WO2022172622A1 - Light detection device and light detection system - Google Patents

Light detection device and light detection system Download PDF

Info

Publication number
WO2022172622A1
WO2022172622A1 PCT/JP2021/047983 JP2021047983W WO2022172622A1 WO 2022172622 A1 WO2022172622 A1 WO 2022172622A1 JP 2021047983 W JP2021047983 W JP 2021047983W WO 2022172622 A1 WO2022172622 A1 WO 2022172622A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
frequency
light receiving
timing
signal
Prior art date
Application number
PCT/JP2021/047983
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 酒詰
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022172622A1 publication Critical patent/WO2022172622A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/04Apparatus for measuring unknown time intervals by electric means by counting pulses or half-cycles of an ac
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing

Definitions

  • the present disclosure relates to a photodetection device and a photodetection system that detect light.
  • the TOF (Time Of Flight) method is often used when measuring the distance to the measurement target.
  • this TOF method light is emitted and reflected light reflected by the object to be measured is detected.
  • the distance to the measurement object is measured by measuring the time difference between the timing at which the light is emitted and the timing at which the reflected light is detected.
  • Patent Literature 1 discloses a sensor that uses a delay line to improve the accuracy of distance measurement.
  • a photodetector includes a clock signal generator, a first light receiver, a first timing detector, and a correction processor.
  • the clock signal generation unit has a reference oscillation circuit that performs an oscillation operation, and is configured to generate a clock signal with a predetermined frequency by performing a phase synchronization operation.
  • the first light receiving section has a first light receiving element and is configured to generate a first pulse signal according to the light receiving result of the first light receiving element.
  • the first timing detection unit includes a first counter that generates a first code by performing a counting operation based on a clock signal, and a first multiplicity by performing an oscillation operation based on a first pulse signal.
  • a first oscillation circuit for generating a phase clock signal, and a first latch for latching a first code based on the first pulse signal and a second code according to the first multiphase clock signal. and configured to detect the first light receiving timing in the first light receiving section.
  • the correction processing unit is configured to perform a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
  • a photodetection system includes a light emitter and a photodetector.
  • the light emitter is configured to emit light.
  • the light detection section is configured to detect light reflected by the detection target, among the light emitted from the light emission section.
  • the photodetector includes a clock signal generator, a first light receiver, a first timing detector, and a correction processor.
  • the clock signal generation unit has a reference oscillation circuit that performs an oscillation operation, and is configured to generate a clock signal with a predetermined frequency by performing a phase synchronization operation.
  • the first light receiving section has a first light receiving element and is configured to generate a first pulse signal according to the light receiving result of the first light receiving element.
  • the first timing detection unit includes a first counter that generates a first code by performing a counting operation based on a clock signal, and a first multiplicity by performing an oscillation operation based on a first pulse signal.
  • a first oscillation circuit for generating a phase clock signal, and a first latch for latching a first code based on the first pulse signal and a second code according to the first multiphase clock signal. and configured to detect the first light receiving timing in the first light receiving section.
  • the correction processing unit is configured to perform a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
  • FIG. 1 is a block diagram showing a configuration example of a photodetection system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a configuration example of a clock signal generation unit shown in FIG. 1
  • FIG. 3 is a circuit diagram showing a configuration example of an oscillation circuit shown in FIG. 2
  • FIG. 2 is a circuit diagram showing a configuration example of a light receiving unit shown in FIG. 1
  • FIG. 3 is a circuit diagram showing another configuration example of the light receiving unit shown in FIG. 1
  • FIG. 3 is a block diagram showing a configuration example of a timing detection unit according to the first embodiment
  • FIG. 6 is a circuit diagram showing a configuration example of an oscillation circuit shown in FIG. 5
  • FIG. 6 is a timing waveform diagram showing an operation example of the frequency divider shown in FIG. 5;
  • FIG. FIG. 2 is an explanatory diagram showing a mounting example of a photodetector shown in FIG. 1;
  • FIG. 3 is an explanatory diagram showing another implementation example of the photodetector shown in FIG. 1;
  • FIG. 2 is an explanatory diagram showing a mounting example of a light receiving unit shown in FIG. 1;
  • 6 is an explanatory diagram showing one operation state of the timing detection unit shown in FIG. 5;
  • FIG. 6 is a timing waveform diagram showing an operation example of the timing detection unit shown in FIG. 5;
  • FIG. 6 is an explanatory diagram showing one characteristic example of the timing detection unit shown in FIG. 5;
  • FIG. 6 is an explanatory diagram showing another characteristic example of the timing detection unit shown in FIG. 5;
  • FIG. 6 is an explanatory diagram showing another characteristic example of the timing detection unit shown in FIG. 5;
  • FIG. 6 is a flow chart showing an operation example of a timing detection unit and a correction processing unit shown in FIG. 5;
  • 6 is an explanatory diagram showing another operating state of the timing detection unit shown in FIG. 5;
  • FIG. 6 is a timing waveform diagram showing another operation example of the timing detection section shown in FIG. 5;
  • FIG. 9 is a flow chart showing an operation example of a timing detection unit and a correction processing unit according to a modification of the first embodiment;
  • FIG. 11 is a block diagram showing a configuration example of a timing detection unit according to a second embodiment;
  • FIG. 20 is a circuit diagram showing a configuration example of the oscillation circuit shown in FIG. 19;
  • FIG. FIG. 20 is a flow chart showing an operation example of a timing detection unit and a correction processing unit shown in FIG. 19;
  • FIG. FIG. 20 is another flowchart showing an operation example of the timing detection unit and the correction processing unit shown in FIG. 19;
  • FIG. FIG. 11 is a circuit diagram showing a configuration example of an oscillator circuit according to a modification of the second embodiment;
  • FIG. 11 is a flow chart showing an operation example of a timing detection unit and a correction processing unit according to a modification of the second embodiment;
  • FIG. FIG. 11 is another flowchart showing an operation example of the timing detection section and the correction processing section according to the modification of the second embodiment;
  • FIG. 11 is a block diagram showing a configuration example of a multiphase clock signal generator according to a third embodiment
  • 25 is a timing waveform diagram showing an operation example of the timing detection unit shown in FIG. 24
  • FIG. FIG. 12 is a block diagram showing a configuration example of a clock signal generator according to a modification of the third embodiment
  • FIG. FIG. 11 is a block diagram showing a configuration example of a timing detection unit according to a fourth embodiment
  • FIG. FIG. 28 is an explanatory diagram showing one operation state of the timing detection unit shown in FIG. 27
  • FIG. 30 is a timing waveform diagram showing an operation example of the timing detection unit shown in FIG. 28
  • 28 is an explanatory diagram showing another operating state of the timing detection unit shown in FIG. 27
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • FIG. 1 shows a configuration example of a photodetection system (photodetection system 1) according to an embodiment.
  • the light detection system 1 is a ToF sensor, and is configured to emit light and detect reflected light reflected by the object to be measured OBJ.
  • a photodetector according to an embodiment of the present disclosure is embodied by the present embodiment, and thus will be described together.
  • the photodetection system 1 includes a photodetector 10 , a light emitter 8 and an optical member 9 .
  • the light detection section 10 is configured to drive the light emission section 8 to irradiate the light emission section 8 with light and to detect reflected light reflected by the measurement object OBJ.
  • the light emitting section 8 is configured to emit a light pulse L0 toward the object to be measured OBJ by being driven by the light detecting section 10 .
  • the light emitting unit 8 has a light source that emits infrared light, for example. This light source is configured using, for example, a laser light source or an LED (Light Emitting Diode).
  • the optical member 9 is configured to guide the light pulse L0 emitted from the light emitting section 8 to the object to be measured OBJ and to guide part of the light (light pulse L0R) to the light detection section 10.
  • a half mirror for example, can be used as the optical member 9 .
  • the light pulse L0 emitted from the light detection system 1 in this way is reflected by the measurement object OBJ. Then, the light pulse (reflected light pulse L1) reflected by the object to be measured OBJ enters the photodetection section 10 of the photodetection system 1 . The photodetector 10 detects this reflected light pulse L1.
  • the light detection unit 10 includes a clock signal generation unit 20, a control signal generation unit 12, a drive unit 13, a pixel array 14, a TDC (Time to Digital Converter) unit 30, a correction processing unit 16, and a histogram generation unit. 17 , a distance calculator 18 and a transmitter 19 .
  • a clock signal generation unit 20 includes a clock signal generation unit 20, a control signal generation unit 12, a drive unit 13, a pixel array 14, a TDC (Time to Digital Converter) unit 30, a correction processing unit 16, and a histogram generation unit. 17 , a distance calculator 18 and a transmitter 19 .
  • TDC Time to Digital Converter
  • the clock signal generator 20 is configured to generate the clock signal CLK based on the reference clock signal REFCLK.
  • FIG. 2 shows a configuration example of the clock signal generation unit 20.
  • the clock signal generator 20 has a phase comparator circuit 21 , a charge pump 22 , a loop filter 23 , an oscillator circuit 24 and a frequency divider circuit 25 .
  • the phase comparison circuit 21 is configured to compare the phase of the reference clock signal REFCLK and the phase of the clock signal DIVCLK supplied from the frequency dividing circuit 25 .
  • the phase comparison circuit 21 is configured using, for example, a so-called phase frequency comparison circuit (PFD: Phase Frequency Detector).
  • the charge pump 22 is configured to flow current into the loop filter 23 or sink current from the loop filter 23 based on the comparison result in the phase comparator circuit 21 .
  • Loop filter 23 is configured to generate a control voltage Vctrl for oscillator circuit 24 .
  • the oscillation circuit 24 is a voltage-controlled oscillator, and is configured to generate a clock signal CLK having a frequency corresponding to the control voltage Vctrl by performing an oscillation operation.
  • FIG. 3 shows a configuration example of the oscillation circuit 24.
  • the oscillation circuit 24 is a ring oscillator and has a plurality of inverters IV (four inverters IV1 to IV4 in this example) and a transistor MN1.
  • the transistor MN1 is an N-type MOS (Metal Oxide Semiconductor) transistor. Although four inverters IV1 to IV4 are provided in this example, the present invention is not limited to this, and for example, five or more inverters may be provided.
  • the inverters IV1 to IV4 are connected in this order. Specifically, the input terminal of the inverter IV1 is connected to the output terminal of the inverter IV4, and the output terminal is connected to the input terminal of the inverter IV2.
  • the input terminal of inverter IV2 is connected to the output terminal of inverter IV1, and the output terminal is connected to the input terminal of inverter IV3.
  • the input terminal of inverter IV3 is connected to the output terminal of inverter IV2, and the output terminal is connected to the input terminal of inverter IV4.
  • the input terminal of inverter IV4 is connected to the output terminal of inverter IV3, and the output terminal is connected to the input terminal of IV1.
  • Inverter IV4 outputs clock signal CLK.
  • the ground terminals of inverters IV1-IV4 are connected to the drain of transistor MN1.
  • the control voltage Vctrl is supplied to the gate of the transistor MN1, the drain is connected to the ground terminals of the inverters IV1 to IV4, and the source is grounded.
  • the oscillation circuit 24 generates the clock signal CLK having a frequency corresponding to the delay times of the inverters IV1 to IV4.
  • the delay times of the inverters IV1-IV4 change according to the control voltage Vctrl. For example, when the control voltage Vctrl is high, the current flowing through the transistor MN1 increases, so the current flowing through the inverters IV1-IV4 increases and the delay time of the inverters IV1-IV4 decreases. Therefore, the frequency of the clock signal CLK is increased. Also, when the control voltage Vctrl is low, the current flowing through the transistor MN1 decreases, so the current flowing through the inverters IV1 to IV4 decreases, and the delay time of the inverters IV1 to IV4 increases. Therefore, the frequency of clock signal CLK is lowered. Thus, the oscillation circuit 24 generates the clock signal CLK having a frequency corresponding to the control voltage Vctrl.
  • the frequency dividing circuit 25 (FIG. 2) is configured to generate a clock signal DIVCLK having a frequency that is 1/N times the frequency of the clock signal CLK by performing a frequency dividing operation based on the clock signal CLK.
  • the phase comparator circuit 21, charge pump 22, loop filter 23, oscillator circuit 24, and frequency divider circuit 25 constitute a phase locked loop.
  • the clock signal DIVCLK is synchronized with the reference clock signal REFCLK by the phase synchronization circuit performing the phase synchronization operation.
  • the phase synchronization circuit generates a clock signal CLK having a frequency that is N times the frequency of the reference clock signal REFCLK.
  • the clock signal generator 20 supplies the clock signal CLK thus generated to the control signal generator 12, the driver 13, and the TDC unit 30. Also, the clock signal generator 20 supplies the control voltage Vctrl to the TDC section 30 .
  • the control signal generator 12 ( FIG. 1 ) is configured to generate various control signals used in the photodetector 10 .
  • the control signal generation unit 12 generates a signal STR that instructs the light emission operation of the light emission unit 8 .
  • the photodetector 10 has two operation modes M (operation modes MA and MB).
  • the operation mode MA is a mode in which the photodetection system 1 performs ranging operation.
  • the operation mode MB is a mode in which the photodetection system 1 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 (described later) of the TDC section 30, as will be described later.
  • the control signal generator 12 generates various control signals according to these operation modes M.
  • the control signal generator 12 operates in synchronization with the clock signal CLK.
  • the driving unit 13 is configured to drive the light emitting unit 8 so that the light emitting unit 8 emits the light pulse L0 based on the signal STR.
  • the driving section 13 operates in synchronization with the clock signal CLK.
  • the pixel array 14 has a plurality of light receiving portions P arranged in a matrix.
  • the light receiving unit P is configured to detect light and generate a pulse signal PLS having pulses corresponding to the detected light.
  • the plurality of light receiving portions P includes light receiving portions PR. This light receiving portion PR detects the light pulse L0R guided by the optical member 9 .
  • the light-receiving portions P other than the light-receiving portion PR among the plurality of light-receiving portions P detect the reflected light pulse L1 reflected by the object to be measured OBJ.
  • FIG. 4A shows a configuration example of the light receiving section P.
  • the light receiving section P has a plurality (four in this example) of light receiving circuits DET1 and an OR circuit OR1.
  • the light receiving circuit DET1 has a photodiode PD, a resistive element R1, and an inverter IVP.
  • the photodiode PD is a photoelectric conversion element that converts light into charge.
  • the photodiode PD has an anode supplied with the power supply voltage VSS and a cathode connected to the node N1.
  • a single photon avalanche diode (SPAD), for example, can be used as the photodiode PD.
  • a power supply voltage VDD is supplied to one end of the resistance element R1, and the other end is connected to the node N1.
  • Inverter IVP outputs a low level when the voltage at node N1 is higher than the logic threshold, and outputs a high level when the voltage at node N1 is lower than the logic threshold, thereby generating pulse signal PLS1.
  • the light receiving circuit DET1 when the photodiode PD detects light, avalanche amplification occurs and the voltage at the node N1 drops.
  • pulse signal PLS1 changes from low level to high level.
  • a current flows through the node N1 through the resistance element R1, thereby increasing the voltage of the node N1.
  • the pulse signal PLS1 changes from high level to low level. In this manner, the light receiving circuit DET1 generates a pulse signal PLS1 having pulses corresponding to the detected light.
  • the logical sum circuit OR1 is configured to generate the pulse signal PLS by calculating the logical sum based on the pulse signals PLS1 output from the four light receiving circuits DET1.
  • the present invention is not limited to this. Three or less light receiving circuits DET1 may be provided, or five or more light receiving circuits DET1 may be provided.
  • the light receiving sensitivity of the light receiving portion P can be increased by providing the plurality of light receiving pixels DET1.
  • FIG. 4B shows another configuration example of the light receiving section P.
  • the light receiving section P has a plurality of (four in this example) light receiving circuits DET2.
  • the light receiving circuit DET2 has a photodiode PD, a transistor MP1, an inverter IVP, and a control circuit CKT1.
  • the transistor MP1 is a P-type MOS transistor having a gate connected to the output terminal of the control circuit CKT1, a source supplied with the power supply voltage VDD, and a drain connected to the node N1.
  • the control circuit CKT1 is configured to control the operation of the transistor MP1 based on the pulse signal PLS1. Specifically, the control circuit CKT1 sets the voltage of the gate of the transistor MP1 to low level after the pulse signal PLS1 changes from low level to high level, and sets the voltage of the transistor MP1 to low level after the pulse signal PLS1 changes from high level to low level. The gate voltage is set to a high level.
  • the voltage at the node N1 drops when the photodiode PD detects light. Then, when the voltage at the node N1 becomes lower than the logic threshold of the inverter IVP, the pulse signal PLS1 changes from low level to high level.
  • the control circuit CKT1 makes the voltage of the gate of the transistor MP1 low after this change in the pulse signal PLS1. As a result, the transistor MP1 is turned on, and current flows through the transistor MP1 to the node N1, thereby increasing the voltage of the node N1. Then, when the voltage at the node N1 becomes higher than the logic threshold of the inverter IVP, the pulse signal PLS1 changes from high level to low level.
  • the control circuit CKT1 makes the voltage of the gate of the transistor MP1 high after this change in the pulse signal PLS1. This turns off the transistor MP1. In this manner, the light receiving circuit DET2 generates the pulse signal PLS1 having pulses corresponding to the detected light.
  • the OR circuit OR1 is provided, but the present invention is not limited to this.
  • a selector for sequentially selecting one of the pulse signals PLS1 generated by the four light receiving circuits DET1 is provided. may
  • the TDC section 30 (FIG. 1) is configured to detect light reception timing in each of the plurality of light receiving sections P based on the pulse signal PLS supplied from each of the plurality of light receiving sections P in the pixel array 14 .
  • the TDC section 30 has a plurality of timing detection sections 31 .
  • the multiple timing detection units 31 are provided corresponding to the multiple light receiving units P in the pixel array 14 .
  • FIG. 5 shows a configuration example of the timing detection section 31 in the TDC section 30. As shown in FIG. In addition to the TDC section 30, FIG. 5 also depicts a clock signal generation section 20, a control signal generation section 12, a drive section 13, a correction processing section 16, and a histogram generation section 17. FIG. In FIG. 5, thick lines indicate wirings that transmit multi-bit signals.
  • Each of the plurality of timing detection units 31 is configured to detect light reception timing in the corresponding light receiving unit P based on the pulse signal PLS generated by the corresponding light receiving unit P.
  • the timing detection unit 31 includes an AND circuit 32, a selector 33, an oscillation circuit 34, a flip-flop (F/F) 35, an inverter 36, a selector 37, an inverter 38, a selector 41, a counter 42, and , a flip-flop section (F/F section) 43 , an output section 44 , a frequency dividing section 45 , a flip-flop section 46 and a correction section 47 .
  • the logical product circuit 32 is configured to obtain the logical product of the pulse signal PLS and the output signal of the inverter 38 .
  • the selector 33 is configured to select one of the signal STR and the output signal of the AND circuit 32 based on the control signal from the control signal generator 12 and output the selected signal. Specifically, based on the control signal from the control signal generator 12, the selector 33 selects the output signal of the AND circuit 32 in the operation mode MA, and selects the signal STR in the operation mode MB.
  • the oscillation circuit 34 is a voltage-controlled oscillation circuit, and similarly to the oscillation circuit 24 of the clock signal generation unit 20, performs an oscillation operation to generate a multiphase clock signal CLKM having a frequency corresponding to the control voltage Vctrl. configured to In this example, multiphase clock signal CLKM includes four clock signals CLK0, CLK90, CLK180 and CLK270. Further, the oscillation circuit 34 can perform an oscillation operation or stop the oscillation operation based on the signal EN.
  • FIG. 6 shows a configuration example of the oscillation circuit 34.
  • the oscillator circuit 34 has the same configuration as the oscillator circuit 24 of the clock signal generator 20 (FIG. 3). Specifically, the oscillation circuit 34 has four inverters IV11 to IV14 and a transistor MN11. Inverters IV11-IV14 correspond to inverters IV1-IV4 in oscillation circuit 24, and transistor MN11 corresponds to transistor MN1 in oscillation circuit . Inverters IV11-IV14 are connected in this order. Inverter IV11 outputs clock signal CLK0, inverter IV14 outputs clock signal CLK90, inverter IV13 outputs clock signal CLK180, and inverter IV12 outputs clock signal CLK270.
  • the inverters IV11 to IV14 can operate or stop operating based on the signal EN. Specifically, the inverters IV11 to IV14 operate when the signal EN is at high level, and stop operating when the signal EN is at low level. As a result, the oscillator circuit 34 oscillates when the signal EN is at high level, and stops oscillating when the signal EN is at low level.
  • the configuration of the oscillation circuit 34 (FIG. 6) is similar to the configuration of the oscillation circuit 24 (FIG. 3). Also, as shown in FIG. 5, the oscillation circuits 34 and 24 perform oscillation operations based on the same control voltage Vctrl. Therefore, the oscillation frequency of the oscillation circuit 34 is expected to be substantially the same as the oscillation frequency of the oscillation circuit 24 . In other words, the frequency of the multiphase clock signal CLKM generated by the oscillation circuit 34 is expected to be the same as the frequency of the clock signal CLK generated by the oscillation circuit 24 .
  • the flip-flop 35 (FIG. 5) is configured to latch the signal EN based on the rising edge of the clock signal CLK.
  • the inverter 36 is configured to invert the signal STR and output the inverted signal.
  • the selector 37 is configured to select one of the output signal of the flip-flop 35 and the output signal of the inverter 36 based on the control signal from the control signal generator 12 and output the selected signal as the signal STP. be done. Specifically, based on the control signal from the control signal generator 12, the selector 37 selects the output signal of the flip-flop 35 in the operation mode MA, and selects the output signal of the inverter 36 in the operation mode MB. It's becoming
  • Inverter 38 is configured to invert signal STP and output the inverted signal.
  • the inverter 38 includes a delay circuit, and outputs a signal after a predetermined delay time has elapsed from the transition timing of the signal STP.
  • the selector 41 selects one of the clock signal CLK generated by the oscillator circuit 24 and the clock signal CLK0 generated by the oscillator circuit 34 based on the control signal from the control signal generator 12, and outputs the selected signal. configured to Specifically, based on the control signal from the control signal generator 12, the selector 41 selects the clock signal CLK in the operation mode MA, and selects the clock signal CLK0 in the operation mode MB.
  • the counter 42 is configured to generate a count code CDC1 by performing a counting operation based on the rising edge of the output signal of the selector 41. Counter 42 starts a counting operation based on signal STR. The counter 42 outputs a multi-bit count code CDC1.
  • the flip-flop unit 43 is configured to latch the count code CDC1 supplied from the counter 42 based on the rising edge of the signal STP.
  • the flip-flop section 43 then supplies the count code CDC indicating the latch result to the output section 44 and the histogram generation section 17 .
  • the output unit 44 is configured to supply the count code CDC to the correction processing unit 16 via the bus wiring BUS1 based on the control signal from the control signal generation unit 12.
  • Each of the output units 44 in the plurality of timing detection units 31 sequentially supplies the count code CDC to the correction processing unit 16 via the bus wiring BUS1 based on the control signal from the control signal generation unit 12.
  • the frequency dividing unit 45 is configured to generate the count code CDF1 by frequency-dividing each of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM by two.
  • FIG. 7 shows an operation example of the frequency divider 45.
  • (A) to (D) show the waveforms of the clock signals CLK0, CLK270, CLK180 and CLK90
  • (E) to (H) show the waveforms of the clock signals CLK0, CLK270, CLK180 and CLK90.
  • Waveforms of signals CDF0, CDF45, CDF90 and CDF135 representing code CDF1 are shown.
  • the frequency dividing unit 45 performs a toggle operation at the rising edge of the clock signal CLK0 to generate the signal CDF0 (FIGS. 7A and 7E), and performs a toggle operation at the rising edge of the clock signal CLK270 to generate the signal CDF0.
  • CDF135 is generated (FIGS. 7(B) and (H))
  • a signal CDF90 is generated by performing a toggle operation at the rising edge of the clock signal CLK180 (FIGS. 7(C) and (G)).
  • a signal CDF45 is generated by performing a toggle operation at the rising edge (FIGS. 7(D) and (F)).
  • the count code CDF1 (signals CDF, CDF45, CDF90, CDF135) is "1000" during the period from timing t1 to t2, "1100” for the period from timing t2 to t3, and “1100” for the period from timing t3 to t4. is “1110” in the period from timing t4 to t5, “1111” in the period from timing t5 to t6, “0111” in the period from timing t5 to t6, “0011” in the period from timing t6 to t7, and timing t7 to t8. , and is “0000” during the period from timing t8 to t9.
  • the count code CDF1 ((E) to (H) in FIG. 7) is changed four times in a period corresponding to one cycle of the multiphase clock signal CLKM ((A) to (D) in FIG. 7). It has become.
  • the flip-flop unit 46 is configured to latch the count code CDF1 supplied from the frequency dividing unit 45 based on the rising edge of the signal STP. The flip-flop section 46 then supplies the count code CDF indicating the latch result to the correction section 47 and the histogram generation section 17 .
  • the correction unit 47 is configured to perform correction processing on the count code CDF and supply the corrected count code CDF to the histogram generation unit 17 . Based on the control signal from the control signal generator 12, each of the correction units 47 in the plurality of timing detectors 31 receives the correction parameter CAL1 supplied via the bus line BUS2. Then, the correction unit 47 performs correction processing on the count code CDF based on this correction parameter CAL1.
  • the correction processing unit 16 (FIGS. 1 and 5) is configured to perform calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 in the operation mode M2.
  • the correction processing section 16 has a calculation section 16A and a storage section 16B. Based on the count code CDC supplied from the timing detection unit 31 in the TDC unit 30 via the bus wiring BUS1, the calculation unit 16A performs correction according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34. It is configured to calculate a parameter CAL1.
  • the storage unit 16B is configured to store correction parameters CAL1 for each of the plurality of timing detection units 31. FIG.
  • the correction processing section 16 supplies the correction parameter CAL1 to the timing detection section 31 in the TDC section 30 via the bus wiring BUS2.
  • the histogram generation unit 17 (FIG. 1) is configured to generate a histogram of the time-of-flight Ttof of the light pulse detected by the light receiving unit P based on the light receiving timing of the light receiving unit P. Specifically, the histogram generation unit 17 calculates the flight time Ttof of the light pulse detected by the light receiving unit P based on the light receiving timing of the light receiving unit P.
  • the light detection system 1 emits the light pulse L0 a plurality of times, so that the histogram generator 17 accumulates the data of the flight time Ttof for each of the plurality of light receiving portions P.
  • the histogram generation unit 17 generates a histogram of the flight times Ttof for each of the plurality of light receiving units P based on the accumulated data of the flight times Ttof. Then, the histogram generator 17 identifies the flight time Ttof with the highest frequency based on the histogram of the flight times Ttof for the light receiving portion P, and determines the flight time Ttof as the flight time Ttof of the light receiving portion P. It's like
  • the distance calculation unit 18 is configured to generate the distance image PIC by calculating the distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P.
  • the transmission unit 19 is configured to transmit the image data of the distance image PIC.
  • the photodetector 10 may be formed on one semiconductor substrate, or may be formed on a plurality of semiconductor substrates, for example.
  • FIG. 8 shows a mounting example of the photodetector 10 formed on one semiconductor substrate 111 .
  • the light-receiving pixels P are arranged side by side in the region 112 of the semiconductor substrate 111
  • the timing detection section 31 is arranged side by side in the region 113 of the semiconductor substrate 111 .
  • a clock signal generator 20 , a control signal generator 12 , a driver 13 , a correction processor 16 , a histogram generator 17 , a distance calculator 18 and a transmitter 19 are also arranged on this semiconductor substrate 111 .
  • FIGS. 9 and 10 show a mounting example of the photodetector 10 formed on two semiconductor substrates 101 and 102 .
  • the semiconductor substrate 101 is arranged on the light receiving surface S side of the photodetector 10
  • the semiconductor substrate 102 is arranged on the side opposite to the light receiving surface S side of the photodetector 10 .
  • Semiconductor substrates 101 and 102 are overlaid on each other.
  • the wiring of the semiconductor substrate 101 and the wiring of the semiconductor substrate 102 are connected by the wiring 103 .
  • metal bonding such as Cu--Cu bonding and bump bonding can be used.
  • the photodetection unit U is arranged over these two semiconductor substrates 101 and 102, for example.
  • the light receiving portion P is arranged over two semiconductor substrates 101 and 102 in this example.
  • photodiode PD is arranged on semiconductor substrate 101
  • resistor element R 1 , inverter IVP, and OR circuit OR 1 are arranged on semiconductor substrate 102 .
  • the cathode of photodiode PD is connected via wiring 103 to the other end of resistive element R1 and the input terminal of inverter IV1.
  • the modification is applied to the light receiving portion P shown in FIG. 4A, but the modification may be applied to the light receiving portion P shown in FIG. 4B.
  • the four photodiodes PD in the light receiving portion P are arranged in a certain region on the semiconductor substrate 101.
  • the timing detection unit 31 that operates based on the pulse signal PLS generated by the light receiving unit P is arranged in a region of the semiconductor substrate 102 corresponding to the region where the four photodiodes PD are arranged.
  • Clock signal generator 20 , control signal generator 12 , driver 13 , correction processor 16 , histogram generator 17 , distance calculator 18 , and transmitter 19 are arranged on semiconductor substrate 102 .
  • the clock signal generator 20 corresponds to a specific example of the "clock signal generator” in the present disclosure.
  • the oscillator circuit 24 corresponds to a specific example of the “reference oscillator circuit” in the present disclosure.
  • the clock signal CLK corresponds to a specific example of "clock signal” in the present disclosure.
  • the light receiving section P corresponds to a specific example of the "first light receiving section” in the present disclosure.
  • the photodiode PD corresponds to a specific example of "first light receiving element” in the present disclosure.
  • the pulse signal PLS corresponds to a specific example of "first pulse signal” in the present disclosure.
  • the timing detector 31 corresponds to a specific example of "first timing detector” in the present disclosure.
  • the counter 42 corresponds to a specific example of "first counter” in the present disclosure.
  • the count code CDC1 corresponds to a specific example of "first code” in the present disclosure.
  • the oscillator circuit 34 corresponds to a specific example of the "first oscillator circuit” in the present disclosure.
  • the multiphase clock signal CLKM corresponds to a specific example of "first multiphase clock signal” in the present disclosure.
  • the flip-flop units 43 and 46 correspond to a specific example of the "first latch unit” in the present disclosure.
  • the correction processing unit 16 corresponds to a specific example of "correction processing unit” in the present disclosure.
  • the control voltage Vctrl corresponds to a specific example of "control voltage” in the present disclosure.
  • the corrector 47 corresponds to a specific example of the "corrector” in the present disclosure.
  • Operation mode MA corresponds to a specific example of "first operation mode” in the present disclosure.
  • the operation mode MB corresponds to a specific example of "second operation mode” in the present disclosure.
  • the correction parameter CAL1 corresponds to a specific example of "frequency ratio” in the present disclosure.
  • the histogram generation unit 17 corresponds to a specific example of the "processing unit" in the present disclosure.
  • the clock signal generator 20 generates the clock signal CLK based on the reference clock signal REFCLK.
  • the control signal generation unit 12 generates a signal STR that instructs the light emission operation of the light emission unit 8 .
  • the control signal generator 12 generates various control signals according to the operation mode M (operation modes MA and MB).
  • the driving unit 13 drives the light emitting unit 8 so that the light emitting unit 8 emits the light pulse L0 based on the signal STR.
  • the light emitting unit 8 emits a light pulse L0 toward the object to be measured OBJ.
  • the optical member 9 guides the light pulse L0 emitted from the light emitting unit 8 to the object to be measured OBJ and guides part of the light (light pulse L0R) to the light detection unit 10 .
  • Each of the plurality of light receiving portions P of the pixel array 14 detects light to generate a pulse signal PLS having pulses corresponding to the detected light.
  • the light receiving part PR detects the light pulse L0R guided by the optical member 9 .
  • the light-receiving portions P other than the light-receiving portion PR among the plurality of light-receiving portions P detect the reflected light pulse L1 reflected by the object to be measured OBJ.
  • the TDC section 30 detects the light reception timing of each of the plurality of light receiving sections P based on the pulse signal PLS supplied from each of the plurality of light receiving sections P in the pixel array 14 .
  • the correction processing unit 16 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 in the operation mode M2.
  • the histogram generation unit 17 generates a histogram of the flight time Ttof of the light pulse detected by the light receiving unit P based on the light receiving timing of the light receiving unit P.
  • the distance calculation unit 18 calculates a distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P, thereby generating the distance image PIC.
  • the transmission unit 19 transmits the image data of the distance image PIC.
  • the photodetection system 1 has operating modes MA and MB.
  • operation mode MA the photodetection system 1 performs ranging operation.
  • operation mode MB the photodetection system 1 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 . This operation will be described in detail below.
  • FIG. 11 shows an example of the operating state of the TDC section 30 in the operating mode MA.
  • the selectors 33, 37 and 41 are shown using switches representing their operating states.
  • the selectors 33 of the plurality of timing detectors 31 select the output signal of the AND circuit 32 based on the control signal from the control signal generator 12, and use this signal as the signal EN. It is supplied to the oscillation circuit 34 and the flip-flop 35 .
  • the selector 37 selects the output signal of the flip-flop 35 based on the control signal from the control signal generator 12, and supplies this signal to the flip-flop units 43 and 46 and the inverter 38 as the signal STP.
  • the selector 41 selects the clock signal CLK generated by the oscillation circuit 24 of the clock signal generator 20 based on the control signal from the control signal generator 12 and supplies the clock signal CLK to the counter 42 .
  • the light receiving portion P (light receiving portion PR) that detects the light pulse L0R guided by the optical member 9 and the reflected light pulse L1 reflected by the measurement object OBJ Focusing on the light receiving portion P (light receiving portion PA) that detects , the operation of the photodetection system 1 in the operation mode MA will be described.
  • FIG. 12 shows an operation example of the photodetection system 1 in the operation mode MA, where (A) shows the waveform of the signal STR, (B) shows the waveform of the clock signal CLK, and (C) to ( I) shows the waveform of the signal in the timing detection section 31 (timing detection section 31R) that operates based on the pulse signal PLS (pulse signal PLSR) generated by the light receiving section PR, and (J) to (P) show the waveform of the signal in the light receiving section PA.
  • 3 shows waveforms of signals in the timing detector 31 (timing detector 31A) that operates based on the pulse signal PLS (pulse signal PLSA) generated by .
  • FIG. 12(C) shows the count code CDC1 (count code CDC1R) in the timing detection section 31R
  • D shows the waveform of the pulse signal PLSR supplied to the timing detection section 31R
  • E shows the timing detection section 31R
  • F shows the waveform of the signal STP (signal STPR) in the timing detection section 31R
  • G shows the waveform of the signal EN (signal ENR) in the timing detection section 31R
  • H indicates the count code CDC (count code CDCR) in the timing detector 31R
  • I) indicates the count code CDF (count code CDFR) in the timing detector 31R.
  • the control signal generator 12 changes the signal STR from low level to high level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 12).
  • the counter 42 of the timing detector 31R starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1R begins to increment (FIG. 12(C)).
  • the counter 42 of the timing detector 31A starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1A starts increasing ((J) in FIG. 12).
  • the driving section 13 drives the light emitting section 8, and the light emitting section 8 emits the light pulse L0.
  • the optical member 9 guides the light pulse L0 emitted from the light emitting unit 8 to the object to be measured OBJ, and guides part of the light (light pulse L0R) to the light receiving unit PR of the light detection unit 10 .
  • the light receiving part PR generates a pulse signal PLSR by detecting this light pulse L0R.
  • the pulse signal PLSR changes from low level to high level ((D) in FIG. 12).
  • the timing detection section 31R corresponding to this light receiving section PR operates based on this pulse signal PLSR.
  • the signal STPR is at low level ((F) in FIG. 12), so the output signal of the AND circuit 32 of the timing detector 31R changes from low level to high level based on this pulse signal PLSR. do.
  • the signal ENR changes from low level to high level (FIG. 12(E)).
  • the oscillation circuit 34 of the timing detector 31R starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27).
  • the frequency divider 45 generates a count code CDF1R based on this multiphase clock signal CLKM (FIG. 12(G)).
  • This count code CDF1R changes four times while the count code CDC1R changes once. That is, by using the count code CDF1R, the light receiving timing can be detected with higher accuracy.
  • count code CDC1R is a coarse code
  • count code CDF1R is a fine code.
  • the count code CDC1R (coarse code) is generated based on the clock signal CLK generated by the oscillation circuit 24 of the clock signal generation section 20, and generated by the oscillation circuit 34 of the timing detection section 31R.
  • Count code CDF1R (fine code) is generated based on multiphase clock signal CLKM.
  • control signal generator 12 changes the signal STR from high level to low level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 12).
  • the flip-flop 35 of the timing detection section 31R latches the signal ENR based on the rising edge of the clock signal CLK.
  • the signal STPR changes from low level to high level at this timing t13 ((F) in FIG. 12).
  • the flip-flop section 43 of the timing detection section 31R latches the count code CDC1R to generate the count code CDCR ((C), (H) in FIG. 12).
  • the code value "0" of the count code CDC1R is latched. Based on this latch result, the count code CDCR becomes "0" at timing t15 in this example.
  • the flip-flop section 46 of the timing detection section 31R latches the count code CDF1R to generate the count code CDFR (FIGS. 12(G) and (I)).
  • the code value "1111" of the count code CDF1R is latched. Based on this latch result, the count code CDFR becomes "4" at timing t15 in this example.
  • the output signal of the AND circuit 32 of the timing detection section 31R changes from high level to low level.
  • the signal ENR changes from high level to low level ((E) in FIG. 12).
  • the oscillation circuit 34 of the timing detector 31R stops oscillating, and updating of the count code CDF1R stops ((G) in FIG. 12).
  • the flip-flop 35 of the timing detection section 31R latches the signal ENR based on the rising edge of the clock signal CLK.
  • the signal STPR changes from high level to low level at this timing t15 ((F) in FIG. 12).
  • the pulse signal PLSR changes from high level to low level (FIG. 12(D)).
  • the light receiving part PA detects the reflected light pulse L1 reflected by the object to be measured OBJ to generate the pulse signal PLSA.
  • the pulse signal PLSA changes from low level to high level ((K) in FIG. 12).
  • the timing detection section 31A corresponding to this light receiving section PA operates based on this pulse signal PLSA.
  • the signal STPA is at low level ((M) in FIG. 12), so the output signal of the AND circuit 32 of the timing detector 31A changes from low level to high level based on this pulse signal PLSA. do.
  • the signal ENA changes from low level to high level ((L) in FIG. 12).
  • the oscillation circuit 34 of the timing detector 31A starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27).
  • the frequency divider 45 generates the count code CDF1A based on this multiphase clock signal CLKM (FIG. 12(N)).
  • This count code CDF1A changes four times while the count code CDC1A changes once.
  • the count code CDC1A course code
  • Count code CDF1A fine code
  • the flip-flop 35 of the timing detection section 31A latches the signal ENA based on the rising edge of the clock signal CLK.
  • the signal STPA changes from low level to high level at this timing t23 ((M) in FIG. 12).
  • the flip-flop section 43 of the timing detection section 31A latches the count code CDC1A to generate the count code CDCA ((J) and (O) in FIG. 12).
  • the code value "21" of the count code CDC1A is latched.
  • the count code CDCA becomes "21" at timing t25 in this example.
  • the flip-flop section 46 of the timing detection section 31A latches the count code CDF1A to generate the count code CDFA ((N), (P) in FIG. 12).
  • the code value "1110" of the count code CDF1A is latched. Based on this latch result, the count code CDFA becomes "3" at timing t25 in this example.
  • the output signal of the AND circuit 32 of the timing detection section 31A changes from high level to low level.
  • the signal ENA changes from high level to low level ((L) in FIG. 12).
  • the oscillation circuit 34 of the timing detector 31A stops oscillating, and the update of the count code CDF1A stops ((N) in FIG. 12).
  • the flip-flop 35 of the timing detection section 31A latches the signal ENA based on the rising edge of the clock signal CLK.
  • the signal STPA changes from high level to low level at this timing t25 ((M) in FIG. 12).
  • the pulse signal PLSA changes from high level to low level ((K) in FIG. 12).
  • the timing detector 31R generates the count code CDCR (code value "0") and the count code CDFR (code value "4"), and the timing detector 31A generates the count code CDCA (code value "4"). code value "21") and count code CDFA (code value "3").
  • the time between the timing t12 when the light receiving unit PR detects the pulse signal PLSR and the timing t22 when the light receiving unit PA detects the pulse signal PLSA is the time of the light pulse detected by the light receiving unit PA. Time of flight Ttof.
  • the TDC section 30 supplies the count codes CDCR, CDFR and the count codes CDCA, CDFA to the histogram generating section 17 .
  • the histogram generator 17 first calculates the flight time Ttof using the following formula.
  • the flight time Ttof is the time based on the count value based on the count code CDF (fine code).
  • W is the ratio between the update period of the count code CDC1 (coarse code) and the update period of the count code CDF1 (fine code), and is "4" in the example of FIG.
  • the light detection system 1 emits the light pulse L0 multiple times, so that the histogram generation unit 17 accumulates the data of the flight time Ttof for each of the multiple light receiving units P.
  • the histogram generation unit 17 generates a histogram of the flight times Ttof for each of the plurality of light receiving units P based on the accumulated data of the flight times Ttof. Then, the histogram generator 17 identifies the flight time Ttof with the highest frequency based on the histogram of the flight times Ttof at the light receiving portion P, and determines the flight time Ttof as the flight time Ttof of the light receiving portion P.
  • the distance calculation unit 18 generates the distance image PIC by calculating the distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P.
  • the configuration of the oscillator circuit 34 (FIG. 6) is similar to the configuration of the oscillator circuit 24 (FIG. 3). Also, as shown in FIG. 5, the oscillation circuits 34 and 24 perform oscillation operations based on the same control voltage Vctrl. Therefore, the oscillation frequency of the oscillation circuit 34 is expected to be substantially the same as the oscillation frequency of the oscillation circuit 24 . In other words, the frequency of the multiphase clock signal CLKM generated by the oscillation circuit 34 is expected to be the same as the frequency of the clock signal CLK generated by the oscillation circuit 24 .
  • the TDC section 30 has a plurality of timing detection sections 31, so that the plurality of oscillation circuits 34 in the plurality of timing detection sections 31 are replaced by the oscillation circuit of the clock signal generation section 20. 24 is difficult. If the position of the oscillator circuit 34 is far from the position of the oscillator circuit 24 , a difference may occur between the oscillation frequency of the oscillator circuit 34 and the oscillation frequency of the oscillator circuit 24 . That is, for example, when the oscillation circuit 34 and the oscillation circuit 24 are separated from each other, the power supply voltage supplied to the oscillation circuit 34 and the power supply voltage supplied to the oscillation circuit 24 may vary due to, for example, a power supply voltage drop in the power supply line.
  • the oscillator circuit 34 and the oscillator circuit 24 are separated from each other, for example, there is a possibility that a temperature difference occurs between the temperature at the position of the oscillator circuit 34 and the temperature at the position of the oscillator circuit 24 . Further, when the oscillator circuit 34 and the oscillator circuit 24 are separated from each other, there is a possibility that the characteristics of the elements constituting the oscillator circuit 34 and the characteristics of the elements constituting the oscillator circuit 24 are different. . In such a case, a difference may occur between the oscillation frequency of the oscillation circuit 34 and the oscillation frequency of the oscillation circuit 24 .
  • FIG. 13 shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is the same as the oscillation frequency of the oscillation circuit 24.
  • a count code CDC coarse code
  • a count code CDF fine code
  • FIG. 14A shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is lower than the oscillation frequency of the oscillation circuit 24.
  • FIG. 14B shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is higher than the oscillation frequency of the oscillation circuit 24.
  • FIG. 14A shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is lower than the oscillation frequency of the oscillation circuit 24.
  • FIG. 14B shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is higher than the oscillation frequency of the oscillation circuit 24.
  • the slope of the conversion characteristic of count code CDF is smaller than the slope of the conversion characteristic of count code CDC, as shown in FIG. 14A.
  • the slope of the conversion characteristic of count code CDF is higher than the slope of the conversion characteristic of count code CDC, as shown in FIG. 14B. growing.
  • the conversion characteristics of the timing detection unit 31 deviate from the ideal conversion characteristics indicated by the dashed line, resulting in reduced linearity.
  • the photodetection system 1 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 in the operation mode MB. Thereby, even when there is a difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34, the conversion characteristic of the timing detection section 31 can be improved.
  • FIG. 15 shows an example of calibration in the photodetection system 1.
  • the photodetection system 1 performs calibration when the power is turned on.
  • the control signal generator 12 sets the operation mode M to the operation mode MB (step S101). Specifically, the control signal generator 12 sets the operating states of the selectors 33 , 37 , 41 of the plurality of timing detectors 31 .
  • FIG. 16 shows an example of the operating state of the TDC section 30 in the operating mode MB.
