WO2022168879A1 - 蛍光体、蛍光部材および発光モジュール - Google Patents

蛍光体、蛍光部材および発光モジュール Download PDF

Info

Publication number
WO2022168879A1
WO2022168879A1 PCT/JP2022/004071 JP2022004071W WO2022168879A1 WO 2022168879 A1 WO2022168879 A1 WO 2022168879A1 JP 2022004071 W JP2022004071 W JP 2022004071W WO 2022168879 A1 WO2022168879 A1 WO 2022168879A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
powder
fluorescent member
sample
Prior art date
Application number
PCT/JP2022/004071
Other languages
English (en)
French (fr)
Inventor
篤 中村
久芳 大長
剛 岩崎
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022579585A priority Critical patent/JPWO2022168879A1/ja
Publication of WO2022168879A1 publication Critical patent/WO2022168879A1/ja
Priority to US18/360,257 priority patent/US20230365860A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77744Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to phosphors.
  • the yellow phosphor represented by BaY 1.92 Al 4 SiO 12 :Ce 0.08 described above has a limited chromaticity range. Therefore, there is a limit to the chromaticity range that can be realized as a white light source by combining the yellow phosphor and the blue LED.
  • the present invention has been made in view of these circumstances, and one of its purposes is to provide a novel phosphor.
  • a phosphor of one aspect of the present invention has a garnet-type crystal structure and a general formula of Ba a Y 3-ab Al 5-a Sia O 12 :Ce b (with the proviso that , where S is the lattice size of the crystal structure, a [mol] is the solid solution amount of Ba, and b [mol] is the solid solution amount of Ce, a and b are 12.0113 ⁇ S + 0.036b - 0.003a ⁇ 12.0153).
  • the solid solution amount a [mol] of Ba may be 1.0 or less.
  • the volume average particle size may be 1 to 30 ⁇ m.
  • the fluorescent member may include a phosphor powder, which is the powder of the phosphor described above, and a thermally conductive powder, which is a powder of a material having a higher thermal conductivity than the phosphor.
  • the heat dissipation of the fluorescent member can be improved.
  • the volume ratio of the phosphor powder and the heat conductive powder may be 90:10 to 60:40. As a result, the light emitting performance of the fluorescent member can be enhanced while improving the heat dissipation of the fluorescent member.
  • the phosphor powder absorbs light with a peak wavelength of 450 nm, the thickness of the fluorescent member is 0.12 to 0.30 mm, and the transmittance of light with a wavelength of 550 to 600 nm of the fluorescent member is 70% or more. you can This makes it possible to realize light suitable for a desired application (for example, a headlamp) while increasing the mechanical strength of the fluorescent member.
  • the phosphor powder may absorb blue light with a peak wavelength of 450 nm, and the blue light absorption rate of the fluorescent member may be 78 to 88%. This makes it possible to achieve light that is suitable for the desired application (headlamp, for example).
  • the fluorescent member may include a resin transparent to visible light and a fluorescent substance encapsulated in the resin.
  • the phosphor may be contained in the resin in an amount of 0.1 to 30 vol %, and the thickness of the phosphor member may be 0.01 to 5 mm. This makes it possible to realize a light-emitting module that achieves desired luminous efficiency and emits light in a desired range of chromaticity.
  • a further aspect of the present invention is a light-emitting module.
  • This light-emitting module includes an LED that emits blue light with a peak wavelength in the range of 430 to 480 nm, and a light wavelength conversion layer that emits yellow light when excited by the blue light emitted by the LED.
  • the light wavelength conversion layer contains the fluorescent member described above.
  • a novel phosphor can be provided.
  • FIG. 2 is a chromaticity diagram (CIE1931) showing chromaticity of emission colors of a conventional yellow phosphor and a blue LED.
  • FIG. 3 is a diagram for explaining a range of dominant wavelengths targeted by a yellow phosphor according to the present embodiment;
  • FIG. 4 is a diagram showing the relationship between the solid solution amount of Ce (b) and the dominant wavelength ⁇ d when the solid solution amount of Ba (a) is constant.
  • FIG. 4 is a diagram showing the relationship between the Ba solid solution amount (a) and the dominant wavelength ⁇ d when the Ce solid solution amount (b) is constant.
  • FIG. 4 is a diagram showing the relationship between the solid solution amount of Ce (b) and the lattice size S when the solid solution amount of Ba (a) is constant.
