追加的に本発明の測定システムを導入することもできる。その場合、既存の温度管理システムを用いて、本発明の測定システムで測定した温度に基づいた温度管理を実施することもできる。その際、既存の温度測定手段で測定される温度と、本発明の測定システムで測定される温度とが一致しないことも考えられる。その場合には、予め、既存の温度測定手段で測定される温度と、本発明の測定システムで測定される温度との間の関係を求めておき、当該関係に基づいて本発明の測定システムで測定した温度を既存の温度測定手段で測定される温度に換算し、換算された温度に基づいて温度管理を行うこともできる。
 なお、上記の説明では、コークス炉の燃焼室内の温度を測定する場合を例に挙げたが、これに限らず、製鉄所の任意の設備における任意の要素を測定対象とすることができる。
(第2の実施形態)
 次に、本発明の第2の実施形態における測定システムについて説明する。なお、特に言及しない点については上記第1の実施形態と同様とすることができる。
 本発明の第2の実施形態における測定システムは、上記第1の実施形態における測定システムと同様の構成を備えることに加え、さらに前記中継装置が、障害物の滞在時間が長い部分に、前記障害物の滞在時間が短い部分よりも多く配置されている。
 上記第1の実施形態において説明したように、中継装置を用いることによりセンサの設置場所から離れた位置においても確実に測定結果をモニターすることができる。しかし、製鉄所の設備においては様々な移動可能な大型の機器が用いられているため、それらの機器が無線通信の障害となり、中継装置による信号の中継が妨げられる場合がある。例えば、コークス炉の場合、コークス炉の炉上にはレールが敷設されており、その上を該コークス炉の炭化室に原料である石炭を装入するための装炭車が行き来している。装炭車のような大型の機器の存在は、無線通信の妨げとなる。そこで、そのような移動する障害物の滞在時間に応じた個数(密度)で中継装置を配置することにより、障害物の影響を低減し、より安定した測定データの受信が可能となる。
 なお、ここで「障害物の滞在時間が長い部分」とは、装炭車のような障害物が滞在している時間が長いエリアを指し、同様に、「障害物の滞在時間が短い部分」とは、「障害物の滞在時間が長い部分」よりも障害物が滞在している時間が短いエリアを指す。例えば、中継装置を設置するエリア全体を複数の区画に分割し、各区画における障害物の滞在時間に応じて、各区画に設置する中継装置の数を決定すればよい。
 また、前記中継装置の数(総数)はとくに限定されず、上述した配置であれば、任意の数とすることができる。通常は、センサと受信装置と間の距離や、電波状態などに応じた数(複数)の中継装置を用いればよい。
 第2の実施形態における測定システムをコークス炉に適用する場合について、以下により具体的に説明する。
 図1を用いて説明したように、コークス炉は一般的に多数の燃焼室を備えている。例えば、65個の燃焼室を備えるコークス炉(炉団)の場合、燃焼室1つあたり2個、合計130個のセンサおよび熱電-無線送信ユニットを配置し、2~5個の中継装置を用いて電波を中継することができる。一方、受信装置はコークス炉の末端部に1つ設置する、受信装置は、コークス炉を制御するための制御室などに設置することもできる。中継装置の配置例については、さらに図3を用いて説明する。
 図3は、本発明の一実施形態における中継装置の配置を示す模式図である。コークス炉100の一端には石炭塔108が備えられており、石炭塔108に近い炉団109と、石炭塔108から離れた炉団110の間には中間デッキ111が設けられている。コークス炉100の上には、図示されない装炭車軌条桁と、該装炭車軌条桁の上に敷設された装炭車レール103が設置されている。
 コークス炉100の各燃焼室には、燃焼室1つあたり2個のセンサが設置されており、各センサに対応する熱電-無線送信ユニット10が、図2で説明したように取り付けられている。また、上述したように、炉上デッキ106には複数の中継装置30が設置されており、コークス炉100の端部、石炭塔108の近傍に受信装置40が設置されている。
 装炭車レール103の上には装炭車が走行して各燃焼室へ石炭を装入するが、通常、石炭塔108から遠い炉団110の上に装炭車が滞在する時間は、石炭塔108に近い炉団109の上に滞在する時間よりも短くなる。そこで、炉団109に設置する中継装置30の数(N1)を、炉団110に設置する中継装置30の数(N2)よりも多くする。N2は1~2個とすることが好ましく、N2は2~4個かつN2より多い数とすることが好ましい。例えば、図3の場合、炉団109に設置する中継装置30の数が3個、炉団110に設置する中継装置30の数が2個となっている。
 言い換えると、上記の例では、複数の炉団からなるコークス炉において、コークス炉の炉幅方向(図1の矢印L方向)に離間して複数の中継器が設置されており、かつ各炉団における中継器の配置密度が、石炭塔に近い炉団ほど高くなっている。
 なお、上記の例では、炉団を単位として中継装置の設置数を設定したが、中継装置の設置数を設定する領域はこれに限定されることなく任意に選択できる。