  • each selector 33 of the plurality of timing detectors 31 selects the signal STR based on the control signal from the control signal generator 12, and uses this signal as the signal EN to operate the oscillation circuit 34 and the flip-flop. 35.
  • the selector 37 selects the output signal of the inverter 36 based on the control signal from the control signal generator 12 and supplies this signal to the flip-flop units 43 and 46 and the inverter 38 as the signal STP.
  • the selector 41 selects the clock signal CLK0 generated by the oscillation circuit 34 based on the control signal from the control signal generator 12 and supplies the clock signal CLK0 to the counter 42 .
  • the photodetection system 1 performs a count operation in a plurality of timing detection units 31 to obtain a count code CDC (step S102). Focusing on one of the plurality of timing detection units 31 in the TDC unit 30, the operation of the photodetection system 1 in the operation mode MB will be described below.
  • FIG. 17 shows an operation example of the photodetection system 1 in the operation mode MB when the oscillation frequency of the oscillation circuit 34 of the timing detection section 31 is lower than the oscillation frequency of the oscillation circuit 24 of the clock signal generation section 20.
  • (A) shows the waveform of signal STR
  • (B) shows the waveform of clock signal CLK
  • (C) shows the waveform of signal EN
  • (D) shows the waveform of clock signal CLK0
  • (E ) indicates the count code CDC1
  • F indicates the waveform of the signal STP
  • (G) indicates the count code CDC.
  • control signal generator 12 changes the signal STR from low level to high level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 17).
  • the signal EN changes from low level to high level according to this change in signal STR (FIG. 17(C)). Based on this change in signal EN, oscillation circuit 34 starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK270).
  • the counter 42 starts a counting operation based on the rising edge of the clock signal CLK0, and the count code CDC1 begins to increment (FIG. 17(E)).
  • the oscillation frequency of the oscillation circuit 34 of the timing detection section 31 is lower than the oscillation frequency of the oscillation circuit 24 of the clock signal generation section 20, so the frequency of the clock signal CLK0 is lower than the frequency of the clock signal CLK.
  • the counter 42 performs a count operation based on such a clock signal CLK0.
  • the control signal generator 12 After timing t31, the control signal generator 12 counts the pulses of the clock signal CLK. At the timing t32 when the count value reaches the predetermined value CNT, the control signal generator 12 changes the signal STR from high level to low level in response to the rising edge of the clock signal CLK (FIG. 17(A), ( B)). In this example, the predetermined value CNT is set to "1024".
  • the signal EN changes from high level to low level according to this change in signal STR (FIG. 17(C)).
  • the oscillation circuit 34 stops oscillating (FIG. 17(D)), and updating of the count code CDC1 stops (FIG. 17(E)).
  • the signal STP changes from low level to high level at timing t32 according to this change in signal STR ((F) in FIG. 17).
  • the flip-flop unit 43 latches the count code CDC1 to generate the count code CDC (FIGS. 17(E) and (G)).
  • the code value "987" of the count code CDC1 is latched.
  • the count code CDC becomes "987" at timing t33 in this example.
  • the time length of the period from timing t31 to t32 is represented by "1024" when the clock signal CLK generated by the oscillation circuit 24 is used as a reference, and is represented by “987” when the clock signal CLK0 generated by the oscillation circuit 34 is used as a reference. expressed.
  • the oscillation frequency of the oscillation circuit 34 is “987/1024” of the oscillation frequency of the oscillation circuit 24 .
  • the photodetection system 1 obtains the count code CDC in each of the multiple timing detection units 31 .
  • the output units 44 of the plurality of timing detectors 31 sequentially supply the count code CDC to the correction processor 16 via the bus wiring BUS1.
  • the photodetection system 1 sets the correction parameter CAL1 in the correction units 47 in the plurality of timing detection units 31 (step S104). Specifically, the correction processing unit 16 supplies the plurality of correction parameters CAL1 stored in the storage unit 16B to the correction units 47 of the plurality of timing detection units 31 via the bus wiring BUS2. Each correction unit 47 sets the correction parameter CAL1 so that the count code CDF can be corrected by multiplying the count code CDF by the correction parameter CAL1.
  • the correction unit 47 performs correction by multiplying the code value of the count code CDF by the value "1024/987" of the correction parameter CAL1 in the operation mode MA. That is, in this example, since the oscillation frequency of the oscillation circuit 34 is "987/1024" of the oscillation frequency of the oscillation circuit 24 of the clock signal generation unit 20, the count code CDF is also the desired value of "987/1024". "become. Therefore, the correction unit 47 multiplies the code value of the count code CDF by the value "1024/987" of the correction parameter CAL1 to correct the count code CDF. Thereby, the influence of the frequency difference between the oscillation frequency of oscillation circuit 24 and the oscillation frequency of oscillation circuit 34 on count code CDF can be reduced.
  • control signal generator 12 sets the operation mode M to the operation mode MA (step S105). Specifically, the control signal generator 12 sets the operating states of the selectors 33, 37, and 41 of the plurality of timing detectors 31 as shown in FIG.
  • the photodetection system 1 starts a distance measurement operation, for example, as shown in FIG. 12 (step S106).
  • the photodetection system 1 is provided with the clock signal generation section 20, the timing detection section 31, and the correction processing section 16.
  • the clock signal generation unit 20 has an oscillation circuit 24 that performs an oscillation operation, and generates a clock signal CLK having a predetermined frequency by performing a phase synchronization operation.
  • the timing detection unit 31 includes a counter 42 that generates a first code (count code CDC1) by performing a count operation based on the clock signal CLK, and a multiphase clock signal by performing an oscillation operation based on the pulse signal PLS.
  • An oscillation circuit 34 that generates CLKM, and a flip-flop that latches a first code (count code CDC1) based on pulse signal PLS and a second code (count code CDF1) corresponding to multiphase clock signal CLKM. 43 and 46, and detects the light receiving timing in the light receiving portion P.
  • the correction processing unit 16 performs correction processing according to the frequency difference between the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM.
  • the timing detection section 31 has a correction section 47 that corrects the second code (count code CDF) latched by the flip-flop section 46.
  • the present embodiment includes the clock signal generation section, the timing detection section, and the correction processing section.
  • the clock signal generation unit has an oscillation circuit that performs an oscillation operation, and generates a clock signal with a predetermined frequency by performing a phase synchronization operation.
  • the timing detection unit includes a counter that generates a first code by performing a counting operation based on a clock signal, an oscillation circuit that generates a multiphase clock signal by performing an oscillation operation based on a pulse signal, and a pulse signal. , a flip-flop section for latching a first code and a second code corresponding to a multiphase clock signal is provided, and the light receiving timing of the light receiving section is detected.
  • the correction processing unit performs correction processing according to the frequency difference between the frequencies of the clock signals and the frequencies of the multiphase clock signals. Thereby, detection accuracy can be improved.
  • the timing detection section 31 has the correction section 47 that corrects the second code (count code CDF) latched by the flip-flop section 46 .
  • the correction processing unit calculates the frequency ratio of the clock signal and the multiphase clock signal, and in the first operation mode, the correction unit converts the second code latched by the flip-flop unit to Correction is made using the frequency ratio. Thereby, detection accuracy can be improved.
  • the operation mode M is set to the operation mode MB when the power of the photodetection system 1 is turned on, but the present invention is not limited to this.
  • the operation mode M may be periodically set to the operation mode MB while the photodetection system 1 is performing the ranging operation.
  • the control signal generator 12 checks whether a predetermined period of time has elapsed while the photodetection system 1 is performing the ranging operation (step S117). If the predetermined time has not yet passed (“N" in step S117), the process of step S117 is repeated until the predetermined time has passed.
  • step S118 the distance measuring operation is stopped (step S118), and the process returns to step S101.
  • the operation mode M is periodically set to the operation mode MB, but the operation mode is not limited to this, and the operation mode M can be set to the operation mode MB at any timing.
  • the conversion characteristics of the timing detection section 31 can be enhanced.
  • Second Embodiment> a photodetection system 2 according to a second embodiment will be described.
  • This embodiment differs from the first embodiment in the method of calibration. That is, although the count code CDF is corrected in the first embodiment, the oscillation frequency itself is adjusted in the present embodiment.
  • the same reference numerals are assigned to substantially the same components as those of the photodetection system 1 according to the first embodiment, and description thereof will be omitted as appropriate.
  • the photodetection system 2 includes a photodetection section 50 in the same manner as the photodetection system 1 (FIG. 1) according to the first embodiment.
  • the photodetection section 50 includes a TDC section 60 and a correction processing section 56 .
  • the TDC unit 60 Similar to the TDC unit 30 according to the first embodiment, the TDC unit 60, based on the pulse signal PLS supplied from each of the plurality of light receiving units P in the pixel array 14, detects the It is configured to detect light reception timing.
  • the TDC section 60 has a plurality of timing detection sections 61 .
  • FIG. 19 shows a configuration example of the timing detection section 61 in the TDC section 60.
  • the timing detection unit 61 includes an AND circuit 32, a selector 33, an oscillation circuit 64, a flip-flop (F/F) 35, an inverter 36, a selector 37, an inverter 38, a selector 41, a counter 42 and , a flip-flop section 43 , an output section 44 , a frequency dividing section 45 and a flip-flop section 46 . That is, the timing detection section 61 is obtained by replacing the oscillation circuit 34 in the timing detection section 31 (FIG. 5) according to the above embodiment with the oscillation circuit 64 and eliminating the correction section 47 .
  • the oscillation circuit 64 is configured to generate a multiphase clock signal CLKM having a frequency corresponding to the control voltage Vctrl by performing an oscillation operation. Oscillating circuit 64 oscillates or stops oscillating based on signal EN. Further, the oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
  • FIG. 20 shows a configuration example of the oscillation circuit 64.
  • the oscillation circuit 64 has a transistor MN12 and an adjustment section 65 .
  • the transistor MN12 is an N-type MOS transistor.
  • Transistor MN12 includes a plurality of transistors. The drains of these transistors are connected to the ground terminals of inverters IV1-IV4, and the sources are grounded. A control voltage Vctrl or a ground voltage is selectively supplied to the respective gates of these transistors.
  • the adjustment unit 65 is configured to set the number of transistors that supply the control voltage Vctrl, among the plurality of transistors included in the transistor MN12, based on the correction parameter CAL2.
  • the adjusting section 65 selectively supplies the control voltage Vctrl or the ground voltage to each gate of the plurality of transistors included in the transistor MN12.
  • the adjusting section 65 increases the number of transistors that supply the control voltage Vctrl. In this case, the current flowing through the transistor MN12 increases, so the current flowing through the inverters IV1 to IV4 increases, and the frequency of the multiphase clock signal CLKM increases. Further, for example, when the value indicated by the correction parameter CAL2 is small, the adjusting section 65 reduces the number of transistors that supply the control voltage Vctrl. In this case, since the current flowing through transistor MN12 is reduced, the current flowing through inverters IV1-IV4 is reduced, and the frequency of multiphase clock signal CLKM is lowered. Thus, the oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
  • the correction processing unit 56 (FIG. 19) is configured to perform calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64 in the operation mode M2.
  • the correction processing section 56 has a calculation section 56A and a storage section 56B. Based on the count code CDC supplied from the timing detection section 61 in the TDC section 60 via the bus wiring BUS1, the calculation section 56A performs correction according to the frequency difference between the oscillation frequencies of the oscillation circuits 24 and 34. It is configured to calculate a parameter CAL2.
  • the storage unit 56B is configured to store correction parameters CAL2 for each of the plurality of timing detection units 61. FIG.
  • the correction processing unit 56 supplies the correction parameter CAL2 to the timing detection unit 61 in the TDC unit 60 via the bus wiring BUS2.
  • the timing detection unit 61 corresponds to a specific example of the "first timing detection unit” in the present disclosure.
  • the oscillator circuit 64 corresponds to a specific example of the "first oscillator circuit” in the present disclosure.
  • the correction processing unit 56 corresponds to a specific example of "correction processing unit” in the present disclosure.
  • the adjuster 65 corresponds to a specific example of "adjuster” in the present disclosure.
  • the photodetection system 2 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64 in the operation mode MB. Thereby, even if there is a difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64, the conversion characteristic of the timing detection section 61 can be improved.
  • FIGS. 21A and 21B represent an example of calibration in the photodetection system 2.
  • FIG. In this example, the photodetection system 2 performs calibration when power is turned on.
  • the control signal generator 12 sets the operation mode M to the operation mode MB (step S201). Specifically, the control signal generator 12 sets the operation states of the selectors 33 , 37 and 41 of the plurality of timing detectors 61 . The operating states of the selectors 33, 37 and 41 are the same as in the case of the first embodiment (FIG. 16). Further, the control signal generator 12 sets the setting of the adjuster 65 of the oscillation circuit 64 to the initial state. Accordingly, the adjustment unit 65 supplies the control voltage Vctrl to a predetermined number of transistors among the plurality of transistors included in the transistor MN12. Also, the value of the correction parameter CAL2 is set to a value corresponding to this initial state.
  • the photodetection system 2 performs a count operation in each of the plurality of timing detection units 61 to obtain a count code CDC (step S202). This operation is the same as in the case of the first embodiment (FIG. 17). Based on the control signal from the control signal generator 12, the output units 44 of the plurality of timing detectors 61 sequentially supply the count code CDC to the correction processor 56 via the bus wiring BUS1.
  • the arithmetic unit 56A of the correction processing unit 56 performs the processing of steps S203 to S210 based on the count codes CDC supplied from the plurality of timing detection units 61 respectively.
  • step S204 the calculation unit 56A confirms whether or not it is the first calculation for the timing detection unit 61 (step S204). If it is the first calculation ("Y" in step S204), the process proceeds to step S206.
  • step S204 the calculation unit 56A checks whether the magnitude relationship between the count code CDC and the predetermined value CNT has changed (step S205). If the magnitude relationship has changed ("Y" in step S205), the process proceeds to step S211.
  • step S205 If the magnitude relationship has not changed ("N" in step S205), the correction parameters CAL1 and CAL2 are stored as the previous correction parameters (step S206).
  • the calculation unit 56A confirms whether the value of the count code CDC is greater than the predetermined value CNT (step S207).
  • step S207 If the value of the count code CDC is greater than the predetermined value CNT ("Y" in step S207), the calculation unit 56A updates the value of the correction parameter CAL2 by decrementing it (step S208). That is, when the value of the count code CDC is greater than the predetermined value CNT, the oscillation frequency of the oscillation circuit 64 is higher than the oscillation frequency of the oscillation circuit 24. , by decrementing the value of the correction parameter CAL2.
  • the calculation unit 56A updates the value of the correction parameter CAL2 by incrementing it (step S209). That is, when the value of the count code CDC is smaller than the predetermined value CNT, the oscillation frequency of the oscillation circuit 64 is lower than the oscillation frequency of the oscillation circuit 24. , by incrementing the value of the correction parameter CAL2.
  • the storage unit 56B stores the updated correction parameter CAL2 (step S210).
  • the photodetection system 2 sets the correction parameter CAL2 in the adjustment units 65 of the plurality of timing detection units 61 (step S211).
  • the correction processing unit 56 supplies the plurality of correction parameters CAL2 stored in the storage unit 56B to the adjustment units 65 of the plurality of timing detection units 61 via the bus wiring BUS2.
  • Each adjustment unit 65 sets the number of transistors that supply the control voltage Vctrl among the plurality of transistors included in the transistor MN12 based on the correction parameter CAL2. Thereby, the oscillation frequency of the oscillation circuit 64 is adjusted based on the correction parameter CAL2.
  • step S205 if the magnitude relationship between the count code CDC and the predetermined value CNT has changed ("Y" in step S205), the calculation unit 56A determines whether the correction parameter CAL1 is closer to "1" than the previous correction parameter CAL1. Confirm whether or not (step S212). If the correction parameter CAL1 is closer to "1" than the previous correction parameter CAL1 ("Y” in step S212), the storage unit 56B stores the correction parameter CAL2 (step S213). If the correction parameter CAL1 is not closer to "1" than the previous correction parameter CAL1 ("N” in step S212), the storage unit 56B stores the previous correction parameter CAL2 (step S214).
  • the photodetection system 2 sets the correction parameter CAL2 in the adjustment units 65 of the plurality of timing detection units 61 (step S215).
  • the correction processing unit 56 supplies the correction parameter CAL2 stored in the storage unit 56B to the adjustment unit 65 of the timing detection unit 61 via the bus wiring BUS2.
  • the adjustment unit 65 sets the number of transistors that supply the control voltage Vctrl among the plurality of transistors included in the transistor MN12. Thereby, the oscillation frequency of the oscillation circuit 64 is adjusted based on the correction parameter CAL2.
  • control signal generator 12 sets the operation mode M to the operation mode MA (step S216). Specifically, the control signal generator 12 sets the operation states of the selectors 33 , 37 and 41 of the plurality of timing detectors 61 .
  • the operating states of the selectors 33, 37 and 41 are the same as in the case of the first embodiment (FIG. 11).
  • step S2-7 the photodetection system 2 starts ranging operation.
  • the oscillation circuit 64 has the adjustment section 65 that adjusts the oscillation frequency.
  • the correction processing unit 56 adjusts the frequency of the multiphase clock signal CLKM to the frequency of the clock signal CLK based on the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM.
  • the operation of the adjustment unit 65 is controlled so as to approach .
  • the oscillation circuit has an adjustment section that adjusts the oscillation frequency. Then, in the second operation mode, the correction processing unit operates the adjustment unit based on the frequency of the clock signal and the frequency of the multiphase clock signal so that the frequency of the multiphase clock signal approaches the frequency of the clock signal. made to control. Thereby, detection accuracy can be improved.
  • the oscillation frequency of the oscillation circuit 64 is adjusted by setting the number of transistors supplying the control voltage Vctrl among the plurality of transistors included in the transistor MN12 based on the correction parameter CAL2. , but not limited to.
  • the oscillation frequency of the oscillation circuit 64 may be adjusted by adjusting the voltage of the control signal Vctrl.
  • the oscillation circuit 64 has a switch SW, an adjustment section 66, and a capacitive element C1.
  • a control voltage Vctrl is supplied to one end of the switch SW, and the other end is connected to the gate of the transistor MN11.
  • the switch SW is controlled by the control signal generator 12, for example.
  • the adjustment unit 66 is configured to generate the voltage ⁇ V, which is the voltage correction amount of the control voltage Vctrl, based on the correction parameter CAL2.
  • the adjustment section 66 has a DAC (Digital to Analog Converter) 66A. This DAC 66A is configured to generate a voltage ⁇ V.
  • One end of the capacitive element C1 is connected to the transistor MN11, and the other end is supplied with the voltage ⁇ V.
  • the oscillation frequency of the oscillation circuit 64 can be adjusted by turning off the switch SW.
  • the switch SW is turned off, the voltage of the gate of the transistor MN11 is maintained at the control voltage Vctrl.
  • the adjustment unit 66 generates the voltage ⁇ V based on the correction parameter CAL2, so that the voltage of the gate of the transistor MN11 changes from the control voltage Vctrl by this voltage ⁇ V.
  • the oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
  • the operation mode M is set to the operation mode MB when the power of the photodetection system 2 is turned on, but the present invention is not limited to this.
  • the operation mode M may be periodically set to the operation mode MB while the photodetection system 2 is performing the ranging operation.
  • the control signal generator 12 checks whether a predetermined period of time has elapsed while the photodetection system 2 is performing the ranging operation (step S228). If the predetermined time has not yet passed (“N" in step S228), the process of step S228 is repeated until the predetermined time has passed.
  • the distance measuring operation is stopped (step S229), and the process returns to step S201.
  • the operation mode M is periodically set to the operation mode MB, but the operation mode is not limited to this, and the operation mode M can be set to the operation mode MB at any timing. As a result, for example, when the photodetection system 2 operates for a long time, or when the temperature or power supply voltage fluctuates, the conversion characteristics of the timing detector 61 can be enhanced.
  • a photodetection system 3 according to a third embodiment will be described. This embodiment is configured to adjust the phase of the clock signal CLK in the photodetection system 2 according to the second embodiment.
  • the same reference numerals are assigned to substantially the same components as those of the photodetection system 2 according to the second embodiment, and description thereof will be omitted as appropriate.
  • the photodetection system 3 includes a photodetection section 70, like the photodetection system 1 (FIG. 1) according to the first embodiment.
  • the photodetector 70 has a multiphase clock signal generator 71 , a selector 73 , and a control signal generator 72 .
  • the multiphase clock signal generator 71 is configured to generate multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK270).
  • FIG. 24 shows a configuration example of the multiphase clock signal generator 71.
  • the multiphase clock signal generation section 71 has an oscillation circuit 64 , an inverter 36 , a counter 42 , a flip-flop section 43 and an output section 44 .
  • the oscillation circuit 64 is configured to generate a multiphase clock signal CLKM having a frequency corresponding to the control voltage Vctrl by performing an oscillation operation. Oscillation circuit 64 performs an oscillation operation or stops an oscillation operation based on signal STR. The oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
  • the inverter 36 is configured to invert the signal STR and output the inverted signal.
  • the counter 42 is configured to generate the count code CDC1 by performing a counting operation based on the rising edge of the clock signal CLK0. Counter 42 starts a counting operation based on signal STR. The counter 42 outputs a multi-bit count code CDC1.
  • the flip-flop unit 43 is configured to latch the count code CDC1 supplied from the counter 42 based on the rising edge of the signal STP. Then, the flip-flop section 43 supplies the count code CDC indicating the latch result to the output section 44 .
  • the output unit 44 is configured to supply the count code CDC to the correction processing unit 56 via the bus wiring BUS1 based on the control signal from the control signal generation unit 12.
  • the multiphase clock signal generation section 71 can adjust the oscillation frequency of the oscillation circuit 64 in the same manner as the timing detection section 61 according to the second embodiment.
  • the selector 73 (FIG. 24) selects one of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM generated by the multiphase clock signal generation unit 71 based on the signal NSEL,
  • the selected clock signal is configured to be supplied to the driving section 13 as the clock signal NCLK.
  • the control signal generator 72 is configured to generate various control signals used in the photodetector 70 .
  • the control signal generator 72 generates the signal NSEL and the signal STR2.
  • the driving section 13 drives the light emitting section 8 so that the light emitting section 8 emits the light pulse L0 based on the signal STR2.
  • the multiphase clock signal generator 71 corresponds to a specific example of the "multiphase clock signal generator” in the present disclosure.
  • the oscillator circuit 64 corresponds to a specific example of the "third oscillator circuit” in the present disclosure.
  • Clock signal CLKM corresponds to a specific example of "third multiphase clock signal” in the present disclosure.
  • the selector 73 corresponds to a specific example of "selector” in the present disclosure.
  • the control signal generator 72 corresponds to a specific example of the "control signal generator” in the present disclosure.
  • the flip-flop 13A corresponds to a specific example of "sampling circuit" in the present disclosure.
  • the photodetection system 3 has the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64 in the operation mode MB. Perform calibration according to the difference. Thereby, the photodetection system 3 adjusts the oscillation frequency of the oscillation circuit 64 in the multiphase clock signal generator 71 and the plurality of timing detectors 61 .
  • the selector 73 selects one of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM generated by the multiphase clock signal generation unit 71, and supplies the selected clock signal to the drive unit 13. do.
  • the flip-flop 13A of the driving section 13 generates the signal TRG by latching the signal STR2 at the rising edge of the clock signal NCLK. As a result, the driving section 13 drives the light emitting section 8 at timing according to the output signal of the selector 73 .
  • FIG. 25 shows an operation example of the multiphase clock signal generator 71, the control signal generator 72, the selector 73, and the driver 13 in the operation mode MA.
  • the waveform of the clock signal CLK to be generated is shown, (B) shows the waveform of the signal STR, (C) shows the waveform of the signal STR2, and (D) to (G) are generated by the multiphase clock signal generator 71.
  • Waveforms of multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, and CLK270) are shown, (H) shows the waveform of signal NSEL, (I) shows the waveform of clock signal NCLK, and (J) shows the driving section.
  • 13 shows the waveform of the signal TRG generated by the flip-flop 13A at 13.
  • the control signal generator 72 changes the signal STR2 from low level to high level based on the rising edge of the clock signal CLK ((A) and (C) in FIG. 25).
  • the control signal generator 72 also generates a signal NSEL (“2”) that instructs the selector 73 to select the clock signal CLK180 based on the rising edge of the clock signal CLK (FIG. 25). (H)).
  • the control signal generator 72 changes the signal STR from low level to high level based on the rising edge of the clock signal CLK. (FIG. 25(B)).
  • the oscillation circuit 64 of the multiphase clock signal generator 71 starts oscillating and starts to generate the multiphase clock signal CLKM ((D) to (G) in FIG. 25).
  • Selector 73 selects clock signal CLK180 based on signal NSEL and outputs this signal as clock signal NCLK (FIG. 25(I)).
  • the flip-flop 13A of the driving section 13 changes the signal TRG from low level to high level by latching the signal STR2 at the rising edge of the clock signal NCLK ((J) in FIG. 25). Then, at timing t44 after a period of time corresponding to, for example, two cycles or more of the clock signal CLK has elapsed from timing t42, the control signal generator 72 changes the signal STR2 from high level to low level based on the rising edge of the clock signal CLK. (Fig. 25(C)). At subsequent timing t45, the flip-flop 13A of the driving section 13 changes the signal TRG from high level to low level by latching the signal STR2 at the rising edge of the clock signal NCLK (FIG. 25(J)). The driving section 13 drives the light emitting section 8 based on this signal TRG.
  • the control signal generator 72 changes the signal STR from high level to low level based on the rising edge of the clock signal CLK. (Fig. 25(B)).
  • the oscillation circuit 64 of the multiphase clock signal generator 71 stops oscillating and stops generating the multiphase clock signal CLKM ((D) to (G) in FIG. 25).
  • the multiphase clock signal generator 71 generates the multiphase clock signal CLKM, and the selector 73 selects the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM. Since one of them is selected and the selected clock signal is supplied to the driving section 13, the light emission timing of the light emitting section 8 can be adjusted.
  • the multiphase clock signal generator generates the multiphase clock signals, and the selector 73 selects one of the clock signals included in the multiphase clock signals, Since the clock signal is supplied to the driving section, the light emission timing of the light emitting section can be adjusted.
  • the selector 73 selects one of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM generated by the multiphase clock signal generator 71, but is limited to this. not to be Alternatively, instead of providing the multiphase clock signal generator 71, for example, as shown in FIG. One of a plurality of clock signals included in this multiphase clock signal may be selected.
  • the oscillator circuit 84 has four inverters IV1 to IV4, for example, like the oscillator circuit 24 (FIG. 3) according to the third embodiment. In the oscillator circuit 84, these four inverters IV output multi-phase clock signals as in the oscillator circuit 34 (FIG. 6).
  • the photodetection system 4 includes a photodetection section 90 in the same manner as the photodetection system 1 (FIG. 1) according to the first embodiment.
  • the photodetector section 90 has a pixel array 114 and a TDC section 130 .
  • the pixel array 114 has a plurality of light receiving portions P arranged in a matrix.
  • the light receiving unit P is configured to detect light and generate a pulse signal PLS having pulses corresponding to the detected light.
  • the light-receiving part P is configured so as to be able to generate a pulse signal PLS with a narrow pulse width in this example.
  • the TDC unit 130 based on the pulse signal PLS supplied from each of the plurality of light receiving units P in the pixel array 14, detects the It is configured to detect light reception timing.
  • the TDC section 130 has a plurality of timing detection sections 131 .
  • FIG. 27 shows a configuration example of the timing detection section 131 in the TDC section 130. As shown in FIG.
  • the timing detection section 131 includes an SR latch 132, a selector 133, an oscillation circuit 34, a selector 135, an inverter 136, a selector 41, a counter 42, a flip-flop section (F/F section) 43, and an output section. 44 , a frequency dividing section 45 , a flip-flop section 46 and a correcting section 47 .
  • the SR latch 132 is configured to be set by the pulse signal PLS and reset by the clock signal CLK.
  • the selector 133 is configured to select one of the signal STR and the output signal of the SR latch 132 based on the control signal from the control signal generator 12 and output the selected signal as the signal EN. Specifically, based on the control signal from the control signal generator 12, the selector 133 selects the output signal of the SR latch 132 in the operation mode MA, and selects the signal STR in the operation mode MB. .
  • the selector 135 is configured to select one of the signal EN and the signal STR based on the control signal from the control signal generator 12 and output the selected signal. Specifically, based on the control signal from the control signal generator 12, the selector 135 selects the signal EN in the operation mode MA, and selects the signal STR in the operation mode MB.
  • the inverter 136 is configured to invert the output signal of the selector 135 and output the inverted signal as the signal STP.
  • FIG. 28 shows an example of the operating state of the TDC section 130 in the operating mode MA.
  • each selector 133 of a plurality of timing detectors 131 selects the output signal of SR latch 132 based on the control signal from control signal generator 12, and oscillates this signal as signal EN. It feeds circuit 34 and selector 135 .
  • the selector 135 selects the signal EN based on the control signal from the control signal generator 12 and supplies the signal EN to the inverter 136 .
  • the selector 41 selects the clock signal CLK generated by the oscillation circuit 24 of the clock signal generator 20 based on the control signal from the control signal generator 12 and supplies the clock signal CLK to the counter 42 .
  • the light receiving portion P (light receiving portion PR) that detects the light pulse L0R guided by the optical member 9 and the reflected light pulse L1 reflected by the measurement object OBJ Focusing on the light receiving portion P (light receiving portion PA) that detects , the operation of the light detection system 4 in the operation mode MA will be described.
  • FIG. 29 shows an operation example of the photodetection system 4 in the operation mode MA, where (A) shows the waveform of the signal STR, (B) shows the waveform of the clock signal CLK, and (C) to ( I) shows the waveform of the signal in the timing detection unit 131 (timing detection unit 131R) that operates based on the pulse signal PLS (pulse signal PLSR) generated by the light receiving unit PR.
  • 1 shows waveforms of signals in the timing detector 131 (timing detector 131A) that operates based on the pulse signal PLS (pulse signal PLSA) generated by .
  • 29(C) shows the count code CDC1 (count code CDC1R) in the timing detection section 131R
  • D shows the waveform of the pulse signal PLSR supplied to the timing detection section 131R
  • E shows the timing detection section 131R
  • F shows the waveform of the signal STP (signal STPR) in the timing detection section 131R
  • G shows the waveform of the signal EN (signal ENR) in the timing detection section 131R
  • H indicates the count code CDC (count code CDCR) in the timing detection section 131R
  • I) indicates the count code CDF (count code CDFR) in the timing detection section 131R.
  • 29(J) shows the count code CDC1 (count code CDC1A) in the timing detection section 131A
  • K shows the waveform of the pulse signal PLSA supplied to the timing detection section 131A
  • L shows the timing detection section 131A
  • M shows the waveform of the signal STP (signal STPA) in the timing detection section 131A
  • N shows the waveform of the signal EN (signal ENA) in the timing detection section 131A
  • N the count code CDF1 (count code CDF1A) in the timing detection section 131A
  • O indicates the count code CDC (count code CDCA) in the timing detection section 131A
  • P indicates the count code CDF (count code CDFA) in the timing detection section 131A.
  • the control signal generator 12 changes the signal STR from low level to high level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 29).
  • the counter 42 of the timing detector 131R starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1R begins to increment (FIG. 29(C)).
  • the counter 42 of the timing detection section 131A starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1A starts increasing ((J) in FIG. 29).
  • the driving section 13 drives the light emitting section 8, and the light emitting section 8 emits the light pulse L0.
  • the optical member 9 guides the light pulse L0 emitted from the light emitting unit 8 to the object to be measured OBJ, and guides part of the light (light pulse L0R) to the light receiving unit PR of the light detection unit 10 .
  • the light receiving part PR generates a pulse signal PLSR by detecting this light pulse L0R.
  • the pulse signal PLSR changes from low level to high level ((D) in FIG. 29).
  • the timing detection section 131R corresponding to this light receiving section PR operates based on this pulse signal PLSR.
  • the pulse signal PLSR changes from high level to low level at a timing after a short period of time has passed from timing t52.
  • the SR latch 132 of the timing detector 131R is set based on the pulse signal PLSR, and the signal ENR changes from low level to high level (FIG. 29(E)). Then, the signal STPR changes from the high level to the low level according to the change of the signal ENR (FIG. 29(F)).
  • the oscillation circuit 34 of the timing detector 131R starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27).
  • the frequency divider 45 generates the count code CDF1R based on this multiphase clock signal CLKM (FIG. 29(G)).
  • the SR latch 132 of the timing detection section 131R is reset based on the clock signal CLK, and the signal ENR changes from high level to low level (FIG. 29(E)).
  • the oscillation circuit 34 of the timing detector 131R stops oscillating, and updating of the count code CDF1R stops ((G) in FIG. 29).
  • the signal STPR changes from low level to high level according to the change of the signal ENR (FIG. 29(F)).
  • the flip-flop section 43 of the timing detection section 131R latches the count code CDC1R to generate the count code CDCR (FIGS. 29(C) and (H)).
  • the code value "0" of the count code CDC1R is latched.
  • the count code CDCR becomes "0" at timing t55 in this example.
  • the flip-flop section 46 of the timing detection section 131R latches the count code CDF1R to generate the count code CDFR (FIGS. 29(G) and (I)).
  • the code value "1111" of the count code CDF1R is latched. Based on this latch result, the count code CDFR becomes "4" at timing t55 in this example.
  • the light receiving part PA detects the reflected light pulse L1 reflected by the object to be measured OBJ to generate the pulse signal PLSA.
  • the pulse signal PLSA changes from low level to high level ((K) in FIG. 29).
  • the timing detection section 131A corresponding to this light receiving section PA operates based on this pulse signal PLSA.
  • the pulse signal PLSA changes from high level to low level at a timing after a short period of time has passed from timing t62.
  • the SR latch 132 of the timing detection section 131A is set based on the pulse signal PLSA, and the signal ENA changes from low level to high level ((L) in FIG. 29). Then, the signal STPA changes from the high level to the low level according to the change of the signal ENA ((M) in FIG. 29).
  • the oscillation circuit 34 of the timing detector 131A starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27).
  • Frequency divider 45 generates count code CDF1A based on multiphase clock signal CLKM ((N) in FIG. 29).
  • the SR latch 132 of the timing detector 131A is reset based on the clock signal CLK, and the signal ENA changes from high level to low level ((L) in FIG. 29).
  • the oscillation circuit 34 of the timing detector 131R stops oscillating, and updating of the count code CDF1A stops ((N) in FIG. 29).
  • the signal STPA changes from the low level to the high level according to the change of the signal ENA ((M) in FIG. 29).
  • the flip-flop section 43 of the timing detection section 131A latches the count code CDC1A to generate the count code CDCA (FIGS. 29(J) and (O)).
  • the code value "21" of the count code CDC1A is latched.
  • the count code CDCA becomes "21" at timing t65 in this example.
  • the flip-flop section 46 of the timing detection section 131A latches the count code CDF1A to generate the count code CDFA ((N), (P) in FIG. 29).
  • the code value "1110" of the count code CDF1A is latched. Based on this latch result, the count code CDFA becomes "3" at timing t65 in this example.
  • the TDC unit 130 supplies the count codes CDCR, CDFR and the count codes CDCA, CDFA to the histogram generation unit 17.
  • the histogram generator 17 calculates the flight time Ttof.
  • the light detection system 1 emits the light pulse L0 multiple times, so that the histogram generation unit 17 accumulates the data of the flight time Ttof for each of the multiple light receiving units P.
  • the histogram generation unit 17 generates a histogram of the flight times Ttof for each of the plurality of light receiving units P based on the accumulated data of the flight times Ttof. Then, the histogram generator 17 identifies the flight time Ttof with the highest frequency based on the histogram of the flight times Ttof at the light receiving portion P, and determines the flight time Ttof as the flight time Ttof of the light receiving portion P.
  • the distance calculation unit 18 generates the distance image PIC by calculating the distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P.
  • FIG. 30 shows an example of the operating state of the TDC section 130 in the operating mode MB.
  • the selectors 133 of the plurality of timing detectors 131 select the signal STR based on the control signal from the control signal generator 12, and send the signal STR to the oscillation circuit 34 as the signal EN. supply.
  • the selector 135 selects the signal STR based on the control signal from the control signal generator 12 and supplies the signal STR to the inverter 136 .
  • the selector 41 selects the clock signal CLK0 generated by the oscillation circuit 34 based on the control signal from the control signal generator 12 and supplies the clock signal CLK0 to the counter 42 .
  • the operation of the photodetection system 4 in the operation mode MB is the same as that of the photodetection system 1 according to the first embodiment (FIGS. 15 and 17).
  • the configuration of the timing detection section 131 can be simplified. As a result, the circuit area of the photodetection system 4 can be reduced.
  • Modification 4-1 The modification of the first embodiment may be applied to the photodetection system 4 according to the embodiment.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is implemented as a device mounted on any type of moving object such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 31 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on information on the inside and outside of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062 and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 32 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 32 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic braking control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle autonomously travels without depending on the operation of the driver.
  • automatic braking control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the vehicle control system 12000 can improve the detection accuracy of time (TOF value) and distance.
  • TOF value time
  • a vehicle collision avoidance or collision mitigation function a follow-up driving function based on the inter-vehicle distance
  • vehicle speed maintenance driving function a vehicle collision warning function
  • a vehicle lane deviation warning function etc.
  • the light receiving unit P as shown in FIGS. 4A and 4B is provided, but the circuit configuration of the light receiving unit P is not limited to this, and various circuit configurations can be applied. can do.
  • This technology can be configured as follows. According to the present technology having the following configuration, detection accuracy can be improved.
  • a clock signal generation unit having a reference oscillation circuit that performs an oscillation operation and that generates a clock signal of a predetermined frequency by performing a phase synchronization operation; a first light receiving unit having a first light receiving element and generating a first pulse signal according to a light receiving result of the first light receiving element; A first counter that generates a first code by performing a counting operation based on the clock signal, and a first multiphase clock signal that generates a first multiphase clock signal by performing an oscillation operation based on the first pulse signal. a first oscillation circuit; and a first latch section for latching the first code and the second code according to the first multiphase clock signal based on the first pulse signal.
  • the reference oscillation circuit performs an oscillation operation based on a control voltage;
  • the reference oscillation circuit and the first oscillation circuit are ring oscillators having circuits in a plurality of stages;
  • the first timing detection unit has a correction unit that corrects the second code latched by the first latch unit,
  • the photodetector according to (2) or (3), wherein the correction processing section controls the operation of the correction section based on the frequency of the clock signal and the frequency of the first multiphase clock signal.
  • the photodetector has a first mode of operation and a second mode of operation;
  • the correction processing unit calculates a frequency ratio between the frequency of the clock signal and the frequency of the first multiphase clock signal
  • the first timing detection section detects the first light receiving timing
  • the correction section converts the second code latched by the first latch section to the frequency
  • the first counter performs a count operation based on the first multiphase clock signal
  • the correction processor calculates the frequency ratio based on the result of the count operation.
  • the first oscillation circuit has an adjustment section that adjusts an oscillation frequency
  • the photodetector has a first mode of operation and a second mode of operation; In the second operation mode, the correction processing unit adjusts the frequency of the first multiphase clock signal to the frequency of the clock signal based on the frequency of the clock signal and the frequency of the first multiphase clock signal. controlling the operation of the adjustment unit so as to approach
  • the correction processing section controls the operation of the adjusting section based on the magnitude relationship between the frequency of the clock signal and the frequency of the first multiphase clock signal.
  • a photodetector as described.
  • a second light receiving unit having a second light receiving element and generating a second pulse signal according to the light receiving result of the second light receiving element; a second counter for generating a third code by performing a counting operation based on the clock signal; and a second counter for generating a second multiphase clock signal by performing an oscillation operation based on the second pulse signal. and a second latch section for latching the third code and the fourth code according to the second multiphase clock signal based on the second pulse signal.
  • a second timing detection unit for detecting a second light receiving timing in the second light receiving unit; further comprising The light according to any one of (1) to (9), wherein the correction processing section performs a second correction process according to a frequency difference between the frequency of the clock signal and the frequency of the second multiphase clock signal. detection device. (11) calculating a first timing value corresponding to the first light receiving timing based on the first code and the second code, and calculating the second timing value based on the third code and the fourth code; any one of (1) to (10) above, further comprising a processing unit that calculates a second timing value according to the light receiving timing of and calculates a difference between the first timing value and the second timing value 10.
  • the photodetector according to 1.
  • a multiphase clock signal generator having a third oscillation circuit that generates a third multiphase clock signal by performing an oscillation operation; a selector that selects one of a plurality of clock signals included in the third multiphase clock signal; a control signal generator that generates a control signal; a sampling circuit that samples the control signal with a clock signal selected by the selector;
  • the light according to any one of (1) to (11), wherein the correction processing section performs a third correction process according to a frequency difference between the frequency of the clock signal and the frequency of the third multiphase clock signal. detection device.
  • the photodetector according to any one of (1) to (11), wherein the reference oscillation circuit generates a third multiphase clock signal including the clock signal.
  • the first light receiving section has a plurality of the first light receiving elements, The photodetector according to any one of (1) to (14), wherein the first pulse signal is a signal corresponding to light reception results of the plurality of first light receiving elements.
  • the first light receiving element is provided on a first semiconductor substrate, The photodetector according to any one of (1) to (15), wherein the first timing detection section is provided on a second semiconductor substrate attached to the first semiconductor substrate.
  • a light-emitting part that emits light; and a light-detecting part that detects light reflected by a detection target, out of the light emitted from the light-emitting part
  • the photodetector is a clock signal generation unit having a reference oscillation circuit that performs an oscillation operation and that generates a clock signal of a predetermined frequency by performing a phase synchronization operation; a first light receiving unit having a first light receiving element and generating a first pulse signal according to a light receiving result of the first light receiving element; A first counter that generates a first code by performing a counting operation based on the clock signal, and a first multiphase clock signal that generates a first multiphase clock signal by performing an oscillation operation based on the first pulse signal.
  • a first oscillation circuit for detecting a first light receiving timing in the first light receiving unit; and a correction processing unit that performs a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This light detection device comprises: a clock signal generation unit that comprises a reference oscillation circuit for carrying out an oscillation operation and that generates a clock signal having a prescribed frequency by carrying out a phase synchronization operation; a first timing detection unit that comprises a first light reception unit for generating a first pulse signal corresponding to a light reception result of a first light reception element, a first counter for generating a first code by carrying out a count operation on the basis of the clock signal, a first oscillation circuit for generating a first multiphase clock signal by carrying out an oscillation operation on the basis of the first pulse signal, and a first latch unit for, on the basis of the first pulse signal, latching the first code and a second code corresponding to the first multiphase clock signal, and that detects a first light reception timing at the first light reception unit; and a correction processing unit that carries out first correction processing according to the frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.

