WO2022170505A1 - Sensor strip, chain-type sensor strip, and flange leak detection method - Google Patents

Sensor strip, chain-type sensor strip, and flange leak detection method Download PDF

Info

Publication number
WO2022170505A1
WO2022170505A1 PCT/CN2021/076331 CN2021076331W WO2022170505A1 WO 2022170505 A1 WO2022170505 A1 WO 2022170505A1 CN 2021076331 W CN2021076331 W CN 2021076331W WO 2022170505 A1 WO2022170505 A1 WO 2022170505A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor strip
terminal module
electrodes
base belt
flange
Prior art date
Application number
PCT/CN2021/076331
Other languages
French (fr)
Inventor
Mattias Lampe
Daniel BOVENSIEPEN
Original Assignee
Siemens Aktiengesellschaft
Siemens Ltd., China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Ltd., China filed Critical Siemens Aktiengesellschaft
Priority to PCT/CN2021/076331 priority Critical patent/WO2022170505A1/en
Publication of WO2022170505A1 publication Critical patent/WO2022170505A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/183Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for pipe joints or seals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/165Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means by means of cables or similar elongated devices, e.g. tapes

Definitions

  • the present disclosure generally relates to the field of leak detection, and more specifically, to a sensor strip, a chain-type sensor strip, and a flange leak detection method.
  • the detection may include detection of pipeline leaks in municipal water distribution systems, detection of damaged pipelines in buildings, and detection of faulty gaskets and flanges in industrial plants (for example, the food and beverage industry) .
  • Detection methods are typically based on pressure and/or flow measurements within the pipe system.
  • a commonly used method is to deploy special sensor cables on the surface where water from the leakage would accumulate, e.g. on the ground below a pipe.
  • the cable made up of a plurality of wires some of which are coated with a special conductive polymer material. Presence and the approximate location of a wet section of the cable can be detected based on measurement of electrical resistance between the wires in the cable.
  • similar methods exist with different sensor geometries, e.g. with the sensor shaped as a ribbon or a flat blanket.
  • Capacitive sensing is an option if the leakage is expected to occur at a rather well-defined spot.
  • handheld devices for detecting moist spots inside walls are available off-the-shelf and exploit the measurement of stray capacitance of a specially shaped electrode.
  • Capacitive sensors have the advantage of higher durability, as the metal parts of the sensor are usually not in direct contact with the liquid to be detected. Resistive sensors, on the other hand, are usually cheaper and more flexible but less resistant to frequent exposure to liquids.
  • the present disclosure provides a sensor strip that can detect a tiny liquid leak and a flange leak detection method performed by using the sensor strip.
  • a sensor strip is configured to detect whether a flange leaks, and includes: a base belt, made of a flexible material and configured to carry components included in the sensor strip; an absorption layer, made of an absorptive material that is infused with an electrolyte solution and then is dried, where the absorption layer covers a first surface of the base belt; electrodes, formed by two conductor wires, where the conductor wires extend in parallel to each other on the base belt along a length direction of the base belt; and a first terminal module, disposed on a second surface of the base belt, where the first terminal module includes a contact pad and a connector electrically connected to each other, the contact pad is electrically connected to the electrodes, and the connector is configured to electrically connect the electrodes to an external data acquisition unit.
  • the sensor strip according to the present disclosure is easy to manufacture and easy to install, can detect a tiny liquid leak, and is particularly suitable for monitoring a flange.
  • the sensor strip further includes: a second terminal module, where the second terminal module is disposed on the second surface of the base belt, and the second terminal module and the first terminal module are spaced from each other by a pre-determined distance.
  • the sensor strip can be manufactured in large quantities to have an unlimited length, and can be flexibly cut into segments of required lengths on site, and therefore the sensor strip can be applied to flanges of any size.
  • a connector of the second terminal module is connected to an external resistor.
  • the sensor strip further includes: a termination module, where the termination module is disposed on the second surface of the base belt, and the termination module includes a contact pad and a resistor.
  • the external data acquisition unit may be used to detect presence of the sensor strip and determine whether a monitored flange leaks.
  • the sensor strip further includes an insulating layer, where the insulating layer covers the absorption layer.
  • the electrodes of the sensor strip may be prevented from being in direct contact with the flange made of a conductive material.
  • the sensor strip further includes: a locking mechanism, configured to attach the sensor strip to the flange.
  • the sensor strip may be fixed to the flange more conveniently and firmly.
  • the first terminal module is electrically connected to the electrodes in at least one of the following manners: being sewn by the conductor wires forming the electrodes, being welded to the electrodes, or being adhered to the electrodes by using conductive glue.
  • the base belt is made of at least one of the following materials: a woven nylon strip, an elastic fabric strip, or a hook-and-loop strip.
  • the absorption layer includes any one of the following: tissue paper or a cotton fleece.
  • the conductor wires are made of a stainless steel material.
  • the locking mechanism is at least one of the following: a buckle, a hook-and-loop mechanism, or an adhesive tape.
  • a chain-type sensor strip includes N sensor strips mentioned above, N being an integer greater than or equal to 2, where the first sensor strip to a (N-1) th sensor strip each include a first terminal module and a second terminal module, the second terminal module of the first sensor strip is electrically connected to the first terminal module of the second sensor strip, by analogy, the second terminal module of the (N-1) th sensor strip is connected to a first terminal module of an N th sensor strip, the N th sensor strip includes the first terminal module, and a second terminal module or a termination module, and the second terminal module is connected to an external resistor.
  • a flange leak detection method includes: wrapping the sensor strip mentioned above around a joint of a flange, and attaching the sensor strip to the joint; connecting a data acquisition unit to a first terminal module of the sensor strip, where the data acquisition unit is configured to measure a resistance between two electrodes of the sensor strip; and determining that the flange leaks when the resistance measured by the data acquisition unit is less than a known resistance value.