 また、上記の説明では、コークス炉の燃焼室内の温度を測定する場合を例に挙げたが、これに限らず、製鉄所の任意の設備における任意の要素を測定対象とすることができる。
(第3の実施形態)
 次に、本発明の第3の実施形態における測定システムについて説明する。なお、特に言及しない点については上記第1の実施形態および第2の実施形態と同様とすることができる。
 本発明の第3の実施形態における測定システムは、上記第1または第2の実施形態における測定システムと同様の構成を備えることに加え、さらに前記中継装置の少なくとも1つが、移動する障害物に設置されている。
 上記第1の実施形態において説明したように、中継装置を用いることによりセンサの設置場所から離れた位置においても確実に測定結果をモニターすることができる。しかし、製鉄所の設備においては様々な移動可能な大型の機器が用いられているため、それらの機器が無線通信の障害となり、中継装置による信号の中継が妨げられる場合がある。例えば、コークス炉の場合、コークス炉の炉上にはレールが敷設されており、その上を該コークス炉の炭化室に原料である石炭を装入するための装炭車が行き来している。装炭車のような大型の機器の存在は、無線通信の妨げとなる。そこで、そのような移動する障害物自体に中継装置を配置することにより、該障害物に妨げられることなく、安定して測定データの受信が可能となる。
 なお、障害物に設置されている中継装置以外の中継装置は、とくに限定されることなく任意の位置に設置することができるが、通常は、移動しない場所に設置すればよい。
 第3の実施形態における測定システムをコークス炉に適用する場合について、以下により具体的に説明する。
 図2を用いて説明したように、コークス炉100の炉上には、設備の保守点検などを行うための歩廊である炉上デッキ106が設置されている。本発明の一実施形態においては、中継装置30の一部を炉上デッキ106に設置することができる。実際のコークス炉において炉上デッキは、炉上から8m程度の高さにあるため、コークス炉の熱の影響を受けることなく、広い範囲からの無線信号を受信することが可能である。そして、本実施形態において、他の中継装置は装炭車などの移動する障害物に設置される。
 中継装置の配置例について、さらに図4、5を用いて説明する。
 図4は、本発明の一実施形態における中継装置の配置を示す模式図である。コークス炉100の一端には石炭塔108が備えられており、石炭塔108に近い炉団109と、石炭塔108から離れた炉団110の間には中間デッキ111が設けられている。コークス炉100の上には、図示されない装炭車軌条桁と、該装炭車軌条桁の上に敷設された装炭車レール103が設置されており、装炭車レール103の上には、各燃焼室へ石炭を装入するための装炭車107が走行している。
 コークス炉100の各燃焼室には、燃焼室1つあたり2個のセンサが設置されており、各センサに対応する熱電-無線送信ユニット10が、図2で説明したように取り付けられている。また、上述したように、炉上デッキ106には複数の中継装置30が設置されており、コークス炉100の端部、石炭塔108の近傍に受信装置40が設置されている。さらに、本実施形態では、以下に述べるように移動する障害物としての装炭車107にも中継装置30が設置されている。
 図5は、本発明の一実施形態における装炭車107への中継装置の設置状態を示す模式図であり、コークス炉100の上面に設置された2本一組の装炭車軌条桁104のそれぞれの上に熱電-無線送信ユニット10が設置されている。そして、装炭車レール103の上を走行する装炭車107にも中継装置30が設置されている。なお、装炭車107に設置する中継装置30は、装炭車レール103に対して、無線送信装置と同じ側に設置することが好ましい。例えば、図5に示した例では、熱電-無線送信ユニット10は装炭車レール103の内側に設置されている。そこで、装炭車107に設置する中継装置30についても、熱電-無線送信ユニット10に近接するよう、装炭車107の車輪112の内側に設置している。反対に、装炭車レール103の外側に熱電-無線送信ユニット10が設置される場合には、装炭車107に設置する中継装置30についても装炭車107の車輪112の外側に設置する。
 また、中継装置は、送受信用のアンテナが一体となっているものでもよいが、本体部分とアンテナ部分とを、ケーブルなどを介して離間して設置可能な中継装置を用いることも好ましい。例えば、アンテナを図5の30の位置に設置し、中継装置の本体は装炭車107の別の位置に設置することもできる。
 上記の説明では、コークス炉の燃焼室内の温度を測定する場合を例に挙げたが、これに限らず、製鉄所の任意の設備における任意の要素を測定対象とすることができる。
  1 製鉄所設備用測定システム
 10 熱電-無線送信ユニット
 11 放熱フィン
 12 遮光部材
 20 熱電対
 30 中継装置
 40 受信装置
100 コークス炉
101 炭化室
102 燃焼室
103 装炭車レール
104 装炭車軌条桁
105 点検孔
106 炉上デッキ
107 装炭車
108 石炭塔
109 炉団
110 炉団
111 中間デッキ
112 車輪