Description

光検出装置および光検出システムPhotodetector and photodetection system
 本開示は、光を検出する光検出装置および光検出システムに関する。 The present disclosure relates to a photodetection device and a photodetection system that detect light.
 計測対象物までの距離を計測する際、しばしば、TOF(Time Of Flight)法が用いられる。このTOF法では、光を射出するとともに、計測対象物により反射された反射光を検出する。そして、TOF法では、光を射出したタイミングおよび反射光を検出したタイミングの間の時間差を計測することにより、計測対象物までの距離を計測する。例えば、特許文献1には、ディレイラインを用いて測距精度の向上を図るセンサが開示されている。 The TOF (Time Of Flight) method is often used when measuring the distance to the measurement target. In this TOF method, light is emitted and reflected light reflected by the object to be measured is detected. In the TOF method, the distance to the measurement object is measured by measuring the time difference between the timing at which the light is emitted and the timing at which the reflected light is detected. For example, Patent Literature 1 discloses a sensor that uses a delay line to improve the accuracy of distance measurement.
特開2019-49430号公報JP 2019-49430 A
 光検出装置では、検出精度を高めることが望まれており、さらなる検出精度の向上が期待されている。 In the photodetector, it is desired to improve the detection accuracy, and further improvement of the detection accuracy is expected.
 検出精度を高めることができる光検出装置および光検出システムを提供することが望ましい。 It is desirable to provide a photodetector and a photodetection system that can improve detection accuracy.
 本開示の一実施の形態における光検出装置は、クロック信号生成部と、第1の受光部と、第1のタイミング検出部と、補正処理部とを備えている。クロック信号生成部は、発振動作を行う基準発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するように構成される。第1の受光部は、第1の受光素子を有し、第1の受光素子の受光結果に応じた第1のパルス信号を生成するように構成される。第1のタイミング検出部は、クロック信号に基づいてカウント動作を行うことにより第1のコードを生成する第1のカウンタと、第1のパルス信号に基づいて発振動作を行うことにより第1の多相クロック信号を生成する第1の発振回路と、第1のパルス信号に基づいて、第1のコードと、第1の多相クロック信号に応じた第2のコードとをラッチする第1のラッチ部とを有し、第1の受光部における第1の受光タイミングを検出するように構成される。補正処理部は、クロック信号の周波数および第1の多相クロック信号の周波数の周波数差に応じた第1の補正処理を行うように構成される。 A photodetector according to an embodiment of the present disclosure includes a clock signal generator, a first light receiver, a first timing detector, and a correction processor. The clock signal generation unit has a reference oscillation circuit that performs an oscillation operation, and is configured to generate a clock signal with a predetermined frequency by performing a phase synchronization operation. The first light receiving section has a first light receiving element and is configured to generate a first pulse signal according to the light receiving result of the first light receiving element. The first timing detection unit includes a first counter that generates a first code by performing a counting operation based on a clock signal, and a first multiplicity by performing an oscillation operation based on a first pulse signal. A first oscillation circuit for generating a phase clock signal, and a first latch for latching a first code based on the first pulse signal and a second code according to the first multiphase clock signal. and configured to detect the first light receiving timing in the first light receiving section. The correction processing unit is configured to perform a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
 本開示の一実施の形態における光検出システムは、発光部と、光検出部とを備えている。発光部は光を射出するように構成される。光検出部は、発光部から射出された光のうちの、検出対象により反射された光を検出するように構成される。光検出部は、クロック信号生成部と、第1の受光部と、第1のタイミング検出部と、補正処理部とを有する。クロック信号生成部は、発振動作を行う基準発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するように構成される。第1の受光部は、第1の受光素子を有し、第1の受光素子の受光結果に応じた第1のパルス信号を生成するように構成される。第1のタイミング検出部は、クロック信号に基づいてカウント動作を行うことにより第1のコードを生成する第1のカウンタと、第1のパルス信号に基づいて発振動作を行うことにより第1の多相クロック信号を生成する第1の発振回路と、第1のパルス信号に基づいて、第1のコードと、第1の多相クロック信号に応じた第2のコードとをラッチする第1のラッチ部とを有し、第1の受光部における第1の受光タイミングを検出するように構成される。補正処理部は、クロック信号の周波数および第1の多相クロック信号の周波数の周波数差に応じた第1の補正処理を行うように構成される。 A photodetection system according to an embodiment of the present disclosure includes a light emitter and a photodetector. The light emitter is configured to emit light. The light detection section is configured to detect light reflected by the detection target, among the light emitted from the light emission section. The photodetector includes a clock signal generator, a first light receiver, a first timing detector, and a correction processor. The clock signal generation unit has a reference oscillation circuit that performs an oscillation operation, and is configured to generate a clock signal with a predetermined frequency by performing a phase synchronization operation. The first light receiving section has a first light receiving element and is configured to generate a first pulse signal according to the light receiving result of the first light receiving element. The first timing detection unit includes a first counter that generates a first code by performing a counting operation based on a clock signal, and a first multiplicity by performing an oscillation operation based on a first pulse signal. A first oscillation circuit for generating a phase clock signal, and a first latch for latching a first code based on the first pulse signal and a second code according to the first multiphase clock signal. and configured to detect the first light receiving timing in the first light receiving section. The correction processing unit is configured to perform a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
本開示の一実施の形態に係る光検出システムの一構成例を表すブロック図である。1 is a block diagram showing a configuration example of a photodetection system according to an embodiment of the present disclosure; FIG. 図1に示したクロック信号生成部の一構成例を表すブロック図である。2 is a block diagram showing a configuration example of a clock signal generation unit shown in FIG. 1; FIG. 図2に示した発振回路の一構成例を表す回路図である。3 is a circuit diagram showing a configuration example of an oscillation circuit shown in FIG. 2; FIG. 図1に示した受光部の一構成例を表す回路図である。2 is a circuit diagram showing a configuration example of a light receiving unit shown in FIG. 1; FIG. 図1に示した受光部の他の一構成例を表す回路図である。3 is a circuit diagram showing another configuration example of the light receiving unit shown in FIG. 1; FIG. 第1の実施の形態に係るタイミング検出部の一構成例を表すブロック図である。3 is a block diagram showing a configuration example of a timing detection unit according to the first embodiment; FIG. 図5に示した発振回路の一構成例を表す回路図である。6 is a circuit diagram showing a configuration example of an oscillation circuit shown in FIG. 5; FIG. 図5に示した分周部の一動作例を表すタイミング波形図である。6 is a timing waveform diagram showing an operation example of the frequency divider shown in FIG. 5; FIG. 図1に示した光検出部の一実装例を表す説明図である。FIG. 2 is an explanatory diagram showing a mounting example of a photodetector shown in FIG. 1; 図1に示した光検出部の他の一実装例を表す説明図である。FIG. 3 is an explanatory diagram showing another implementation example of the photodetector shown in FIG. 1; 図1に示した受光部の一実装例を表す説明図である。FIG. 2 is an explanatory diagram showing a mounting example of a light receiving unit shown in FIG. 1; 図5に示したタイミング検出部の一動作状態を表す説明図である。6 is an explanatory diagram showing one operation state of the timing detection unit shown in FIG. 5; FIG. 図5に示したタイミング検出部の一動作例を表すタイミング波形図である。6 is a timing waveform diagram showing an operation example of the timing detection unit shown in FIG. 5; FIG. 図5に示したタイミング検出部の一特性例を表す説明図である。6 is an explanatory diagram showing one characteristic example of the timing detection unit shown in FIG. 5; FIG. 図5に示したタイミング検出部の他の一特性例を表す説明図である。6 is an explanatory diagram showing another characteristic example of the timing detection unit shown in FIG. 5; FIG. 図5に示したタイミング検出部の他の一特性例を表す説明図である。6 is an explanatory diagram showing another characteristic example of the timing detection unit shown in FIG. 5; FIG. 図5に示したタイミング検出部および補正処理部の一動作例を表すフローチャートである。6 is a flow chart showing an operation example of a timing detection unit and a correction processing unit shown in FIG. 5; 図5に示したタイミング検出部の他の動作状態を表す説明図である。6 is an explanatory diagram showing another operating state of the timing detection unit shown in FIG. 5; FIG. 図5に示したタイミング検出部の他の一動作例を表すタイミング波形図である。6 is a timing waveform diagram showing another operation example of the timing detection section shown in FIG. 5; FIG. 第1の実施の形態の変形例に係るタイミング検出部および補正処理部の一動作例を表すフローチャートである。9 is a flow chart showing an operation example of a timing detection unit and a correction processing unit according to a modification of the first embodiment; 第2の実施の形態に係るタイミング検出部の一構成例を表すブロック図である。FIG. 11 is a block diagram showing a configuration example of a timing detection unit according to a second embodiment; FIG. 図19に示した発振回路の一構成例を表す回路図である。20 is a circuit diagram showing a configuration example of the oscillation circuit shown in FIG. 19; FIG. 図19に示したタイミング検出部および補正処理部の一動作例を表すフローチャートである。FIG. 20 is a flow chart showing an operation example of a timing detection unit and a correction processing unit shown in FIG. 19; FIG. 図19に示したタイミング検出部および補正処理部の一動作例を表す他のフローチャートである。FIG. 20 is another flowchart showing an operation example of the timing detection unit and the correction processing unit shown in FIG. 19; FIG. 第2の実施の形態の変形例に係る発振回路の一構成例を表す回路図である。FIG. 11 is a circuit diagram showing a configuration example of an oscillator circuit according to a modification of the second embodiment; 第2の実施の形態の変形例に係るタイミング検出部および補正処理部の一動作例を表すフローチャートである。FIG. 11 is a flow chart showing an operation example of a timing detection unit and a correction processing unit according to a modification of the second embodiment; FIG. 第2の実施の形態の変形例に係るタイミング検出部および補正処理部の一動作例を表す他のフローチャートである。FIG. 11 is another flowchart showing an operation example of the timing detection section and the correction processing section according to the modification of the second embodiment; FIG. 第3の実施の形態に係る多相クロック信号生成部の一構成例を表すブロック図である。FIG. 11 is a block diagram showing a configuration example of a multiphase clock signal generator according to a third embodiment; 図24に示したタイミング検出部の一動作例を表すタイミング波形図である。25 is a timing waveform diagram showing an operation example of the timing detection unit shown in FIG. 24; FIG. 第3の実施の形態の変形例に係るクロック信号生成部の一構成例を表すブロック図である。FIG. 12 is a block diagram showing a configuration example of a clock signal generator according to a modification of the third embodiment; FIG. 第4の実施の形態に係るタイミング検出部の一構成例を表すブロック図である。FIG. 11 is a block diagram showing a configuration example of a timing detection unit according to a fourth embodiment; FIG. 図27に示したタイミング検出部の一動作状態を表す説明図である。FIG. 28 is an explanatory diagram showing one operation state of the timing detection unit shown in FIG. 27; 図28に示したタイミング検出部の一動作例を表すタイミング波形図である。FIG. 30 is a timing waveform diagram showing an operation example of the timing detection unit shown in FIG. 28; 図27に示したタイミング検出部の他の一動作状態を表す説明図である。28 is an explanatory diagram showing another operating state of the timing detection unit shown in FIG. 27; FIG. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.適用例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. First Embodiment 2. Second Embodiment 3. Third Embodiment 4. Fourth Embodiment 5. Application example
<1.第1の実施の形態>
[構成例]
 図1は、一実施の形態に係る光検出システム(光検出システム1)の一構成例を表すものである。光検出システム1は、ToFセンサであり、光を射出するとともに、計測対象物OBJにより反射された反射光を検出するように構成される。なお、本開示の実施の形態に係る光検出装置は、本実施の形態により具現化されるので、併せて説明する。光検出システム1は、光検出部10と、発光部8と、光学部材9とを備えている。
<1. First Embodiment>
[Configuration example]
FIG. 1 shows a configuration example of a photodetection system (photodetection system 1) according to an embodiment. The light detection system 1 is a ToF sensor, and is configured to emit light and detect reflected light reflected by the object to be measured OBJ. Note that a photodetector according to an embodiment of the present disclosure is embodied by the present embodiment, and thus will be described together. The photodetection system 1 includes a photodetector 10 , a light emitter 8 and an optical member 9 .
 光検出部10は、発光部8を駆動することにより発光部8に光を照射させるとともに、計測対象物OBJにより反射された反射光を検出するように構成される。 The light detection section 10 is configured to drive the light emission section 8 to irradiate the light emission section 8 with light and to detect reflected light reflected by the measurement object OBJ.
 発光部8は、光検出部10により駆動されることにより、計測対象物OBJに向かって光パルスL0を射出するように構成される。発光部8は、例えば赤外光を射出する光源を有する。この光源は、例えば、レーザ光源やLED(Light Emitting Diode)などを用いて構成される。 The light emitting section 8 is configured to emit a light pulse L0 toward the object to be measured OBJ by being driven by the light detecting section 10 . The light emitting unit 8 has a light source that emits infrared light, for example. This light source is configured using, for example, a laser light source or an LED (Light Emitting Diode).
 光学部材9は、発光部8から射出された光パルスL0を計測対象物OBJに導くとともに、光の一部(光パルスL0R)を光検出部10に導くように構成される。光学部材9は、例えば、ハーフミラーを用いることができる。 The optical member 9 is configured to guide the light pulse L0 emitted from the light emitting section 8 to the object to be measured OBJ and to guide part of the light (light pulse L0R) to the light detection section 10. A half mirror, for example, can be used as the optical member 9 .
 このようにして光検出システム1から射出された光パルスL0は、計測対象物OBJにおいて反射される。そして、計測対象物OBJにより反射された光パルス(反射光パルスL1)は、光検出システム1の光検出部10に入射する。光検出部10は、この反射光パルスL1を検出するようになっている。 The light pulse L0 emitted from the light detection system 1 in this way is reflected by the measurement object OBJ. Then, the light pulse (reflected light pulse L1) reflected by the object to be measured OBJ enters the photodetection section 10 of the photodetection system 1 . The photodetector 10 detects this reflected light pulse L1.
 光検出部10は、クロック信号生成部20と、制御信号生成部12と、駆動部13と、画素アレイ14と、TDC(Time to Digital Converter)部30と、補正処理部16と、ヒストグラム生成部17と、距離演算部18と、送信部19とを有している。 The light detection unit 10 includes a clock signal generation unit 20, a control signal generation unit 12, a drive unit 13, a pixel array 14, a TDC (Time to Digital Converter) unit 30, a correction processing unit 16, and a histogram generation unit. 17 , a distance calculator 18 and a transmitter 19 .
 クロック信号生成部20は、リファレンスクロック信号REFCLKに基づいてクロック信号CLKを生成するように構成される。 The clock signal generator 20 is configured to generate the clock signal CLK based on the reference clock signal REFCLK.
 図2は、クロック信号生成部20の一構成例を表すものである。クロック信号生成部20は、位相比較回路21と、チャージポンプ22と、ループフィルタ23と、発振回路24と、分周回路25とを有している。 FIG. 2 shows a configuration example of the clock signal generation unit 20. As shown in FIG. The clock signal generator 20 has a phase comparator circuit 21 , a charge pump 22 , a loop filter 23 , an oscillator circuit 24 and a frequency divider circuit 25 .
 位相比較回路21は、リファレンスクロック信号REFCLKの位相と、分周回路25から供給されるクロック信号DIVCLKの位相とを比較するように構成される。位相比較回路21は、例えば、いわゆる位相周波数比較回路(PFD;Phase Frequency Detector)を用いて構成される。 The phase comparison circuit 21 is configured to compare the phase of the reference clock signal REFCLK and the phase of the clock signal DIVCLK supplied from the frequency dividing circuit 25 . The phase comparison circuit 21 is configured using, for example, a so-called phase frequency comparison circuit (PFD: Phase Frequency Detector).
 チャージポンプ22は、位相比較回路21における比較結果に基づいて、ループフィルタ23に対して電流を流し込み、あるいはループフィルタ23から電流をシンクするように構成される。ループフィルタ23は、発振回路24の制御電圧Vctrlを生成するように構成される。 The charge pump 22 is configured to flow current into the loop filter 23 or sink current from the loop filter 23 based on the comparison result in the phase comparator circuit 21 . Loop filter 23 is configured to generate a control voltage Vctrl for oscillator circuit 24 .
 発振回路24は、電圧制御発振回路(Voltage-controlled oscillator)であり、発振動作を行うことにより、制御電圧Vctrlに応じた周波数を有するクロック信号CLKを生成するように構成される。 The oscillation circuit 24 is a voltage-controlled oscillator, and is configured to generate a clock signal CLK having a frequency corresponding to the control voltage Vctrl by performing an oscillation operation.
 図3は、発振回路24の一構成例を表すものである。発振回路24は、リングオシレータであり、複数のインバータIV(この例では4つのインバータIV1~IV4)と、トランジスタMN1とを有している。トランジスタMN1は、N型のMOS(Metal Oxide Semiconductor)トランジスタである。なお、この例では4つのインバータIV1~IV4を設けるようにしたが、これに限定されるものではなく、例えば、5つ以上のインバータを設けてもよい。 FIG. 3 shows a configuration example of the oscillation circuit 24. As shown in FIG. The oscillation circuit 24 is a ring oscillator and has a plurality of inverters IV (four inverters IV1 to IV4 in this example) and a transistor MN1. The transistor MN1 is an N-type MOS (Metal Oxide Semiconductor) transistor. Although four inverters IV1 to IV4 are provided in this example, the present invention is not limited to this, and for example, five or more inverters may be provided.
 インバータIV1~IV4は、この順に接続される。具体的には、インバータIV1の入力端子はインバータIV4の出力端子に接続され、出力端子はインバータIV2の入力端子に接続される。インバータIV2の入力端子はインバータIV1の出力端子に接続され、出力端子はインバータIV3の入力端子に接続される。インバータIV3の入力端子はインバータIV2の出力端子に接続され、出力端子はインバータIV4の入力端子に接続される。インバータIV4の入力端子はインバータIV3の出力端子に接続され、出力端子はIV1の入力端子に接続される。インバータIV4はクロック信号CLKを出力する。インバータIV1~IV4の接地端子はトランジスタMN1のドレインに接続される。 The inverters IV1 to IV4 are connected in this order. Specifically, the input terminal of the inverter IV1 is connected to the output terminal of the inverter IV4, and the output terminal is connected to the input terminal of the inverter IV2. The input terminal of inverter IV2 is connected to the output terminal of inverter IV1, and the output terminal is connected to the input terminal of inverter IV3. The input terminal of inverter IV3 is connected to the output terminal of inverter IV2, and the output terminal is connected to the input terminal of inverter IV4. The input terminal of inverter IV4 is connected to the output terminal of inverter IV3, and the output terminal is connected to the input terminal of IV1. Inverter IV4 outputs clock signal CLK. The ground terminals of inverters IV1-IV4 are connected to the drain of transistor MN1.
 トランジスタMN1のゲートには制御電圧Vctrlが供給され、ドレインはインバータIV1~IV4の接地端子に接続され、ソースは接地される。 The control voltage Vctrl is supplied to the gate of the transistor MN1, the drain is connected to the ground terminals of the inverters IV1 to IV4, and the source is grounded.
 この構成により、発振回路24は、インバータIV1~IV4の遅延時間に応じた周波数のクロック信号CLKを生成する。インバータIV1~IV4の遅延時間は、制御電圧Vctrlに応じて変化する。例えば制御電圧Vctrlが高い場合には、トランジスタMN1に流れる電流が多くなるので、インバータIV1~IV4に流れる電流が多くなり、インバータIV1~IV4の遅延時間が短くなる。よって、クロック信号CLKの周波数は高くなる。また、トランジスタMN1は、例えば制御電圧Vctrlが低い場合には、トランジスタMN1に流れる電流が少なくなるので、インバータIV1~IV4に流れる電流が少なくなり、インバータIV1~IV4の遅延時間が長くなる。よって、クロック信号CLKの周波数は低くなる。このようにして、発振回路24は、制御電圧Vctrlに応じた周波数を有するクロック信号CLKを生成するようになっている。 With this configuration, the oscillation circuit 24 generates the clock signal CLK having a frequency corresponding to the delay times of the inverters IV1 to IV4. The delay times of the inverters IV1-IV4 change according to the control voltage Vctrl. For example, when the control voltage Vctrl is high, the current flowing through the transistor MN1 increases, so the current flowing through the inverters IV1-IV4 increases and the delay time of the inverters IV1-IV4 decreases. Therefore, the frequency of the clock signal CLK is increased. Also, when the control voltage Vctrl is low, the current flowing through the transistor MN1 decreases, so the current flowing through the inverters IV1 to IV4 decreases, and the delay time of the inverters IV1 to IV4 increases. Therefore, the frequency of clock signal CLK is lowered. Thus, the oscillation circuit 24 generates the clock signal CLK having a frequency corresponding to the control voltage Vctrl.
 分周回路25(図2)は、クロック信号CLKに基づいて分周動作を行うことにより、クロック信号CLKの周波数の1/N倍の周波数を有するクロック信号DIVCLKを生成するように構成される。 The frequency dividing circuit 25 (FIG. 2) is configured to generate a clock signal DIVCLK having a frequency that is 1/N times the frequency of the clock signal CLK by performing a frequency dividing operation based on the clock signal CLK.
 位相比較回路21、チャージポンプ22、ループフィルタ23、発振回路24、および分周回路25は、位相同期回路(Phase Locked Loop)を構成する。この位相同期回路が位相同期動作を行うことにより、クロック信号DIVCLKはリファレンスクロック信号REFCLKに同期する。これにより、位相同期回路は、リファレンスクロック信号REFCLKの周波数のN倍の周波数を有するクロック信号CLKを生成するようになっている。 The phase comparator circuit 21, charge pump 22, loop filter 23, oscillator circuit 24, and frequency divider circuit 25 constitute a phase locked loop. The clock signal DIVCLK is synchronized with the reference clock signal REFCLK by the phase synchronization circuit performing the phase synchronization operation. As a result, the phase synchronization circuit generates a clock signal CLK having a frequency that is N times the frequency of the reference clock signal REFCLK.
 図1に示したように、クロック信号生成部20は、このようにして生成したクロック信号CLKを制御信号生成部12、駆動部13、およびTDC部30に供給する。また、クロック信号生成部20は、制御電圧VctrlをTDC部30に供給するようになっている。 As shown in FIG. 1, the clock signal generator 20 supplies the clock signal CLK thus generated to the control signal generator 12, the driver 13, and the TDC unit 30. Also, the clock signal generator 20 supplies the control voltage Vctrl to the TDC section 30 .
 制御信号生成部12(図1)は、光検出部10において用いられる様々な制御信号を生成するように構成される。例えば、制御信号生成部12は、発光部8の発光動作を指示する信号STRを生成する。光検出部10は、2つの動作モードM(動作モードMA,MB)を有している。動作モードMAは、光検出システム1が測距動作を行うモードである。動作モードMBは、後述するように、光検出システム1が、発振回路24の発振周波数およびTDC部30の発振回路34(後述)の発振周波数の周波数差に応じたキャリブレーションを行うモードである。制御信号生成部12は、これらの動作モードMに応じて様々な制御信号を生成する。制御信号生成部12は、クロック信号CLKに同期して動作するようになっている。 The control signal generator 12 ( FIG. 1 ) is configured to generate various control signals used in the photodetector 10 . For example, the control signal generation unit 12 generates a signal STR that instructs the light emission operation of the light emission unit 8 . The photodetector 10 has two operation modes M (operation modes MA and MB). The operation mode MA is a mode in which the photodetection system 1 performs ranging operation. The operation mode MB is a mode in which the photodetection system 1 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 (described later) of the TDC section 30, as will be described later. The control signal generator 12 generates various control signals according to these operation modes M. FIG. The control signal generator 12 operates in synchronization with the clock signal CLK.
 駆動部13は、信号STRに基づいて発光部8が光パルスL0を射出するように発光部8を駆動するように構成される。駆動部13は、クロック信号CLKに同期して動作するようになっている。 The driving unit 13 is configured to drive the light emitting unit 8 so that the light emitting unit 8 emits the light pulse L0 based on the signal STR. The driving section 13 operates in synchronization with the clock signal CLK.
 画素アレイ14は、マトリックス状に配置された複数の受光部Pを有している。受光部Pは、光を検出することにより、検出した光に応じたパルスを有するパルス信号PLSを生成するように構成される。複数の受光部Pは、受光部PRを含む。この受光部PRは、光学部材9により導かれた光パルスL0Rを検出する。複数の受光部Pにおける受光部PR以外の受光部Pは、計測対象物OBJにより反射された反射光パルスL1を検出するようになっている。 The pixel array 14 has a plurality of light receiving portions P arranged in a matrix. The light receiving unit P is configured to detect light and generate a pulse signal PLS having pulses corresponding to the detected light. The plurality of light receiving portions P includes light receiving portions PR. This light receiving portion PR detects the light pulse L0R guided by the optical member 9 . The light-receiving portions P other than the light-receiving portion PR among the plurality of light-receiving portions P detect the reflected light pulse L1 reflected by the object to be measured OBJ.
 図4Aは、受光部Pの一構成例を表すものである。受光部Pは、複数(この例では4つ)の受光回路DET1と、論理和回路OR1とを有している。 4A shows a configuration example of the light receiving section P. FIG. The light receiving section P has a plurality (four in this example) of light receiving circuits DET1 and an OR circuit OR1.
 受光回路DET1は、フォトダイオードPDと、抵抗素子R1と、インバータIVPとを有している。 The light receiving circuit DET1 has a photodiode PD, a resistive element R1, and an inverter IVP.
 フォトダイオードPDは、光を電荷に変換する光電変換素子である。フォトダイオードPDのアノードには電源電圧VSSが供給され、カソードはノードN1に接続される。フォトダイオードPDは、例えばシングルフォトンアバランシェダイオード(SPAD;Single Photon Avalanche Diode)を用いることができる。 The photodiode PD is a photoelectric conversion element that converts light into charge. The photodiode PD has an anode supplied with the power supply voltage VSS and a cathode connected to the node N1. A single photon avalanche diode (SPAD), for example, can be used as the photodiode PD.
 抵抗素子R1の一端には電源電圧VDDが供給され、他端はノードN1に接続される。 A power supply voltage VDD is supplied to one end of the resistance element R1, and the other end is connected to the node N1.
 インバータIVPは、ノードN1における電圧が論理しきい値より高い場合に低レベルを出力し、ノードN1における電圧が論理しきい値より低い場合に高レベルを出力することにより、パルス信号PLS1を生成するように構成される。 Inverter IVP outputs a low level when the voltage at node N1 is higher than the logic threshold, and outputs a high level when the voltage at node N1 is lower than the logic threshold, thereby generating pulse signal PLS1. configured as
 この構成により、この受光回路DET1では、フォトダイオードPDが光を検出することにより、アバランシェ増幅が生じ、ノードN1における電圧が低下する。そして、ノードN1における電圧がインバータIVPの論理しきい値より低くなると、パルス信号PLS1が低レベルから高レベルへ変化する。その後、抵抗素子R1を介してノードN1に電流が流れることにより、ノードN1の電圧が上昇する。そして、ノードN1における電圧がインバータIVPの論理しきい値より高くなると、パルス信号PLS1が高レベルから低レベルに変化する。このようにして、受光回路DET1は、検出した光に応じたパルスを有するパルス信号PLS1を生成するようになっている。 With this configuration, in the light receiving circuit DET1, when the photodiode PD detects light, avalanche amplification occurs and the voltage at the node N1 drops. When the voltage at node N1 becomes lower than the logic threshold of inverter IVP, pulse signal PLS1 changes from low level to high level. Thereafter, a current flows through the node N1 through the resistance element R1, thereby increasing the voltage of the node N1. Then, when the voltage at the node N1 becomes higher than the logic threshold of the inverter IVP, the pulse signal PLS1 changes from high level to low level. In this manner, the light receiving circuit DET1 generates a pulse signal PLS1 having pulses corresponding to the detected light.
 論理和回路OR1は、4つの受光回路DET1から出力されたパルス信号PLS1に基づいて論理和を求めることによりパルス信号PLSを生成するように構成される。 The logical sum circuit OR1 is configured to generate the pulse signal PLS by calculating the logical sum based on the pulse signals PLS1 output from the four light receiving circuits DET1.
 この例では、4つの受光回路DET1を設けたが、これに限定されるものではなく、3つ以下の受光回路DET1を設けてもよいし、5つ以上の受光回路DET1を設けてもよい。このように、受光部Pでは、複数の受光画素DET1を設けることにより、受光部Pにおける受光感度を高めることができるようになっている。 Although four light receiving circuits DET1 are provided in this example, the present invention is not limited to this. Three or less light receiving circuits DET1 may be provided, or five or more light receiving circuits DET1 may be provided. Thus, in the light receiving portion P, the light receiving sensitivity of the light receiving portion P can be increased by providing the plurality of light receiving pixels DET1.
 図4Bは、受光部Pの他の一構成例を表すものである。この例では、受光部Pは、複数(この例では4つ)の受光回路DET2を有している。受光回路DET2は、フォトダイオードPDと、トランジスタMP1と、インバータIVPと、制御回路CKT1とを有している。 4B shows another configuration example of the light receiving section P. FIG. In this example, the light receiving section P has a plurality of (four in this example) light receiving circuits DET2. The light receiving circuit DET2 has a photodiode PD, a transistor MP1, an inverter IVP, and a control circuit CKT1.
 トランジスタMP1は、P型のMOSトランジスタであり、ゲートは制御回路CKT1の出力端子に接続され、ソースには電源電圧VDDが供給され、ドレインはノードN1に接続される。 The transistor MP1 is a P-type MOS transistor having a gate connected to the output terminal of the control circuit CKT1, a source supplied with the power supply voltage VDD, and a drain connected to the node N1.
 制御回路CKT1は、パルス信号PLS1に基づいてトランジスタMP1の動作を制御するように構成される。具体的には、制御回路CKT1は、パルス信号PLS1が低レベルから高レベルに変化した後にトランジスタMP1のゲートの電圧を低レベルにし、パルス信号PLS1が高レベルから低レベルに変化した後にトランジスタMP1のゲートの電圧を高レベルにするようになっている。 The control circuit CKT1 is configured to control the operation of the transistor MP1 based on the pulse signal PLS1. Specifically, the control circuit CKT1 sets the voltage of the gate of the transistor MP1 to low level after the pulse signal PLS1 changes from low level to high level, and sets the voltage of the transistor MP1 to low level after the pulse signal PLS1 changes from high level to low level. The gate voltage is set to a high level.
 この構成により、この受光回路DET2では、フォトダイオードPDが光を検出することにより、ノードN1における電圧が低下する。そして、ノードN1における電圧がインバータIVPの論理しきい値より低くなると、パルス信号PLS1が低レベルから高レベルに変化する。制御回路CKT1は、このパルス信号PLS1の変化の後に、トランジスタMP1のゲートの電圧を低レベルにする。これにより、トランジスタMP1がオン状態になり、トランジスタMP1を介してノードN1に電流が流れることにより、ノードN1の電圧が上昇する。そして、ノードN1における電圧がインバータIVPの論理しきい値より高くなると、パルス信号PLS1が高レベルから低レベルに変化する。制御回路CKT1は、このパルス信号PLS1の変化の後に、トランジスタMP1のゲートの電圧を高レベルにする。これにより、トランジスタMP1がオフ状態になる。このようにして、受光回路DET2は、検出した光に応じたパルスを有するパルス信号PLS1を生成するようになっている。 With this configuration, in the photodetector circuit DET2, the voltage at the node N1 drops when the photodiode PD detects light. Then, when the voltage at the node N1 becomes lower than the logic threshold of the inverter IVP, the pulse signal PLS1 changes from low level to high level. The control circuit CKT1 makes the voltage of the gate of the transistor MP1 low after this change in the pulse signal PLS1. As a result, the transistor MP1 is turned on, and current flows through the transistor MP1 to the node N1, thereby increasing the voltage of the node N1. Then, when the voltage at the node N1 becomes higher than the logic threshold of the inverter IVP, the pulse signal PLS1 changes from high level to low level. The control circuit CKT1 makes the voltage of the gate of the transistor MP1 high after this change in the pulse signal PLS1. This turns off the transistor MP1. In this manner, the light receiving circuit DET2 generates the pulse signal PLS1 having pulses corresponding to the detected light.
 なお、この例では、論理和回路OR1を設けるようにしたが、これに限定されるものではなく、例えば4つの受光回路DET1が生成したパルス信号PLS1のうちの1つを順次選択するセレクタを設けてもよい。 In this example, the OR circuit OR1 is provided, but the present invention is not limited to this. For example, a selector for sequentially selecting one of the pulse signals PLS1 generated by the four light receiving circuits DET1 is provided. may
 TDC部30(図1)は、画素アレイ14における複数の受光部Pのそれぞれから供給されたパルス信号PLSに基づいて、複数の受光部Pのそれぞれにおける受光タイミングを検出するように構成される。TDC部30は、複数のタイミング検出部31を有している。複数のタイミング検出部31は、画素アレイ14における複数の受光部Pに対応してそれぞれ設けられている。 The TDC section 30 (FIG. 1) is configured to detect light reception timing in each of the plurality of light receiving sections P based on the pulse signal PLS supplied from each of the plurality of light receiving sections P in the pixel array 14 . The TDC section 30 has a plurality of timing detection sections 31 . The multiple timing detection units 31 are provided corresponding to the multiple light receiving units P in the pixel array 14 .
 図5は、TDC部30におけるタイミング検出部31の一構成例を表すものである。この図5には、TDC部30の他、クロック信号生成部20、制御信号生成部12、駆動部13、補正処理部16、およびヒストグラム生成部17をも描いている。図5において、太線は、複数ビットの信号を伝える配線を示す。 FIG. 5 shows a configuration example of the timing detection section 31 in the TDC section 30. As shown in FIG. In addition to the TDC section 30, FIG. 5 also depicts a clock signal generation section 20, a control signal generation section 12, a drive section 13, a correction processing section 16, and a histogram generation section 17. FIG. In FIG. 5, thick lines indicate wirings that transmit multi-bit signals.
 複数のタイミング検出部31のそれぞれは、対応する受光部Pが生成したパルス信号PLSに基づいて、その受光部Pにおける受光タイミングを検出するように構成される。タイミング検出部31は、論理積回路32と、セレクタ33と、発振回路34と、フリップフロップ(F/F)35と、インバータ36と、セレクタ37と、インバータ38と、セレクタ41と、カウンタ42と、フリップフロップ部(F/F部)43と、出力部44と、分周部45と、フリップフロップ部46と、補正部47とを有している。 Each of the plurality of timing detection units 31 is configured to detect light reception timing in the corresponding light receiving unit P based on the pulse signal PLS generated by the corresponding light receiving unit P. The timing detection unit 31 includes an AND circuit 32, a selector 33, an oscillation circuit 34, a flip-flop (F/F) 35, an inverter 36, a selector 37, an inverter 38, a selector 41, a counter 42, and , a flip-flop section (F/F section) 43 , an output section 44 , a frequency dividing section 45 , a flip-flop section 46 and a correction section 47 .
 論理積回路32は、パルス信号PLSおよびインバータ38の出力信号の論理積を求めるように構成される。 The logical product circuit 32 is configured to obtain the logical product of the pulse signal PLS and the output signal of the inverter 38 .
 セレクタ33は、制御信号生成部12からの制御信号に基づいて、信号STRおよび論理積回路32の出力信号のうちの一方を選択し、選択された信号を出力するように構成される。具体的には、セレクタ33は、制御信号生成部12からの制御信号に基づいて、動作モードMAでは論理積回路32の出力信号を選択し、動作モードMBでは信号STRを選択するようになっている。 The selector 33 is configured to select one of the signal STR and the output signal of the AND circuit 32 based on the control signal from the control signal generator 12 and output the selected signal. Specifically, based on the control signal from the control signal generator 12, the selector 33 selects the output signal of the AND circuit 32 in the operation mode MA, and selects the signal STR in the operation mode MB. there is
 発振回路34は、電圧制御発振回路であり、クロック信号生成部20の発振回路24と同様に、発振動作を行うことにより、制御電圧Vctrlに応じた周波数を有する多相クロック信号CLKMを生成するように構成される。この例では、多相クロック信号CLKMは、4つのクロック信号CLK0,CLK90,CLK180,CLK270を含む。また、発振回路34は、信号ENに基づいて、発振動作を行い、あるいは発振動作を停止することができるようになっている。 The oscillation circuit 34 is a voltage-controlled oscillation circuit, and similarly to the oscillation circuit 24 of the clock signal generation unit 20, performs an oscillation operation to generate a multiphase clock signal CLKM having a frequency corresponding to the control voltage Vctrl. configured to In this example, multiphase clock signal CLKM includes four clock signals CLK0, CLK90, CLK180 and CLK270. Further, the oscillation circuit 34 can perform an oscillation operation or stop the oscillation operation based on the signal EN.
 図6は、発振回路34の一構成例を表すものである。発振回路34は、クロック信号生成部20の発振回路24(図3)と同様の構成を有している。具体的には、発振回路34は、4つのインバータIV11~IV14と、トランジスタMN11とを有している。インバータIV11~IV14は、発振回路24におけるインバータIV1~IV4に対応し、トランジスタMN11は、発振回路24におけるトランジスタMN1に対応する。インバータIV11~IV14は、この順に接続される。インバータIV11はクロック信号CLK0を出力し、インバータIV14はクロック信号CLK90を出力し、インバータIV13はクロック信号CLK180を出力し、インバータIV12はクロック信号CLK270を出力する。インバータIV11~IV14は、信号ENに基づいて動作を行い、あるいは動作を停止することができるようになっている。具体的には、インバータIV11~IV14は、信号ENが高レベルである場合には動作を行い、信号ENが低レベルである場合には動作を停止する。これにより、発振回路34は、信号ENが高レベルである場合には発振動作を行い、信号ENが低レベルである場合には発振動作を停止するようになっている。 FIG. 6 shows a configuration example of the oscillation circuit 34. As shown in FIG. The oscillator circuit 34 has the same configuration as the oscillator circuit 24 of the clock signal generator 20 (FIG. 3). Specifically, the oscillation circuit 34 has four inverters IV11 to IV14 and a transistor MN11. Inverters IV11-IV14 correspond to inverters IV1-IV4 in oscillation circuit 24, and transistor MN11 corresponds to transistor MN1 in oscillation circuit . Inverters IV11-IV14 are connected in this order. Inverter IV11 outputs clock signal CLK0, inverter IV14 outputs clock signal CLK90, inverter IV13 outputs clock signal CLK180, and inverter IV12 outputs clock signal CLK270. The inverters IV11 to IV14 can operate or stop operating based on the signal EN. Specifically, the inverters IV11 to IV14 operate when the signal EN is at high level, and stop operating when the signal EN is at low level. As a result, the oscillator circuit 34 oscillates when the signal EN is at high level, and stops oscillating when the signal EN is at low level.
 このように、発振回路34(図6)の構成は、発振回路24(図3)の構成と同様である。また、図5に示したように、発振回路34,24は、同じ制御電圧Vctrlに基づいて発振動作を行う。よって、発振回路34の発振周波数は、発振回路24の発振周波数とほぼ同じであることが期待される。言い換えれば、発振回路34が生成する多相クロック信号CLKMの周波数は、発振回路24が生成するクロック信号CLKの周波数と同じであることが期待される。 Thus, the configuration of the oscillation circuit 34 (FIG. 6) is similar to the configuration of the oscillation circuit 24 (FIG. 3). Also, as shown in FIG. 5, the oscillation circuits 34 and 24 perform oscillation operations based on the same control voltage Vctrl. Therefore, the oscillation frequency of the oscillation circuit 34 is expected to be substantially the same as the oscillation frequency of the oscillation circuit 24 . In other words, the frequency of the multiphase clock signal CLKM generated by the oscillation circuit 34 is expected to be the same as the frequency of the clock signal CLK generated by the oscillation circuit 24 .
 フリップフロップ35(図5)は、クロック信号CLKの立ち上がりエッジに基づいて信号ENをラッチするように構成される。 The flip-flop 35 (FIG. 5) is configured to latch the signal EN based on the rising edge of the clock signal CLK.
 インバータ36は、信号STRを反転し、反転された信号を出力するように構成される。 The inverter 36 is configured to invert the signal STR and output the inverted signal.
 セレクタ37は、制御信号生成部12からの制御信号に基づいて、フリップフロップ35の出力信号およびインバータ36の出力信号のうちの一方を選択し、選択された信号を信号STPとして出力するように構成される。具体的には、セレクタ37は、制御信号生成部12からの制御信号に基づいて、動作モードMAではフリップフロップ35の出力信号を選択し、動作モードMBではインバータ36の出力信号を選択するようになっている。 The selector 37 is configured to select one of the output signal of the flip-flop 35 and the output signal of the inverter 36 based on the control signal from the control signal generator 12 and output the selected signal as the signal STP. be done. Specifically, based on the control signal from the control signal generator 12, the selector 37 selects the output signal of the flip-flop 35 in the operation mode MA, and selects the output signal of the inverter 36 in the operation mode MB. It's becoming
 インバータ38は、信号STPを反転し、反転された信号を出力するように構成される。
このインバータ38は、遅延回路を含み、信号STPの遷移タイミングから所定の遅延時間が経過した後に信号を出力するようになっている。
Inverter 38 is configured to invert signal STP and output the inverted signal.
The inverter 38 includes a delay circuit, and outputs a signal after a predetermined delay time has elapsed from the transition timing of the signal STP.
 セレクタ41は、制御信号生成部12からの制御信号に基づいて、発振回路24が生成したクロック信号CLKおよび発振回路34が生成したクロック信号CLK0のうちの一方を選択し、選択された信号を出力するように構成される。具体的には、セレクタ41は、制御信号生成部12からの制御信号に基づいて、動作モードMAではクロック信号CLKを選択し、動作モードMBではクロック信号CLK0を選択するようになっている。 The selector 41 selects one of the clock signal CLK generated by the oscillator circuit 24 and the clock signal CLK0 generated by the oscillator circuit 34 based on the control signal from the control signal generator 12, and outputs the selected signal. configured to Specifically, based on the control signal from the control signal generator 12, the selector 41 selects the clock signal CLK in the operation mode MA, and selects the clock signal CLK0 in the operation mode MB.
 カウンタ42は、セレクタ41の出力信号の立ち上がりエッジに基づいてカウント動作を行うことによりカウントコードCDC1を生成するように構成される。カウンタ42は、信号STRに基づいて、カウント動作を開始する。そして、カウンタ42は、複数ビットのカウントコードCDC1を出力するようになっている。 The counter 42 is configured to generate a count code CDC1 by performing a counting operation based on the rising edge of the output signal of the selector 41. Counter 42 starts a counting operation based on signal STR. The counter 42 outputs a multi-bit count code CDC1.
 フリップフロップ部43は、信号STPの立ち上がりエッジに基づいて、カウンタ42から供給されたカウントコードCDC1をラッチするように構成される。そして、フリップフロップ部43は、ラッチ結果を示すカウントコードCDCを出力部44およびヒストグラム生成部17に供給するようになっている。 The flip-flop unit 43 is configured to latch the count code CDC1 supplied from the counter 42 based on the rising edge of the signal STP. The flip-flop section 43 then supplies the count code CDC indicating the latch result to the output section 44 and the histogram generation section 17 .
 出力部44は、制御信号生成部12からの制御信号に基づいて、カウントコードCDCを、バス配線BUS1を介して補正処理部16に供給するように構成される。複数のタイミング検出部31における出力部44のそれぞれは、制御信号生成部12からの制御信号に基づいて、バス配線BUS1を介して、カウントコードCDCを補正処理部16に順次供給するようになっている。 The output unit 44 is configured to supply the count code CDC to the correction processing unit 16 via the bus wiring BUS1 based on the control signal from the control signal generation unit 12. Each of the output units 44 in the plurality of timing detection units 31 sequentially supplies the count code CDC to the correction processing unit 16 via the bus wiring BUS1 based on the control signal from the control signal generation unit 12. there is
 分周部45は、多相クロック信号CLKMに含まれるクロック信号CLK0,CLK90,CLK180,CLK270のそれぞれを2分周することによりカウントコードCDF1を生成するように構成される。 The frequency dividing unit 45 is configured to generate the count code CDF1 by frequency-dividing each of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM by two.
 図7は、分周部45の一動作例を表すものであり、(A)~(D)はクロック信号CLK0,CLK270,CLK180,CLK90の波形をそれぞれ示し、(E)~(H)はカウントコードCDF1を示す信号CDF0,CDF45,CDF90,CDF135の波形をそれぞれ示す。 FIG. 7 shows an operation example of the frequency divider 45. (A) to (D) show the waveforms of the clock signals CLK0, CLK270, CLK180 and CLK90, and (E) to (H) show the waveforms of the clock signals CLK0, CLK270, CLK180 and CLK90. Waveforms of signals CDF0, CDF45, CDF90 and CDF135 representing code CDF1 are shown.
 分周部45は、クロック信号CLK0の立ち上がりエッジでトグル動作を行うことにより信号CDF0を生成し(図7(A),(E))、クロック信号CLK270の立ち上がりエッジでトグル動作を行うことにより信号CDF135を生成し(図7(B),(H))、クロック信号CLK180の立ち上がりエッジでトグル動作を行うことにより信号CDF90を生成し(図7(C),(G))、クロック信号CLK90の立ち上がりエッジでトグル動作を行うことにより信号CDF45を生成する(図7(D),(F))。 The frequency dividing unit 45 performs a toggle operation at the rising edge of the clock signal CLK0 to generate the signal CDF0 (FIGS. 7A and 7E), and performs a toggle operation at the rising edge of the clock signal CLK270 to generate the signal CDF0. CDF135 is generated (FIGS. 7(B) and (H)), and a signal CDF90 is generated by performing a toggle operation at the rising edge of the clock signal CLK180 (FIGS. 7(C) and (G)). A signal CDF45 is generated by performing a toggle operation at the rising edge (FIGS. 7(D) and (F)).
 これにより、カウントコードCDF1(信号CDF,CDF45,CDF90,CDF135)は、タイミングt1~t2の期間では“1000”であり、タイミングt2~t3の期間では“1100”であり、タイミングt3~t4の期間では“1110”であり、タイミングt4~t5の期間では“1111”であり、タイミングt5~t6の期間では“0111”であり、タイミングt6~t7の期間では“0011”であり、タイミングt7~t8の期間では“0001”であり、タイミングt8~t9の期間では“0000”である。このように、カウントコードCDF1(図7(E)~(H))は、多相クロック信号CLKM(図7(A)~(D))の1周期に対応する期間において、4回変化するようになっている。 As a result, the count code CDF1 (signals CDF, CDF45, CDF90, CDF135) is "1000" during the period from timing t1 to t2, "1100" for the period from timing t2 to t3, and "1100" for the period from timing t3 to t4. is "1110" in the period from timing t4 to t5, "1111" in the period from timing t5 to t6, "0111" in the period from timing t5 to t6, "0011" in the period from timing t6 to t7, and timing t7 to t8. , and is "0000" during the period from timing t8 to t9. In this way, the count code CDF1 ((E) to (H) in FIG. 7) is changed four times in a period corresponding to one cycle of the multiphase clock signal CLKM ((A) to (D) in FIG. 7). It has become.
 フリップフロップ部46は、信号STPの立ち上がりエッジに基づいて、分周部45から供給されたカウントコードCDF1をラッチするように構成される。そして、フリップフロップ部46は、ラッチ結果を示すカウントコードCDFを補正部47およびヒストグラム生成部17に供給するようになっている。 The flip-flop unit 46 is configured to latch the count code CDF1 supplied from the frequency dividing unit 45 based on the rising edge of the signal STP. The flip-flop section 46 then supplies the count code CDF indicating the latch result to the correction section 47 and the histogram generation section 17 .
 補正部47は、カウントコードCDFに対して補正処理を行い、補正されたカウントコードCDFをヒストグラム生成部17に供給するように構成される。複数のタイミング検出部31における補正部47のそれぞれは、制御信号生成部12からの制御信号に基づいて、バス配線BUS2を介して供給された補正パラメータCAL1を受け取る。そして、補正部47は、この補正パラメータCAL1に基づいて、カウントコードCDFに対して補正処理を行うようになっている。       The correction unit 47 is configured to perform correction processing on the count code CDF and supply the corrected count code CDF to the histogram generation unit 17 . Based on the control signal from the control signal generator 12, each of the correction units 47 in the plurality of timing detectors 31 receives the correction parameter CAL1 supplied via the bus line BUS2. Then, the correction unit 47 performs correction processing on the count code CDF based on this correction parameter CAL1.      
 補正処理部16(図1,5)は、動作モードM2において、発振回路24の発振周波数および発振回路34の発振周波数の周波数差に応じたキャリブレーションを行うように構成される。補正処理部16は、演算部16Aと、記憶部16Bとを有している。演算部16Aは、TDC部30におけるタイミング検出部31からバス配線BUS1を介して供給されたカウントコードCDCに基づいて、発振回路24の発振周波数および発振回路34の発振周波数の周波数差に応じた補正パラメータCAL1を算出するように構成される。記憶部16Bは、複数のタイミング検出部31のそれぞれについての補正パラメータCAL1を記憶するように構成される。そして、補正処理部16は、この補正パラメータCAL1を、バス配線BUS2を介して、TDC部30における、そのタイミング検出部31に供給するようになっている。 The correction processing unit 16 (FIGS. 1 and 5) is configured to perform calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 in the operation mode M2. The correction processing section 16 has a calculation section 16A and a storage section 16B. Based on the count code CDC supplied from the timing detection unit 31 in the TDC unit 30 via the bus wiring BUS1, the calculation unit 16A performs correction according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34. It is configured to calculate a parameter CAL1. The storage unit 16B is configured to store correction parameters CAL1 for each of the plurality of timing detection units 31. FIG. The correction processing section 16 supplies the correction parameter CAL1 to the timing detection section 31 in the TDC section 30 via the bus wiring BUS2.