  • FIG. 4 is a diagram showing the relationship between the Ba solid solution amount (a) and the lattice size S when the Ce solid solution amount (b) is constant.
  • FIG. 4 is a diagram showing the relationship between the lattice size S and the dominant wavelength ⁇ d when the solid solution amount of Ba is constant.
  • FIG. 4 is a diagram showing the relationship between correction grating size S′ and dominant wavelength ⁇ d;
  • 1 is a schematic diagram of a light-emitting module according to an embodiment;
  • the phosphor according to this embodiment is a phosphor that is efficiently excited by blue light and emits light. Specifically, it is a phosphor that exhibits strong excitation with blue light with a peak wavelength in the range of 430 to 480 nm and emits yellow light with a dominant wavelength in the range of 567 to 572 nm. Further, the phosphor according to the present embodiment has a garnet-type crystal structure, and realizes yellow light emission by doping with an activator such as Ce 3+ ions.
  • the phosphor according to the present embodiment has a general formula of Ba a Y 3-ab Al 5-a Sia O 12 :Ce b (where S is the lattice size of the crystal structure, and a is the solid solution amount of Ba). [mol] and the solid solution amount of Ce is b [mol], a and b are values within a range that satisfies 12.0113 ⁇ S+0.036b ⁇ 0.003a ⁇ 12.0153). Here, b may range from 0.01 to 0.12. Thereby, the internal quantum efficiency, absorption rate and emission intensity maintenance rate of the phosphor can be further improved.
  • FIG. 1 is a chromaticity diagram (CIE1931) showing the chromaticity of emission colors of a conventional yellow phosphor and a blue LED.
  • Point C1 shown in FIG. 1 is the chromaticity coordinates of a known phosphor (BaY 1.92 Al 4 SiO 12 :Ce 0.08 ) in which Ba and Si are dissolved in a YAG phosphor. The dominant wavelength of the body is 566.3 nm.
  • point C2 is the chromaticity coordinates of an example of a blue LED whose peak wavelength is in the range of 430-480 nm.
  • FIG. 2 is a diagram for explaining the range of dominant wavelengths targeted by the yellow phosphor according to the present embodiment.
  • the yellow phosphor according to the present embodiment is combined with a blue LED to achieve a chromaticity range defined as white light for vehicle headlights. and the chromaticity (cx1, cy1) of , must pass through the range R1.
  • a straight line connecting the chromaticity (cx2, cy2) of the blue LED at point C2 and the chromaticity (cx1', cy1') of the yellow phosphor at point C1' is the chromaticity
  • the dominant wavelength is 567.4 nm when they meet at the top of range R1.
  • the straight line connecting the chromaticity (cx2, cy2) of the blue LED at the point C2 and the chromaticity (cx1′′, cy1′′) of the yellow phosphor at the point C1′′ touches at the lower part of the chromaticity range R1 has a dominant wavelength of 570.6 nm.
  • the yellow phosphor according to the present embodiment preferably has a dominant wavelength in the range of 567 to 572 nm, preferably in the range of 567.4 to 570.6 nm.
  • the phosphor of Sample 1 is represented by Ba1.00Y1.92Al4.00Si1.00 : Ce3 + 0.08 .
  • SSA-S B1 manufactured by Nikkato Co., Ltd.
  • the dominant wavelength ⁇ d of the phosphor according to sample 1 was 567.0 nm, and the emission intensity maintenance rate (K) when the temperature was raised from 25°C to 200°C was evaluated to be 89%. That is, the emission intensity at the time of heating to 200°C decreased to 89% of the emission intensity at 25°C. Further, the internal quantum efficiency (IQE) was 98%, and the absorptivity (Abs) at which blue light emitted by the LED was absorbed by the phosphor emitting yellow light was 78%.
  • Table 1 summarizes the results of the emission characteristics, temperature characteristics, etc. of the phosphor related to Sample 1.
  • indicates that the dominant wavelength ⁇ d satisfies 567.4 nm ⁇ d ⁇ 570.6 nm, and x indicates that it does not.
  • K emission intensity maintenance rate
  • IQE internal quantum efficiency
  • Abs absorption rate
  • the phosphors according to samples 2 to 35 are phosphors represented by the general formula Ba a Y 3-ab Al 5-a Sia O 12 :Ce b .