Claims (6)

  1.  熱電発電装置と、
     センサと、
     前記センサから出力される信号を無線送信可能な信号に変換する変換装置と、
     前記変換装置によって変換された信号を無線送信する無線送信装置と、
     前記無線送信装置から送信された信号を中継する中継装置と、
     前記無線送信装置から送信された信号および前記中継装置によって中継された信号の一方または両方を受信する受信装置とを備え、
     前記変換装置および無線送信装置は、前記熱電発電装置によって発電された電力によって駆動される、製鉄所設備用測定システム。
  2.  前記中継装置は、障害物の滞在時間が長い部分に、前記障害物の滞在時間が短い部分よりも多く配置されている、請求項1に記載の製鉄所設備用測定システム。
  3.  前記中継装置の少なくとも1つが、移動する障害物に設置されている、請求項1または2に記載の製鉄所設備用測定システム。
  4.  前記センサが温度センサである、請求項1~3のいずれか一項に記載の製鉄所設備用測定システム。
  5.  請求項1~4のいずれか一項に記載の製鉄所設備用測定システムを備えたコークス炉。
  6.  コークス炉を用いてコークスを製造するコークス製造方法であって、
     請求項1~4のいずれか一項に記載の製鉄所設備用測定システムを用いて前記コークス炉の温度を測定する、コークス製造方法。
PCT/JP2022/003403 2021-02-10 2022-01-28 製鉄所設備用測定システム、コークス炉、およびコークス製造方法 WO2022172789A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011846.8A CN116888651A (zh) 2021-02-10 2022-01-28 炼铁厂设备用测定系统、炼焦炉以及焦炭制造方法
KR1020237022805A KR20230116040A (ko) 2021-02-10 2022-01-28 제철소 설비용 측정 시스템, 코크스로 및, 코크스 제조 방법
EP22752618.3A EP4276159A4 (en) 2021-02-10 2022-01-28 STEEL PLANT MEASURING SYSTEM, COKE OVEN AND COKE PRODUCTION METHOD
JP2022517704A JP7276604B2 (ja) 2021-02-10 2022-01-28 製鉄所設備用測定システム、コークス炉、およびコークス製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-019761 2021-02-10
JP2021-019763 2021-02-10
JP2021-019766 2021-02-10
JP2021019763 2021-02-10
JP2021019766 2021-02-10
JP2021019761 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172789A1 true WO2022172789A1 (ja) 2022-08-18