 ヒストグラム生成部17(図1)は、受光部Pの受光タイミングに基づいて、その受光部Pが検出した光パルスの飛行時間Ttofのヒストグラムを生成するように構成される。具体的には、ヒストグラム生成部17は、受光部Pの受光タイミングに基づいて、その受光部Pが検出した光パルスの飛行時間Ttofを算出する。光検出システム1が、光パルスL0を複数回射出することにより、ヒストグラム生成部17は、複数の受光部Pのそれぞれについて、この飛行時間Ttofのデータを蓄積する。ヒストグラム生成部17は、蓄積されたこの飛行時間Ttofのデータに基づいて、複数の受光部Pのそれぞれについて、飛行時間Ttofのヒストグラムを生成する。そして、ヒストグラム生成部17は、受光部Pについての飛行時間Ttofのヒストグラムに基づいて、頻度が最も高い飛行時間Ttofを特定し、その飛行時間Ttofを、その受光部Pの飛行時間Ttofとして決定するようになっている。 The histogram generation unit 17 (FIG. 1) is configured to generate a histogram of the time-of-flight Ttof of the light pulse detected by the light receiving unit P based on the light receiving timing of the light receiving unit P. Specifically, the histogram generation unit 17 calculates the flight time Ttof of the light pulse detected by the light receiving unit P based on the light receiving timing of the light receiving unit P. FIG. The light detection system 1 emits the light pulse L0 a plurality of times, so that the histogram generator 17 accumulates the data of the flight time Ttof for each of the plurality of light receiving portions P. FIG. The histogram generation unit 17 generates a histogram of the flight times Ttof for each of the plurality of light receiving units P based on the accumulated data of the flight times Ttof. Then, the histogram generator 17 identifies the flight time Ttof with the highest frequency based on the histogram of the flight times Ttof for the light receiving portion P, and determines the flight time Ttof as the flight time Ttof of the light receiving portion P. It's like
 距離演算部18は、複数の受光部Pのそれぞれについての飛行時間Ttofのデータに基づいて、距離値を算出することにより、距離画像PICを生成するように構成される。 The distance calculation unit 18 is configured to generate the distance image PIC by calculating the distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P.
 送信部19は、距離画像PICの画像データを送信するように構成される。 The transmission unit 19 is configured to transmit the image data of the distance image PIC.
 次に、光検出システム1における光検出部10の実装について説明する。光検出部10は、例えば、1枚の半導体基板に形成されてもよいし、複数の半導体基板に形成されてもよい。 Next, mounting of the photodetector 10 in the photodetection system 1 will be described. The photodetector 10 may be formed on one semiconductor substrate, or may be formed on a plurality of semiconductor substrates, for example.
 図8は、1枚の半導体基板111に形成した場合における光検出部10の実装例を表すものである。この例では、受光画素Pは、半導体基板111の領域112に並設され、タイミング検出部31は、半導体基板111の領域113に並設される。クロック信号生成部20、制御信号生成部12、駆動部13、補正処理部16、ヒストグラム生成部17、距離演算部18、および送信部19もまた、この半導体基板111に配置される。 FIG. 8 shows a mounting example of the photodetector 10 formed on one semiconductor substrate 111 . In this example, the light-receiving pixels P are arranged side by side in the region 112 of the semiconductor substrate 111 , and the timing detection section 31 is arranged side by side in the region 113 of the semiconductor substrate 111 . A clock signal generator 20 , a control signal generator 12 , a driver 13 , a correction processor 16 , a histogram generator 17 , a distance calculator 18 and a transmitter 19 are also arranged on this semiconductor substrate 111 .
 図9,10は、2枚の半導体基板101,102に形成した場合における光検出部10の実装例を表すものである。半導体基板101は、光検出部10の受光面S側に配置され、半導体基板102は、光検出部10の受光面S側とは反対側に配置される。半導体基板101,102は互いに重ね合わされる。半導体基板101の配線と、半導体基板102の配線とは、配線103により接続される。配線103は、例えばCu-Cu結合やバンプ結合などの金属結合などを用いることができる。光検出ユニットUは、例えば、これらの2枚の半導体基板101,102にわたって配置される。 9 and 10 show a mounting example of the photodetector 10 formed on two semiconductor substrates 101 and 102 . The semiconductor substrate 101 is arranged on the light receiving surface S side of the photodetector 10 , and the semiconductor substrate 102 is arranged on the side opposite to the light receiving surface S side of the photodetector 10 . Semiconductor substrates 101 and 102 are overlaid on each other. The wiring of the semiconductor substrate 101 and the wiring of the semiconductor substrate 102 are connected by the wiring 103 . For the wiring 103, metal bonding such as Cu--Cu bonding and bump bonding can be used. The photodetection unit U is arranged over these two semiconductor substrates 101 and 102, for example.
 図10に示したように、受光部Pは、この例では、2枚の半導体基板101,102にわたって配置される。具体的には、フォトダイオードPDは半導体基板101に配置され、抵抗素子R1、インバータIVP、および論理和回路OR1は半導体基板102に配置される。フォトダイオードPDのカソードは、配線103を介して、抵抗素子R1の他端およびインバータIV1の入力端子に接続される。なお、この例では、図4Aに示した受光部Pに対して本変形例を適用したが、同様に、図4Bに示した受光部Pに対して本変形例を適用してもよい。 As shown in FIG. 10, the light receiving portion P is arranged over two semiconductor substrates 101 and 102 in this example. Specifically, photodiode PD is arranged on semiconductor substrate 101 , and resistor element R 1 , inverter IVP, and OR circuit OR 1 are arranged on semiconductor substrate 102 . The cathode of photodiode PD is connected via wiring 103 to the other end of resistive element R1 and the input terminal of inverter IV1. In this example, the modification is applied to the light receiving portion P shown in FIG. 4A, but the modification may be applied to the light receiving portion P shown in FIG. 4B.
 図9に示したように、受光部Pにおける4つのフォトダイオードPDは、半導体基板101におけるある領域に配置される。そして、その受光部Pが生成したパルス信号PLSに基づいて動作するタイミング検出部31は、半導体基板102において、その4つのフォトダイオードPDが配置された領域に対応する領域に配置される。クロック信号生成部20、制御信号生成部12、駆動部13、補正処理部16、ヒストグラム生成部17、距離演算部18、および送信部19は、半導体基板102に配置される。 As shown in FIG. 9, the four photodiodes PD in the light receiving portion P are arranged in a certain region on the semiconductor substrate 101. In FIG. The timing detection unit 31 that operates based on the pulse signal PLS generated by the light receiving unit P is arranged in a region of the semiconductor substrate 102 corresponding to the region where the four photodiodes PD are arranged. Clock signal generator 20 , control signal generator 12 , driver 13 , correction processor 16 , histogram generator 17 , distance calculator 18 , and transmitter 19 are arranged on semiconductor substrate 102 .
 ここで、クロック信号生成部20は、本開示における「クロック信号生成部」の一具体例に対応する。発振回路24は、本開示における「基準発振回路」の一具体例に対応する。クロック信号CLKは、本開示における「クロック信号」の一具体例に対応する。受光部Pは、本開示における「第1の受光部」の一具体例に対応する。フォトダイオードPDは、本開示における「第1の受光素子」の一具体例に対応する。パルス信号PLSは、本開示における「第1のパルス信号」の一具体例に対応する。タイミング検出部31は、本開示における「第1のタイミング検出部」の一具体例に対応する。カウンタ42は、本開示における「第1のカウンタ」の一具体例に対応する。カウントコードCDC1は、本開示における「第1のコード」の一具体例に対応する。発振回路34は、本開示における「第1の発振回路」の一具体例に対応する。多相クロック信号CLKMは、本開示における「第1の多相クロック信号」の一具体例に対応する。フリップフロップ部43,46は、本開示における「第1のラッチ部」の一具体例に対応する。補正処理部16は、本開示における「補正処理部」の一具体例に対応する。制御電圧Vctrlは、本開示における「制御電圧」の一具体例に対応する。補正部47は、本開示における「補正部」の一具体例に対応する。動作モードMAは、本開示における「第1の動作モード」の一具体例に対応する。動作モードMBは、本開示における「第2の動作モード」の一具体例に対応する。補正パラメータCAL1は、本開示における「周波数比」の一具体例に対応する。ヒストグラム生成部17は、本開示における「処理部」の一具体例に対応する。 Here, the clock signal generator 20 corresponds to a specific example of the "clock signal generator" in the present disclosure. The oscillator circuit 24 corresponds to a specific example of the "reference oscillator circuit" in the present disclosure. The clock signal CLK corresponds to a specific example of "clock signal" in the present disclosure. The light receiving section P corresponds to a specific example of the "first light receiving section" in the present disclosure. The photodiode PD corresponds to a specific example of "first light receiving element" in the present disclosure. The pulse signal PLS corresponds to a specific example of "first pulse signal" in the present disclosure. The timing detector 31 corresponds to a specific example of "first timing detector" in the present disclosure. The counter 42 corresponds to a specific example of "first counter" in the present disclosure. The count code CDC1 corresponds to a specific example of "first code" in the present disclosure. The oscillator circuit 34 corresponds to a specific example of the "first oscillator circuit" in the present disclosure. The multiphase clock signal CLKM corresponds to a specific example of "first multiphase clock signal" in the present disclosure. The flip- flop units 43 and 46 correspond to a specific example of the "first latch unit" in the present disclosure. The correction processing unit 16 corresponds to a specific example of "correction processing unit" in the present disclosure. The control voltage Vctrl corresponds to a specific example of "control voltage" in the present disclosure. The corrector 47 corresponds to a specific example of the "corrector" in the present disclosure. Operation mode MA corresponds to a specific example of "first operation mode" in the present disclosure. The operation mode MB corresponds to a specific example of "second operation mode" in the present disclosure. The correction parameter CAL1 corresponds to a specific example of "frequency ratio" in the present disclosure. The histogram generation unit 17 corresponds to a specific example of the "processing unit" in the present disclosure.
[動作および作用]
 続いて、本実施の形態の光検出システム1の動作および作用について説明する。
[Operation and action]
Next, the operation and effect of the photodetection system 1 of this embodiment will be described.
(全体動作概要)
 まず、図1を参照して、光検出システム1の全体動作概要を説明する。クロック信号生成部20は、リファレンスクロック信号REFCLKに基づいてクロック信号CLKを生成する。制御信号生成部12は、発光部8の発光動作を指示する信号STRを生成する。制御信号生成部12は、動作モードM(動作モードMA,MB)に応じて様々な制御信号を生成する。駆動部13は、信号STRに基づいて発光部8が光パルスL0を射出するように発光部8を駆動する。発光部8は、計測対象物OBJに向かって光パルスL0を射出する。光学部材9は、発光部8から射出された光パルスL0を計測対象物OBJに導くとともに、光の一部(光パルスL0R)を光検出部10に導く。画素アレイ14の複数の受光部Pのそれぞれは、光を検出することにより、検出した光に応じたパルスを有するパルス信号PLSを生成する。受光部PRは、光学部材9により導かれた光パルスL0Rを検出する。複数の受光部Pにおける受光部PR以外の受光部Pは、計測対象物OBJにより反射された反射光パルスL1を検出する。TDC部30は、画素アレイ14における複数の受光部Pのそれぞれから供給されたパルス信号PLSに基づいて、複数の受光部Pのそれぞれにおける受光タイミングを検出する。補正処理部16は、動作モードM2において、発振回路24の発振周波数および発振回路34の発振周波数の周波数差に応じたキャリブレーションを行う。ヒストグラム生成部17は、受光部Pの受光タイミングに基づいて、その受光部Pが検出した光パルスの飛行時間Ttofのヒストグラムを生成する。距離演算部18は、複数の受光部Pのそれぞれについての飛行時間Ttofのデータに基づいて、距離値を算出することにより、距離画像PICを生成する。送信部19は、距離画像PICの画像データを送信する。
(Outline of overall operation)
First, with reference to FIG. 1, an overview of the overall operation of the photodetection system 1 will be described. The clock signal generator 20 generates the clock signal CLK based on the reference clock signal REFCLK. The control signal generation unit 12 generates a signal STR that instructs the light emission operation of the light emission unit 8 . The control signal generator 12 generates various control signals according to the operation mode M (operation modes MA and MB). The driving unit 13 drives the light emitting unit 8 so that the light emitting unit 8 emits the light pulse L0 based on the signal STR. The light emitting unit 8 emits a light pulse L0 toward the object to be measured OBJ. The optical member 9 guides the light pulse L0 emitted from the light emitting unit 8 to the object to be measured OBJ and guides part of the light (light pulse L0R) to the light detection unit 10 . Each of the plurality of light receiving portions P of the pixel array 14 detects light to generate a pulse signal PLS having pulses corresponding to the detected light. The light receiving part PR detects the light pulse L0R guided by the optical member 9 . The light-receiving portions P other than the light-receiving portion PR among the plurality of light-receiving portions P detect the reflected light pulse L1 reflected by the object to be measured OBJ. The TDC section 30 detects the light reception timing of each of the plurality of light receiving sections P based on the pulse signal PLS supplied from each of the plurality of light receiving sections P in the pixel array 14 . The correction processing unit 16 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 in the operation mode M2. The histogram generation unit 17 generates a histogram of the flight time Ttof of the light pulse detected by the light receiving unit P based on the light receiving timing of the light receiving unit P. FIG. The distance calculation unit 18 calculates a distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P, thereby generating the distance image PIC. The transmission unit 19 transmits the image data of the distance image PIC.
(詳細動作)
 次に、光検出システム1の詳細動作について説明する。光検出システム1は、動作モードMA,MBを有している。動作モードMAでは、光検出システム1は測距動作を行う。動作モードMBでは、光検出システム1は、発振回路24の発振周波数および発振回路34の発振周波数の周波数差に応じたキャリブレーションを行う。以下に、この動作について詳細に説明する。
(detailed operation)
Next, detailed operation of the photodetection system 1 will be described. The photodetection system 1 has operating modes MA and MB. In operation mode MA, the photodetection system 1 performs ranging operation. In the operation mode MB, the photodetection system 1 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 . This operation will be described in detail below.
(動作モードMA)
 図11は、動作モードMAにおけるTDC部30の動作状態の一例を表すものである。この図11において、セレクタ33,37,41を、その動作状態を表すスイッチを用いて示している。
(Operation mode MA)
FIG. 11 shows an example of the operating state of the TDC section 30 in the operating mode MA. In FIG. 11, the selectors 33, 37 and 41 are shown using switches representing their operating states.
 動作モードMAでは、複数のタイミング検出部31のそれぞれのセレクタ33は、制御信号生成部12からの制御信号に基づいて、論理積回路32の出力信号を選択し、この信号を、信号ENとして、発振回路34およびフリップフロップ35に供給する。セレクタ37は、制御信号生成部12からの制御信号に基づいて、フリップフロップ35の出力信号を選択し、この信号を、信号STPとして、フリップフロップ部43,46およびインバータ38に供給する。セレクタ41は、制御信号生成部12からの制御信号に基づいて、クロック信号生成部20の発振回路24が生成したクロック信号CLKを選択し、このクロック信号CLKをカウンタ42に供給する。 In the operation mode MA, the selectors 33 of the plurality of timing detectors 31 select the output signal of the AND circuit 32 based on the control signal from the control signal generator 12, and use this signal as the signal EN. It is supplied to the oscillation circuit 34 and the flip-flop 35 . The selector 37 selects the output signal of the flip-flop 35 based on the control signal from the control signal generator 12, and supplies this signal to the flip- flop units 43 and 46 and the inverter 38 as the signal STP. The selector 41 selects the clock signal CLK generated by the oscillation circuit 24 of the clock signal generator 20 based on the control signal from the control signal generator 12 and supplies the clock signal CLK to the counter 42 .
 次に、画素アレイ14における複数の受光部Pのうち、光学部材9により導かれた光パルスL0Rを検出する受光部P(受光部PR)、および計測対象物OBJにより反射された反射光パルスL1を検出する受光部P(受光部PA)に着目し、動作モードMAにおける光検出システム1の動作について説明する。 Next, among the plurality of light receiving portions P in the pixel array 14, the light receiving portion P (light receiving portion PR) that detects the light pulse L0R guided by the optical member 9 and the reflected light pulse L1 reflected by the measurement object OBJ Focusing on the light receiving portion P (light receiving portion PA) that detects , the operation of the photodetection system 1 in the operation mode MA will be described.
 図12は、動作モードMAにおける光検出システム1の一動作例を表すものであり、(A)は信号STRの波形を示し、(B)はクロック信号CLKの波形を示し、(C)~(I)は受光部PRが生成したパルス信号PLS(パルス信号PLSR)に基づいて動作するタイミング検出部31(タイミング検出部31R)における信号の波形を示し、(J)~(P)は受光部PAが生成したパルス信号PLS(パルス信号PLSA)に基づいて動作するタイミング検出部31(タイミング検出部31A)における信号の波形を示す。 FIG. 12 shows an operation example of the photodetection system 1 in the operation mode MA, where (A) shows the waveform of the signal STR, (B) shows the waveform of the clock signal CLK, and (C) to ( I) shows the waveform of the signal in the timing detection section 31 (timing detection section 31R) that operates based on the pulse signal PLS (pulse signal PLSR) generated by the light receiving section PR, and (J) to (P) show the waveform of the signal in the light receiving section PA. 3 shows waveforms of signals in the timing detector 31 (timing detector 31A) that operates based on the pulse signal PLS (pulse signal PLSA) generated by .
 図12(C)はタイミング検出部31RにおけるカウントコードCDC1(カウントコードCDC1R)を示し、(D)はタイミング検出部31Rに供給されるパルス信号PLSRの波形を示し、(E)はタイミング検出部31Rにおける信号EN(信号ENR)の波形を示し、(F)はタイミング検出部31Rにおける信号STP(信号STPR)の波形を示し、(G)はタイミング検出部31RにおけるカウントコードCDF1(カウントコードCDF1R)を示し、(H)はタイミング検出部31RにおけるカウントコードCDC(カウントコードCDCR)を示し、(I)はタイミング検出部31RにおけるカウントコードCDF(カウントコードCDFR)を示す。 FIG. 12(C) shows the count code CDC1 (count code CDC1R) in the timing detection section 31R, (D) shows the waveform of the pulse signal PLSR supplied to the timing detection section 31R, and (E) shows the timing detection section 31R. (F) shows the waveform of the signal STP (signal STPR) in the timing detection section 31R, and (G) shows the waveform of the signal EN (signal ENR) in the timing detection section 31R. (H) indicates the count code CDC (count code CDCR) in the timing detector 31R, and (I) indicates the count code CDF (count code CDFR) in the timing detector 31R.
 図12(J)はタイミング検出部31AにおけるカウントコードCDC1(カウントコードCDC1A)を示し、(K)はタイミング検出部31Aに供給されるパルス信号PLSAの波形を示し、(L)はタイミング検出部31Aにおける信号EN(信号ENA)の波形を示し、(M)はタイミング検出部31Aにおける信号STP(信号STPA)の波形を示し、(N)はタイミング検出部31AにおけるカウントコードCDF1(カウントコードCDF1A)を示し、(O)はタイミング検出部31AにおけるカウントコードCDC(カウントコードCDCA)を示し、(P)はタイミング検出部31AにおけるカウントコードCDF(カウントコードCDFA)を示す。 12(J) shows the count code CDC1 (count code CDC1A) in the timing detection section 31A, (K) shows the waveform of the pulse signal PLSA supplied to the timing detection section 31A, and (L) shows the timing detection section 31A. (M) shows the waveform of the signal STP (signal STPA) in the timing detection section 31A, (N) shows the waveform of the signal EN (signal ENA) in the timing detection section 31A, and (N) the count code CDF1 (count code CDF1A) in the timing detection section 31A. (O) indicates the count code CDC (count code CDCA) in the timing detection section 31A, and (P) indicates the count code CDF (count code CDFA) in the timing detection section 31A.
 タイミングt11において、制御信号生成部12は、クロック信号CLKの立ち上がりエッジに応じて、信号STRを低レベルから高レベルに変化させる(図12(A),(B))。これにより、タイミング検出部31Rのカウンタ42は、クロック信号CLKの立ち上がりエッジに基づくカウント動作を開始し、カウントコードCDC1Rは増加しはじめる(図12(C))。同様に、タイミング検出部31Aのカウンタ42は、クロック信号CLKの立ち上がりエッジに基づくカウント動作を開始し、カウントコードCDC1Aは増加しはじめる(図12(J))。 At timing t11, the control signal generator 12 changes the signal STR from low level to high level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 12). As a result, the counter 42 of the timing detector 31R starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1R begins to increment (FIG. 12(C)). Similarly, the counter 42 of the timing detector 31A starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1A starts increasing ((J) in FIG. 12).
 また、この制御信号STRの変化に基づいて、駆動部13は発光部8を駆動し、発光部8は光パルスL0を射出する。光学部材9は、発光部8から射出された光パルスL0を計測対象物OBJに導くとともに、光の一部(光パルスL0R)を光検出部10の受光部PRに導く。受光部PRは、この光パルスL0Rを検出することにより、パルス信号PLSRを生成する。これにより、タイミングt12において、パルス信号PLSRが低レベルから高レベルに変化する(図12(D))。これ以降、このパルス信号PLSRに基づいて、この受光部PRに対応するタイミング検出部31Rが動作する。 Further, based on this change in the control signal STR, the driving section 13 drives the light emitting section 8, and the light emitting section 8 emits the light pulse L0. The optical member 9 guides the light pulse L0 emitted from the light emitting unit 8 to the object to be measured OBJ, and guides part of the light (light pulse L0R) to the light receiving unit PR of the light detection unit 10 . The light receiving part PR generates a pulse signal PLSR by detecting this light pulse L0R. As a result, at timing t12, the pulse signal PLSR changes from low level to high level ((D) in FIG. 12). After that, the timing detection section 31R corresponding to this light receiving section PR operates based on this pulse signal PLSR.
 このタイミングt12において、信号STPRは低レベルであるので(図12(F))、タイミング検出部31Rの論理積回路32の出力信号は、このパルス信号PLSRに基づいて、低レベルから高レベルに変化する。これにより、信号ENRは低レベルから高レベルに変化する(図12(E))。 At this timing t12, the signal STPR is at low level ((F) in FIG. 12), so the output signal of the AND circuit 32 of the timing detector 31R changes from low level to high level based on this pulse signal PLSR. do. As a result, the signal ENR changes from low level to high level (FIG. 12(E)).
 この信号ENRの変化に基づいて、タイミング検出部31Rの発振回路34は発振動作を開始し、多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK27)を生成し始める。分周部45は、この多相クロック信号CLKMに基づいてカウントコードCDF1Rを生成する(図12(G))。このカウントコードCDF1Rは、カウントコードCDC1Rが1回変化する間に4回変化する。すなわち、カウントコードCDF1Rを用いることにより、受光タイミングをより高精度で検出することができる。言い換えれば、カウントコードCDC1Rはコースコードであり、カウントコードCDF1Rはファインコードである。このように、タイミング検出部31Rでは、クロック信号生成部20の発振回路24が生成するクロック信号CLKに基づいてカウントコードCDC1R(コースコード)が生成され、タイミング検出部31Rの発振回路34が生成する多相クロック信号CLKMに基づいてカウントコードCDF1R(ファインコード)が生成される。 Based on this change in signal ENR, the oscillation circuit 34 of the timing detector 31R starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27). The frequency divider 45 generates a count code CDF1R based on this multiphase clock signal CLKM (FIG. 12(G)). This count code CDF1R changes four times while the count code CDC1R changes once. That is, by using the count code CDF1R, the light receiving timing can be detected with higher accuracy. In other words, count code CDC1R is a coarse code and count code CDF1R is a fine code. Thus, in the timing detection section 31R, the count code CDC1R (coarse code) is generated based on the clock signal CLK generated by the oscillation circuit 24 of the clock signal generation section 20, and generated by the oscillation circuit 34 of the timing detection section 31R. Count code CDF1R (fine code) is generated based on multiphase clock signal CLKM.
 次に、タイミングt13において、制御信号生成部12は、クロック信号CLKの立ち上がりエッジに応じて、信号STRを高レベルから低レベルに変化させる(図12(A),(B))。 Next, at timing t13, the control signal generator 12 changes the signal STR from high level to low level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 12).
 また、このタイミングt13において、タイミング検出部31Rのフリップフロップ35は、クロック信号CLKの立ち上がりエッジに基づいて、信号ENRをラッチする。これにより、信号STPRは、このタイミングt13において、低レベルから高レベルに変化する(図12(F))。 Also, at this timing t13, the flip-flop 35 of the timing detection section 31R latches the signal ENR based on the rising edge of the clock signal CLK. As a result, the signal STPR changes from low level to high level at this timing t13 ((F) in FIG. 12).
 この信号STPRの変化に基づいて、タイミング検出部31Rのフリップフロップ部43は、カウントコードCDC1RをラッチすることによりカウントコードCDCRを生成する(図12(C),(H))。この例では、カウントコードCDC1Rのコード値“0”がラッチされる。このラッチ結果に基づいて、タイミングt15において、この例ではカウントコードCDCRが“0”になる。 Based on this change in the signal STPR, the flip-flop section 43 of the timing detection section 31R latches the count code CDC1R to generate the count code CDCR ((C), (H) in FIG. 12). In this example, the code value "0" of the count code CDC1R is latched. Based on this latch result, the count code CDCR becomes "0" at timing t15 in this example.
 同様に、この信号STPRの変化に基づいて、タイミング検出部31Rのフリップフロップ部46は、カウントコードCDF1RをラッチすることによりカウントコードCDFRを生成する(図12(G),(I))。この例では、カウントコードCDF1Rのコード値“1111”がラッチされる。このラッチ結果に基づいて、タイミングt15において、この例ではカウントコードCDFRが“4”になる。 Similarly, based on this change in signal STPR, the flip-flop section 46 of the timing detection section 31R latches the count code CDF1R to generate the count code CDFR (FIGS. 12(G) and (I)). In this example, the code value "1111" of the count code CDF1R is latched. Based on this latch result, the count code CDFR becomes "4" at timing t15 in this example.
 このように信号STPRが低レベルから高レベルに変化すると、タイミング検出部31Rの論理積回路32の出力信号は、高レベルから低レベルに変化する。これにより、タイミングt14において、信号ENRは高レベルから低レベルに変化する(図12(E))。その結果、タイミング検出部31Rの発振回路34は発振動作を停止し、カウントコードCDF1Rの更新は停止する(図12(G))。 When the signal STPR changes from low level to high level in this manner, the output signal of the AND circuit 32 of the timing detection section 31R changes from high level to low level. As a result, at timing t14, the signal ENR changes from high level to low level ((E) in FIG. 12). As a result, the oscillation circuit 34 of the timing detector 31R stops oscillating, and updating of the count code CDF1R stops ((G) in FIG. 12).
 そして、タイミングt15において、タイミング検出部31Rのフリップフロップ35は、クロック信号CLKの立ち上がりエッジに基づいて、信号ENRをラッチする。これにより、信号STPRは、このタイミングt15において、高レベルから低レベルに変化する(図12(F))。 Then, at timing t15, the flip-flop 35 of the timing detection section 31R latches the signal ENR based on the rising edge of the clock signal CLK. As a result, the signal STPR changes from high level to low level at this timing t15 ((F) in FIG. 12).
 そして、この例では、タイミングt16において、パルス信号PLSRが高レベルから低レベルに変化する(図12(D))。 Then, in this example, at timing t16, the pulse signal PLSR changes from high level to low level (FIG. 12(D)).
 その後、しばらく時間がたった後、受光部PAは、計測対象物OBJにより反射された反射光パルスL1を検出することにより、パルス信号PLSAを生成する。これにより、タイミングt22において、パルス信号PLSAが低レベルから高レベルに変化する(図12(K))。これ以降、このパルス信号PLSAに基づいて、この受光部PAに対応するタイミング検出部31Aが動作する。 After that, after a while, the light receiving part PA detects the reflected light pulse L1 reflected by the object to be measured OBJ to generate the pulse signal PLSA. As a result, at timing t22, the pulse signal PLSA changes from low level to high level ((K) in FIG. 12). After that, the timing detection section 31A corresponding to this light receiving section PA operates based on this pulse signal PLSA.
 このタイミングt22において、信号STPAは低レベルであるので(図12(M))、タイミング検出部31Aの論理積回路32の出力信号は、このパルス信号PLSAに基づいて、低レベルから高レベルに変化する。これにより、信号ENAは低レベルから高レベルに変化する(図12(L))。 At this timing t22, the signal STPA is at low level ((M) in FIG. 12), so the output signal of the AND circuit 32 of the timing detector 31A changes from low level to high level based on this pulse signal PLSA. do. As a result, the signal ENA changes from low level to high level ((L) in FIG. 12).
 この信号ENAの変化に基づいて、タイミング検出部31Aの発振回路34は発振動作を開始し、多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK27)を生成し始める。分周部45は、この多相クロック信号CLKMに基づいてカウントコードCDF1Aを生成する(図12(N))。このカウントコードCDF1Aは、カウントコードCDC1Aが1回変化する間に4回変化する。このように、タイミング検出部31Aでは、クロック信号生成部20の発振回路24が生成するクロック信号CLKに基づいてカウントコードCDC1A(コースコード)が生成され、タイミング検出部31Aの発振回路34が生成する多相クロック信号CLKMに基づいてカウントコードCDF1A(ファインコード)が生成される。 Based on this change in signal ENA, the oscillation circuit 34 of the timing detector 31A starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27). The frequency divider 45 generates the count code CDF1A based on this multiphase clock signal CLKM (FIG. 12(N)). This count code CDF1A changes four times while the count code CDC1A changes once. Thus, in the timing detection section 31A, the count code CDC1A (course code) is generated based on the clock signal CLK generated by the oscillation circuit 24 of the clock signal generation section 20, and generated by the oscillation circuit 34 of the timing detection section 31A. Count code CDF1A (fine code) is generated based on multiphase clock signal CLKM.
 次に、タイミングt23において、タイミング検出部31Aのフリップフロップ35は、クロック信号CLKの立ち上がりエッジに基づいて、信号ENAをラッチする。これにより、信号STPAは、このタイミングt23において、低レベルから高レベルに変化する(図12(M))。 Next, at timing t23, the flip-flop 35 of the timing detection section 31A latches the signal ENA based on the rising edge of the clock signal CLK. As a result, the signal STPA changes from low level to high level at this timing t23 ((M) in FIG. 12).
 この信号STPAの変化に基づいて、タイミング検出部31Aのフリップフロップ部43は、カウントコードCDC1AをラッチすることによりカウントコードCDCAを生成する(図12(J),(O))。この例では、カウントコードCDC1Aのコード値“21”がラッチされる。このラッチ結果に基づいて、タイミングt25において、この例ではカウントコードCDCAが“21”になる。 Based on this change in signal STPA, the flip-flop section 43 of the timing detection section 31A latches the count code CDC1A to generate the count code CDCA ((J) and (O) in FIG. 12). In this example, the code value "21" of the count code CDC1A is latched. Based on this latch result, the count code CDCA becomes "21" at timing t25 in this example.
 同様に、この信号STPAの変化に基づいて、タイミング検出部31Aのフリップフロップ部46は、カウントコードCDF1AをラッチすることによりカウントコードCDFAを生成する(図12(N),(P))。この例では、カウントコードCDF1Aのコード値“1110”がラッチされる。このラッチ結果に基づいて、タイミングt25において、この例ではカウントコードCDFAが“3”になる。 Similarly, based on this change in signal STPA, the flip-flop section 46 of the timing detection section 31A latches the count code CDF1A to generate the count code CDFA ((N), (P) in FIG. 12). In this example, the code value "1110" of the count code CDF1A is latched. Based on this latch result, the count code CDFA becomes "3" at timing t25 in this example.
 このように信号STPAが低レベルから高レベルに変化すると、タイミング検出部31Aの論理積回路32の出力信号は高レベルから低レベルに変化する。これにより、タイミングt24において、信号ENAは高レベルから低レベルに変化する(図12(L))。その結果、タイミング検出部31Aの発振回路34は発振動作を停止し、カウントコードCDF1Aの更新は停止する(図12(N))。 When the signal STPA changes from low level to high level in this manner, the output signal of the AND circuit 32 of the timing detection section 31A changes from high level to low level. As a result, at timing t24, the signal ENA changes from high level to low level ((L) in FIG. 12). As a result, the oscillation circuit 34 of the timing detector 31A stops oscillating, and the update of the count code CDF1A stops ((N) in FIG. 12).
 そして、タイミングt25において、タイミング検出部31Aのフリップフロップ35は、クロック信号CLKの立ち上がりエッジに基づいて、信号ENAをラッチする。これにより、信号STPAは、このタイミングt25において、高レベルから低レベルに変化する(図12(M))。 Then, at timing t25, the flip-flop 35 of the timing detection section 31A latches the signal ENA based on the rising edge of the clock signal CLK. As a result, the signal STPA changes from high level to low level at this timing t25 ((M) in FIG. 12).
 そして、この例では、タイミングt26において、パルス信号PLSAが高レベルから低レベルに変化する(図12(K))。 Then, in this example, at timing t26, the pulse signal PLSA changes from high level to low level ((K) in FIG. 12).
 このようにして、この例では、タイミング検出部31Rは、カウントコードCDCR(コード値“0”)およびカウントコードCDFR(コード値“4”)を生成し、タイミング検出部31Aは、カウントコードCDCA(コード値“21”)およびカウントコードCDFA(コード値“3”)を生成する。 Thus, in this example, the timing detector 31R generates the count code CDCR (code value "0") and the count code CDFR (code value "4"), and the timing detector 31A generates the count code CDCA (code value "4"). code value "21") and count code CDFA (code value "3").
 図12に示したように、受光部PRがパルス信号PLSRを検出したタイミングt12と、受光部PAがパルス信号PLSAを検出したタイミングt22との間の時間は、受光部PAが検出した光パルスの飛行時間Ttofである。 As shown in FIG. 12, the time between the timing t12 when the light receiving unit PR detects the pulse signal PLSR and the timing t22 when the light receiving unit PA detects the pulse signal PLSA is the time of the light pulse detected by the light receiving unit PA. Time of flight Ttof.
 TDC部30は、カウントコードCDCR,CDFR、およびカウントコードCDCA,CDFAをヒストグラム生成部17に供給する。ヒストグラム生成部17は、まず、以下の式を用いて、飛行時間Ttofを算出する。
Ttof =(CDCA×W-(W-(CDFA-1)))-(CDCR×W-(W-(CDFR-1)))
   =(CDCA-CDCR)×W+(CDFA-CDFR)
ここで、飛行時間Ttofは、カウントコードCDF(ファインコード)に基づくカウント値を基準とした時間である。Wは、カウントコードCDC1(コースコード)の更新周期と、カウントコードCDF1(ファインコード)の更新周期との比であり、図12の例では“4”である。すなわち、カウントコードCDF1は、カウントコードCDC1が1回変化する間に4回変化するので、Wは“4”である。この例では、カウントコードCDCRのコード値は“0”であり、カウントコードCDFRのコード値は“4”であり、カウントコードCDCAのコード値は“21”であり、カウントコードCDFAのコード値は“3”であるので、飛行時間Ttofは“83”となる。
The TDC section 30 supplies the count codes CDCR, CDFR and the count codes CDCA, CDFA to the histogram generating section 17 . The histogram generator 17 first calculates the flight time Ttof using the following formula.
Ttof = (CDCA×W-(W-(CDFA-1)))-(CDCR×W-(W-(CDFR-1)))
= (CDCA - CDCR) x W + (CDFA - CDFR)
Here, the flight time Ttof is the time based on the count value based on the count code CDF (fine code). W is the ratio between the update period of the count code CDC1 (coarse code) and the update period of the count code CDF1 (fine code), and is "4" in the example of FIG. That is, since the count code CDF1 changes four times while the count code CDC1 changes once, W is "4". In this example, the code value of count code CDCR is "0", the code value of count code CDFR is "4", the code value of count code CDCA is "21", and the code value of count code CDFA is Since it is "3", the flight time Ttof is "83".
 光検出システム1が、光パルスL0を複数回射出することにより、ヒストグラム生成部17は、複数の受光部Pのそれぞれについて、この飛行時間Ttofのデータを蓄積する。ヒストグラム生成部17は、蓄積されたこの飛行時間Ttofのデータに基づいて、複数の受光部Pのそれぞれについて、飛行時間Ttofのヒストグラムを生成する。そして、ヒストグラム生成部17は、受光部Pにおける飛行時間Ttofのヒストグラムに基づいて、頻度が最も高い飛行時間Ttofを特定し、その飛行時間Ttofを、その受光部Pの飛行時間Ttofとして決定する。 The light detection system 1 emits the light pulse L0 multiple times, so that the histogram generation unit 17 accumulates the data of the flight time Ttof for each of the multiple light receiving units P. The histogram generation unit 17 generates a histogram of the flight times Ttof for each of the plurality of light receiving units P based on the accumulated data of the flight times Ttof. Then, the histogram generator 17 identifies the flight time Ttof with the highest frequency based on the histogram of the flight times Ttof at the light receiving portion P, and determines the flight time Ttof as the flight time Ttof of the light receiving portion P.
 そして、距離演算部18は、複数の受光部Pのそれぞれについての飛行時間Ttofのデータに基づいて、距離値を算出することにより、距離画像PICを生成する。 Then, the distance calculation unit 18 generates the distance image PIC by calculating the distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P.
(動作モードMB)
 上述したように、発振回路34(図6)の構成は、発振回路24(図3)の構成と同様である。また、図5に示したように、発振回路34,24は、同じ制御電圧Vctrlに基づいて発振動作を行う。よって、発振回路34の発振周波数は、発振回路24の発振周波数とほぼ同じであることが期待される。言い換えれば、発振回路34が生成する多相クロック信号CLKMの周波数は、発振回路24が生成するクロック信号CLKの周波数と同じであることが期待される。
(Operation mode MB)
As described above, the configuration of the oscillator circuit 34 (FIG. 6) is similar to the configuration of the oscillator circuit 24 (FIG. 3). Also, as shown in FIG. 5, the oscillation circuits 34 and 24 perform oscillation operations based on the same control voltage Vctrl. Therefore, the oscillation frequency of the oscillation circuit 34 is expected to be substantially the same as the oscillation frequency of the oscillation circuit 24 . In other words, the frequency of the multiphase clock signal CLKM generated by the oscillation circuit 34 is expected to be the same as the frequency of the clock signal CLK generated by the oscillation circuit 24 .
 しかしながら、図5に示したように、TDC部30は、複数のタイミング検出部31を有しているので、複数のタイミング検出部31における複数の発振回路34を、クロック信号生成部20の発振回路24の近傍に配置することは難しい。発振回路34の位置が発振回路24の位置から遠い場合には、発振回路34の発振周波数と、発振回路24の発振周波数との間に差が生じる可能性がある。すなわち、例えば、発振回路34および発振回路24が離れている場合には、例えば電源線における電源電圧ドロップにより、発振回路34に供給される電源電圧と、発振回路24に供給される電源電圧との間に差が生じる可能性がある。また、発振回路34および発振回路24が離れている場合には、例えば、発振回路34の位置における温度と、発振回路24の位置における温度との間に差が生じる可能性がある。また、発振回路34および発振回路24が離れている場合には、例えば、発振回路34を構成する素子の特性と、発振回路24を構成する素子の特性との間に差が生じる可能性がある。このような場合には、発振回路34の発振周波数と、発振回路24の発振周波数との間に差が生じる可能性がある。 However, as shown in FIG. 5, the TDC section 30 has a plurality of timing detection sections 31, so that the plurality of oscillation circuits 34 in the plurality of timing detection sections 31 are replaced by the oscillation circuit of the clock signal generation section 20. 24 is difficult. If the position of the oscillator circuit 34 is far from the position of the oscillator circuit 24 , a difference may occur between the oscillation frequency of the oscillator circuit 34 and the oscillation frequency of the oscillator circuit 24 . That is, for example, when the oscillation circuit 34 and the oscillation circuit 24 are separated from each other, the power supply voltage supplied to the oscillation circuit 34 and the power supply voltage supplied to the oscillation circuit 24 may vary due to, for example, a power supply voltage drop in the power supply line. There may be differences between Also, if the oscillator circuit 34 and the oscillator circuit 24 are separated from each other, for example, there is a possibility that a temperature difference occurs between the temperature at the position of the oscillator circuit 34 and the temperature at the position of the oscillator circuit 24 . Further, when the oscillator circuit 34 and the oscillator circuit 24 are separated from each other, there is a possibility that the characteristics of the elements constituting the oscillator circuit 34 and the characteristics of the elements constituting the oscillator circuit 24 are different. . In such a case, a difference may occur between the oscillation frequency of the oscillation circuit 34 and the oscillation frequency of the oscillation circuit 24 .
 このように、発振回路34の発振周波数と、発振回路24の発振周波数との間に差が生じる場合には、タイミング検出部31における、時間をカウントコードに変換する変換特性のリニアリティが低下してしまう。 As described above, when there is a difference between the oscillation frequency of the oscillation circuit 34 and the oscillation frequency of the oscillation circuit 24, the linearity of the conversion characteristic for converting time into the count code in the timing detection section 31 is lowered. put away.
 図13は、発振回路34の発振周波数が、発振回路24の発振周波数と同じ場合における変換特性の一例を表すものである。タイミング検出部31では、発振回路24が生成するクロック信号CLKに基づいてカウントコードCDC(コースコード)が生成され、発振回路34が生成する多相クロック信号CLKMに基づいてカウントコードCDF(ファインコード)が生成される。発振回路34の発振周波数が、発振回路24の発振周波数と同じ場合には、図13に示したように、カウントコードCDCの変換特性の勾配、およびカウントコードCDFの変換特性の勾配を、互いに等しくすることができる。これにより、タイミング検出部31では、破線で示した理想的な変換特性を実現することができる。 FIG. 13 shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is the same as the oscillation frequency of the oscillation circuit 24. FIG. In the timing detector 31, a count code CDC (coarse code) is generated based on the clock signal CLK generated by the oscillator circuit 24, and a count code CDF (fine code) is generated based on the multiphase clock signal CLKM generated by the oscillator circuit 34. is generated. When the oscillation frequency of oscillation circuit 34 is the same as the oscillation frequency of oscillation circuit 24, the slope of the conversion characteristic of count code CDC and the slope of the conversion characteristic of count code CDF are equal to each other, as shown in FIG. can do. As a result, the timing detection section 31 can realize the ideal conversion characteristics indicated by the dashed line.
 図14Aは、発振回路34の発振周波数が、発振回路24の発振周波数よりも低い場合における変換特性の一例を表すものである。図14Bは、発振回路34の発振周波数が、発振回路24の発振周波数よりも高い場合における変換特性の一例を表すものである。 14A shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is lower than the oscillation frequency of the oscillation circuit 24. FIG. FIG. 14B shows an example of conversion characteristics when the oscillation frequency of the oscillation circuit 34 is higher than the oscillation frequency of the oscillation circuit 24. FIG.
 発振回路34の発振周波数が発振回路24の発振周波数よりも低い場合には、図14Aに示したように、カウントコードCDFの変換特性の勾配が、カウントコードCDCの変換特性の勾配よりも小さくなる。また、発振回路34の発振周波数が発振回路24の発振周波数よりも高い場合には、図14Bに示したように、カウントコードCDFの変換特性の勾配が、カウントコードCDCの変換特性の勾配よりも大きくなる。その結果、タイミング検出部31の変換特性は、破線で示した理想的な変換特性からずれてしまい、リニアリティが低下してしまう。 When the oscillation frequency of oscillation circuit 34 is lower than the oscillation frequency of oscillation circuit 24, the slope of the conversion characteristic of count code CDF is smaller than the slope of the conversion characteristic of count code CDC, as shown in FIG. 14A. . When the oscillation frequency of oscillation circuit 34 is higher than the oscillation frequency of oscillation circuit 24, the slope of the conversion characteristic of count code CDF is higher than the slope of the conversion characteristic of count code CDC, as shown in FIG. 14B. growing. As a result, the conversion characteristics of the timing detection unit 31 deviate from the ideal conversion characteristics indicated by the dashed line, resulting in reduced linearity.
 そこで、光検出システム1は、動作モードMBにおいて、発振回路24の発振周波数および発振回路34の発振周波数の周波数差に応じたキャリブレーションを行う。これにより、発振回路24の発振周波数と、発振回路34の発振周波数との間に差がある場合でも、タイミング検出部31の変換特性を高めることができる。 Therefore, the photodetection system 1 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34 in the operation mode MB. Thereby, even when there is a difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 34, the conversion characteristic of the timing detection section 31 can be improved.
 図15は、光検出システム1におけるキャリブレーションの一例を表すものである。この例では、光検出システム1は、電源投入時において、キャリブレーションを行う。 FIG. 15 shows an example of calibration in the photodetection system 1. FIG. In this example, the photodetection system 1 performs calibration when the power is turned on.
 光検出システム1の電源が投入されると、制御信号生成部12は、動作モードMを動作モードMBに設定する(ステップS101)。具体的には、制御信号生成部12は、複数のタイミング検出部31のそれぞれのセレクタ33,37,41の動作状態を設定する。 When the light detection system 1 is powered on, the control signal generator 12 sets the operation mode M to the operation mode MB (step S101). Specifically, the control signal generator 12 sets the operating states of the selectors 33 , 37 , 41 of the plurality of timing detectors 31 .
 図16は、動作モードMBにおけるTDC部30の動作状態の一例を表すものである。動作モードMBでは、複数のタイミング検出部31のそれぞれのセレクタ33は、制御信号生成部12からの制御信号に基づいて、信号STRを選択し、この信号を、信号ENとして、発振回路34およびフリップフロップ35に供給する。セレクタ37は、制御信号生成部12からの制御信号に基づいて、インバータ36の出力信号を選択し、この信号を、信号STPとして、フリップフロップ部43,46およびインバータ38に供給する。セレクタ41は、制御信号生成部12からの制御信号に基づいて、発振回路34が生成したクロック信号CLK0を選択し、このクロック信号CLK0をカウンタ42に供給する。 FIG. 16 shows an example of the operating state of the TDC section 30 in the operating mode MB. In the operation mode MB, each selector 33 of the plurality of timing detectors 31 selects the signal STR based on the control signal from the control signal generator 12, and uses this signal as the signal EN to operate the oscillation circuit 34 and the flip-flop. 35. The selector 37 selects the output signal of the inverter 36 based on the control signal from the control signal generator 12 and supplies this signal to the flip- flop units 43 and 46 and the inverter 38 as the signal STP. The selector 41 selects the clock signal CLK0 generated by the oscillation circuit 34 based on the control signal from the control signal generator 12 and supplies the clock signal CLK0 to the counter 42 .
 次に、光検出システム1は、複数のタイミング検出部31においてカウント動作を行い、カウントコードCDCを得る(ステップS102)。以下に、TDC部30における複数のタイミング検出部31のうちの1つに着目し、動作モードMBにおける光検出システム1の動作について説明する。 Next, the photodetection system 1 performs a count operation in a plurality of timing detection units 31 to obtain a count code CDC (step S102). Focusing on one of the plurality of timing detection units 31 in the TDC unit 30, the operation of the photodetection system 1 in the operation mode MB will be described below.
 図17は、タイミング検出部31の発振回路34の発振周波数が、クロック信号生成部20の発振回路24の発振周波数よりも低い場合における、動作モードMBにおける光検出システム1の一動作例を表すものであり、(A)は信号STRの波形を示し、(B)はクロック信号CLKの波形を示し、(C)は信号ENの波形を示し、(D)クロック信号CLK0の波形を示し、(E)はカウントコードCDC1を示し、(F)は信号STPの波形を示し、(G)はカウントコードCDCを示す。 FIG. 17 shows an operation example of the photodetection system 1 in the operation mode MB when the oscillation frequency of the oscillation circuit 34 of the timing detection section 31 is lower than the oscillation frequency of the oscillation circuit 24 of the clock signal generation section 20. , (A) shows the waveform of signal STR, (B) shows the waveform of clock signal CLK, (C) shows the waveform of signal EN, (D) shows the waveform of clock signal CLK0, and (E ) indicates the count code CDC1, (F) indicates the waveform of the signal STP, and (G) indicates the count code CDC.
 タイミングt31において、制御信号生成部12は、クロック信号CLKの立ち上がりエッジに応じて、信号STRを低レベルから高レベルに変化させる(図17(A),(B))。 At timing t31, the control signal generator 12 changes the signal STR from low level to high level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 17).
 この信号STRの変化に応じて、信号ENは低レベルから高レベルに変化する(図17(C))。この信号ENの変化に基づいて、発振回路34は発振動作を開始し、多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK270)を生成し始める。 The signal EN changes from low level to high level according to this change in signal STR (FIG. 17(C)). Based on this change in signal EN, oscillation circuit 34 starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK270).
 これにより、カウンタ42は、クロック信号CLK0の立ち上がりエッジに基づくカウント動作を開始し、カウントコードCDC1は増加しはじめる(図17(E))。この例では、タイミング検出部31の発振回路34の発振周波数が、クロック信号生成部20の発振回路24の発振周波数よりも低いので、クロック信号CLK0の周波数は、クロック信号CLKの周波数よりも低い。カウンタ42は、このようなクロック信号CLK0に基づいてカウント動作を行う。 As a result, the counter 42 starts a counting operation based on the rising edge of the clock signal CLK0, and the count code CDC1 begins to increment (FIG. 17(E)). In this example, the oscillation frequency of the oscillation circuit 34 of the timing detection section 31 is lower than the oscillation frequency of the oscillation circuit 24 of the clock signal generation section 20, so the frequency of the clock signal CLK0 is lower than the frequency of the clock signal CLK. The counter 42 performs a count operation based on such a clock signal CLK0.