  • a phosphor was produced under the same conditions as in Sample 1, except that each raw material powder similar to Sample 1 was weighed so as to have the charging amount shown in each sample in Table 1, and the light emission characteristics and temperature characteristics were measured. evaluated. Table 1 shows the results. In this way, novel phosphors with good emission characteristics and temperature characteristics can be realized in many samples.
  • the solid solution amount a [mol] of Ba is preferably 1.0 or less, preferably 0.6 or less, and more preferably 0.4 or less.
  • Comparable light emission characteristics were also obtained for phosphors synthesized using raw materials obtained by liquid phase mixing such as the citric acid sol-gel method, the hexamine method, and the urea method.
  • Various methods can be adopted for the method of manufacturing the phosphor according to the present embodiment. Mixing of raw materials can be completed in a short time (about 10 minutes). Further, when the liquid phase method is used, mixing at the atomic level is possible, so phosphors with different compositions on the order of 1/100 mol can be produced separately.
  • FIG. 3 is a diagram showing the relationship between the Ce solid solution amount (b) and the dominant wavelength ⁇ d when the Ba solid solution amount (a) is constant.
  • FIG. 4 is a diagram showing the relationship between the Ba solid solution amount (a) and the dominant wavelength ⁇ d when the Ce solid solution amount (b) is constant.
  • the white marks shown in FIGS. 3 and 4 are samples in which the dominant wavelength ⁇ d does not satisfy the range of 567.4 nm ⁇ d ⁇ 570.6 nm.
  • FIG. 5 is a diagram showing the relationship between the solid solution amount of Ce (b) and the lattice size S when the solid solution amount of Ba (a) is constant.
  • FIG. 6 is a diagram showing the relationship between the Ba solid solution amount (a) and the lattice size S when the Ce solid solution amount (b) is constant.
  • the lattice size S is a measured value of the phosphor represented by the general formula Ba a Y 3-ab Al 5-a Sia O 12 :Ce b .
  • the lattice size S was calculated using XRD measurement data analysis software (PDXL-II) manufactured by Rigaku Corporation.
  • the white marks shown in FIGS. 5 and 6 are samples in which the dominant wavelength ⁇ d does not satisfy the range of 567.4 nm ⁇ d ⁇ 570.6 nm.
  • Table 2 shows the lattice size S as a measured value for each sample.
  • the lattice size S tends to increase as the Ce solid solution amount increases.
  • the lattice size S tends to decrease as the Ba solid solution amount increases.
  • the effects of Ba solid solution amount and Ce solid solution amount on the lattice size S are different. Specifically, from the results of the approximation line shown in FIG. 5, when the Ce solid solution amount increases by 1 mol, the lattice size S increases by 0.036 ⁇ . On the other hand, from the result of the approximation curve shown in FIG. 6, when the solid solution amount of Ba increases by 1 mol, the lattice size S decreases by 0.003 ⁇ .
  • the grid size that becomes the dominant wavelength of the yellow phosphor suitable for the white light source of the vehicle headlight is calculated as the corrected grid size S' that is pseudo-corrected.
  • Table 2 shows the corrected grating size S' for each sample.
  • FIG. 7 is a diagram showing the relationship between the lattice size S and the dominant wavelength ⁇ d when the solid solution amount of Ba is constant.
  • FIG. 8 is a diagram showing the relationship between the correction grating size S' and the dominant wavelength ⁇ d. As shown in FIG. 7, the dominant wavelength ⁇ d shifts to the long wavelength side as the grating size S increases.
  • the general formula for emitting light at the desired dominant wavelength is Ba It was found that a yellow phosphor represented by a Y 3-ab Al 5-a Sia O 12 :Ce b was obtained.
  • FIG. 9 is a schematic diagram of a light-emitting module according to this embodiment.
  • a light-emitting module 10 according to the present embodiment includes a mounting substrate 12, an LED 14 as a light-emitting element mounted on the mounting substrate 12, and a light wavelength conversion layer 16 in which phosphor is dispersed in resin.
  • the LED 14 emits blue light with a peak wavelength in the range of 430-480 nm.
  • the light wavelength conversion layer 16 is formed by dispersing the yellow phosphor according to the present embodiment in silicone resin transparent to visible light.