Family

ID=82838806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003403 WO2022172789A1 (ja) 2021-02-10 2022-01-28 製鉄所設備用測定システム、コークス炉、およびコークス製造方法

Country Status (4)

Country Link
EP (1) EP4276159A4 (ja)
JP (2) JP7276604B2 (ja)
KR (1) KR20230116040A (ja)
WO (1) WO2022172789A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099255A (ja) * 2004-09-28 2006-04-13 Mitsui Eng & Shipbuild Co Ltd 部材管理システム
JP2010150528A (ja) * 2008-11-21 2010-07-08 Jfe Steel Corp コークス炉燃焼室の温度測定装置および温度管理システム
US20110126545A1 (en) * 2009-11-30 2011-06-02 General Electric Company Systems and methods for controlling fuel mixing
CN102297723A (zh) * 2011-05-20 2011-12-28 袁国炳 一种适用于高温环境的在线光学测温装备和组网测量方法
JP2013122718A (ja) 2011-12-12 2013-06-20 Ngk Spark Plug Co Ltd 無線センサノード
JP2016146040A (ja) * 2015-02-06 2016-08-12 リンテック株式会社 無線タグ及びrfidシステム
JP2016157356A (ja) 2015-02-26 2016-09-01 一般財団法人マイクロマシンセンター 無線センサ端末
CN106753445A (zh) * 2017-01-23 2017-05-31 中冶焦耐(大连)工程技术有限公司 一种焦炉桥管温度无线采集系统
JP2018200518A (ja) 2017-05-26 2018-12-20 株式会社Kelk 熱電発電トランスミッタ
CN208883786U (zh) * 2018-07-18 2019-05-21 辽宁工程技术大学 一种焦炉集气管压力数据测量装置
JP2019182660A (ja) * 2018-04-03 2019-10-24 Jfeスチール株式会社 原料ヤードにおけるデータ伝送装置および方法、ならびに、ベルトコンベア管理システムおよび方法
CN113794403A (zh) * 2021-09-09 2021-12-14 中冶焦耐(大连)工程技术有限公司 一种利用焦炉散热发电的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130005372A1 (en) * 2011-06-29 2013-01-03 Rosemount Inc. Integral thermoelectric generator for wireless devices
TWI439336B (zh) * 2011-07-13 2014-06-01 China Steel Corp Wireless temperature measurement system and its temperature measurement method for power supply of Sheng iron (steel) bucket
JP5751261B2 (ja) 2013-01-17 2015-07-22 ヤマハ株式会社 熱電発電ユニット
JP6048368B2 (ja) 2013-10-22 2016-12-21 Jfeスチール株式会社 放射温度計の校正装置及び校正方法
CN106575642B (zh) 2014-07-10 2019-06-18 富士通株式会社 散热部件、散热部件的制造方法、电子装置、电子装置的制造方法、一体型模块、信息处理系统
JP2017041309A (ja) 2015-08-17 2017-02-23 三菱日立パワーシステムズ株式会社 発電システムおよびその運転方法
DE102021207826A1 (de) * 2021-07-21 2023-01-26 Thyssenkrupp Ag Verfahren und Vorrichtung zur Bestimmung der Temperatur von Heizzügen der Koksöfen einer Koksofenbatterie