 タイミングt31以降において、制御信号生成部12は、クロック信号CLKのパルスをカウントする。制御信号生成部12は、そのカウント値が所定値CNTに達したタイミングt32において、クロック信号CLKの立ち上がりエッジに応じて、信号STRを高レベルから低レベルに変化させる(図17(A),(B))。この例では、所定値CNTは“1024”に設定されている。 After timing t31, the control signal generator 12 counts the pulses of the clock signal CLK. At the timing t32 when the count value reaches the predetermined value CNT, the control signal generator 12 changes the signal STR from high level to low level in response to the rising edge of the clock signal CLK (FIG. 17(A), ( B)). In this example, the predetermined value CNT is set to "1024".
 この信号STRの変化に応じて、タイミングt32において、信号ENは高レベルから低レベルに変化する(図17(C))。これにより、発振回路34は発振動作を停止し(図17(D))、カウントコードCDC1の更新は停止する(図17(E))。 At timing t32, the signal EN changes from high level to low level according to this change in signal STR (FIG. 17(C)). As a result, the oscillation circuit 34 stops oscillating (FIG. 17(D)), and updating of the count code CDC1 stops (FIG. 17(E)).
 また、この信号STRの変化に応じて、タイミングt32において、信号STPは低レベルから高レベルに変化する(図17(F))。この信号STPの変化に基づいて、フリップフロップ部43は、カウントコードCDC1をラッチすることによりカウントコードCDCを生成する(図17(E),(G))。この例では、カウントコードCDC1のコード値“987”がラッチされる。このラッチ結果に基づいて、タイミングt33において、この例ではカウントコードCDCが“987”になる。すなわち、タイミングt31~t32の期間の時間長は、発振回路24が生成するクロック信号CLKを基準とすると“1024”で表され、発振回路34が生成するクロック信号CLK0を基準とすると“987”で表される。言い換えれば、発振回路34の発振周波数は、発振回路24の発振周波数の“987/1024”である。 In addition, the signal STP changes from low level to high level at timing t32 according to this change in signal STR ((F) in FIG. 17). Based on this change in the signal STP, the flip-flop unit 43 latches the count code CDC1 to generate the count code CDC (FIGS. 17(E) and (G)). In this example, the code value "987" of the count code CDC1 is latched. Based on this latch result, the count code CDC becomes "987" at timing t33 in this example. That is, the time length of the period from timing t31 to t32 is represented by "1024" when the clock signal CLK generated by the oscillation circuit 24 is used as a reference, and is represented by "987" when the clock signal CLK0 generated by the oscillation circuit 34 is used as a reference. expressed. In other words, the oscillation frequency of the oscillation circuit 34 is “987/1024” of the oscillation frequency of the oscillation circuit 24 .
 このようにして、光検出システム1は、複数のタイミング検出部31のそれぞれにおいて、カウントコードCDCを得る。そして、複数のタイミング検出部31の出力部44は、制御信号生成部12からの制御信号に基づいて、カウントコードCDCを、バス配線BUS1を介して補正処理部16に順次供給する。 Thus, the photodetection system 1 obtains the count code CDC in each of the multiple timing detection units 31 . Based on the control signal from the control signal generator 12, the output units 44 of the plurality of timing detectors 31 sequentially supply the count code CDC to the correction processor 16 via the bus wiring BUS1.
 次に、補正処理部16は、カウントコードCDCおよび所定値CNTに基づいて、補正パラメータCAL1を算出し、この補正パラメータCAL1を記憶する(ステップS103)。具体的には、補正処理部16の演算部16Aは、以下の式を用いて、補正パラメータCAL1を算出する。
CAL1=CNT/CDC
例えば、図17の例では、所定値CNTは“1024”であり、カウントコードCDCは“987”であるので、補正パラメータCAL1は“1024/987”である。演算部16Aは、複数のタイミング検出部31から供給されたカウントコードCDCに基づいて、補正パラメータCAL1をそれぞれ算出する。そして、記憶部16Bは、複数のタイミング検出部31のそれぞれについての補正パラメータCAL1を記憶する。
Next, the correction processing unit 16 calculates a correction parameter CAL1 based on the count code CDC and the predetermined value CNT, and stores this correction parameter CAL1 (step S103). Specifically, the calculation unit 16A of the correction processing unit 16 calculates the correction parameter CAL1 using the following formula.
CAL1=CNT/CDC
For example, in the example of FIG. 17, the predetermined value CNT is "1024" and the count code CDC is "987", so the correction parameter CAL1 is "1024/987". The calculation unit 16A calculates correction parameters CAL1 based on the count codes CDC supplied from the plurality of timing detection units 31, respectively. Then, the storage unit 16B stores the correction parameter CAL1 for each of the plurality of timing detection units 31. FIG.
 次に、光検出システム1は、複数のタイミング検出部31における補正部47に、補正パラメータCAL1をセットする(ステップS104)。具体的には、補正処理部16は、記憶部16Bに記憶された複数の補正パラメータCAL1を、バス配線BUS2を介して、複数のタイミング検出部31の補正部47にそれぞれ供給する。補正部47のそれぞれは、カウントコードCDFに補正パラメータCAL1を乗算することによりカウントコードCDFを補正することができるように、補正パラメータCAL1をセットする。 Next, the photodetection system 1 sets the correction parameter CAL1 in the correction units 47 in the plurality of timing detection units 31 (step S104). Specifically, the correction processing unit 16 supplies the plurality of correction parameters CAL1 stored in the storage unit 16B to the correction units 47 of the plurality of timing detection units 31 via the bus wiring BUS2. Each correction unit 47 sets the correction parameter CAL1 so that the count code CDF can be corrected by multiplying the count code CDF by the correction parameter CAL1.
 この例では、補正部47は、動作モードMAにおいて、カウントコードCDFのコード値に、補正パラメータCAL1の値“1024/987”を乗算するように補正を行う。すなわち、この例では、発振回路34の発振周波数が、クロック信号生成部20の発振回路24の発振周波数の“987/1024”であるので、カウントコードCDFもまた、所望の値の“987/1024”になる。よって、補正部47は、カウントコードCDFのコード値に、補正パラメータCAL1の値“1024/987”を乗算することにより、カウントコードCDFを補正する。これにより、発振回路24の発振周波数および発振回路34の発振周波数の周波数差が、カウントコードCDFに及ぼす影響を低減することができる。 In this example, the correction unit 47 performs correction by multiplying the code value of the count code CDF by the value "1024/987" of the correction parameter CAL1 in the operation mode MA. That is, in this example, since the oscillation frequency of the oscillation circuit 34 is "987/1024" of the oscillation frequency of the oscillation circuit 24 of the clock signal generation unit 20, the count code CDF is also the desired value of "987/1024". "become. Therefore, the correction unit 47 multiplies the code value of the count code CDF by the value "1024/987" of the correction parameter CAL1 to correct the count code CDF. Thereby, the influence of the frequency difference between the oscillation frequency of oscillation circuit 24 and the oscillation frequency of oscillation circuit 34 on count code CDF can be reduced.
 そして、制御信号生成部12は、動作モードMを動作モードMAに設定する(ステップS105)。具体的には、制御信号生成部12は、複数のタイミング検出部31のそれぞれのセレクタ33,37,41の動作状態を、図11に示したように設定する。 Then, the control signal generator 12 sets the operation mode M to the operation mode MA (step S105). Specifically, the control signal generator 12 sets the operating states of the selectors 33, 37, and 41 of the plurality of timing detectors 31 as shown in FIG.
 そして、光検出システム1は、例えば図12に示したように、測距動作を開始する(ステップS106)。 Then, the photodetection system 1 starts a distance measurement operation, for example, as shown in FIG. 12 (step S106).
 以上で、この処理は終了する。 This is the end of this process.
 このように、光検出システム1では、クロック信号生成部20と、タイミング検出部31と、補正処理部16とを備えるようにした。クロック信号生成部20は、発振動作を行う発振回路24を有し、位相同期動作を行うことにより所定の周波数のクロック信号CLKを生成するようにした。タイミング検出部31は、クロック信号CLKに基づいてカウント動作を行うことにより第1のコード(カウントコードCDC1)を生成するカウンタ42と、パルス信号PLSに基づいて発振動作を行うことにより多相クロック信号CLKMを生成する発振回路34と、パルス信号PLSに基づいて、第1のコード(カウントコードCDC1)と、多相クロック信号CLKMに応じた第2のコード(カウントコードCDF1)とをラッチするフリップフロップ部43,46とを有し、受光部Pにおける受光タイミングを検出するようにした。補正処理部16は、クロック信号CLKの周波数および多相クロック信号CLKMの周波数の周波数差に応じた補正処理を行うようにした。これにより、光検出システム1では、例えば、クロック信号CLKの周波数と、多相クロック信号CLKMの周波数との間に差がある場合において、タイミング検出部31の変換特性を高めることができるので、検出精度を高めることができる。 Thus, the photodetection system 1 is provided with the clock signal generation section 20, the timing detection section 31, and the correction processing section 16. The clock signal generation unit 20 has an oscillation circuit 24 that performs an oscillation operation, and generates a clock signal CLK having a predetermined frequency by performing a phase synchronization operation. The timing detection unit 31 includes a counter 42 that generates a first code (count code CDC1) by performing a count operation based on the clock signal CLK, and a multiphase clock signal by performing an oscillation operation based on the pulse signal PLS. An oscillation circuit 34 that generates CLKM, and a flip-flop that latches a first code (count code CDC1) based on pulse signal PLS and a second code (count code CDF1) corresponding to multiphase clock signal CLKM. 43 and 46, and detects the light receiving timing in the light receiving portion P. FIG. The correction processing unit 16 performs correction processing according to the frequency difference between the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM. As a result, in the photodetection system 1, for example, when there is a difference between the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM, the conversion characteristics of the timing detection section 31 can be enhanced. Accuracy can be improved.
 また、光検出システム1では、タイミング検出部31が、フリップフロップ部46によりラッチされた第2のコード(カウントコードCDF)を補正する補正部47を有するようにした。第2の動作モード(動作モードMB)において、補正処理部16は、クロック信号CLKおよび多相クロック信号CLKMの周波数比(補正パラメータCAL1)を算出するようにした。そして、第1の動作モード(動作モードMA)において、補正部47は、フリップフロップ部46によりラッチされた第2のコード(カウントコードCDF)を、周波数比(補正パラメータCAL1)を用いて補正するようにした。これにより、光検出システム1では、例えば、クロック信号CLKの周波数と、多相クロック信号CLKMの周波数との間に差がある場合において、タイミング検出部31の変換特性を高めることができるので、検出精度を高めることができる。 Also, in the photodetection system 1, the timing detection section 31 has a correction section 47 that corrects the second code (count code CDF) latched by the flip-flop section 46. FIG. In the second operation mode (operation mode MB), the correction processing unit 16 calculates the frequency ratio (correction parameter CAL1) between the clock signal CLK and the multiphase clock signal CLKM. Then, in the first operation mode (operation mode MA), the correction unit 47 corrects the second code (count code CDF) latched by the flip-flop unit 46 using the frequency ratio (correction parameter CAL1). I made it As a result, in the photodetection system 1, for example, when there is a difference between the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM, the conversion characteristics of the timing detection section 31 can be enhanced. Accuracy can be improved.
[効果]
 以上のように本実施の形態では、クロック信号生成部と、タイミング検出部と、補正処理部とを備えるようにした。クロック信号生成部は、発振動作を行う発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するようにした。タイミング検出部は、クロック信号に基づいてカウント動作を行うことにより第1のコードを生成するカウンタと、パルス信号に基づいて発振動作を行うことにより多相クロック信号を生成する発振回路と、パルス信号に基づいて、第1のコードと、多相クロック信号に応じた第2のコードとをラッチするフリップフロップ部とを有し、受光部における受光タイミングを検出するようにした。補正処理部は、クロック信号の周波数および多相クロック信号の周波数の周波数差に応じた補正処理を行うようにした。これにより、検出精度を高めることができる。
[effect]
As described above, the present embodiment includes the clock signal generation section, the timing detection section, and the correction processing section. The clock signal generation unit has an oscillation circuit that performs an oscillation operation, and generates a clock signal with a predetermined frequency by performing a phase synchronization operation. The timing detection unit includes a counter that generates a first code by performing a counting operation based on a clock signal, an oscillation circuit that generates a multiphase clock signal by performing an oscillation operation based on a pulse signal, and a pulse signal. , a flip-flop section for latching a first code and a second code corresponding to a multiphase clock signal is provided, and the light receiving timing of the light receiving section is detected. The correction processing unit performs correction processing according to the frequency difference between the frequencies of the clock signals and the frequencies of the multiphase clock signals. Thereby, detection accuracy can be improved.
 本実施の形態では、タイミング検出部31が、フリップフロップ部46によりラッチされた第2のコード(カウントコードCDF)を補正する補正部47を有するようにした。第2の動作モードにおいて、補正処理部が、クロック信号および多相クロック信号の周波数比を算出し、第1の動作モードにおいて、補正部が、フリップフロップ部によりラッチされた第2のコードを、周波数比を用いて補正するようにした。これにより、検出精度を高めることができる。 In this embodiment, the timing detection section 31 has the correction section 47 that corrects the second code (count code CDF) latched by the flip-flop section 46 . In the second operation mode, the correction processing unit calculates the frequency ratio of the clock signal and the multiphase clock signal, and in the first operation mode, the correction unit converts the second code latched by the flip-flop unit to Correction is made using the frequency ratio. Thereby, detection accuracy can be improved.
[変形例1]
 上記実施の形態では、図15に示したように、光検出システム1の電源投入時に、動作モードMを動作モードMBに設定したが、これに限定されるものではない。これに代えて、例えば、図18に示すように、光検出システム1が測距動作を行っている期間において、定期的に、動作モードMを動作モードMBに設定してもよい。この例では、光検出システム1が測距動作を行っている期間において、制御信号生成部12は、所定時間が経過したかどうかを確認する(ステップS117)。まだ所定時間が経過していない場合(ステップS117において“N”)には、所定時間が経過するまで、ステップS117の処理を繰り返す。そして、所定時間が経過した場合(ステップS117において“Y”)には、測距動作を停止し(ステップS118)、ステップS101の処理に戻る。なお、この例では、定期的に、動作モードMを動作モードMBに設定したが、これに限定されるものではなく、任意のタイミングで、動作モードMを動作モードMBに設定することができる。これにより、例えば、光検出システム1が長い時間にわたり動作する場合や、温度や電源電圧が変動する場合に、タイミング検出部31の変換特性を高めることができる。
[Modification 1]
In the above embodiment, as shown in FIG. 15, the operation mode M is set to the operation mode MB when the power of the photodetection system 1 is turned on, but the present invention is not limited to this. Alternatively, for example, as shown in FIG. 18, the operation mode M may be periodically set to the operation mode MB while the photodetection system 1 is performing the ranging operation. In this example, the control signal generator 12 checks whether a predetermined period of time has elapsed while the photodetection system 1 is performing the ranging operation (step S117). If the predetermined time has not yet passed ("N" in step S117), the process of step S117 is repeated until the predetermined time has passed. If the predetermined time has passed ("Y" in step S117), the distance measuring operation is stopped (step S118), and the process returns to step S101. In this example, the operation mode M is periodically set to the operation mode MB, but the operation mode is not limited to this, and the operation mode M can be set to the operation mode MB at any timing. As a result, for example, when the photodetection system 1 operates for a long time, or when the temperature or power supply voltage fluctuates, the conversion characteristics of the timing detection section 31 can be enhanced.
<2.第2の実施の形態>
 次に、第2の実施の形態に係る光検出システム2について説明する。本実施の形態は、キャリブレーションの方法が、上記第1の実施の形態と異なるものである。すなわち、上記第1の実施の形態では、カウントコードCDFを補正したが、本実施の形態では、発振周波数自体を調整している。なお、上記第1の実施の形態に係る光検出システム1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
<2. Second Embodiment>
Next, a photodetection system 2 according to a second embodiment will be described. This embodiment differs from the first embodiment in the method of calibration. That is, although the count code CDF is corrected in the first embodiment, the oscillation frequency itself is adjusted in the present embodiment. The same reference numerals are assigned to substantially the same components as those of the photodetection system 1 according to the first embodiment, and description thereof will be omitted as appropriate.
 光検出システム2は、第1の実施の形態に係る光検出システム1(図1)と同様に、光検出部50を備えている。光検出部50は、TDC部60と、補正処理部56とを備えている。 The photodetection system 2 includes a photodetection section 50 in the same manner as the photodetection system 1 (FIG. 1) according to the first embodiment. The photodetection section 50 includes a TDC section 60 and a correction processing section 56 .
 TDC部60は、第1の実施の形態に係るTDC部30と同様に、画素アレイ14における複数の受光部Pのそれぞれから供給されたパルス信号PLSに基づいて、複数の受光部Pのそれぞれにおける受光タイミングを検出するように構成される。TDC部60は、複数のタイミング検出部61を有している。 Similar to the TDC unit 30 according to the first embodiment, the TDC unit 60, based on the pulse signal PLS supplied from each of the plurality of light receiving units P in the pixel array 14, detects the It is configured to detect light reception timing. The TDC section 60 has a plurality of timing detection sections 61 .
 図19は、TDC部60におけるタイミング検出部61の一構成例を表すものである。タイミング検出部61は、論理積回路32と、セレクタ33と、発振回路64と、フリップフロップ(F/F)35と、インバータ36と、セレクタ37と、インバータ38と、セレクタ41と、カウンタ42と、フリップフロップ部43と、出力部44と、分周部45と、フリップフロップ部46とを有している。すなわち、タイミング検出部61は、上記実施の形態に係るタイミング検出部31(図5)における発振回路34を発振回路64に置き換えるとともに、補正部47を削除したものである。 FIG. 19 shows a configuration example of the timing detection section 61 in the TDC section 60. As shown in FIG. The timing detection unit 61 includes an AND circuit 32, a selector 33, an oscillation circuit 64, a flip-flop (F/F) 35, an inverter 36, a selector 37, an inverter 38, a selector 41, a counter 42 and , a flip-flop section 43 , an output section 44 , a frequency dividing section 45 and a flip-flop section 46 . That is, the timing detection section 61 is obtained by replacing the oscillation circuit 34 in the timing detection section 31 (FIG. 5) according to the above embodiment with the oscillation circuit 64 and eliminating the correction section 47 .
 発振回路64は、発振動作を行うことにより、制御電圧Vctrlに応じた周波数を有する多相クロック信号CLKMを生成するように構成される。発振回路64は、信号ENに基づいて、発振動作を行い、あるいは発振動作を停止する。また、発振回路64は、補正パラメータCAL2に基づいて、発振周波数を調節することができるようになっている。 The oscillation circuit 64 is configured to generate a multiphase clock signal CLKM having a frequency corresponding to the control voltage Vctrl by performing an oscillation operation. Oscillating circuit 64 oscillates or stops oscillating based on signal EN. Further, the oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
 図20は、発振回路64の一構成例を表すものである。発振回路64は、トランジスタMN12と、調節部65とを有している。 FIG. 20 shows a configuration example of the oscillation circuit 64. In FIG. The oscillation circuit 64 has a transistor MN12 and an adjustment section 65 .
 トランジスタMN12は、N型のMOSトランジスタである。トランジスタMN12は、複数のトランジスタを含んでいる。これらの複数のトランジスタのドレインはインバータIV1~IV4の接地端子に接続され、ソースは接地される。これらの複数のトランジスタのそれぞれのゲートには、選択的に制御電圧Vctrlまたは接地電圧が供給される。 The transistor MN12 is an N-type MOS transistor. Transistor MN12 includes a plurality of transistors. The drains of these transistors are connected to the ground terminals of inverters IV1-IV4, and the sources are grounded. A control voltage Vctrl or a ground voltage is selectively supplied to the respective gates of these transistors.
 調節部65は、補正パラメータCAL2に基づいて、トランジスタMN12に含まれる複数のトランジスタのうちの、制御電圧Vctrlを供給するトランジスタの数を設定するように構成される。そして、調節部65は、トランジスタMN12に含まれる複数のトランジスタのそれぞれのゲートに、選択的に制御電圧Vctrlまたは接地電圧を供給するようになっている。 The adjustment unit 65 is configured to set the number of transistors that supply the control voltage Vctrl, among the plurality of transistors included in the transistor MN12, based on the correction parameter CAL2. The adjusting section 65 selectively supplies the control voltage Vctrl or the ground voltage to each gate of the plurality of transistors included in the transistor MN12.
 この構成により、発振回路64では、例えば、補正パラメータCAL2が示す値が大きい場合には、調節部65は、制御電圧Vctrlを供給するトランジスタの数を多くする。この場合には、トランジスタMN12に流れる電流が多くなるので、インバータIV1~IV4に流れる電流が多くなり、多相クロック信号CLKMの周波数は高くなる。また、例えば、補正パラメータCAL2が示す値が小さい場合には、調節部65は、制御電圧Vctrlを供給するトランジスタの数を少なくする。この場合には、トランジスタMN12に流れる電流が少なくなるので、インバータIV1~IV4に流れる電流が少なくなり、多相クロック信号CLKMの周波数は低くなる。このようにして、発振回路64は、補正パラメータCAL2に基づいて、発振周波数を調節することができるようになっている。 With this configuration, in the oscillation circuit 64, for example, when the value indicated by the correction parameter CAL2 is large, the adjusting section 65 increases the number of transistors that supply the control voltage Vctrl. In this case, the current flowing through the transistor MN12 increases, so the current flowing through the inverters IV1 to IV4 increases, and the frequency of the multiphase clock signal CLKM increases. Further, for example, when the value indicated by the correction parameter CAL2 is small, the adjusting section 65 reduces the number of transistors that supply the control voltage Vctrl. In this case, since the current flowing through transistor MN12 is reduced, the current flowing through inverters IV1-IV4 is reduced, and the frequency of multiphase clock signal CLKM is lowered. Thus, the oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
 補正処理部56(図19)は、動作モードM2において、発振回路24の発振周波数および発振回路64の発振周波数の周波数差に応じたキャリブレーションを行うように構成される。補正処理部56は、演算部56Aと、記憶部56Bとを有している。演算部56Aは、TDC部60におけるタイミング検出部61からバス配線BUS1を介して供給されたカウントコードCDCに基づいて、発振回路24の発振周波数および発振回路34の発振周波数の周波数差に応じた補正パラメータCAL2を算出するように構成される。記憶部56Bは、複数のタイミング検出部61のそれぞれについての補正パラメータCAL2を記憶するように構成される。そして、補正処理部56は、この補正パラメータCAL2を、バス配線BUS2を介して、TDC部60における、そのタイミング検出部61に供給するようになっている。 The correction processing unit 56 (FIG. 19) is configured to perform calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64 in the operation mode M2. The correction processing section 56 has a calculation section 56A and a storage section 56B. Based on the count code CDC supplied from the timing detection section 61 in the TDC section 60 via the bus wiring BUS1, the calculation section 56A performs correction according to the frequency difference between the oscillation frequencies of the oscillation circuits 24 and 34. It is configured to calculate a parameter CAL2. The storage unit 56B is configured to store correction parameters CAL2 for each of the plurality of timing detection units 61. FIG. The correction processing unit 56 supplies the correction parameter CAL2 to the timing detection unit 61 in the TDC unit 60 via the bus wiring BUS2.
 ここで、タイミング検出部61は、本開示における「第1のタイミング検出部」の一具体例に対応する。発振回路64は、本開示における「第1の発振回路」の一具体例に対応する。補正処理部56は、本開示における「補正処理部」の一具体例に対応する。調節部65は、本開示における「調節部」の一具体例に対応する。 Here, the timing detection unit 61 corresponds to a specific example of the "first timing detection unit" in the present disclosure. The oscillator circuit 64 corresponds to a specific example of the "first oscillator circuit" in the present disclosure. The correction processing unit 56 corresponds to a specific example of "correction processing unit" in the present disclosure. The adjuster 65 corresponds to a specific example of "adjuster" in the present disclosure.
 光検出システム2は、動作モードMBにおいて、発振回路24の発振周波数および発振回路64の発振周波数の周波数差に応じたキャリブレーションを行う。これにより、発振回路24の発振周波数と、発振回路64の発振周波数との間に差がある場合でも、タイミング検出部61の変換特性を高めることができる。 The photodetection system 2 performs calibration according to the frequency difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64 in the operation mode MB. Thereby, even if there is a difference between the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64, the conversion characteristic of the timing detection section 61 can be improved.
 図21A,21Bは、光検出システム2におけるキャリブレーションの一例を表すものである。この例では、光検出システム2は、電源投入時において、キャリブレーションを行う。 FIGS. 21A and 21B represent an example of calibration in the photodetection system 2. FIG. In this example, the photodetection system 2 performs calibration when power is turned on.
 光検出システム2の電源が投入されると、制御信号生成部12は、動作モードMを動作モードMBに設定する(ステップS201)。具体的には、制御信号生成部12は、複数のタイミング検出部61のそれぞれのセレクタ33,37,41の動作状態を設定する。セレクタ33,37,41の動作状態は、第1の実施の形態の場合(図16)と同様である。また、制御信号生成部12は、発振回路64の調節部65の設定を初期状態に設定する。これにより、調節部65は、トランジスタMN12に含まれる複数のトランジスタのうちの所定の数のトランジスタに制御電圧Vctrlを供給する。また、補正パラメータCAL2の値を、この初期状態に対応する値に設定する。 When the light detection system 2 is powered on, the control signal generator 12 sets the operation mode M to the operation mode MB (step S201). Specifically, the control signal generator 12 sets the operation states of the selectors 33 , 37 and 41 of the plurality of timing detectors 61 . The operating states of the selectors 33, 37 and 41 are the same as in the case of the first embodiment (FIG. 16). Further, the control signal generator 12 sets the setting of the adjuster 65 of the oscillation circuit 64 to the initial state. Accordingly, the adjustment unit 65 supplies the control voltage Vctrl to a predetermined number of transistors among the plurality of transistors included in the transistor MN12. Also, the value of the correction parameter CAL2 is set to a value corresponding to this initial state.
 次に、光検出システム2は、複数のタイミング検出部61のそれぞれにおいてカウント動作を行い、カウントコードCDCを得る(ステップS202)。この動作は、第1の実施の形態の場合(図17)と同様である。そして、複数のタイミング検出部61の出力部44は、制御信号生成部12からの制御信号に基づいて、カウントコードCDCを、バス配線BUS1を介して補正処理部56に順次供給する。 Next, the photodetection system 2 performs a count operation in each of the plurality of timing detection units 61 to obtain a count code CDC (step S202). This operation is the same as in the case of the first embodiment (FIG. 17). Based on the control signal from the control signal generator 12, the output units 44 of the plurality of timing detectors 61 sequentially supply the count code CDC to the correction processor 56 via the bus wiring BUS1.
 補正処理部56の演算部56Aは、複数のタイミング検出部61から供給されたカウントコードCDCに基づいて、ステップS203~S210の処理をそれぞれ行う。 The arithmetic unit 56A of the correction processing unit 56 performs the processing of steps S203 to S210 based on the count codes CDC supplied from the plurality of timing detection units 61 respectively.
 演算部56Aは、カウントコードCDCおよび所定値CNTに基づいて、補正パラメータCAL1を算出する(ステップS203)。具体的には、演算部56Aは、第1の実施の形態に係る演算部16Aと同様に、以下の式を用いて、補正パラメータCAL1を算出する。
CAL1=CNT/CDC
Operation unit 56A calculates correction parameter CAL1 based on count code CDC and predetermined value CNT (step S203). Specifically, the calculation unit 56A calculates the correction parameter CAL1 using the following equation, similarly to the calculation unit 16A according to the first embodiment.
CAL1=CNT/CDC
 次に、演算部56Aは、そのタイミング検出部61についての初回の演算であるかどうかを確認する(ステップS204)。初回の演算である場合(ステップS204において“Y”)には、ステップS206の処理に進む。 Next, the calculation unit 56A confirms whether or not it is the first calculation for the timing detection unit 61 (step S204). If it is the first calculation ("Y" in step S204), the process proceeds to step S206.
 初回の演算ではない場合(ステップS204において“N”)には、演算部56Aは、カウントコードCDCおよび所定値CNTの大小関係が変化したかどうかを確認する(ステップS205)。大小関係が変化した場合(ステップS205において“Y”)には、ステップS211の処理に進む。 If it is not the first calculation ("N" in step S204), the calculation unit 56A checks whether the magnitude relationship between the count code CDC and the predetermined value CNT has changed (step S205). If the magnitude relationship has changed ("Y" in step S205), the process proceeds to step S211.
 大小関係が変化していない場合(ステップS205において“N”)には、補正パラメータCAL1,CAL2を前回の補正パラメータとしてそれぞれ記憶する(ステップS206)。 If the magnitude relationship has not changed ("N" in step S205), the correction parameters CAL1 and CAL2 are stored as the previous correction parameters (step S206).
 次に、演算部56Aは、カウントコードCDCの値が所定値CNTよりも大きいかどうかを確認する(ステップS207)。 Next, the calculation unit 56A confirms whether the value of the count code CDC is greater than the predetermined value CNT (step S207).
 カウントコードCDCの値が所定値CNTより大きい場合(ステップS207において“Y”)には、演算部56Aは、補正パラメータCAL2の値をデクリメントすることにより更新する(ステップS208)。すなわち、カウントコードCDCの値が所定値CNTよりも大きい場合には、発振回路64の発振周波数が発振回路24の発振周波数よりも高いので、演算部56Aは、発振回路64の発振周波数を下げるべく、補正パラメータCAL2の値をデクリメントすることにより更新する。 If the value of the count code CDC is greater than the predetermined value CNT ("Y" in step S207), the calculation unit 56A updates the value of the correction parameter CAL2 by decrementing it (step S208). That is, when the value of the count code CDC is greater than the predetermined value CNT, the oscillation frequency of the oscillation circuit 64 is higher than the oscillation frequency of the oscillation circuit 24. , by decrementing the value of the correction parameter CAL2.
 カウントコードCDCの値が所定値CNTより小さい場合(ステップS207において“N”)には、演算部56Aは、補正パラメータCAL2の値をインクリメントすることにより更新する(ステップS209)。すなわち、カウントコードCDCの値が所定値CNTよりも小さい場合には、発振回路64の発振周波数が発振回路24の発振周波数よりも低いので、演算部56Aは、発振回路64の発振周波数を上げるべく、補正パラメータCAL2の値をインクリメントすることにより更新する。 If the value of the count code CDC is smaller than the predetermined value CNT ("N" in step S207), the calculation unit 56A updates the value of the correction parameter CAL2 by incrementing it (step S209). That is, when the value of the count code CDC is smaller than the predetermined value CNT, the oscillation frequency of the oscillation circuit 64 is lower than the oscillation frequency of the oscillation circuit 24. , by incrementing the value of the correction parameter CAL2.
 次に、記憶部56Bは、更新された補正パラメータCAL2を記憶する(ステップS210)。 Next, the storage unit 56B stores the updated correction parameter CAL2 (step S210).
 次に、光検出システム2は、複数のタイミング検出部61における調節部65に、補正パラメータCAL2をセットする(ステップS211)。具体的には、補正処理部56は、記憶部56Bに記憶された複数の補正パラメータCAL2を、バス配線BUS2を介して、複数のタイミング検出部61の調節部65にそれぞれ供給する。調節部65のそれぞれは、この補正パラメータCAL2に基づいて、トランジスタMN12に含まれる複数のトランジスタのうちの、制御電圧Vctrlを供給するトランジスタの数を設定する。これにより、発振回路64の発振周波数は、補正パラメータCAL2に基づいて調節される。 Next, the photodetection system 2 sets the correction parameter CAL2 in the adjustment units 65 of the plurality of timing detection units 61 (step S211). Specifically, the correction processing unit 56 supplies the plurality of correction parameters CAL2 stored in the storage unit 56B to the adjustment units 65 of the plurality of timing detection units 61 via the bus wiring BUS2. Each adjustment unit 65 sets the number of transistors that supply the control voltage Vctrl among the plurality of transistors included in the transistor MN12 based on the correction parameter CAL2. Thereby, the oscillation frequency of the oscillation circuit 64 is adjusted based on the correction parameter CAL2.
 そして、処理はステップS202に戻る。 Then, the process returns to step S202.
 ステップS205において、カウントコードCDCおよび所定値CNTの大小関係が変化した場合(ステップS205において“Y”)には、演算部56Aは、補正パラメータCAL1が前回の補正パラメータCAL1より“1”に近いかどうかを確認する(ステップS212)。補正パラメータCAL1が前回の補正パラメータCAL1より“1”に近い場合(ステップS212において“Y”)には、記憶部56Bは、補正パラメータCAL2を記憶する(ステップS213)。また、補正パラメータCAL1が前回の補正パラメータCAL1より“1”に近くない場合(ステップS212において“N”)には、記憶部56Bは、前回の補正パラメータCAL2を記憶する(ステップS214)。 In step S205, if the magnitude relationship between the count code CDC and the predetermined value CNT has changed ("Y" in step S205), the calculation unit 56A determines whether the correction parameter CAL1 is closer to "1" than the previous correction parameter CAL1. Confirm whether or not (step S212). If the correction parameter CAL1 is closer to "1" than the previous correction parameter CAL1 ("Y" in step S212), the storage unit 56B stores the correction parameter CAL2 (step S213). If the correction parameter CAL1 is not closer to "1" than the previous correction parameter CAL1 ("N" in step S212), the storage unit 56B stores the previous correction parameter CAL2 (step S214).
 次に、光検出システム2は、複数のタイミング検出部61における調節部65に、補正パラメータCAL2をセットする(ステップS215)。具体的には、補正処理部56は、記憶部56Bに記憶された補正パラメータCAL2を、バス配線BUS2を介して、タイミング検出部61の調節部65に供給する。調節部65は、この補正パラメータCAL2に基づいて、トランジスタMN12に含まれる複数のトランジスタのうちの、制御電圧Vctrlを供給するトランジスタの数を設定する。これにより、発振回路64の発振周波数は、補正パラメータCAL2に基づいて調節される。 Next, the photodetection system 2 sets the correction parameter CAL2 in the adjustment units 65 of the plurality of timing detection units 61 (step S215). Specifically, the correction processing unit 56 supplies the correction parameter CAL2 stored in the storage unit 56B to the adjustment unit 65 of the timing detection unit 61 via the bus wiring BUS2. Based on this correction parameter CAL2, the adjustment unit 65 sets the number of transistors that supply the control voltage Vctrl among the plurality of transistors included in the transistor MN12. Thereby, the oscillation frequency of the oscillation circuit 64 is adjusted based on the correction parameter CAL2.
 そして、制御信号生成部12は、動作モードMを動作モードMAに設定する(ステップS216)。具体的には、制御信号生成部12は、複数のタイミング検出部61のそれぞれのセレクタ33,37,41の動作状態を設定する。セレクタ33,37,41の動作状態は、第1の実施の形態の場合(図11)と同様である。 Then, the control signal generator 12 sets the operation mode M to the operation mode MA (step S216). Specifically, the control signal generator 12 sets the operation states of the selectors 33 , 37 and 41 of the plurality of timing detectors 61 . The operating states of the selectors 33, 37 and 41 are the same as in the case of the first embodiment (FIG. 11).
 そして、光検出システム2は、測距動作を開始する(ステップS217)。 Then, the photodetection system 2 starts ranging operation (step S217).
 以上で、この処理は終了する。 This is the end of this process.
 このように、光検出システム2では、発振回路64が、発振周波数を調節する調節部65を有するようにした。そして、補正処理部56は、第2の動作モード(動作モードMB)において、クロック信号CLKの周波数および多相クロック信号CLKMの周波数に基づいて、多相クロック信号CLKMの周波数がクロック信号CLKの周波数に近づくように、調節部65の動作を制御するようにした。これにより、光検出システム2では、例えば、クロック信号CLKの周波数と、多相クロック信号CLKMの周波数との間に差がある場合において、タイミング検出部61の変換特性を高めることができるので、検出精度を高めることができる。 Thus, in the photodetection system 2, the oscillation circuit 64 has the adjustment section 65 that adjusts the oscillation frequency. Then, in the second operation mode (operation mode MB), the correction processing unit 56 adjusts the frequency of the multiphase clock signal CLKM to the frequency of the clock signal CLK based on the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM. The operation of the adjustment unit 65 is controlled so as to approach . As a result, in the photodetection system 2, for example, when there is a difference between the frequency of the clock signal CLK and the frequency of the multiphase clock signal CLKM, the conversion characteristics of the timing detection section 61 can be enhanced. Accuracy can be improved.
 以上のように本実施の形態では、発振回路が、発振周波数を調節する調節部を有するようにした。そして、補正処理部は、第2の動作モードにおいて、クロック信号の周波数および多相クロック信号の周波数に基づいて、多相クロック信号の周波数がクロック信号の周波数に近づくように、調節部の動作を制御するようにした。これにより、検出精度を高めることができる。 As described above, in the present embodiment, the oscillation circuit has an adjustment section that adjusts the oscillation frequency. Then, in the second operation mode, the correction processing unit operates the adjustment unit based on the frequency of the clock signal and the frequency of the multiphase clock signal so that the frequency of the multiphase clock signal approaches the frequency of the clock signal. made to control. Thereby, detection accuracy can be improved.
[変形例2-1]
 上記実施の形態では、補正パラメータCAL2に基づいて、トランジスタMN12に含まれる複数のトランジスタのうちの、制御電圧Vctrlを供給するトランジスタの数を設定することにより、発振回路64の発振周波数を調節したが、これに限定されるものではない。これに代えて、例えば、図22に示すように、制御信号Vctrlの電圧を調節することにより、発振回路64の発振周波数を調節してもよい。この発振回路64は、スイッチSWと、調節部66と、容量素子C1と、を有している。
[Modification 2-1]
In the above embodiment, the oscillation frequency of the oscillation circuit 64 is adjusted by setting the number of transistors supplying the control voltage Vctrl among the plurality of transistors included in the transistor MN12 based on the correction parameter CAL2. , but not limited to. Alternatively, for example, as shown in FIG. 22, the oscillation frequency of the oscillation circuit 64 may be adjusted by adjusting the voltage of the control signal Vctrl. The oscillation circuit 64 has a switch SW, an adjustment section 66, and a capacitive element C1.
 スイッチSWの一端には制御電圧Vctrlが供給され、他端はトランジスタMN11のゲートに接続される。スイッチSWは、例えば制御信号生成部12により制御される。 A control voltage Vctrl is supplied to one end of the switch SW, and the other end is connected to the gate of the transistor MN11. The switch SW is controlled by the control signal generator 12, for example.
 調節部66は、補正パラメータCAL2に基づいて、制御電圧Vctrlの電圧補正分である電圧ΔVを生成するように構成される。調節部66は、DAC(Digital to Analog Converter)66Aを有している。このDAC66Aは、電圧ΔVを生成するように構成される。 The adjustment unit 66 is configured to generate the voltage ΔV, which is the voltage correction amount of the control voltage Vctrl, based on the correction parameter CAL2. The adjustment section 66 has a DAC (Digital to Analog Converter) 66A. This DAC 66A is configured to generate a voltage ΔV.
 容量素子C1の一端はトランジスタMN11に接続され、他端には電圧ΔVが供給される。 One end of the capacitive element C1 is connected to the transistor MN11, and the other end is supplied with the voltage ΔV.
 この構成により、発振回路64では、スイッチSWをオフ状態にすることにより、発振周波数を調節することができる。スイッチSWがオフ状態になったとき、トランジスタMN11のゲートの電圧は、制御電圧Vctrlに維持される。そして、調節部66が、補正パラメータCAL2に基づいて電圧ΔVを生成することにより、トランジスタMN11のゲートの電圧は、この制御電圧Vctrlから、この電圧ΔVの分だけ変化する。このようにして、発振回路64は、補正パラメータCAL2に基づいて、発振周波数を調節することができる。 With this configuration, the oscillation frequency of the oscillation circuit 64 can be adjusted by turning off the switch SW. When the switch SW is turned off, the voltage of the gate of the transistor MN11 is maintained at the control voltage Vctrl. Then, the adjustment unit 66 generates the voltage ΔV based on the correction parameter CAL2, so that the voltage of the gate of the transistor MN11 changes from the control voltage Vctrl by this voltage ΔV. Thus, the oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
[変形例2-2]
 上記実施の形態では、図21A,21Bに示したように、光検出システム2の電源投入時に、動作モードMを動作モードMBに設定したが、これに限定されるものではない。これに代えて、例えば、図23A,23Bに示すように、光検出システム2が測距動作を行っている期間において、定期的に、動作モードMを動作モードMBに設定してもよい。この例では、光検出システム2が測距動作を行っている期間において、制御信号生成部12は、所定時間が経過したかどうかを確認する(ステップS228)。まだ所定時間が経過していない場合(ステップS228において“N”)には、所定時間が経過するまで、ステップS228の処理を繰り返す。そして、所定時間が経過した場合(ステップS2287において“Y”)には、測距動作を停止し(ステップS229)、ステップS201の処理に戻る。なお、この例では、定期的に、動作モードMを動作モードMBに設定したが、これに限定されるものではなく、任意のタイミングで、動作モードMを動作モードMBに設定することができる。これにより、例えば、光検出システム2が長い時間にわたり動作する場合や、温度や電源電圧が変動する場合に、タイミング検出部61の変換特性を高めることができる。
[Modification 2-2]
In the above embodiment, as shown in FIGS. 21A and 21B, the operation mode M is set to the operation mode MB when the power of the photodetection system 2 is turned on, but the present invention is not limited to this. Alternatively, for example, as shown in FIGS. 23A and 23B, the operation mode M may be periodically set to the operation mode MB while the photodetection system 2 is performing the ranging operation. In this example, the control signal generator 12 checks whether a predetermined period of time has elapsed while the photodetection system 2 is performing the ranging operation (step S228). If the predetermined time has not yet passed ("N" in step S228), the process of step S228 is repeated until the predetermined time has passed. If the predetermined time has passed ("Y" in step S2287), the distance measuring operation is stopped (step S229), and the process returns to step S201. In this example, the operation mode M is periodically set to the operation mode MB, but the operation mode is not limited to this, and the operation mode M can be set to the operation mode MB at any timing. As a result, for example, when the photodetection system 2 operates for a long time, or when the temperature or power supply voltage fluctuates, the conversion characteristics of the timing detector 61 can be enhanced.
[その他の変形例]
 また、これらの変形例を組み合わせてもよい。
[Other Modifications]
Moreover, you may combine these modifications.
<3.第3の実施の形態>
 次に、第3の実施の形態に係る光検出システム3について説明する。本実施の形態は、上記第2の実施の形態に係る光検出システム2において、クロック信号CLKの位相を調整するように構成される。なお、上記第2の実施の形態に係る光検出システム2と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
<3. Third Embodiment>
Next, a photodetection system 3 according to a third embodiment will be described. This embodiment is configured to adjust the phase of the clock signal CLK in the photodetection system 2 according to the second embodiment. The same reference numerals are assigned to substantially the same components as those of the photodetection system 2 according to the second embodiment, and description thereof will be omitted as appropriate.
 光検出システム3は、第1の実施の形態に係る光検出システム1(図1)と同様に、光検出部70を備えている。光検出部70は、多相クロック信号生成部71と、セレクタ73と、制御信号生成部72と有している。 The photodetection system 3 includes a photodetection section 70, like the photodetection system 1 (FIG. 1) according to the first embodiment. The photodetector 70 has a multiphase clock signal generator 71 , a selector 73 , and a control signal generator 72 .
 多相クロック信号生成部71は、多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK270)を生成するように構成される。 The multiphase clock signal generator 71 is configured to generate multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK270).
 図24は、多相クロック信号生成部71の一構成例を表すものである。多相クロック信号生成部71は、発振回路64と、インバータ36と、カウンタ42と、フリップフロップ部43と、出力部44とを有している。 FIG. 24 shows a configuration example of the multiphase clock signal generator 71. In FIG. The multiphase clock signal generation section 71 has an oscillation circuit 64 , an inverter 36 , a counter 42 , a flip-flop section 43 and an output section 44 .
 発振回路64は、発振動作を行うことにより、制御電圧Vctrlに応じた周波数を有する多相クロック信号CLKMを生成するように構成される。発振回路64は、信号STRに基づいて、発振動作を行い、あるいは発振動作を停止する。発振回路64は、補正パラメータCAL2に基づいて、発振周波数を調節することができるようになっている。 The oscillation circuit 64 is configured to generate a multiphase clock signal CLKM having a frequency corresponding to the control voltage Vctrl by performing an oscillation operation. Oscillation circuit 64 performs an oscillation operation or stops an oscillation operation based on signal STR. The oscillation circuit 64 can adjust the oscillation frequency based on the correction parameter CAL2.
 インバータ36は、信号STRを反転し、反転された信号を出力するように構成される。 The inverter 36 is configured to invert the signal STR and output the inverted signal.
 カウンタ42は、クロック信号CLK0の立ち上がりエッジに基づいてカウント動作を行うことによりカウントコードCDC1を生成するように構成される。カウンタ42は、信号STRに基づいて、カウント動作を開始する。そして、カウンタ42は、複数ビットのカウントコードCDC1を出力するようになっている。 The counter 42 is configured to generate the count code CDC1 by performing a counting operation based on the rising edge of the clock signal CLK0. Counter 42 starts a counting operation based on signal STR. The counter 42 outputs a multi-bit count code CDC1.
 フリップフロップ部43は、信号STPの立ち上がりエッジに基づいて、カウンタ42から供給されたカウントコードCDC1をラッチするように構成される。そして、フリップフロップ部43は、ラッチ結果を示すカウントコードCDCを出力部44に供給するようになっている。 The flip-flop unit 43 is configured to latch the count code CDC1 supplied from the counter 42 based on the rising edge of the signal STP. Then, the flip-flop section 43 supplies the count code CDC indicating the latch result to the output section 44 .
 出力部44は、制御信号生成部12からの制御信号に基づいて、カウントコードCDCを、バス配線BUS1を介して補正処理部56に供給するように構成される。 The output unit 44 is configured to supply the count code CDC to the correction processing unit 56 via the bus wiring BUS1 based on the control signal from the control signal generation unit 12.
 この構成により、多相クロック信号生成部71は、第2の実施の形態に係るタイミング検出部61と同様に、発振回路64の発振周波数を調整することができるようになっている。 With this configuration, the multiphase clock signal generation section 71 can adjust the oscillation frequency of the oscillation circuit 64 in the same manner as the timing detection section 61 according to the second embodiment.
 セレクタ73(図24)は、信号NSELに基づいて、多相クロック信号生成部71が生成した多相クロック信号CLKMに含まれるクロック信号CLK0,CLK90,CLK180,CLK270のうちの1つを選択し、選択されたクロック信号をクロック信号NCLKとして駆動部13に供給するように構成される。 The selector 73 (FIG. 24) selects one of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM generated by the multiphase clock signal generation unit 71 based on the signal NSEL, The selected clock signal is configured to be supplied to the driving section 13 as the clock signal NCLK.
 制御信号生成部72は、光検出部70において用いられる様々な制御信号を生成するように構成される。この例では、制御信号生成部72は、信号NSELと、信号STR2とを生成する。この例では、駆動部13は、信号STR2に基づいて発光部8が光パルスL0を射出するように発光部8を駆動するようになっている。 The control signal generator 72 is configured to generate various control signals used in the photodetector 70 . In this example, the control signal generator 72 generates the signal NSEL and the signal STR2. In this example, the driving section 13 drives the light emitting section 8 so that the light emitting section 8 emits the light pulse L0 based on the signal STR2.
 ここで、多相クロック信号生成部71は、本開示における「多相クロック信号生成部」の一具体例に対応する。発振回路64は、本開示における「第3の発振回路」の一具体例に対応する。クロック信号CLKMは、本開示における「第3の多相クロック信号」の一具体例に対応する。セレクタ73は、本開示における「セレクタ」の一具体例に対応する。制御信号生成部72は、本開示における「制御信号生成部」の一具体例に対応する。フリップフロップ13Aは、本開示における「サンプリング回路」の一具体例に対応する。 Here, the multiphase clock signal generator 71 corresponds to a specific example of the "multiphase clock signal generator" in the present disclosure. The oscillator circuit 64 corresponds to a specific example of the "third oscillator circuit" in the present disclosure. Clock signal CLKM corresponds to a specific example of "third multiphase clock signal" in the present disclosure. The selector 73 corresponds to a specific example of "selector" in the present disclosure. The control signal generator 72 corresponds to a specific example of the "control signal generator" in the present disclosure. The flip-flop 13A corresponds to a specific example of "sampling circuit" in the present disclosure.
 光検出システム3は、第2の実施の形態に係る光検出システム2の場合(図21A,21B)と同様に、動作モードMBにおいて、発振回路24の発振周波数および発振回路64の発振周波数の周波数差に応じたキャリブレーションを行う。これにより、光検出システム3は、多相クロック信号生成部71および複数のタイミング検出部61における、発振回路64の発振周波数を調節する。 As in the case of the photodetection system 2 according to the second embodiment (FIGS. 21A and 21B), the photodetection system 3 has the oscillation frequency of the oscillation circuit 24 and the oscillation frequency of the oscillation circuit 64 in the operation mode MB. Perform calibration according to the difference. Thereby, the photodetection system 3 adjusts the oscillation frequency of the oscillation circuit 64 in the multiphase clock signal generator 71 and the plurality of timing detectors 61 .