  • the sensor strip and the flange leak detection method according to the present disclosure have at least one of the following technical advantages: compared with the most existing leak detection products (for example, a sensor cable and a capacitive liquid sensor) currently on the market, the sensor strip according to the present disclosure is particularly suitable for detecting leaking of flanges as it uses a flexible sensor strip that can be easily wrapped around and attached to a pipe flange; compared with another solution (which is based on spray shields or similar containment of the leaking liquid) for flange leaking detection, the proposed solution according to the present disclosure can detect smaller amounts of liquid, down to a single drop, and therefore can detect small leaks earlier; compared with another solution, in this solution, a plurality of sensor strips form a chain-type sensor strip, to detect a plurality of possible leak points by using a data acquisition port; another obvious advantage of the technical solution according to the present disclosure is that assembly methods (even materials) often used in fabric manufacturing can be used, for example, sewing machines can be used for assembly, so that a production
  • FIG. 1 is a cross-section view of a schematic structure of a sensor strip according to an embodiment of the present disclosure
  • FIG. 2 is a top view of a sensor strip according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a chain-type sensor strip according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a sensor strip wrapping around and attaching to a flange according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a schematic process of a flange leak detection method according to an embodiment of the present disclosure
  • Connector 110 Second terminal module
  • Termination module 114 Insulating layer
  • Locking mechanism 300 Chain-type sensor strip
  • the term “include” and variants thereof represent open terms, and means “include but is not limited to” .
  • the term “based on” represents “at least partially based on” .
  • the terms “one embodiment” and “an embodiment” represent “at least one embodiment” .
  • the term “another embodiment” represents “at least one another embodiment” .
  • the terms “first” , “second” , and the like may represent different objects or the same object. Other definitions may be included explicitly or implicitly. Unless otherwise clearly specified, the definition of one term is consistent in the entire specification.
  • the present disclosure provides a technical solution in which early detection is performed on a very small leak occurred at a critical point in a liquid delivery system. It may be understood that a possibility of a leak occurred in a pipeline is very small, but a leak occurred at a flange, for example, due to damage of a gasket, is a common problem. Even a very small leak may also have a very large impact on production, because the leak may cause a liquid flowing through the pipeline to be exposed to microbial contamination from the outside. Therefore, it is very important to detect and repair even a very small leak as early as possible.
  • a sensor device that is easy to manufacture and easy to install is described, can detect a tiny liquid leak, and is particularly suitable for monitoring a flange.
  • the present disclosure provides a sensor strip, which can be wrapped around a joint of two parts of the flange, to detect a minimal quantity of liquids leaking from the flange.
  • FIG. 1 is a cross-section view of a schematic structure of a sensor strip 100 according to an embodiment of the present disclosure.
  • FIG. 2 is a top view of the sensor strip 100.
  • the sensor strip 100 includes a base belt 102, an absorption layer 104, electrodes 106, and a first terminal module 108.
  • the base belt 102 is made of a flexible material and is configured to carry components included in the sensor strip 100.
  • the base belt 102 provides a mechanical basis for all the components of the sensor strip 100.
  • a material used for the base belt 102 needs to be sufficiently soft, to be wrapped around a flange, and can withstand an operating condition (for example, a temperature) of an environment.
  • the material of which the base belt is made should be capable of being resistant to a to-be-detected liquid.
  • an appropriate material used for making the base belt may include: a woven nylon strip, an elastic fabric strip, a hook-and-loop strip, or the like.
  • the absorption layer 104 is made of an absorptive material, for example, a material such as tissue paper or a cotton fleece.
  • the absorptive material is infused with an electrolyte solution (for example, a sodium chloride solution) , and then is dried. After the absorption layer made of such a material absorbs a liquid, the liquid diffuses quickly inside the material and dissolves the electrolyte solution, thereby making the absorption layer conductive.
  • an electrolyte solution for example, a sodium chloride solution
  • the electrodes 106 are formed by two conductor wires, where the conductor wires extend in parallel to each other on the base belt along a length direction of the base belt.
  • Such a conductor wire is very easy to obtain.
  • a conductive sewing thread may be used for sewing the base belt and the absorption layer together, so that a standard sewing machine may be used for assembling the sensor strip. Therefore, a very cheap fabric manufacturing method and a very cheap tool can be used for assembling the sensor strip.
  • the conductor wires can be made of a stainless steel material, so that the electrodes formed in this way can resist corrosion and a high temperature.
  • the absorption layer 104 covers a first surface of the base belt, and the first terminal module 108 is disposed on a second surface of the base belt 102.
  • the first surface and the second surface herein are not specific surfaces of the base belt, and are only used for describing that the absorption layer 104 and the first terminal module 108 are disposed on different surfaces of the base belt 102 respectively.
  • the first terminal module 108 includes a contact pad 1082 and a connector 1084 electrically connected to each other.
  • the contact pad 1082 is electrically connected to the electrodes 106.
  • electrical connections between the connector 1084 and the electrodes 106 are established, so that the connector 1084 can electrically connect the electrodes 106 to an external data acquisition unit.
  • the data acquisition unit is configured to measure a resistance between electrodes. This is specifically described below.
  • the first terminal module 108 may be made of a flexible PCB material.
  • the first terminal module 108 may be sewn directly with the base belt 102 and the absorption layer 104 together by using the conductor wires forming the electrodes 106.
  • the first terminal module 108 may alternatively be connected to the base belt 102 in a manner of welding or bonding (by using conductive glue) , to electrically connect the electrodes 106 to the first terminal module 108 reliably.
  • the liquid diffuses quickly inside a material and dissolves an electrolyte solution dried in the absorption layer, thereby making the absorption layer 102 conductive, to establish an electrical connection between the two electrodes 106.
  • the data acquisition unit connected by using the first terminal module 108 can measure a resistance between the two electrodes 106 to determine occurrence of leakage. How to perform leak detection by using the sensor strip according to the present disclosure is further described below with reference to the accompanying drawings.
  • the sensor strip 100 may further include a second terminal module 110, where the second terminal module 110 is disposed on a second surface of the base belt, and the second terminal module 110 and the first terminal module 108 are spaced from each other by a pre-determined distance on the base belt 102.
  • the pre-determined distance may be set according to a requirement.
  • a connector of the second terminal module may be connected to an external resistor.
  • the external resistor has a relatively high known resistance value, which may be used by an external data acquisition unit for detecting presence of the sensor strip and determining whether a monitored flange leaks.