  • the light wavelength conversion layer 16 contains 0.1 to 30 vol % of a yellow phosphor and has a thickness t of 0.01 to 5 mm. Note that the thickness may be in the range of 0.1 to 2 mm.
  • the volume concentration of the yellow phosphor may be 10 vol % or less.
  • the yellow phosphor may have a mean volume diameter (MV) of 1 to 30 ⁇ m.
  • This light-emitting module 10 includes a light wavelength conversion layer 16 that emits yellow light when excited by blue light emitted by the LED 14 .
  • the light wavelength conversion layer 16 contains the phosphor described above.
  • the light wavelength conversion layer 16 may be a ceramic plate with a thickness of 0.01 to 2.0 mm. This ceramic plate is transparent to visible light and is obtained by pressure-molding a phosphor and then vacuum-sintering or pressure-sintering it. In the light-emitting module 10, the LED 14 and the light wavelength conversion layer 16 may be bonded at room temperature.
  • the molded product was heated in a vacuum furnace under conditions of 1 ⁇ 10 ⁇ 3 Pa, 1750° C., and 24 hours, and further heated by HIP (Hot Isostatic Pressing) under conditions of 196 MPa and 1,650° C. ⁇ 2 hours, and the thickness was about A 1 mm transparent sintered body (transparent ceramic plate) was obtained.
  • the transparent sintered body is mirror-polished to an arbitrary thickness, cut into squares of 1 mm each, and bonded to a blue LED chip at room temperature to realize white light.
  • a light-emitting module was produced.
  • a sintered body which is an example of a fluorescent member containing the above-described phosphor powder, will be described in more detail.
  • the sintered body may be made using various known sintering techniques.
  • a sintered body may be produced by filling a mold with phosphor powder, performing molding, and subjecting the obtained molded body to CIP, HIP, or the like.
  • the sintered body may contain various materials as necessary in addition to the phosphor powder. good.
  • This material can be, for example, aluminum nitride (AlN), which is a dielectric with a thermal conductivity of the order of 170 W/mK, or aluminum oxide (Al 2 O 3 ), which has a thermal conductivity of the order of 20 W/mK. Since the sintered body contains the heat conductive powder in addition to the phosphor powder, the heat generated when the sintered body emits light can be diffused more quickly than when the sintered body does not contain the heat conductive powder. can.
  • AlN aluminum nitride
  • Al 2 O 3 aluminum oxide
  • the heat dissipation of the sintered body can be improved, so even when the sintered body is mounted on a high-brightness LED, the temperature rise during light emission can be suppressed, and light is emitted at a high temperature. A decrease in performance can be suppressed.
  • the volume ratio of the phosphor powder and the heat conductive powder contained in the sintered body is preferably 90:10 to 60:40.
  • the volume ratio of the heat conductive powder is 40 vol% or less, and the volume ratio of the phosphor powder is 60 vol% or more, so that the absorption rate of light of the sintered body (for example, blue light with a peak wavelength of 450 nm) and light (eg, yellow light with a wavelength of 550-600 nm) transmittance can be enhanced.
  • the volume ratio means the volume ratio to the total volume of the phosphor powder and the heat conductive powder contained in the phosphor member such as the sintered body.
  • the shape of the sintered body is not particularly limited, and the sintered body can be processed into various shapes.
  • the sintered body may be shaped like a plate having a predetermined thickness.
  • the shape of the sintered body may be, for example, a shape having a predetermined thickness used as the light wavelength conversion layer shown in FIG.
  • the thickness of the sintered body is not particularly limited, it is preferably 120 to 300 ⁇ m (0.12 to 0.30 mm).
  • the thickness of the sintered body is 120 ⁇ m or more, the mechanical strength of the sintered body can be enhanced. As a result, the sintered body is less likely to break, and the sintered body is easier to handle.
  • the thickness of the sintered body is 300 ⁇ m or less, the light irradiated from the LED to the sintered body is suppressed from leaking from the side surface of the sintered body, and the effective luminous flux of the sintered body can be increased. Become.
  • the sintered body may transmit light of various wavelengths, and may transmit light with a wavelength of 550 to 600 nm, for example. Further, the transmittance of light (for example, light with a wavelength of 550 to 600 nm) of the sintered body may be 70% or more.
  • the sintered body (more specifically, the phosphor contained in the sintered body) may absorb light of various wavelengths, and may absorb blue light with a peak wavelength of 450 nm, for example.