 そして、光検出システム3は、動作モードMAにおいて、測距動作を行う。セレクタ73は、多相クロック信号生成部71が生成した多相クロック信号CLKMに含まれるクロック信号CLK0、CLK90、CLK180、CLK270のうちの1つを選択し、選択したクロック信号を駆動部13に供給する。駆動部13のフリップフロップ13Aは、信号STR2を、クロック信号NCLKの立ち上がりエッジでラッチすることにより信号TRGを生成する。これにより、駆動部13は、セレクタ73の出力信号に応じたタイミングで、発光部8を駆動する。 Then, the photodetection system 3 performs ranging operation in the operation mode MA. The selector 73 selects one of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM generated by the multiphase clock signal generation unit 71, and supplies the selected clock signal to the drive unit 13. do. The flip-flop 13A of the driving section 13 generates the signal TRG by latching the signal STR2 at the rising edge of the clock signal NCLK. As a result, the driving section 13 drives the light emitting section 8 at timing according to the output signal of the selector 73 .
 図25は、動作モードMAにおける、多相クロック信号生成部71、制御信号生成部72、セレクタ73、および駆動部13の一動作例を表すものであり、(A)はクロック信号生成部20が生成するクロック信号CLKの波形を示し、(B)は信号STRの波形を示し、(C)は信号STR2の波形を示し、(D)~(G)は多相クロック信号生成部71が生成する多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK270)の波形を示し、(H)は信号NSELの波形を示し、(I)はクロック信号NCLKの波形を示し、(J)は駆動部13におけるフリップフロップ13Aが生成する信号TRGの波形を示す。 FIG. 25 shows an operation example of the multiphase clock signal generator 71, the control signal generator 72, the selector 73, and the driver 13 in the operation mode MA. The waveform of the clock signal CLK to be generated is shown, (B) shows the waveform of the signal STR, (C) shows the waveform of the signal STR2, and (D) to (G) are generated by the multiphase clock signal generator 71. Waveforms of multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, and CLK270) are shown, (H) shows the waveform of signal NSEL, (I) shows the waveform of clock signal NCLK, and (J) shows the driving section. 13 shows the waveform of the signal TRG generated by the flip-flop 13A at 13. FIG.
 タイミングt41において、制御信号生成部72は、クロック信号CLKの立ち上がりエッジに基づいて信号STR2を低レベルから高レベルに変化させる(図25(A),(C))。また、制御信号生成部72は、このタイミングt41において、クロック信号CLKの立ち上がりエッジに基づいて、セレクタ73がクロック信号CLK180を選択することを指示する信号NSEL(“2”)を生成する(図25(H))。 At timing t41, the control signal generator 72 changes the signal STR2 from low level to high level based on the rising edge of the clock signal CLK ((A) and (C) in FIG. 25). At timing t41, the control signal generator 72 also generates a signal NSEL (“2”) that instructs the selector 73 to select the clock signal CLK180 based on the rising edge of the clock signal CLK (FIG. 25). (H)).
 次に、このタイミングt41から、例えばクロック信号CLKの1周期以上に対応する時間が経過したタイミングt42において、制御信号生成部72はクロック信号CLKの立ち上がりエッジに基づいて信号STRを低レベルから高レベルに変化させる(図25(B))。これにより、多相クロック信号生成部71の発振回路64は発振動作を開始し、多相クロック信号CLKMを生成し始める(図25(D)~(G))。セレクタ73は、信号NSELに基づいて、クロック信号CLK180を選択し、この信号をクロック信号NCLKとして出力する(図25(I)) Next, at timing t42 after a period of time corresponding to, for example, one cycle or more of the clock signal CLK has elapsed from this timing t41, the control signal generator 72 changes the signal STR from low level to high level based on the rising edge of the clock signal CLK. (FIG. 25(B)). As a result, the oscillation circuit 64 of the multiphase clock signal generator 71 starts oscillating and starts to generate the multiphase clock signal CLKM ((D) to (G) in FIG. 25). Selector 73 selects clock signal CLK180 based on signal NSEL and outputs this signal as clock signal NCLK (FIG. 25(I)).
 タイミングt43において、駆動部13のフリップフロップ13Aは、クロック信号NCLKの立ち上がりエッジで信号STR2をラッチすることにより信号TRGを低レベルから高レベルに変化させる(図25(J))。そして、タイミングt42から、例えばクロック信号CLKの2周期以上に対応する時間が経過したタイミングt44において、制御信号生成部72はクロック信号CLKの立ち上がりエッジに基づいて信号STR2を高レベルから低レベルに変化させる(図25(C))。この後のタイミングt45において、駆動部13のフリップフロップ13Aは、クロック信号NCLKの立ち上がりエッジで信号STR2をラッチすることにより信号TRGを高レベルから低レベルに変化させる(図25(J))。駆動部13は、この信号TRGに基づいて、発光部8を駆動する。 At timing t43, the flip-flop 13A of the driving section 13 changes the signal TRG from low level to high level by latching the signal STR2 at the rising edge of the clock signal NCLK ((J) in FIG. 25). Then, at timing t44 after a period of time corresponding to, for example, two cycles or more of the clock signal CLK has elapsed from timing t42, the control signal generator 72 changes the signal STR2 from high level to low level based on the rising edge of the clock signal CLK. (Fig. 25(C)). At subsequent timing t45, the flip-flop 13A of the driving section 13 changes the signal TRG from high level to low level by latching the signal STR2 at the rising edge of the clock signal NCLK (FIG. 25(J)). The driving section 13 drives the light emitting section 8 based on this signal TRG.
 そして、タイミングt44から、例えばクロック信号CLKの2周期以上に対応する時間が経過したタイミングt46において、制御信号生成部72はクロック信号CLKの立ち上がりエッジに基づいて信号STRを高レベルから低レベルに変化させる(図25(B))。これにより、多相クロック信号生成部71の発振回路64は発振動作を停止し、多相クロック信号CLKMの生成を停止する(図25(D)~(G))。 Then, at timing t46 after a period of time corresponding to, for example, two cycles or more of the clock signal CLK has elapsed from the timing t44, the control signal generator 72 changes the signal STR from high level to low level based on the rising edge of the clock signal CLK. (Fig. 25(B)). As a result, the oscillation circuit 64 of the multiphase clock signal generator 71 stops oscillating and stops generating the multiphase clock signal CLKM ((D) to (G) in FIG. 25).
 このように、光検出システム3では、多相クロック信号生成部71が多相クロック信号CLKMを生成し、セレクタ73が、その多相クロック信号CLKMに含まれるクロック信号CLK0,CLK90,CLK180,CLK270のうちの1つを選択し、選択されたクロック信号を駆動部13に供給するようにしたので、発光部8の発光タイミングを調節することができる。 Thus, in the photodetection system 3, the multiphase clock signal generator 71 generates the multiphase clock signal CLKM, and the selector 73 selects the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM. Since one of them is selected and the selected clock signal is supplied to the driving section 13, the light emission timing of the light emitting section 8 can be adjusted.
 以上のように本実施の形態では、多相クロック信号生成部が多相クロック信号を生成し、セレクタ73が、その多相クロック信号に含まれるクロック信号のうちの1つを選択し、選択されたクロック信号を駆動部に供給するようにしたので、発光部の発光タイミングを調節することができる。 As described above, in the present embodiment, the multiphase clock signal generator generates the multiphase clock signals, and the selector 73 selects one of the clock signals included in the multiphase clock signals, Since the clock signal is supplied to the driving section, the light emission timing of the light emitting section can be adjusted.
[変形例3―1]
 上記実施の形態では、セレクタ73は、多相クロック信号生成部71が生成した多相クロック信号CLKMに含まれるクロック信号CLK0,CLK90,CLK180,CLK270のうちの1つを選択したが、これに限定されるものではない。これに代えて、多相クロック信号生成部71を設けずに、例えば、図26に示すように、クロック信号生成部80に含まれる発振回路84が多相クロック信号を生成し、セレクタ73が、この多相クロック信号に含まれる複数のクロック信号のうちの1つを選択してもよい。発振回路84は、例えば、上記第3の実施の形態に係る発振回路24(図3)のように、4つのインバータIV1~IV4を有している。発振回路84では、発振回路34(図6)と同様に、これらの4つのインバータIVが多相クロック信号を出力する。
[Modification 3-1]
In the above embodiment, the selector 73 selects one of the clock signals CLK0, CLK90, CLK180, and CLK270 included in the multiphase clock signal CLKM generated by the multiphase clock signal generator 71, but is limited to this. not to be Alternatively, instead of providing the multiphase clock signal generator 71, for example, as shown in FIG. One of a plurality of clock signals included in this multiphase clock signal may be selected. The oscillator circuit 84 has four inverters IV1 to IV4, for example, like the oscillator circuit 24 (FIG. 3) according to the third embodiment. In the oscillator circuit 84, these four inverters IV output multi-phase clock signals as in the oscillator circuit 34 (FIG. 6).
[変形例3-2]
 上記実施の形態に係る光検出システム3に、上記第2の実施の形態の各変形例を適用してもよい。
[Modification 3-2]
Each modification of the second embodiment may be applied to the photodetection system 3 according to the embodiment.
<4.第4の実施の形態>
 次に、第4の実施の形態に係る光検出システム4について説明する。本実施の形態は、上記第1の実施の形態に係るタイミング検出部31の構成をややシンプルにしたものである。なお、上記第1の実施の形態に係る光検出システム1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
<4. Fourth Embodiment>
Next, a photodetection system 4 according to a fourth embodiment will be described. In this embodiment, the configuration of the timing detector 31 according to the first embodiment is somewhat simplified. The same reference numerals are assigned to substantially the same components as those of the photodetection system 1 according to the first embodiment, and description thereof will be omitted as appropriate.
 光検出システム4は、第1の実施の形態に係る光検出システム1(図1)と同様に、光検出部90を備えている。光検出部90は、画素アレイ114と、TDC部130を有している。 The photodetection system 4 includes a photodetection section 90 in the same manner as the photodetection system 1 (FIG. 1) according to the first embodiment. The photodetector section 90 has a pixel array 114 and a TDC section 130 .
 画素アレイ114は、マトリックス状に配置された複数の受光部Pを有している。受光部Pは、光を検出することにより、検出した光に応じたパルスを有するパルス信号PLSを生成するように構成される。受光部Pは、この例では、パルス幅が狭いパルス信号PLSを生成することができるように構成される。 The pixel array 114 has a plurality of light receiving portions P arranged in a matrix. The light receiving unit P is configured to detect light and generate a pulse signal PLS having pulses corresponding to the detected light. The light-receiving part P is configured so as to be able to generate a pulse signal PLS with a narrow pulse width in this example.
 TDC部130は、第1の実施の形態に係るTDC部30と同様に、画素アレイ14における複数の受光部Pのそれぞれから供給されたパルス信号PLSに基づいて、複数の受光部Pのそれぞれにおける受光タイミングを検出するように構成される。TDC部130は、複数のタイミング検出部131を有している。 Similar to the TDC unit 30 according to the first embodiment, the TDC unit 130, based on the pulse signal PLS supplied from each of the plurality of light receiving units P in the pixel array 14, detects the It is configured to detect light reception timing. The TDC section 130 has a plurality of timing detection sections 131 .
 図27は、TDC部130におけるタイミング検出部131の一構成例を表すものである。 FIG. 27 shows a configuration example of the timing detection section 131 in the TDC section 130. As shown in FIG.
 タイミング検出部131は、SRラッチ132と、セレクタ133と、発振回路34と、セレクタ135と、インバータ136と、セレクタ41と、カウンタ42と、フリップフロップ部(F/F部)43と、出力部44と、分周部45と、フリップフロップ部46と、補正部47とを有している。 The timing detection section 131 includes an SR latch 132, a selector 133, an oscillation circuit 34, a selector 135, an inverter 136, a selector 41, a counter 42, a flip-flop section (F/F section) 43, and an output section. 44 , a frequency dividing section 45 , a flip-flop section 46 and a correcting section 47 .
 SRラッチ132は、パルス信号PLSによりセットされ、クロック信号CLKによりリセットされるように構成される。 The SR latch 132 is configured to be set by the pulse signal PLS and reset by the clock signal CLK.
 セレクタ133は、制御信号生成部12からの制御信号に基づいて、信号STRおよびSRラッチ132の出力信号のうちの一方を選択し、選択された信号を信号ENとして出力するように構成される。具体的には、セレクタ133は、制御信号生成部12からの制御信号に基づいて、動作モードMAではSRラッチ132の出力信号を選択し、動作モードMBでは信号STRを選択するようになっている。 The selector 133 is configured to select one of the signal STR and the output signal of the SR latch 132 based on the control signal from the control signal generator 12 and output the selected signal as the signal EN. Specifically, based on the control signal from the control signal generator 12, the selector 133 selects the output signal of the SR latch 132 in the operation mode MA, and selects the signal STR in the operation mode MB. .
 セレクタ135は、制御信号生成部12からの制御信号に基づいて、信号ENおよび信号STRのうちの一方を選択し、選択された信号を出力するように構成される。具体的には、セレクタ135は、制御信号生成部12からの制御信号に基づいて、動作モードMAでは信号ENを選択し、動作モードMBでは信号STRを選択するようになっている。 The selector 135 is configured to select one of the signal EN and the signal STR based on the control signal from the control signal generator 12 and output the selected signal. Specifically, based on the control signal from the control signal generator 12, the selector 135 selects the signal EN in the operation mode MA, and selects the signal STR in the operation mode MB.
 インバータ136は、セレクタ135の出力信号を反転し、反転された信号を信号STPとして出力するように構成される。 The inverter 136 is configured to invert the output signal of the selector 135 and output the inverted signal as the signal STP.
 図28は、動作モードMAにおけるTDC部130の動作状態の一例を表すものである。動作モードMAでは、複数のタイミング検出部131のそれぞれのセレクタ133は、制御信号生成部12からの制御信号に基づいて、SRラッチ132の出力信号を選択し、この信号を、信号ENとして、発振回路34およびセレクタ135に供給する。セレクタ135は、制御信号生成部12からの制御信号に基づいて、信号ENを選択し、この信号ENをインバータ136に供給する。セレクタ41は、制御信号生成部12からの制御信号に基づいて、クロック信号生成部20の発振回路24が生成したクロック信号CLKを選択し、このクロック信号CLKをカウンタ42に供給する。 FIG. 28 shows an example of the operating state of the TDC section 130 in the operating mode MA. In operation mode MA, each selector 133 of a plurality of timing detectors 131 selects the output signal of SR latch 132 based on the control signal from control signal generator 12, and oscillates this signal as signal EN. It feeds circuit 34 and selector 135 . The selector 135 selects the signal EN based on the control signal from the control signal generator 12 and supplies the signal EN to the inverter 136 . The selector 41 selects the clock signal CLK generated by the oscillation circuit 24 of the clock signal generator 20 based on the control signal from the control signal generator 12 and supplies the clock signal CLK to the counter 42 .
 次に、画素アレイ114における複数の受光部Pのうち、光学部材9により導かれた光パルスL0Rを検出する受光部P(受光部PR)、および計測対象物OBJにより反射された反射光パルスL1を検出する受光部P(受光部PA)に着目し、動作モードMAにおける光検出システム4の動作について説明する。 Next, among the plurality of light receiving portions P in the pixel array 114, the light receiving portion P (light receiving portion PR) that detects the light pulse L0R guided by the optical member 9 and the reflected light pulse L1 reflected by the measurement object OBJ Focusing on the light receiving portion P (light receiving portion PA) that detects , the operation of the light detection system 4 in the operation mode MA will be described.
 図29は、動作モードMAにおける光検出システム4の一動作例を表すものであり、(A)は信号STRの波形を示し、(B)はクロック信号CLKの波形を示し、(C)~(I)は受光部PRが生成したパルス信号PLS(パルス信号PLSR)に基づいて動作するタイミング検出部131(タイミング検出部131R)における信号の波形を示し、(J)~(P)は受光部PAが生成したパルス信号PLS(パルス信号PLSA)に基づいて動作するタイミング検出部131(タイミング検出部131A)における信号の波形を示す。 FIG. 29 shows an operation example of the photodetection system 4 in the operation mode MA, where (A) shows the waveform of the signal STR, (B) shows the waveform of the clock signal CLK, and (C) to ( I) shows the waveform of the signal in the timing detection unit 131 (timing detection unit 131R) that operates based on the pulse signal PLS (pulse signal PLSR) generated by the light receiving unit PR. 1 shows waveforms of signals in the timing detector 131 (timing detector 131A) that operates based on the pulse signal PLS (pulse signal PLSA) generated by .
 図29(C)はタイミング検出部131RにおけるカウントコードCDC1(カウントコードCDC1R)を示し、(D)はタイミング検出部131Rに供給されるパルス信号PLSRの波形を示し、(E)はタイミング検出部131Rにおける信号EN(信号ENR)の波形を示し、(F)はタイミング検出部131Rにおける信号STP(信号STPR)の波形を示し、(G)はタイミング検出部131RにおけるカウントコードCDF1(カウントコードCDF1R)を示し、(H)はタイミング検出部131RにおけるカウントコードCDC(カウントコードCDCR)を示し、(I)はタイミング検出部131RにおけるカウントコードCDF(カウントコードCDFR)を示す。 29(C) shows the count code CDC1 (count code CDC1R) in the timing detection section 131R, (D) shows the waveform of the pulse signal PLSR supplied to the timing detection section 131R, and (E) shows the timing detection section 131R. (F) shows the waveform of the signal STP (signal STPR) in the timing detection section 131R, and (G) shows the waveform of the signal EN (signal ENR) in the timing detection section 131R. (H) indicates the count code CDC (count code CDCR) in the timing detection section 131R, and (I) indicates the count code CDF (count code CDFR) in the timing detection section 131R.
 図29(J)はタイミング検出部131AにおけるカウントコードCDC1(カウントコードCDC1A)を示し、(K)はタイミング検出部131Aに供給されるパルス信号PLSAの波形を示し、(L)はタイミング検出部131Aにおける信号EN(信号ENA)の波形を示し、(M)はタイミング検出部131Aにおける信号STP(信号STPA)の波形を示し、(N)はタイミング検出部131AにおけるカウントコードCDF1(カウントコードCDF1A)を示し、(O)はタイミング検出部131AにおけるカウントコードCDC(カウントコードCDCA)を示し、(P)はタイミング検出部131AにおけるカウントコードCDF(カウントコードCDFA)を示す。 29(J) shows the count code CDC1 (count code CDC1A) in the timing detection section 131A, (K) shows the waveform of the pulse signal PLSA supplied to the timing detection section 131A, and (L) shows the timing detection section 131A. (M) shows the waveform of the signal STP (signal STPA) in the timing detection section 131A, (N) shows the waveform of the signal EN (signal ENA) in the timing detection section 131A, and (N) the count code CDF1 (count code CDF1A) in the timing detection section 131A. (O) indicates the count code CDC (count code CDCA) in the timing detection section 131A, and (P) indicates the count code CDF (count code CDFA) in the timing detection section 131A.
 タイミングt51において、制御信号生成部12は、クロック信号CLKの立ち上がりエッジに応じて、信号STRを低レベルから高レベルに変化させる(図29(A),(B))。これにより、タイミング検出部131Rのカウンタ42は、クロック信号CLKの立ち上がりエッジに基づくカウント動作を開始し、カウントコードCDC1Rは増加しはじめる(図29(C))。同様に、タイミング検出部131Aのカウンタ42は、クロック信号CLKの立ち上がりエッジに基づくカウント動作を開始し、カウントコードCDC1Aは増加しはじめる(図29(J))。 At timing t51, the control signal generator 12 changes the signal STR from low level to high level in response to the rising edge of the clock signal CLK ((A) and (B) in FIG. 29). As a result, the counter 42 of the timing detector 131R starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1R begins to increment (FIG. 29(C)). Similarly, the counter 42 of the timing detection section 131A starts a counting operation based on the rising edge of the clock signal CLK, and the count code CDC1A starts increasing ((J) in FIG. 29).
 また、この制御信号STRの変化に基づいて、駆動部13は発光部8を駆動し、発光部8は光パルスL0を射出する。光学部材9は、発光部8から射出された光パルスL0を計測対象物OBJに導くとともに、光の一部(光パルスL0R)を光検出部10の受光部PRに導く。受光部PRは、この光パルスL0Rを検出することにより、パルス信号PLSRを生成する。これにより、タイミングt52において、パルス信号PLSRが低レベルから高レベルに変化する(図29(D))。これ以降、このパルス信号PLSRに基づいて、この受光部PRに対応するタイミング検出部131Rが動作する。そして、この例では、パルス信号PLSRは、このタイミングt52から短い時間が経過した後のタイミングで高レベルから低レベルに変化する。 Further, based on this change in the control signal STR, the driving section 13 drives the light emitting section 8, and the light emitting section 8 emits the light pulse L0. The optical member 9 guides the light pulse L0 emitted from the light emitting unit 8 to the object to be measured OBJ, and guides part of the light (light pulse L0R) to the light receiving unit PR of the light detection unit 10 . The light receiving part PR generates a pulse signal PLSR by detecting this light pulse L0R. As a result, at timing t52, the pulse signal PLSR changes from low level to high level ((D) in FIG. 29). After that, the timing detection section 131R corresponding to this light receiving section PR operates based on this pulse signal PLSR. In this example, the pulse signal PLSR changes from high level to low level at a timing after a short period of time has passed from timing t52.
 このタイミングt52において、タイミング検出部131RのSRラッチ132は、パルス信号PLSRに基づいてセットされ、信号ENRは低レベルから高レベルに変化する(図29(E))。そして、この信号ENRの変化に応じて、信号STPRが高レベルから低レベルに変化する(図29(F))。 At this timing t52, the SR latch 132 of the timing detector 131R is set based on the pulse signal PLSR, and the signal ENR changes from low level to high level (FIG. 29(E)). Then, the signal STPR changes from the high level to the low level according to the change of the signal ENR (FIG. 29(F)).
 この信号ENRの変化に基づいて、タイミング検出部131Rの発振回路34は発振動作を開始し、多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK27)を生成し始める。分周部45は、この多相クロック信号CLKMに基づいてカウントコードCDF1Rを生成する(図29(G))。 Based on this change in signal ENR, the oscillation circuit 34 of the timing detector 131R starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27). The frequency divider 45 generates the count code CDF1R based on this multiphase clock signal CLKM (FIG. 29(G)).
 次に、タイミングt53において、タイミング検出部131RのSRラッチ132は、クロック信号CLKに基づいてリセットされ、信号ENRは高レベルから低レベルに変化する(図29(E))。これにより、タイミング検出部131Rの発振回路34は発振動作を停止し、カウントコードCDF1Rの更新は停止する(図29(G))。また、この信号ENRの変化に応じて、信号STPRは低レベルから高レベルに変化する(図29(F))。 Next, at timing t53, the SR latch 132 of the timing detection section 131R is reset based on the clock signal CLK, and the signal ENR changes from high level to low level (FIG. 29(E)). As a result, the oscillation circuit 34 of the timing detector 131R stops oscillating, and updating of the count code CDF1R stops ((G) in FIG. 29). In addition, the signal STPR changes from low level to high level according to the change of the signal ENR (FIG. 29(F)).
 この信号STPRの変化に基づいて、タイミング検出部131Rのフリップフロップ部43は、カウントコードCDC1RをラッチすることによりカウントコードCDCRを生成する(図29(C),(H))。この例では、カウントコードCDC1Rのコード値“0”がラッチされる。このラッチ結果に基づいて、タイミングt55において、この例ではカウントコードCDCRが“0”になる。 Based on this change in the signal STPR, the flip-flop section 43 of the timing detection section 131R latches the count code CDC1R to generate the count code CDCR (FIGS. 29(C) and (H)). In this example, the code value "0" of the count code CDC1R is latched. Based on this latch result, the count code CDCR becomes "0" at timing t55 in this example.
 同様に、この信号STPRの変化に基づいて、タイミング検出部131Rのフリップフロップ部46は、カウントコードCDF1RをラッチすることによりカウントコードCDFRを生成する(図29(G),(I))。この例では、カウントコードCDF1Rのコード値“1111”がラッチされる。このラッチ結果に基づいて、タイミングt55において、この例ではカウントコードCDFRが“4”になる。 Similarly, based on this change in signal STPR, the flip-flop section 46 of the timing detection section 131R latches the count code CDF1R to generate the count code CDFR (FIGS. 29(G) and (I)). In this example, the code value "1111" of the count code CDF1R is latched. Based on this latch result, the count code CDFR becomes "4" at timing t55 in this example.
 その後、しばらく時間がたった後、受光部PAは、計測対象物OBJにより反射された反射光パルスL1を検出することにより、パルス信号PLSAを生成する。これにより、タイミングt62において、パルス信号PLSAが低レベルから高レベルに変化する(図29(K))。これ以降、このパルス信号PLSAに基づいて、この受光部PAに対応するタイミング検出部131Aが動作する。そして、この例では、パルス信号PLSAは、このタイミングt62から短い時間が経過した後のタイミングで高レベルから低レベルに変化する。 After that, after a while, the light receiving part PA detects the reflected light pulse L1 reflected by the object to be measured OBJ to generate the pulse signal PLSA. As a result, at timing t62, the pulse signal PLSA changes from low level to high level ((K) in FIG. 29). After that, the timing detection section 131A corresponding to this light receiving section PA operates based on this pulse signal PLSA. In this example, the pulse signal PLSA changes from high level to low level at a timing after a short period of time has passed from timing t62.
 このタイミングt62において、タイミング検出部131AのSRラッチ132は、パルス信号PLSAに基づいてセットされ、信号ENAは低レベルから高レベルに変化する(図29(L))。そして、この信号ENAの変化に応じて、信号STPAが高レベルから低レベルに変化する(図29(M))。 At this timing t62, the SR latch 132 of the timing detection section 131A is set based on the pulse signal PLSA, and the signal ENA changes from low level to high level ((L) in FIG. 29). Then, the signal STPA changes from the high level to the low level according to the change of the signal ENA ((M) in FIG. 29).
 この信号ENAの変化に基づいて、タイミング検出部131Aの発振回路34は発振動作を開始し、多相クロック信号CLKM(クロック信号CLK0,CLK90,CLK180,CLK27)を生成し始める。分周部45は、この多相クロック信号CLKMに基づいてカウントコードCDF1Aを生成する(図29(N))。 Based on this change in signal ENA, the oscillation circuit 34 of the timing detector 131A starts oscillating and starts generating multiphase clock signals CLKM (clock signals CLK0, CLK90, CLK180, CLK27). Frequency divider 45 generates count code CDF1A based on multiphase clock signal CLKM ((N) in FIG. 29).
 次に、タイミングt63において、タイミング検出部131AのSRラッチ132は、クロック信号CLKに基づいてリセットされ、信号ENAは高レベルから低レベルに変化する(図29(L))。これにより、タイミング検出部131Rの発振回路34は発振動作を停止し、カウントコードCDF1Aの更新は停止する(図29(N))。また、この信号ENAの変化に応じて、信号STPAは低レベルから高レベルに変化する(図29(M))。 Next, at timing t63, the SR latch 132 of the timing detector 131A is reset based on the clock signal CLK, and the signal ENA changes from high level to low level ((L) in FIG. 29). As a result, the oscillation circuit 34 of the timing detector 131R stops oscillating, and updating of the count code CDF1A stops ((N) in FIG. 29). Further, the signal STPA changes from the low level to the high level according to the change of the signal ENA ((M) in FIG. 29).
 この信号STPAの変化に基づいて、タイミング検出部131Aのフリップフロップ部43は、カウントコードCDC1AをラッチすることによりカウントコードCDCAを生成する(図29(J),(O))。この例では、カウントコードCDC1Aのコード値“21”がラッチされる。このラッチ結果に基づいて、タイミングt65において、この例ではカウントコードCDCAが“21”になる。 Based on this change in signal STPA, the flip-flop section 43 of the timing detection section 131A latches the count code CDC1A to generate the count code CDCA (FIGS. 29(J) and (O)). In this example, the code value "21" of the count code CDC1A is latched. Based on this latch result, the count code CDCA becomes "21" at timing t65 in this example.
 同様に、この信号STPAの変化に基づいて、タイミング検出部131Aのフリップフロップ部46は、カウントコードCDF1AをラッチすることによりカウントコードCDFAを生成する(図29(N),(P))。この例では、カウントコードCDF1Aのコード値“1110”がラッチされる。このラッチ結果に基づいて、タイミングt65において、この例ではカウントコードCDFAが“3”になる。 Similarly, based on this change in signal STPA, the flip-flop section 46 of the timing detection section 131A latches the count code CDF1A to generate the count code CDFA ((N), (P) in FIG. 29). In this example, the code value "1110" of the count code CDF1A is latched. Based on this latch result, the count code CDFA becomes "3" at timing t65 in this example.
 TDC部130は、カウントコードCDCR,CDFR、およびカウントコードCDCA,CDFAをヒストグラム生成部17に供給する。ヒストグラム生成部17は、飛行時間Ttofを算出する。 The TDC unit 130 supplies the count codes CDCR, CDFR and the count codes CDCA, CDFA to the histogram generation unit 17. The histogram generator 17 calculates the flight time Ttof.
 光検出システム1が、光パルスL0を複数回射出することにより、ヒストグラム生成部17は、複数の受光部Pのそれぞれについて、この飛行時間Ttofのデータを蓄積する。ヒストグラム生成部17は、蓄積されたこの飛行時間Ttofのデータに基づいて、複数の受光部Pのそれぞれについて、飛行時間Ttofのヒストグラムを生成する。そして、ヒストグラム生成部17は、受光部Pにおける飛行時間Ttofのヒストグラムに基づいて、頻度が最も高い飛行時間Ttofを特定し、その飛行時間Ttofを、その受光部Pの飛行時間Ttofとして決定する。 The light detection system 1 emits the light pulse L0 multiple times, so that the histogram generation unit 17 accumulates the data of the flight time Ttof for each of the multiple light receiving units P. The histogram generation unit 17 generates a histogram of the flight times Ttof for each of the plurality of light receiving units P based on the accumulated data of the flight times Ttof. Then, the histogram generator 17 identifies the flight time Ttof with the highest frequency based on the histogram of the flight times Ttof at the light receiving portion P, and determines the flight time Ttof as the flight time Ttof of the light receiving portion P.
 そして、距離演算部18は、複数の受光部Pのそれぞれについての飛行時間Ttofのデータに基づいて、距離値を算出することにより、距離画像PICを生成する。 Then, the distance calculation unit 18 generates the distance image PIC by calculating the distance value based on the data of the time-of-flight Ttof for each of the plurality of light receiving units P.
 図30は、動作モードMBにおけるTDC部130の動作状態の一例を表すものである。動作モードMBでは、複数のタイミング検出部131のそれぞれのセレクタ133は、制御信号生成部12からの制御信号に基づいて、信号STRを選択し、この信号STRを、信号ENとして、発振回路34に供給する。セレクタ135は、制御信号生成部12からの制御信号に基づいて、信号STRを選択し、この信号STRをインバータ136に供給する。セレクタ41は、制御信号生成部12からの制御信号に基づいて、発振回路34が生成したクロック信号CLK0を選択し、このクロック信号CLK0をカウンタ42に供給する。 FIG. 30 shows an example of the operating state of the TDC section 130 in the operating mode MB. In the operation mode MB, the selectors 133 of the plurality of timing detectors 131 select the signal STR based on the control signal from the control signal generator 12, and send the signal STR to the oscillation circuit 34 as the signal EN. supply. The selector 135 selects the signal STR based on the control signal from the control signal generator 12 and supplies the signal STR to the inverter 136 . The selector 41 selects the clock signal CLK0 generated by the oscillation circuit 34 based on the control signal from the control signal generator 12 and supplies the clock signal CLK0 to the counter 42 .
 動作モードMBにおける光検出システム4の動作は、第1の実施の形態に係る光検出システム1の場合(図15,17)と同様である。 The operation of the photodetection system 4 in the operation mode MB is the same as that of the photodetection system 1 according to the first embodiment (FIGS. 15 and 17).
 このように、光検出システム4では、光検出システム1と比べて、タイミング検出部131の構成をシンプルにすることができる。これにより、光検出システム4では、回路面積を小さくすることができる。 As described above, in the photodetection system 4, compared to the photodetection system 1, the configuration of the timing detection section 131 can be simplified. As a result, the circuit area of the photodetection system 4 can be reduced.
[変形例4-1]
 上記実施の形態に係る光検出システム4に、上記第1の実施の形態の変形例を適用してもよい。
[Modification 4-1]
The modification of the first embodiment may be applied to the photodetection system 4 according to the embodiment.
[変形例4-2]
 本実施の形態では、第1の実施の形態に係る光検出システム1に本技術を適用したが、これに限定されるものではなく、第2の実施の形態に係る光検出システム2に本技術を適用してもよい。
[Modification 4-2]
In the present embodiment, the present technology is applied to the photodetection system 1 according to the first embodiment, but the present technology is not limited to this, and the present technology is applied to the photodetection system 2 according to the second embodiment. may apply.
<5.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<5. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is implemented as a device mounted on any type of moving object such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図31は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 31 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図31に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 31, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on information on the inside and outside of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図31の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 31, an audio speaker 12061, a display unit 12062 and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図32は、撮像部12031の設置位置の例を示す図である。 FIG. 32 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図32では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 32, the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図32には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 32 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic braking control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle autonomously travels without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。これにより、車両制御システム12000では、時間(TOF値)や距離の検出精度を高めることができる。その結果、車両制御システム12000では、車両の衝突回避あるいは衝突緩和機能、車間距離に基づく追従走行機能、車速維持走行機能、車両の衝突警告機能、車両のレーン逸脱警告機能等を、高い精度で実現できる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. As a result, the vehicle control system 12000 can improve the detection accuracy of time (TOF value) and distance. As a result, in the vehicle control system 12000, a vehicle collision avoidance or collision mitigation function, a follow-up driving function based on the inter-vehicle distance, a vehicle speed maintenance driving function, a vehicle collision warning function, a vehicle lane deviation warning function, etc. are realized with high accuracy. can.
 以上、いくつかの実施の形態および変形例、ならびにそれらの具体的な応用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。 Although the present technology has been described above with reference to several embodiments, modifications, and specific application examples thereof, the present technology is not limited to these embodiments and the like, and various modifications are possible. is.
 例えば、上記の各実施の形態では、図4A,4Bに示したような受光部Pを設けたが、受光部Pの回路構成は、これに限定されるものではなく、様々な回路構成を適用することができる。 For example, in each of the above-described embodiments, the light receiving unit P as shown in FIGS. 4A and 4B is provided, but the circuit configuration of the light receiving unit P is not limited to this, and various circuit configurations can be applied. can do.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in this specification are only examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、検出精度を高めることができる。 This technology can be configured as follows. According to the present technology having the following configuration, detection accuracy can be improved.
 発振動作を行う基準発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するクロック信号生成部と、
 第1の受光素子を有し、前記第1の受光素子の受光結果に応じた第1のパルス信号を生成する第1の受光部と、
 前記クロック信号に基づいてカウント動作を行うことにより第1のコードを生成する第1のカウンタと、前記第1のパルス信号に基づいて発振動作を行うことにより第1の多相クロック信号を生成する第1の発振回路と、前記第1のパルス信号に基づいて、前記第1のコードと、前記第1の多相クロック信号に応じた第2のコードとをラッチする第1のラッチ部とを有し、前記第1の受光部における第1の受光タイミングを検出する第1のタイミング検出部と、
 前記クロック信号の周波数および前記第1の多相クロック信号の周波数の周波数差に応じた第1の補正処理を行う補正処理部と
 を備えた光検出装置。
(2)
 前記基準発振回路は、制御電圧に基づいて発振動作を行い、
 前記第1の発振回路は、前記制御電圧に基づいて発振動作を行う
 前記(1)に記載の光検出装置。
(3)
 前記基準発振回路および前記第1の発振回路は、複数段の回路を有するリングオシレータであり、
 前記基準発振回路における前記複数段の回路の段数は、前記第1の発振回路における前記複数段の回路の段数は互いに等しい
 前記(1)または(2)に記載の光検出装置。
(4)
 前記第1のタイミング検出部は、前記第1のラッチ部によりラッチされた前記第2のコードを補正する補正部を有し、
 前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数に基づいて前記補正部の動作を制御する
 前記(2)または(3)に記載の光検出装置。
(5)
 前記光検出装置は、第1の動作モードおよび第2の動作モードを有し、
 前記第2の動作モードにおいて、前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数の周波数比を算出し、
 前記第1の動作モードにおいて、前記第1のタイミング検出部は前記第1の受光タイミングを検出し、前記補正部は、前記第1のラッチ部によりラッチされた前記第2のコードを、前記周波数比を用いて補正する
 前記(4)に記載の光検出装置。
(6)
 前記第2の動作モードにおいて、前記第1のカウンタは前記第1の多相クロック信号に基づいてカウント動作を行い、前記補正処理部は、前記カウント動作の結果に基づいて前記周波数比を算出する
 前記(5)に記載の光検出装置。
(7)
 前記第1の発振回路は、発振周波数を調節する調節部を有し、
 前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数に基づいて前記調節部の動作を制御する
 前記(2)または(3)に記載の光検出装置。
(8)
 前記光検出装置は、第1の動作モードおよび第2の動作モードを有し、
 前記第2の動作モードにおいて、前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数に基づいて、前記第1の多相クロック信号の周波数が前記クロック信号の周波数に近づくように、前記調節部の動作を制御し、
 前記第1の動作モードにおいて、前記タイミング検出部は前記第1の受光タイミングを検出する
 前記(7)に記載の光検出装置。
(9)
 前記第2の動作モードにおいて、前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数の大小関係に基づいて、前記調節部の動作を制御する
 前記(8)に記載の光検出装置。
(10)
 第2の受光素子を有し、前記第2の受光素子の受光結果に応じた第2のパルス信号を生成する第2の受光部と、
 前記クロック信号に基づいてカウント動作を行うことにより第3のコードを生成する第2のカウンタと、第2のパルス信号に基づいて発振動作を行うことにより第2の多相クロック信号を生成する第2の発振回路と、前記第2のパルス信号に基づいて、前記第3のコードと、前記第2の多相クロック信号に応じた第4のコードとをラッチする第2のラッチ部とを有し、前記第2の受光部における第2の受光タイミングを検出する第2のタイミング検出部と、
 をさらに備え、
 前記補正処理部は、前記クロック信号の周波数および前記第2の多相クロック信号の周波数の周波数差に応じた第2の補正処理を行う
 前記(1)から(9)のいずれかに記載の光検出装置。
(11)
 前記第1のコードおよび前記第2のコードに基づいて前記第1の受光タイミングに応じた第1のタイミング値を算出するとともに、前記第3のコードおよび前記第4のコードに基づいて前記第2の受光タイミングに応じた第2のタイミング値を算出し、前記第1のタイミング値と前記第2のタイミング値との差を算出する処理部をさらに備えた
 前記(1)から(10)のいずれかに記載の光検出装置。
(12)
 発振動作を行うことにより第3の多相クロック信号を生成する第3の発振回路を有する多相クロック信号生成部と、
 前記第3の多相クロック信号に含まれる複数のクロック信号のうちの1つを選択するセレクタと、
 制御信号を生成する制御信号生成部と、
 前記制御信号を、前記セレクタにより選択されたクロック信号によりサンプリングするサンプリング回路と
 をさらに備え、
 前記補正処理部は、前記クロック信号の周波数および前記第3の多相クロック信号の周波数の周波数差に応じた第3の補正処理を行う
 前記(1)から(11)のいずれかに記載の光検出装置。
(13)
 前記基準発振回路は、前記クロック信号を含む第3の多相クロック信号を生成する
 前記(1)から(11)のいずれかに記載の光検出装置。
(14)
 前記第3の多相クロック信号に含まれる複数のクロック信号のうちの1つを選択するセレクタと、
 制御信号を生成する制御信号生成部と、
 前記制御信号を、前記セレクタにより選択されたクロック信号によりサンプリングするサンプリング回路と
 をさらに備えた
 前記(13)に記載の光検出装置。
(15)
 前記第1の受光部は、複数の前記第1の受光素子を有し、
 前記第1のパルス信号は、前記複数の第1の受光素子の受光結果に応じた信号である
 前記(1)から(14)のいずれかに記載の光検出装置。
(16)
 前記第1の受光素子および前記第1のタイミング検出部は、第1の半導体基板に設けられた
 前記(1)から(15)のいずれかに記載の光検出装置。
(17)
 前記第1の受光素子は、第1の半導体基板に設けられ、
 前記第1のタイミング検出部は、前記第1の半導体基板に貼り付けられた第2の半導体基板に設けられた
 前記(1)から(15)のいずれかに記載の光検出装置。
(18)
 光を射出する発光部と
 前記発光部から射出された光のうちの、検出対象により反射された光を検出する光検出部と
 を備え、
 前記光検出部は、
 発振動作を行う基準発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するクロック信号生成部と、
 第1の受光素子を有し、前記第1の受光素子の受光結果に応じた第1のパルス信号を生成する第1の受光部と、
 前記クロック信号に基づいてカウント動作を行うことにより第1のコードを生成する第1のカウンタと、前記第1のパルス信号に基づいて発振動作を行うことにより第1の多相クロック信号を生成する第1の発振回路と、前記第1のパルス信号に基づいて、前記第1のコードと、前記第1の多相クロック信号に応じた第2のコードとをラッチする第1のラッチ部とを有し、前記第1の受光部における第1の受光タイミングを検出する第1のタイミング検出部と、
 前記クロック信号の周波数および前記第1の多相クロック信号の周波数の周波数差に応じた第1の補正処理を行う補正処理部と
 を有する
 光検出システム。
a clock signal generation unit having a reference oscillation circuit that performs an oscillation operation and that generates a clock signal of a predetermined frequency by performing a phase synchronization operation;
a first light receiving unit having a first light receiving element and generating a first pulse signal according to a light receiving result of the first light receiving element;
A first counter that generates a first code by performing a counting operation based on the clock signal, and a first multiphase clock signal that generates a first multiphase clock signal by performing an oscillation operation based on the first pulse signal. a first oscillation circuit; and a first latch section for latching the first code and the second code according to the first multiphase clock signal based on the first pulse signal. a first timing detection unit for detecting a first light receiving timing in the first light receiving unit;
and a correction processing unit that performs a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
(2)
the reference oscillation circuit performs an oscillation operation based on a control voltage;
The photodetector according to (1), wherein the first oscillation circuit performs an oscillation operation based on the control voltage.
(3)
the reference oscillation circuit and the first oscillation circuit are ring oscillators having circuits in a plurality of stages;
The photodetector according to (1) or (2), wherein the number of stages of the plurality of stages of circuits in the reference oscillation circuit is equal to the number of stages of the plurality of stages of circuits in the first oscillation circuit.
(4)
The first timing detection unit has a correction unit that corrects the second code latched by the first latch unit,
The photodetector according to (2) or (3), wherein the correction processing section controls the operation of the correction section based on the frequency of the clock signal and the frequency of the first multiphase clock signal.
(5)
the photodetector has a first mode of operation and a second mode of operation;
In the second operation mode, the correction processing unit calculates a frequency ratio between the frequency of the clock signal and the frequency of the first multiphase clock signal,
In the first operation mode, the first timing detection section detects the first light receiving timing, and the correction section converts the second code latched by the first latch section to the frequency The photodetector according to (4) above, wherein the correction is performed using a ratio.
(6)
In the second operation mode, the first counter performs a count operation based on the first multiphase clock signal, and the correction processor calculates the frequency ratio based on the result of the count operation. The photodetector according to (5) above.
(7)
The first oscillation circuit has an adjustment section that adjusts an oscillation frequency,
The photodetector according to (2) or (3), wherein the correction processing section controls the operation of the adjustment section based on the frequency of the clock signal and the frequency of the first multiphase clock signal.
(8)
the photodetector has a first mode of operation and a second mode of operation;
In the second operation mode, the correction processing unit adjusts the frequency of the first multiphase clock signal to the frequency of the clock signal based on the frequency of the clock signal and the frequency of the first multiphase clock signal. controlling the operation of the adjustment unit so as to approach
The photodetector according to (7), wherein in the first operation mode, the timing detector detects the first light receiving timing.
(9)
In the second operation mode, the correction processing section controls the operation of the adjusting section based on the magnitude relationship between the frequency of the clock signal and the frequency of the first multiphase clock signal. A photodetector as described.
(10)
a second light receiving unit having a second light receiving element and generating a second pulse signal according to the light receiving result of the second light receiving element;
a second counter for generating a third code by performing a counting operation based on the clock signal; and a second counter for generating a second multiphase clock signal by performing an oscillation operation based on the second pulse signal. and a second latch section for latching the third code and the fourth code according to the second multiphase clock signal based on the second pulse signal. a second timing detection unit for detecting a second light receiving timing in the second light receiving unit;
further comprising
The light according to any one of (1) to (9), wherein the correction processing section performs a second correction process according to a frequency difference between the frequency of the clock signal and the frequency of the second multiphase clock signal. detection device.
(11)
calculating a first timing value corresponding to the first light receiving timing based on the first code and the second code, and calculating the second timing value based on the third code and the fourth code; any one of (1) to (10) above, further comprising a processing unit that calculates a second timing value according to the light receiving timing of and calculates a difference between the first timing value and the second timing value 10. The photodetector according to 1.
(12)
a multiphase clock signal generator having a third oscillation circuit that generates a third multiphase clock signal by performing an oscillation operation;
a selector that selects one of a plurality of clock signals included in the third multiphase clock signal;
a control signal generator that generates a control signal;
a sampling circuit that samples the control signal with a clock signal selected by the selector;
The light according to any one of (1) to (11), wherein the correction processing section performs a third correction process according to a frequency difference between the frequency of the clock signal and the frequency of the third multiphase clock signal. detection device.
(13)
The photodetector according to any one of (1) to (11), wherein the reference oscillation circuit generates a third multiphase clock signal including the clock signal.
(14)
a selector that selects one of a plurality of clock signals included in the third multiphase clock signal;
a control signal generator that generates a control signal;
The photodetector according to (13), further comprising: a sampling circuit that samples the control signal using a clock signal selected by the selector.
(15)
The first light receiving section has a plurality of the first light receiving elements,
The photodetector according to any one of (1) to (14), wherein the first pulse signal is a signal corresponding to light reception results of the plurality of first light receiving elements.
(16)
The photodetector according to any one of (1) to (15), wherein the first light receiving element and the first timing detection section are provided on a first semiconductor substrate.
(17)
The first light receiving element is provided on a first semiconductor substrate,
The photodetector according to any one of (1) to (15), wherein the first timing detection section is provided on a second semiconductor substrate attached to the first semiconductor substrate.
(18)
a light-emitting part that emits light; and a light-detecting part that detects light reflected by a detection target, out of the light emitted from the light-emitting part,
The photodetector is
a clock signal generation unit having a reference oscillation circuit that performs an oscillation operation and that generates a clock signal of a predetermined frequency by performing a phase synchronization operation;
a first light receiving unit having a first light receiving element and generating a first pulse signal according to a light receiving result of the first light receiving element;
A first counter that generates a first code by performing a counting operation based on the clock signal, and a first multiphase clock signal that generates a first multiphase clock signal by performing an oscillation operation based on the first pulse signal. a first oscillation circuit; and a first latch section for latching the first code and the second code according to the first multiphase clock signal based on the first pulse signal. a first timing detection unit for detecting a first light receiving timing in the first light receiving unit;
and a correction processing unit that performs a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
 本出願は、日本国特許庁において2021年2月15日に出願された日本特許出願番号2021-022139号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2021-022139 filed on February 15, 2021 at the Japan Patent Office, and the entire contents of this application are incorporated herein by reference. to refer to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Depending on design requirements and other factors, those skilled in the art may conceive various modifications, combinations, subcombinations, and modifications that fall within the scope of the appended claims and their equivalents. It is understood that