  • the sensor strip may be provided with a plurality of first terminal modules and a plurality of second terminal modules at a relatively small interval (for example, every 10 cm) . In this way, such a sensor strip can be manufactured and sold in large quantities. During application, the sensor strip may be cut into segments of appropriate lengths by an installation personnel according to a requirement.
  • the sensor strip 100 may include a termination module 112 instead of the second terminal module 110, and the termination module 112 includes a contact pad and a resistor (not shown in the figure) .
  • the termination module 112 and the first terminal module 108 have similar structures.
  • the termination module 112 does not include a connector, but is embedded with a resistor having a relatively high known resistance value.
  • the resistor may be used by an external data acquisition unit to detect presence of the sensor strip and determine whether a monitored flange leaks.
  • the data acquisition unit measures a resistance value significantly higher than the known resistance value, it indicates that no sensor strip is connected or the sensor strip are broken, ; if the measured resistance value is much lower than the known resistance value, it indicates a leak; and if a value close to the known resistance value is detected, it can be assumed that the sensor strip is connected correctly and functional and that no leak has occurred.
  • the sensor strip may further include an insulating layer 114, where the insulating layer 114 covers the absorption layer 104.
  • the insulating layer 114 may be used for preventing the electrodes 106 from being in direct contact with the flange.
  • a pipeline and a flange are usually made of stainless steel without any insulating paint or another coating.
  • the sensor strip is applied to a conductive surface. Therefore, the sensor strip needs to include an insulating layer to avoid direct contact with the flange.
  • the insulating layer may consist of cotton tissue, thin perforated plastic film, etc.
  • the insulating layer is made as thin as possible while it is ensured that the electrodes are prevented from being in direct contact with a material of the flange.
  • the sensor strip 100 may further include a locking mechanism 116, configured to attach the sensor strip to the flange.
  • the locking mechanism 116 may be, for example, a buckle (for example, which is used in a wrist watch or an outfit) , a hook-and-loop mechanism, or an adhesive tape.
  • FIG. 3 is a schematic diagram of a chain-type sensor strip 300 according to another embodiment of the present disclosure.
  • the chain-type sensor strip 300 shown in FIG. 3 includes four sensor strips 100-1, 100-2, 100-3, and 100-4.
  • a person skilled in the art may understand that the chain-type sensor strip according to the present disclosure may include an any plurality of sensor strips, which are not limited to the four sensor strips shown in FIG. 3.
  • the chain-type sensor strip 300 includes N sensor strips (N ⁇ 2) , where the first sensor strip to a (N-1) th sensor strip have the same structure, the sensor strips each include a first terminal module and a second terminal module, the second terminal module of the first sensor strip is electrically connected to the first terminal module of the second sensor strip, and by analogy, the second terminal module of the (N-1) th sensor strip is electrically connected to a first terminal module of an N th sensor strip.
  • the N th sensor strip may further include a second terminal module, where the second terminal module is connected to an external resistor 304, or may include a termination module instead of the second terminal module.
  • sensor strips may be wrapped around different flanges respectively.
  • the sensor strips may be connected by using a two-core cable.
  • a first terminal module of a first sensor strip is connected to a data acquisition unit 302.
  • a leak can be detected because the sensor strips form a connection of a "logical or" relationship. In this way, a plurality of possible leak points can be monitored by using one data acquisition port.
  • FIG. 4 is a schematic diagram of a sensor strip wrapping around a flange according to an embodiment of the present disclosure.
  • the sensor strip 100 is wrapped around and attached to a joint of a flange, a first terminal module 108 of the sensor strip 100 is connected to a data acquisition unit 302, which is configured to measure a resistance between two electrodes 106 of the sensor strip 100.
  • FIG. 5 is a flowchart of a schematic process of a flange leak detection method 500 according to an embodiment of the present disclosure.
  • step S502 the sensor strip 100 is wrapped around and attached to a joint of a flange.
  • a first terminal module 108 of the sensor strip 100 is connected to a data acquisition unit 302.
  • the data acquisition unit 302 may be configured to measure a resistance between two electrodes 106 of the sensor strip 100.
  • the data acquisition unit 302 is, for example, a small embedded system or an I/O module of a PLC.
  • the data acquisition unit 302 measures a very high resistance (that is, which is higher than a known resistance value of a resistor on a termination module or an external resistor connected to a second terminal module) , it indicates that the sensor strip is not connected or a connected sensor strip breaks down.
  • step S506 the data acquisition unit 302 measures a resistance value significantly lower than the known resistance value. It indicates that an absorption layer of the sensor strip has become conductive. Therefore, it indicates that the flange leaks.
  • a tiny leak of a flange can be detected by using the foregoing sensor strip.
  • a specific method of performing leak detection on a flange by using a chain-type sensor strip is similar to the foregoing method. Sensor strips are wrapped around different flanges respectively. A first terminal module of a first sensor strip is connected to a data acquisition unit. As long as any sensor strip is in contact with a liquid, a leak can be detected. Details are not described herein again.
  • the sensor strip and the flange leak detection method according to the present disclosure have at least one of the following advantages:
  • the sensor strip according to the present disclosure is particularly suitable for detecting leaking of flanges as it uses a flexible sensor strip that can be easily wrapped around and attached to a pipe flange.
  • the proposed solution according to the present disclosure can detect smaller amounts of liquid, down to a single drop, and therefore can detect small leaks earlier.
  • a plurality of sensor strips form a chain-type sensor strip, to detect a plurality of possible leak points by using a single data acquisition port.
  • Another obvious advantage of the technical solution according to the present disclosure is that assembly methods (even materials) often used in fabric manufacturing can be used, for example, sewing machines can be used for assembly, so that a production process is simple, convenient, fast, and feasible.
  • the senor strip can be manufactured in large quantities to have an unlimited length, and can be flexibly cut into segments of required lengths on site, and therefore the sensor strip can be applied to flanges of any size.
  • a fault or lack of a sensor strip can be detected.
  • the sensor strip according to the present disclosure has low production costs, is easy to install, does not need a special material, and is also manufactured without a complicated manufacturing method.
  • the apparatus structure described in the embodiments may be a physical structure or a logical structure. That is, some units may be implemented by the same physical entity, or some units may be implemented by a plurality of physical entities, or may be implemented by some components in a plurality of independent devices together.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