  • the sintered body may have an absorptivity of blue light of, for example, 78 to 88%.
  • a light source that emits blue light for example, an LED
  • a fluorescent member for example, a blue LED
  • chromaticity coordinates (cx, cy) (0.311, 0.339), (0.313, 0.342), (0.331, 0.354) , (0.331, 0.338), (0.319, 0.315), and (0.311, 0.309).
  • a sintered body containing phosphor powder will be described in more detail below using examples.
  • the phosphor used for sample 36 is a phosphor represented by Ba 0.04 Y 2.91 Al 4.96 Si 0.04 O 12 :Ce 3+ 0.05 .
  • powder raw materials of BaCO 3 99.9%
  • Y 2 O 3 99.9%
  • ⁇ -Al 2 O 3 99.99%)
  • SiO 2 and CeO 2 99.99%) were prepared.
  • SSA-S B1 manufactured by Nikkato Co., Ltd.
  • the obtained phosphor powder and AlN powder (99.9%) were weighed so that the volume ratio was 90:10. Next, using a ball mill, the phosphor powder and the AlN powder were mixed and pulverized so that the particle size of these powders was 3 ⁇ m or less.
  • the powder obtained by mixing and pulverizing was filled in a mold of ⁇ 20 mm, and the powder was molded under a molding pressure of 10 MPa to obtain a primary compact. Then, using CIP, the primary compact was compression molded at a molding pressure of 98 MPa to obtain a secondary compact. Then, using a heating furnace, the secondary compact was heated at 1650° C. for 24 hours in a nitrogen atmosphere of 1 ⁇ 10 ⁇ 3 Pa. Further, the heated secondary molded body was heated by HIP under conditions of 196 MPa and 1550° C. for 24 hours to obtain a sintered body. Next, the obtained sintered body was ground and polished with sandpaper to adjust the thickness to 100 ⁇ m, and cut into a size of 1 mm square to prepare a plate-like sintered body sample.
  • thermal conductivity of the sample was measured by the steady-state method.
  • a reference value for thermal conductivity was set at 30 W/mK, and when the measured value was equal to or higher than this reference value, the sample was evaluated as having good thermal conductivity.
  • the transmittance of the sample was measured using a spectrophotometer (manufactured by Hitachi).
  • the excitation light wavelength was 460 nm, and the measurement light was yellow light with a wavelength of 600 nm.
  • a sample was evaluated to have good transmittance when the yellow light transmittance was 70% or more.
  • the absorbance of the sample was measured.
  • the excitation light was blue light with a wavelength of 460 nm. Samples were rated as having good absorption when the absorption of blue light was between 78% and 88%.
  • an illuminometer was used to measure the effective luminous flux of the sample. Specifically, a plate-shaped sample was mounted on an LED chip that emits excitation light of 460 nm, the excitation light was emitted from the LED chip, and measurements and effective luminous flux calculations were performed only on the top and sides of the sample. A sample was rated as having good effective luminous flux if the amount of light leaking from the sides of the sample was 10% or less.
  • Table 3 summarizes the production conditions and evaluation results of each sample.
  • indicates that the measured value is 30 W/mK or more, and x indicates that the measured value is less than 30 W/mK.
  • the evaluation of the transmittance the case where the measured value is 70% or more is indicated by ⁇ , and the case where the measured value is less than 70% is indicated by x.
  • the evaluation of absorption rate ⁇ indicates that the measured value is between 78% and 88%, and x indicates that the measured value is not between 78% and 88%.
  • handleability ⁇ indicates that the sample was not damaged during handling with tweezers, and x indicates that the sample was damaged.
  • the case where the amount of light leaked from the side surface of the sample in the measurement is 10% or less is indicated by ⁇ , and the case where the amount of light leaked from the side surface of the sample exceeds 10% is indicated by x. Furthermore, regarding the comprehensive evaluation, the case of being good is indicated by ⁇ , and the case of not being good is indicated by x.
  • Samples 37-41) For Samples 37 to 41, sintered body samples were prepared in the same manner as Sample 36 except that the sample thickness was changed to 120, 180, 240, 300 or 360 ⁇ m.