Claims (18)

  1.  発振動作を行う基準発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するクロック信号生成部と、
     第1の受光素子を有し、前記第1の受光素子の受光結果に応じた第1のパルス信号を生成する第1の受光部と、
     前記クロック信号に基づいてカウント動作を行うことにより第1のコードを生成する第1のカウンタと、前記第1のパルス信号に基づいて発振動作を行うことにより第1の多相クロック信号を生成する第1の発振回路と、前記第1のパルス信号に基づいて、前記第1のコードと、前記第1の多相クロック信号に応じた第2のコードとをラッチする第1のラッチ部とを有し、前記第1の受光部における第1の受光タイミングを検出する第1のタイミング検出部と、
     前記クロック信号の周波数および前記第1の多相クロック信号の周波数の周波数差に応じた第1の補正処理を行う補正処理部)と
     を備えた光検出装置。
    a clock signal generation unit having a reference oscillation circuit that performs an oscillation operation and that generates a clock signal of a predetermined frequency by performing a phase synchronization operation;
    a first light receiving unit having a first light receiving element and generating a first pulse signal according to a light receiving result of the first light receiving element;
    A first counter that generates a first code by performing a counting operation based on the clock signal, and a first multiphase clock signal that generates a first multiphase clock signal by performing an oscillation operation based on the first pulse signal. a first oscillation circuit; and a first latch section for latching the first code and the second code according to the first multiphase clock signal based on the first pulse signal. a first timing detection unit for detecting a first light receiving timing in the first light receiving unit;
    and a correction processing unit that performs a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
  2.  前記基準発振回路は、制御電圧に基づいて発振動作を行い、
     前記第1の発振回路は、前記制御電圧に基づいて発振動作を行う
     請求項1に記載の光検出装置。
    the reference oscillation circuit performs an oscillation operation based on a control voltage;
    The photodetector according to claim 1, wherein the first oscillation circuit performs an oscillation operation based on the control voltage.
  3.  前記基準発振回路および前記第1の発振回路は、複数段の回路を有するリングオシレータであり、
     前記基準発振回路における前記複数段の回路の段数は、前記第1の発振回路における前記複数段の回路の段数は互いに等しい
     請求項1に記載の光検出装置。
    the reference oscillation circuit and the first oscillation circuit are ring oscillators having circuits in a plurality of stages;
    2. The photodetector according to claim 1, wherein the number of stages of the plurality of stages of circuits in the reference oscillation circuit is equal to the number of stages of the plurality of stages of circuits in the first oscillation circuit.
  4.  前記第1のタイミング検出部は、前記第1のラッチ部によりラッチされた前記第2のコードを補正する補正部を有し、
     前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数に基づいて前記補正部の動作を制御する
     請求項2に記載の光検出装置。
    The first timing detection unit has a correction unit that corrects the second code latched by the first latch unit,
    The photodetector according to claim 2, wherein the correction processing section controls the operation of the correction section based on the frequency of the clock signal and the frequency of the first multiphase clock signal.
  5.  前記光検出装置は、第1の動作モードおよび第2の動作モードを有し、
     前記第2の動作モードにおいて、前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数の周波数比を算出し、
     前記第1の動作モードにおいて、前記第1のタイミング検出部は前記第1の受光タイミングを検出し、前記補正部は、前記第1のラッチ部によりラッチされた前記第2のコードを、前記周波数比を用いて補正する
     請求項4に記載の光検出装置。
    the photodetector has a first mode of operation and a second mode of operation;
    In the second operation mode, the correction processing unit calculates a frequency ratio between the frequency of the clock signal and the frequency of the first multiphase clock signal,
    In the first operation mode, the first timing detection section detects the first light receiving timing, and the correction section converts the second code latched by the first latch section to the frequency 5. The photodetector according to claim 4, wherein the correction is performed using a ratio.
  6.  前記第2の動作モードにおいて、前記第1のカウンタは前記第1の多相クロック信号に基づいてカウント動作を行い、前記補正処理部は、前記カウント動作の結果に基づいて前記周波数比を算出する
     請求項5に記載の光検出装置。
    In the second operation mode, the first counter performs a count operation based on the first multiphase clock signal, and the correction processor calculates the frequency ratio based on the result of the count operation. 6. The photodetector according to claim 5.
  7.  前記第1の発振回路は、発振周波数を調節する調節部を有し、
     前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数に基づいて前記調節部の動作を制御する
     請求項2に記載の光検出装置。
    The first oscillation circuit has an adjustment section that adjusts an oscillation frequency,
    The photodetector according to claim 2, wherein the correction processing section controls the operation of the adjustment section based on the frequency of the clock signal and the frequency of the first multiphase clock signal.
  8.  前記光検出装置は、第1の動作モードおよび第2の動作モードを有し、
     前記第2の動作モードにおいて、前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数に基づいて、前記第1の多相クロック信号の周波数が前記クロック信号の周波数に近づくように、前記調節部の動作を制御し、
     前記第1の動作モードにおいて、前記タイミング検出部は前記第1の受光タイミングを検出する
     請求項7に記載の光検出装置。
    the photodetector has a first mode of operation and a second mode of operation;
    In the second operation mode, the correction processing unit adjusts the frequency of the first multiphase clock signal to the frequency of the clock signal based on the frequency of the clock signal and the frequency of the first multiphase clock signal. controlling the operation of the adjustment unit so as to approach
    The photodetector according to claim 7, wherein in the first operation mode, the timing detector detects the first light receiving timing.
  9.  前記第2の動作モードにおいて、前記補正処理部は、前記クロック信号の周波数および前記第1の多相クロック信号の周波数の大小関係に基づいて、前記調節部の動作を制御する
     請求項8に記載の光検出装置。
    9. The correction processing unit according to claim 8, wherein in the second operation mode, the correction processing unit controls the operation of the adjusting unit based on the magnitude relationship between the frequency of the clock signal and the frequency of the first multiphase clock signal. photodetector.
  10.  第2の受光素子を有し、前記第2の受光素子の受光結果に応じた第2のパルス信号を生成する第2の受光部と、
     前記クロック信号に基づいてカウント動作を行うことにより第3のコードを生成する第2のカウンタと、第2のパルス信号に基づいて発振動作を行うことにより第2の多相クロック信号を生成する第2の発振回路と、前記第2のパルス信号に基づいて、前記第3のコードと、前記第2の多相クロック信号に応じた第4のコードとをラッチする第2のラッチ部とを有し、前記第2の受光部における第2の受光タイミングを検出する第2のタイミング検出部と、
     をさらに備え、
     前記補正処理部は、前記クロック信号の周波数および前記第2の多相クロック信号の周波数の周波数差に応じた第2の補正処理を行う
     請求項1に記載の光検出装置。
    a second light receiving unit having a second light receiving element and generating a second pulse signal according to the light receiving result of the second light receiving element;
    a second counter for generating a third code by performing a counting operation based on the clock signal; and a second counter for generating a second multiphase clock signal by performing an oscillation operation based on the second pulse signal. and a second latch section for latching the third code and the fourth code according to the second multiphase clock signal based on the second pulse signal. a second timing detection unit for detecting a second light receiving timing in the second light receiving unit;
    further comprising
    2. The photodetector according to claim 1, wherein the correction processing section performs second correction processing according to a frequency difference between the frequency of the clock signal and the frequency of the second multiphase clock signal.
  11.  前記第1のコードおよび前記第2のコードに基づいて前記第1の受光タイミングに応じた第1のタイミング値を算出するとともに、前記第3のコードおよび前記第4のコードに基づいて前記第2の受光タイミングに応じた第2のタイミング値を算出し、前記第1のタイミング値と前記第2のタイミング値との差を算出する処理部をさらに備えた
     請求項1に記載の光検出装置。
    calculating a first timing value corresponding to the first light receiving timing based on the first code and the second code, and calculating the second timing value based on the third code and the fourth code; 2. The photodetector according to claim 1, further comprising a processing unit that calculates a second timing value according to the light receiving timing of and calculates a difference between the first timing value and the second timing value.
  12.  発振動作を行うことにより第3の多相クロック信号を生成する第3の発振回路を有する多相クロック信号生成部と、
     前記第3の多相クロック信号に含まれる複数のクロック信号のうちの1つを選択するセレクタと、
     制御信号を生成する制御信号生成部と、
     前記制御信号を、前記セレクタにより選択されたクロック信号によりサンプリングするサンプリング回路と
     をさらに備え、
     前記補正処理部は、前記クロック信号の周波数および前記第3の多相クロック信号の周波数の周波数差に応じた第3の補正処理を行う
     請求項1に記載の光検出装置。
    a multiphase clock signal generator having a third oscillation circuit that generates a third multiphase clock signal by performing an oscillation operation;
    a selector that selects one of a plurality of clock signals included in the third multiphase clock signal;
    a control signal generator that generates a control signal;
    a sampling circuit that samples the control signal with a clock signal selected by the selector;
    2. The photodetector according to claim 1, wherein the correction processing section performs a third correction process according to a frequency difference between the frequency of the clock signal and the frequency of the third multiphase clock signal.
  13.  前記基準発振回路は、前記クロック信号を含む第3の多相クロック信号を生成する
     請求項1に記載の光検出装置。
    2. The photodetector according to claim 1, wherein the reference oscillation circuit generates a third multiphase clock signal including the clock signal.
  14.  前記第3の多相クロック信号に含まれる複数のクロック信号のうちの1つを選択するセレクタと、
     制御信号を生成する制御信号生成部と、
     前記制御信号を、前記セレクタにより選択されたクロック信号によりサンプリングするサンプリング回路と
     をさらに備えた
     請求項13に記載の光検出装置。
    a selector that selects one of a plurality of clock signals included in the third multiphase clock signal;
    a control signal generator that generates a control signal;
    14. The photodetector according to claim 13, further comprising a sampling circuit that samples the control signal with a clock signal selected by the selector.
  15.  前記第1の受光部は、複数の前記第1の受光素子を有し、
     前記第1のパルス信号は、前記複数の第1の受光素子の受光結果に応じた信号である
     請求項1に記載の光検出装置。
    The first light receiving section has a plurality of the first light receiving elements,
    2. The photodetector according to claim 1, wherein the first pulse signal is a signal corresponding to the results of light received by the plurality of first light receiving elements.
  16.  前記第1の受光素子および前記第1のタイミング検出部は、第1の半導体基板に設けられた
     請求項1に記載の光検出装置。
    The photodetector according to claim 1, wherein the first light receiving element and the first timing detection section are provided on a first semiconductor substrate.
  17.  前記第1の受光素子は、第1の半導体基板に設けられ、
     前記第1のタイミング検出部は、前記第1の半導体基板に貼り付けられた第2の半導体基板に設けられた
     請求項1に記載の光検出装置。
    The first light receiving element is provided on a first semiconductor substrate,
    The photodetector according to claim 1, wherein the first timing detection section is provided on a second semiconductor substrate attached to the first semiconductor substrate.
  18.  光を射出する発光部と
     前記発光部から射出された光のうちの、検出対象により反射された光を検出する光検出部と
     を備え、
     前記光検出部は、
     発振動作を行う基準発振回路を有し、位相同期動作を行うことにより所定の周波数のクロック信号を生成するクロック信号生成部と、
     第1の受光素子を有し、前記第1の受光素子の受光結果に応じた第1のパルス信号を生成する第1の受光部と、
     前記クロック信号に基づいてカウント動作を行うことにより第1のコードを生成する第1のカウンタと、前記第1のパルス信号に基づいて発振動作を行うことにより第1の多相クロック信号を生成する第1の発振回路と、前記第1のパルス信号に基づいて、前記第1のコードと、前記第1の多相クロック信号に応じた第2のコードとをラッチする第1のラッチ部とを有し、前記第1の受光部における第1の受光タイミングを検出する第1のタイミング検出部と、
     前記クロック信号の周波数および前記第1の多相クロック信号の周波数の周波数差に応じた第1の補正処理を行う補正処理部と
     を有する
     光検出システム。
    a light-emitting part that emits light; and a light-detecting part that detects light reflected by a detection target, out of the light emitted from the light-emitting part,
    The photodetector is
    a clock signal generation unit having a reference oscillation circuit that performs an oscillation operation and that generates a clock signal of a predetermined frequency by performing a phase synchronization operation;
    a first light receiving unit having a first light receiving element and generating a first pulse signal according to a light receiving result of the first light receiving element;
    A first counter that generates a first code by performing a counting operation based on the clock signal, and a first multiphase clock signal that generates a first multiphase clock signal by performing an oscillation operation based on the first pulse signal. a first oscillation circuit; and a first latch section for latching the first code and the second code according to the first multiphase clock signal based on the first pulse signal. a first timing detection unit for detecting a first light receiving timing in the first light receiving unit;
    and a correction processing unit that performs a first correction process according to a frequency difference between the frequency of the clock signal and the frequency of the first multiphase clock signal.
PCT/JP2021/047983 2021-02-15 2021-12-23 Light detection device and light detection system WO2022172622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021022139A JP2022124396A (en) 2021-02-15 2021-02-15 Light detection device and light detection system
JP2021-022139 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022172622A1 true WO2022172622A1 (en) 2022-08-18