The present disclosure relates to a sensor strip, a chain-type sensor strip, and a flange leak detection method. The sensor strip is configured to detect whether a flange leaks and includes: a base belt, made of a flexible material and configured to carry components included in the sensor strip; an absorption layer, made of an absorptive material that is infused with an electrolyte solution and then is dried, where the absorption layer covers a first surface of the base belt; electrodes, formed by two conductor wires, where the conductor wires extend in parallel to each other on the base belt along a length direction of the base belt; and a first terminal module, disposed on a second surface of the base belt, where the first terminal module includes a contact pad and a connector electrically connected to each other, the contact pad is electrically connected to the electrodes, and the connector is configured to electrically connect the electrodes to an external data acquisition unit.

Description

SENSOR STRIP, CHAIN-TYPE SENSOR STRIP, AND FLANGE LEAK DETECTION METHOD BACKGROUND Technical Field
The present disclosure generally relates to the field of leak detection, and more specifically, to a sensor strip, a chain-type sensor strip, and a flange leak detection method. 
Related Art
Early and reliable detection of liquid leaks is a common requirement in many different domains. Specifically, the detection may include detection of pipeline leaks in municipal water distribution systems, detection of damaged pipelines in buildings, and detection of faulty gaskets and flanges in industrial plants (for example, the food and beverage industry) .
Leakage detection in municipal water distribution networks usually aims at detecting large leaks only. Detection methods are typically based on pressure and/or flow measurements within the pipe system.
For leakage detection in buildings, e.g. do detect pipeline bursts, a commonly used method is to deploy special sensor cables on the surface where water from the leakage would accumulate, e.g. on the ground below a pipe. The cable made up of a plurality of wires some of which are coated with a special conductive polymer material. Presence and the approximate location of a wet section of the cable can be detected based on measurement of electrical resistance between the wires in the cable. In addition, similar methods exist with different sensor geometries, e.g. with the sensor shaped as a ribbon or a flat blanket.
Capacitive sensing is an option if the leakage is expected to occur at a rather well-defined spot. At present, handheld devices for detecting moist spots inside walls are available off-the-shelf and exploit the measurement of stray capacitance of a specially shaped electrode.
Capacitive sensors have the advantage of higher durability, as the metal parts of the sensor are usually not in direct contact with the liquid to be detected. Resistive sensors, on the other hand, are usually cheaper and more flexible but less resistant to frequent exposure to liquids.
At present, for leak detection of a flange, there is a method, in the related art, in which the accumulating liquid is detected based on containment (for example, spray shields) of a leaking liquid by using resistive or capacitive sensors. However, in the related art, the methods are relatively high, tailored to specific flange sizes, and early detection of very small leaks (e.g. detection based on single drop of water) is difficult. Moreover, in many cases there is not sufficient free space around the flange to install a spray shield.
SUMMARY
A brief overview of the present disclosure is given below to provide a basic understanding of certain aspects of the present disclosure. It should be understood that this summary is not an exhaustive overview of the present disclosure. It is not intended to determine key or important parts of the present disclosure, nor is it intended to limit the scope of the present disclosure. The purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
In view of this, the present disclosure provides a sensor strip that can detect a tiny liquid leak and a flange leak detection method performed by using the sensor strip.
According to an aspect of the present disclosure, a sensor strip is provided, is configured to detect whether a flange leaks, and includes: a base belt, made of a flexible material and configured to carry components included in the sensor strip; an absorption layer, made of an absorptive material that is infused with an electrolyte solution and then is dried, where the absorption layer covers a first surface of the base belt; electrodes, formed by two conductor wires, where the conductor wires extend in parallel to each other on the base belt along a length direction of the base belt; and a first terminal module, disposed on a second surface of the base belt, where the first terminal module includes a contact pad and a connector electrically connected to each other, the contact pad is electrically  connected to the electrodes, and the connector is configured to electrically connect the electrodes to an external data acquisition unit.
The sensor strip according to the present disclosure is easy to manufacture and easy to install, can detect a tiny liquid leak, and is particularly suitable for monitoring a flange.
Optionally, in an example of the foregoing aspect, the sensor strip further includes: a second terminal module, where the second terminal module is disposed on the second surface of the base belt, and the second terminal module and the first terminal module are spaced from each other by a pre-determined distance.
In this way, the sensor strip can be manufactured in large quantities to have an unlimited length, and can be flexibly cut into segments of required lengths on site, and therefore the sensor strip can be applied to flanges of any size.
Optionally, in an example of the foregoing aspect, a connector of the second terminal module is connected to an external resistor.
Optionally, in an example of the foregoing aspect, the sensor strip further includes: a termination module, where the termination module is disposed on the second surface of the base belt, and the termination module includes a contact pad and a resistor.
In such a manner, the external data acquisition unit may be used to detect presence of the sensor strip and determine whether a monitored flange leaks.
Optionally, in an example of the foregoing aspect, the sensor strip further includes an insulating layer, where the insulating layer covers the absorption layer.
In this way, the electrodes of the sensor strip may be prevented from being in direct contact with the flange made of a conductive material.
Optionally, in an example of the foregoing aspect, the sensor strip further includes: a locking mechanism, configured to attach the sensor strip to the flange.
In this way, the sensor strip may be fixed to the flange more conveniently and firmly.
Optionally, in an example of the foregoing aspect, the first terminal module is electrically connected to the electrodes in at least one of the following manners: being sewn  by the conductor wires forming the electrodes, being welded to the electrodes, or being adhered to the electrodes by using conductive glue.
Optionally, in an example of the foregoing aspect, the base belt is made of at least one of the following materials: a woven nylon strip, an elastic fabric strip, or a hook-and-loop strip.
Optionally, in an example of the foregoing aspect, the absorption layer includes any one of the following: tissue paper or a cotton fleece.
Optionally, in an example of the foregoing aspect, the conductor wires are made of a stainless steel material.
Optionally, in an example of the foregoing aspect, the locking mechanism is at least one of the following: a buckle, a hook-and-loop mechanism, or an adhesive tape.
In this way, a person skilled in the art can select an appropriate material, an appropriate structure, and an appropriate manufacturing process according to requirements, so that the monitoring performance of the sensor strip is better, the manufacturing process is simpler, and costs are lower.
According to another aspect of the present disclosure, a chain-type sensor strip is provided and includes N sensor strips mentioned above, N being an integer greater than or equal to 2, where the first sensor strip to a (N-1)  th sensor strip each include a first terminal module and a second terminal module, the second terminal module of the first sensor strip is electrically connected to the first terminal module of the second sensor strip, by analogy, the second terminal module of the (N-1)  th sensor strip is connected to a first terminal module of an N th sensor strip, the N th sensor strip includes the first terminal module, and a second terminal module or a termination module, and the second terminal module is connected to an external resistor.
In this way, a plurality of possible leak points can be monitored by using one data acquisition port.
According to another aspect of the present disclosure, a flange leak detection method is provided and includes: wrapping the sensor strip mentioned above around a joint of a  flange, and attaching the sensor strip to the joint; connecting a data acquisition unit to a first terminal module of the sensor strip, where the data acquisition unit is configured to measure a resistance between two electrodes of the sensor strip; and determining that the flange leaks when the resistance measured by the data acquisition unit is less than a known resistance value.
In this way, a tiny leak of the flange can be detected.