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099255A (ja) * 2004-09-28 2006-04-13 Mitsui Eng & Shipbuild Co Ltd 部材管理システム
JP2010150528A (ja) * 2008-11-21 2010-07-08 Jfe Steel Corp コークス炉燃焼室の温度測定装置および温度管理システム
US20110126545A1 (en) * 2009-11-30 2011-06-02 General Electric Company Systems and methods for controlling fuel mixing
CN102297723A (zh) * 2011-05-20 2011-12-28 袁国炳 一种适用于高温环境的在线光学测温装备和组网测量方法
JP2013122718A (ja) 2011-12-12 2013-06-20 Ngk Spark Plug Co Ltd 無線センサノード
JP2016146040A (ja) * 2015-02-06 2016-08-12 リンテック株式会社 無線タグ及びrfidシステム
JP2016157356A (ja) 2015-02-26 2016-09-01 一般財団法人マイクロマシンセンター 無線センサ端末
CN106753445A (zh) * 2017-01-23 2017-05-31 中冶焦耐(大连)工程技术有限公司 一种焦炉桥管温度无线采集系统
JP2018200518A (ja) 2017-05-26 2018-12-20 株式会社Kelk 熱電発電トランスミッタ
JP2019182660A (ja) * 2018-04-03 2019-10-24 Jfeスチール株式会社 原料ヤードにおけるデータ伝送装置および方法、ならびに、ベルトコンベア管理システムおよび方法
CN208883786U (zh) * 2018-07-18 2019-05-21 辽宁工程技术大学 一种焦炉集气管压力数据测量装置
CN113794403A (zh) * 2021-09-09 2021-12-14 中冶焦耐(大连)工程技术有限公司 一种利用焦炉散热发电的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4276159A4

Also Published As

Publication number Publication date
EP4276159A1 (en) 2023-11-15
JP7276604B2 (ja) 2023-05-18
JP2023093594A (ja) 2023-07-04
EP4276159A4 (en) 2024-07-10
JPWO2022172789A1 (ja) 2022-08-18
JP7517513B2 (ja) 2024-07-17
KR20230116040A (ko) 2023-08-03

Similar Documents

Publication Publication Date Title
US5235861A (en) Power transmission line monitoring system
US20210313481A1 (en) Power Conversion Module for Use With Optical Energy Transfer and Conversion System
KR101785987B1 (ko) 실시간 압력계측형 송전선 모니터링 시스템 및 실시간 압력계측형 송전선 모니터링 방법
CN109913602B (zh) 高炉风口设备及其周边炉体内衬侵蚀状态巡检系统及方法
KR100849988B1 (ko) 교통정보 검출 시스템 및 상기 시스템에 사용되는 루프검지장치
CN104297634B (zh) 一种超高压在线监测系统
KR102210099B1 (ko) 절단기 및 열전 발전 방법
WO2022172789A1 (ja) 製鉄所設備用測定システム、コークス炉、およびコークス製造方法
JP5750822B2 (ja) コークス炉燃焼室の温度測定装置および温度管理システム
KR20080040062A (ko) 애드혹 센서 네트워크를 이용한 송전선로 상태 감시 장치및 그 방법
KR100605416B1 (ko) 송전 설비의 온도 기록 장치 및 온도 기록 관리 시스템
CN109586422B (zh) 一种采用激光无线供电和激光无线通信的无线箭地接口
KR100738356B1 (ko) 연속주조 다이에서 센서를 통해 획득된 측정 데이터 중의 주조 데이터를 로컬 프로세싱하는 방법 및 장치
CN104135084A (zh) 向输电塔提供电力的系统和方法及发送和接收数据的方法
CA2981740C (en) Rail cooling system and method for reducing thermal expansion
CN116888651A (zh) 炼铁厂设备用测定系统、炼焦炉以及焦炭制造方法
JP2005156298A (ja) 輪重・横圧測定装置
CN111224194A (zh) 电池系统温度控制方法、控制系统及电池系统
JP6124528B2 (ja) 電車線路用監視システム
JP2010015381A (ja) ボイラプラント計装システム
CN209923373U (zh) 高炉风口设备及其周边炉体内衬侵蚀状态巡检系统
JP7110661B2 (ja) 計測システム
JP2021502490A (ja) 高炉状態監視
US20210003634A1 (en) Monitoring of high-voltage or medium-voltage equipment
KR20050064509A (ko) 가변설치형 구조물 자동계측 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517704

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237022805

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011846.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022752618

Country of ref document: EP

Effective date: 20230808

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015868

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023015868

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230807

NENP Non-entry into the national phase

Ref country code: DE