Family

ID=82838687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047983 WO2022172622A1 (en) 2021-02-15 2021-12-23 Light detection device and light detection system

Country Status (2)

Country Link
JP (1) JP2022124396A (en)
WO (1) WO2022172622A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214369A (en) * 2001-01-18 2002-07-31 Denso Corp Time measuring device and distance measuring device
JP2002267752A (en) * 2001-03-14 2002-09-18 Denso Corp Time measuring device and distance measuring device
US20110169673A1 (en) * 2010-01-08 2011-07-14 Infineon Technologies Time-to-digital converter with built-in self test
JP2017173153A (en) * 2016-03-24 2017-09-28 株式会社豊田中央研究所 Time of flight measurement device and laser radar system
JP2020148562A (en) * 2019-03-12 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 Measuring device and distance measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214369A (en) * 2001-01-18 2002-07-31 Denso Corp Time measuring device and distance measuring device
JP2002267752A (en) * 2001-03-14 2002-09-18 Denso Corp Time measuring device and distance measuring device
US20110169673A1 (en) * 2010-01-08 2011-07-14 Infineon Technologies Time-to-digital converter with built-in self test
JP2017173153A (en) * 2016-03-24 2017-09-28 株式会社豊田中央研究所 Time of flight measurement device and laser radar system
JP2020148562A (en) * 2019-03-12 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 Measuring device and distance measuring device

Also Published As

Publication number Publication date
JP2022124396A (en) 2022-08-25

Similar Documents

Publication Publication Date Title
EP4057621B1 (en) Sensing device and ranging apparatus
CN212321848U (en) Light detection device and distance measurement sensor
JP7478526B2 (en) Solid-state imaging device and ranging system
US20210293958A1 (en) Time measurement device and time measurement apparatus
WO2021140912A1 (en) Light-receiving device, ranging device, and light-receiving circuit
WO2021085123A1 (en) Photoreceiver device, ranging device, and photoreceiver circuit
WO2022172622A1 (en) Light detection device and light detection system
US20240111033A1 (en) Photodetection device and photodetection system
WO2022181081A1 (en) Light detection device and light detection system
WO2021192460A1 (en) Sensing device and electronic apparatus
WO2022074939A1 (en) Light-receiving element, distance measurement module, distance measurement system, and method for controlling light-receiving element
WO2023153104A1 (en) Signal generation circuit and light detection device
US20240302504A1 (en) Photodetection device and photodetection system
WO2024034254A1 (en) Light detection device and light detection system
WO2023276222A1 (en) Light detection device, light detection system, and light detection method
WO2023145261A1 (en) Distance measurement device and control method for distance measurement device
WO2024075409A1 (en) Photodetection device
TWI850291B (en) Light receiving device and distance measuring device
WO2021256276A1 (en) Distance measuring device and distance measuring system
WO2022118552A1 (en) Light detection device and light detection system
US20230417921A1 (en) Photodetection device and photodetection system
US20240056700A1 (en) Photodetection device and photodetection system
WO2022244322A1 (en) Light detection device and light detection system
WO2021251057A1 (en) Optical detection circuit and distance measurement device
TW202430915A (en) Photodetection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925865

Country of ref document: EP

Kind code of ref document: A1