The sensor strip and the flange leak detection method according to the present disclosure have at least one of the following technical advantages: compared with the most existing leak detection products (for example, a sensor cable and a capacitive liquid sensor) currently on the market, the sensor strip according to the present disclosure is particularly suitable for detecting leaking of flanges as it uses a flexible sensor strip that can be easily wrapped around and attached to a pipe flange; compared with another solution (which is based on spray shields or similar containment of the leaking liquid) for flange leaking detection, the proposed solution according to the present disclosure can detect smaller amounts of liquid, down to a single drop, and therefore can detect small leaks earlier; compared with another solution, in this solution, a plurality of sensor strips form a chain-type sensor strip, to detect a plurality of possible leak points by using a data acquisition port; another obvious advantage of the technical solution according to the present disclosure is that assembly methods (even materials) often used in fabric manufacturing can be used, for example, sewing machines can be used for assembly, so that a production process is simple, convenient, fast, and feasible; in addition, the sensor strip can be manufactured in large quantities to have an unlimited length, and can be flexibly cut into segments of required lengths on site, and therefore the sensor strip can be applied to flanges of any size; based on a resistor of the termination module or an external resistor, a fault or lack of a sensor strip can be detected; and the sensor strip according to the present disclosure has low production costs, is easy to install, does not need a special material, and is also manufactured without a complex manufacturing method.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to the descriptions of the embodiments of the present disclosure in  combination with the accompanying drawings, the foregoing and other objectives, features, and advantages of the present disclosure may be more easily understood. Components in the accompanying drawings are merely used for demonstrating the principle of the present disclosure. In the accompanying drawings, the same or similar technical features or components may be represented by using the same or similar reference numerals. In the accompanying drawings:
FIG. 1 is a cross-section view of a schematic structure of a sensor strip according to an embodiment of the present disclosure;
FIG. 2 is a top view of a sensor strip according to an embodiment of the present disclosure;
FIG. 3 is a schematic diagram of a chain-type sensor strip according to another embodiment of the present disclosure;
FIG. 4 is a schematic diagram of a sensor strip wrapping around and attaching to a flange according to an embodiment of the present disclosure; and
FIG. 5 is a flowchart of a schematic process of a flange leak detection method according to an embodiment of the present disclosure,
where, reference numerals are as follows:
100: Sensor strip                                 102: Base belt
104: Absorption layer                             106: Electrodes
108: First terminal module                        1082: Contact pad
1084: Connector                                   110: Second terminal module
112: Termination module                           114: Insulating layer
116: Locking mechanism                            300: Chain-type sensor strip
100-1, 100-2, 100-3, 100-4: Sensor strips         500: Flange leak detection
                                                  method
S502, S504, S506: Steps
DETAILED DESCRIPTION
A subject described in this specification is discussed now with reference to exemplary implementations. It should be understood that, discussion of the implementations is merely intended to make a person skilled in the art better understand and implement the subject described in this specification, and is not intended to limit the protection scope of the claims, the applicability, or examples. Changes may be made to the functions and arrangements of the discussed elements without departing from the protection scope of the content of the present disclosure. Various processes or components may be omitted, replaced, or added in each example according to requirements. For example, the described method may be performed according to a sequence different from the sequence described herein, and steps may be added, omitted, or combined. In addition, features described in some examples may also be combined in other examples.
As used in this specification, the term "include" and variants thereof represent open terms, and means "include but is not limited to" . The term "based on" represents "at least partially based on" . The terms "one embodiment" and "an embodiment" represent "at least one embodiment" . The term "another embodiment" represents "at least one another embodiment" . The terms "first" , "second" , and the like may represent different objects or the same object. Other definitions may be included explicitly or implicitly. Unless otherwise clearly specified, the definition of one term is consistent in the entire specification.
The present disclosure provides a technical solution in which early detection is performed on a very small leak occurred at a critical point in a liquid delivery system. It may be understood that a possibility of a leak occurred in a pipeline is very small, but a leak occurred at a flange, for example, due to damage of a gasket, is a common problem. Even a very small leak may also have a very large impact on production, because the leak may cause a liquid flowing through the pipeline to be exposed to microbial contamination from the outside. Therefore, it is very important to detect and repair even a very small leak as early as possible.
There are a very large quantity of flanges of a pipeline in a beverage factory. Therefore,  cost efficiency and ease of maintenance of a solution of leak detection are also very important. In the present disclosure, a sensor device that is easy to manufacture and easy to install is described, can detect a tiny liquid leak, and is particularly suitable for monitoring a flange. Specifically, the present disclosure provides a sensor strip, which can be wrapped around a joint of two parts of the flange, to detect a minimal quantity of liquids leaking from the flange.
The sensor strip and the flange leak detection method according to embodiments of the present disclosure are described below with reference to the accompanying drawings.
FIG. 1 is a cross-section view of a schematic structure of a sensor strip 100 according to an embodiment of the present disclosure. FIG. 2 is a top view of the sensor strip 100.
As shown in FIG. 1 and FIG. 2, the sensor strip 100 includes a base belt 102, an absorption layer 104, electrodes 106, and a first terminal module 108.
The base belt 102 is made of a flexible material and is configured to carry components included in the sensor strip 100.
The base belt 102 provides a mechanical basis for all the components of the sensor strip 100. A material used for the base belt 102 needs to be sufficiently soft, to be wrapped around a flange, and can withstand an operating condition (for example, a temperature) of an environment. In addition, the material of which the base belt is made should be capable of being resistant to a to-be-detected liquid.
In a specific example, an appropriate material used for making the base belt may include: a woven nylon strip, an elastic fabric strip, a hook-and-loop strip, or the like.
The absorption layer 104 is made of an absorptive material, for example, a material such as tissue paper or a cotton fleece. The absorptive material is infused with an electrolyte solution (for example, a sodium chloride solution) , and then is dried. After the absorption layer made of such a material absorbs a liquid, the liquid diffuses quickly inside the material and dissolves the electrolyte solution, thereby making the absorption layer conductive.
The electrodes 106 are formed by two conductor wires, where the conductor wires  extend in parallel to each other on the base belt along a length direction of the base belt.
Such a conductor wire is very easy to obtain. In an example, a conductive sewing thread may be used for sewing the base belt and the absorption layer together, so that a standard sewing machine may be used for assembling the sensor strip. Therefore, a very cheap fabric manufacturing method and a very cheap tool can be used for assembling the sensor strip. Preferably, the conductor wires can be made of a stainless steel material, so that the electrodes formed in this way can resist corrosion and a high temperature.
It can be seen from FIG. 1 that the absorption layer 104 covers a first surface of the base belt, and the first terminal module 108 is disposed on a second surface of the base belt 102. The first surface and the second surface herein are not specific surfaces of the base belt, and are only used for describing that the absorption layer 104 and the first terminal module 108 are disposed on different surfaces of the base belt 102 respectively.
The first terminal module 108 includes a contact pad 1082 and a connector 1084 electrically connected to each other. The contact pad 1082 is electrically connected to the electrodes 106. In this way, electrical connections between the connector 1084 and the electrodes 106 are established, so that the connector 1084 can electrically connect the electrodes 106 to an external data acquisition unit. The data acquisition unit is configured to measure a resistance between electrodes. This is specifically described below.
The first terminal module 108 may be made of a flexible PCB material. In this case, the first terminal module 108 may be sewn directly with the base belt 102 and the absorption layer 104 together by using the conductor wires forming the electrodes 106. In addition, the first terminal module 108 may alternatively be connected to the base belt 102 in a manner of welding or bonding (by using conductive glue) , to electrically connect the electrodes 106 to the first terminal module 108 reliably.
In the sensor strip according to the present disclosure, after the absorption layer 102 absorbs a liquid, the liquid diffuses quickly inside a material and dissolves an electrolyte solution dried in the absorption layer, thereby making the absorption layer 102 conductive, to establish an electrical connection between the two electrodes 106. The data acquisition  unit connected by using the first terminal module 108 can measure a resistance between the two electrodes 106 to determine occurrence of leakage. How to perform leak detection by using the sensor strip according to the present disclosure is further described below with reference to the accompanying drawings.
In an example, as shown in FIG. 2, the sensor strip 100 may further include a second terminal module 110, where the second terminal module 110 is disposed on a second surface of the base belt, and the second terminal module 110 and the first terminal module 108 are spaced from each other by a pre-determined distance on the base belt 102. The pre-determined distance may be set according to a requirement.
Actually, structures of the second terminal module and the first terminal module are the same. In an example, a connector of the second terminal module may be connected to an external resistor. The external resistor has a relatively high known resistance value, which may be used by an external data acquisition unit for detecting presence of the sensor strip and determining whether a monitored flange leaks.
In an example, the sensor strip may be provided with a plurality of first terminal modules and a plurality of second terminal modules at a relatively small interval (for example, every 10 cm) . In this way, such a sensor strip can be manufactured and sold in large quantities. During application, the sensor strip may be cut into segments of appropriate lengths by an installation personnel according to a requirement.
In another example, the sensor strip 100 may include a termination module 112 instead of the second terminal module 110, and the termination module 112 includes a contact pad and a resistor (not shown in the figure) . The termination module 112 and the first terminal module 108 have similar structures. However, the termination module 112 does not include a connector, but is embedded with a resistor having a relatively high known resistance value. The resistor may be used by an external data acquisition unit to detect presence of the sensor strip and determine whether a monitored flange leaks.
If the data acquisition unit measures a resistance value significantly higher than the known resistance value, it indicates that no sensor strip is connected or the sensor strip are  broken, ; if the measured resistance value is much lower than the known resistance value, it indicates a leak; and if a value close to the known resistance value is detected, it can be assumed that the sensor strip is connected correctly and functional and that no leak has occurred.
In an example, the sensor strip may further include an insulating layer 114, where the insulating layer 114 covers the absorption layer 104. The insulating layer 114 may be used for preventing the electrodes 106 from being in direct contact with the flange.
In food and beverage application, a pipeline and a flange are usually made of stainless steel without any insulating paint or another coating. In this case, the sensor strip is applied to a conductive surface. Therefore, the sensor strip needs to include an insulating layer to avoid direct contact with the flange. The insulating layer may consist of cotton tissue, thin perforated plastic film, etc. Preferably, the insulating layer is made as thin as possible while it is ensured that the electrodes are prevented from being in direct contact with a material of the flange.
In an example, the sensor strip 100 may further include a locking mechanism 116, configured to attach the sensor strip to the flange.
The locking mechanism 116 may be, for example, a buckle (for example, which is used in a wrist watch or an outfit) , a hook-and-loop mechanism, or an adhesive tape.
The foregoing materials and the foregoing specific structures of the components of the sensor strip are all examples for description, and a person skilled in the art can select, according to a requirement, another material or another structure, which is not limited to the above.
FIG. 3 is a schematic diagram of a chain-type sensor strip 300 according to another embodiment of the present disclosure.
The chain-type sensor strip 300 shown in FIG. 3 includes four sensor strips 100-1, 100-2, 100-3, and 100-4. A person skilled in the art may understand that the chain-type sensor strip according to the present disclosure may include an any plurality of sensor strips, which are not limited to the four sensor strips shown in FIG. 3.
It is assumed that the chain-type sensor strip 300 includes N sensor strips (N ≥ 2) , where the first sensor strip to a (N-1)  th sensor strip have the same structure, the sensor strips each include a first terminal module and a second terminal module, the second terminal module of the first sensor strip is electrically connected to the first terminal module of the second sensor strip, and by analogy, the second terminal module of the (N-1)  th sensor strip is electrically connected to a first terminal module of an N th sensor strip. The N th sensor strip may further include a second terminal module, where the second terminal module is connected to an external resistor 304, or may include a termination module instead of the second terminal module.
During application of such a chain-type sensor strip, sensor strips may be wrapped around different flanges respectively. The sensor strips may be connected by using a two-core cable. A first terminal module of a first sensor strip is connected to a data acquisition unit 302. As long as any sensor strip is in contact with a liquid, a leak can be detected because the sensor strips form a connection of a "logical or" relationship. In this way, a plurality of possible leak points can be monitored by using one data acquisition port.
FIG. 4 is a schematic diagram of a sensor strip wrapping around a flange according to an embodiment of the present disclosure.
As shown in FIG. 4, the sensor strip 100 is wrapped around and attached to a joint of a flange, a first terminal module 108 of the sensor strip 100 is connected to a data acquisition unit 302, which is configured to measure a resistance between two electrodes 106 of the sensor strip 100.
FIG. 5 is a flowchart of a schematic process of a flange leak detection method 500 according to an embodiment of the present disclosure.
First, in step S502, the sensor strip 100 is wrapped around and attached to a joint of a flange.
Next, in step S504, a first terminal module 108 of the sensor strip 100 is connected to a data acquisition unit 302. The data acquisition unit 302 may be configured to measure a resistance between two electrodes 106 of the sensor strip 100.
The data acquisition unit 302 is, for example, a small embedded system or an I/O module of a PLC.
If the data acquisition unit 302 measures a very high resistance (that is, which is higher than a known resistance value of a resistor on a termination module or an external resistor connected to a second terminal module) , it indicates that the sensor strip is not connected or a connected sensor strip breaks down.
In a case that a to-be-detected flange leaks, in step S506, the data acquisition unit 302 measures a resistance value significantly lower than the known resistance value. It indicates that an absorption layer of the sensor strip has become conductive. Therefore, it indicates that the flange leaks.
In the flange leak detection method according to the embodiments of the present disclosure, a tiny leak of a flange can be detected by using the foregoing sensor strip.
A specific method of performing leak detection on a flange by using a chain-type sensor strip is similar to the foregoing method. Sensor strips are wrapped around different flanges respectively. A first terminal module of a first sensor strip is connected to a data acquisition unit. As long as any sensor strip is in contact with a liquid, a leak can be detected. Details are not described herein again.
Specifically, the sensor strip and the flange leak detection method according to the present disclosure have at least one of the following advantages:
Compared with the most existing leak detection products (for example, a sensor cable and a capacitive liquid sensor) currently on the market, the sensor strip according to the present disclosure is particularly suitable for detecting leaking of flanges as it uses a flexible sensor strip that can be easily wrapped around and attached to a pipe flange.
Compared with another solution (which is based on a spray shield or similar containment of the leaking liquid) for flange leaking detection, the proposed solution according to the present disclosure can detect smaller amounts of liquid, down to a single drop, and therefore can detect small leaks earlier.
Compared with another solution, in this solution, a plurality of sensor strips form a  chain-type sensor strip, to detect a plurality of possible leak points by using a single data acquisition port.
Another obvious advantage of the technical solution according to the present disclosure is that assembly methods (even materials) often used in fabric manufacturing can be used, for example, sewing machines can be used for assembly, so that a production process is simple, convenient, fast, and feasible.
In addition, the sensor strip can be manufactured in large quantities to have an unlimited length, and can be flexibly cut into segments of required lengths on site, and therefore the sensor strip can be applied to flanges of any size.
Based on a resistor of the termination module or an external resistor, a fault or lack of a sensor strip can be detected.
The sensor strip according to the present disclosure has low production costs, is easy to install, does not need a special material, and is also manufactured without a complicated manufacturing method.
The foregoing describes specific embodiments of this specification. Other embodiments are within the scope of the appended claims. In some cases, actions or steps described in the claims may be performed in an order different from an order in the embodiments and still achieve a desired result. In addition, processes depicted in the accompanying drawings do not necessarily require a specific order or sequential order shown to achieve the desired result. In certain embodiments, multitasking and parallel processing are also possible or may be advantageous.
Not all steps and units in the procedures and the diagrams of the system structures are necessary, and some steps or units may be omitted according to an actual requirement. The apparatus structure described in the embodiments may be a physical structure or a logical structure. That is, some units may be implemented by the same physical entity, or some units may be implemented by a plurality of physical entities, or may be implemented by some components in a plurality of independent devices together.
The descriptions of the content of the present disclosure are provided to allow any  person of ordinary skill in the art to implement or use the content of the present disclosure. For a person of ordinary skill in the art, various modifications on the content of the present disclosure are obvious. In addition, a general principle defined in this specification may be applied to other variants without departing from the protection scope of the content of the present disclosure. Therefore, the content of the present disclosure is not limited to the examples and designs described in this specification, but is consistent with the widest range conforming to the principle and novelty disclosed in this specification.
The foregoing descriptions are merely preferred embodiments of the present disclosure, but are not intended to limit the present disclosure. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present disclosure shall fall within the protection scope of the present disclosure.

Claims (13)

  1. A sensor strip, configured to detect whether a flange leaks, comprising:
    a base belt, made of a flexible material and configured to carry components comprised in the sensor strip;
    an absorption layer, made of an absorptive material that is infused with an electrolyte solution and then is dried, wherein the absorption layer covers a first surface of the base belt;
    electrodes, formed by two conductor wires, wherein the conductor wires extend on the base belt, in parallel to each other, along a length direction of the base belt; and
    a first terminal module, disposed on a second surface of the base belt, wherein the first terminal module comprises a contact pad and a connector electrically connected to each other, the contact pad is electrically connected to the electrodes, and the connector is configured to electrically connect the electrodes to an external data acquisition unit.
  2. The sensor strip according to claim 1, further comprising: a second terminal module, wherein the second terminal module is disposed on the second surface of the base belt, and the second terminal module and the first terminal module are spaced from each other by a pre-determined distance.
  3. The sensor strip according to claim 2, wherein a connector of the second terminal module is connected to an external resistor.
  4. The sensor strip according to claim 1, further comprising a termination module, wherein the termination module is disposed on the second surface of the base belt, and the termination module comprises a contact pad and a resistor.
  5. The sensor strip according to any one of claims 1 to 4, further comprising: an insulating layer, wherein the insulating layer covers the absorption layer.
  6. The sensor strip according to any one of claims 1 to 5, further comprising: a locking mechanism, configured to attach the sensor strip to the flange.
  7. The sensor strip according to any one of claims 1 to 6, wherein the first terminal module is electrically connected to the electrodes in at least one of the following manners: being sewn by the conductor wires forming the electrodes, being soldered to the electrodes, or being adhered to the electrodes by using conductive glue.
  8. The sensor strip according to any one of claims 1 to 7, wherein the base belt is made of at least one of the following materials: a woven nylon strip, an elastic fabric strip, or a hook-and-loop strip.
  9. The sensor strip according to any one of claims 1 to 8, wherein the absorption layer comprises any one of the following: tissue paper or cotton fleece.
  10. The sensor strip according to any one of claims 1 to 9, wherein the conductor wires are made of a stainless steel material.
  11. The sensor strip according to claim 6, wherein the locking mechanism is at least one of the following: a buckle, a hook-and-loop mechanism, or an adhesive tape.
  12. A chain-type sensor strip, comprising N sensor strips according to any one of claims 1 to 11, N being an integer greater than or equal to 2, wherein the first to a (N-1)  th sensor strip each comprise a first terminal module and a second terminal module, the second terminal module of the first sensor strip is electrically connected to the first terminal module of the second sensor strip, by analogy, the second terminal module of the (N-1)  th sensor strip is connected to a first terminal module of an N th sensor strip, the N th sensor strip comprises the first terminal module, and a second terminal module or a termination module, wherein the second terminal module of the N th sensor strip is connected to an external resistor.
  13. A flange leak detection method, comprising:
    wrapping the sensor strip according to any one of claims 1 to 11 around a joint of a flange, and attaching the sensor strip to the joint;
    connecting a data acquisition unit to the first terminal module of the sensor strip, wherein the data acquisition unit is configured to measure a resistance between two electrodes of the sensor strip; and
    determining that the flange leaks when the resistance measured by the data acquisition unit is less than a known resistance value.
PCT/CN2021/076331 2021-02-09 2021-02-09 Sensor strip, chain-type sensor strip, and flange leak detection method WO2022170505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076331 WO2022170505A1 (en) 2021-02-09 2021-02-09 Sensor strip, chain-type sensor strip, and flange leak detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076331 WO2022170505A1 (en) 2021-02-09 2021-02-09 Sensor strip, chain-type sensor strip, and flange leak detection method

Publications (1)

Publication Number Publication Date
WO2022170505A1 true WO2022170505A1 (en) 2022-08-18

Family

ID=74858164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076331 WO2022170505A1 (en) 2021-02-09 2021-02-09 Sensor strip, chain-type sensor strip, and flange leak detection method

Country Status (1)

Country Link
WO (1) WO2022170505A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759175A (en) * 1954-03-12 1956-08-14 Thomas R Spalding Leak detector for pipe joint
US6826948B1 (en) * 2003-10-09 2004-12-07 Delphi Technologies, Inc. Leak detection apparatus for a liquid circulation cooling system
US20100271212A1 (en) * 2007-12-12 2010-10-28 Robin WHALLEY Device and apparatus for detecting bodily fluids
WO2013164558A1 (en) * 2012-05-04 2013-11-07 Eydent Computing Limited Leak detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759175A (en) * 1954-03-12 1956-08-14 Thomas R Spalding Leak detector for pipe joint
US6826948B1 (en) * 2003-10-09 2004-12-07 Delphi Technologies, Inc. Leak detection apparatus for a liquid circulation cooling system
US20100271212A1 (en) * 2007-12-12 2010-10-28 Robin WHALLEY Device and apparatus for detecting bodily fluids
WO2013164558A1 (en) * 2012-05-04 2013-11-07 Eydent Computing Limited Leak detector

Similar Documents

Publication Publication Date Title
US8810264B2 (en) Methods and devices for sensing corrosion under insulation (CUI)
CN105829854B (en) Space-closed object and the leakage monitoring system and corresponding method of bonding land therebetween
KR20070005234A (en) Leak sensor and leak sensing system
WO2022170505A1 (en) Sensor strip, chain-type sensor strip, and flange leak detection method
KR101776006B1 (en) Pipe attaching type leakage sensor
US6523454B2 (en) Device for monitoring the integrity of a diaphragm
CN215598640U (en) Liquid leakage detector and liquid transmission equipment
CN113790851A (en) Liquid leakage detector and liquid transmission equipment
WO2022170506A1 (en) Sensor strip and flange leak detection method
CN209764279U (en) Heating power pipeline monitoring device
CN111238683A (en) Transformer temperature measuring device
KR101843075B1 (en) Acid and base leak detection sensor capable of distinguishing the leak phase of harmful chemical substance by passivation layer
KR20050095019A (en) Apparatus and method for detecting leakage of pipe joint
CN109373201A (en) Integral intelligent pipeline
KR100948071B1 (en) Pipeline leakage detection apparatus
CN207935768U (en) Water pipe head water leakage detection protector
CN216347102U (en) Heating device
KR101101579B1 (en) tape for self checking water leakage and apparatus including the same
CN212518698U (en) Sealing structure for NTC sensing line
CN217878210U (en) Liquid leakage detection line and detection equipment
CN219222118U (en) Water leakage detection system for water balance test
KR101700627B1 (en) Check conductor for pipe lining
KR101417662B1 (en) Water level and leak detecting Gasket
CN213542103U (en) Pipeline weeping detects structure and weeping monitoring system
CN218674102U (en) Cable for leakage detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21709878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21709878

Country of ref document: EP

Kind code of ref document: A1