  • Samples 42-59 sintered samples were produced in the same manner as Sample 36, except that the volume ratio of the phosphor powder to the AlN powder and the sample thickness were changed to the values shown in Table 3. Specifically, the volume ratio of the phosphor powder and the AlN powder is 70:30, 60:40 or 50:50, and the thickness of the sample is 100, 120, 180, 240, 300 or 360 ⁇ m for each volume ratio. As, a sample of the sintered body was produced.
  • sample 60 In the preparation of sample 60, the mixed powder was heated and sintered in the same manner as sample 36, and the obtained phosphor was pulverized in a mortar to obtain phosphor powder. The phosphor powder was pulverized using a ball mill without mixing the phosphor powder with the AlN powder.
  • the phosphor powder pulverized using a ball mill was filled in a ⁇ 20 mm mold, and the powder was molded under a molding pressure of 10 MPa to obtain a primary compact.
  • a sample of the sintered body was prepared in the same manner as the sample 36 below.
  • sample 61 Except that Al 2 O 3 powder was mixed with the phosphor powder instead of the AlN powder, the same procedure as in Sample 44 was carried out, that is, the volume ratio of the phosphor powder and the heat conductive powder was 70:30, and the thickness of the sample was changed to A sample of the sintered body of sample 61 was produced with a thickness of 180 ⁇ m.
  • thermal conductivities of samples 36 to 59 containing AlN powder all exceeded the reference value and were good. Furthermore, samples with an AlN powder volume ratio of 10 to 40 vol% and a thickness of 120 to 300 ⁇ m had good thermal conductivity, transmittance, absorptance, handling properties, and effective luminous flux. .
  • the evaluation results will be described in more detail below.
  • Sample 60 which does not contain thermally conductive powder, gave good evaluations for transmittance, absorptivity, handling and effective luminous flux, but did not give good evaluations for thermal conductivity.
  • Sample 61 contains powder of Al 2 O 3 having a thermal conductivity higher than that of the phosphor. Therefore, although the thermal conductivity of sample 61 was higher than that of sample 60, the evaluation was not good.
  • the heat conductive powder is changed from the Al2O3 powder to the AlN powder as compared with the sample according to the sample 61. Since the thermal conductivity of AlN is higher than that of Al 2 O 3 , the thermal conductivity of sample 44 was higher than that of sample 61 and was a good value.
  • the sample with a thickness of 360 ⁇ m has a transmittance of less than 70%, but the sample with a thickness of 300 ⁇ m or less has a good transmittance. became.
  • the samples 54 to 59 in which the volume fraction of the AlN powder is 50 vol% have an absorption rate of less than 78%, but the samples with a thickness of 360 ⁇ m have good absorption rates. good results were obtained. It should be noted that the samples having a thickness of 100 to 300 ⁇ m were able to suppress leakage of light from the side surfaces of the samples, and good results were obtained for the effective luminous flux.
  • samples with a thickness of less than 120 ⁇ m had low mechanical strength and could not obtain good results in terms of handleability, but samples with a thickness of 120 ⁇ m or more did not break even when handled with tweezers. Good results were obtained for the properties.
  • Example 62 The light-emitting module described with reference to FIG. 9 was produced as sample 62 . Specifically, a sintered body containing phosphor powder and AlN powder prepared under the same conditions as Sample 43 is used as a light wavelength conversion layer, and this light wavelength conversion layer emits light from a blue LED (peak wavelength: 460 nm). A white light emitting module was fabricated by bonding a light wavelength conversion layer to a sapphire mounting substrate at room temperature so as to cover the surface.
  • the sintered body has been described as an example of the fluorescent member containing the fluorescent powder and the heat conductive powder.
  • the fluorescent member is not limited to this, and for example, the fluorescent member may be made by dispersing the fluorescent powder and the thermally conductive powder in resin.
  • the present invention can be used for phosphors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

蛍光体は、結晶構造がガーネット型であり、一般式がBa3-a-bAl5-aSi12:Ce(ただし、結晶構造の格子サイズをA、Baの固溶量をa[mol]、Ceの固溶量をb[mol]とした場合、a、bは、12.0113≦A+0.036b-0.003a≦12.0153を満たす範囲の値)で表される。

Description

蛍光体、蛍光部材および発光モジュール
 本発明は、蛍光体に関する。
 従来、YAG蛍光体と青色LEDとを組み合わせた白色光源が広く知られている。一方、光源の高輝度化に伴い、YAG蛍光体での波長変換(ストークスロス)による熱集中によって温度消光が起こり、白色光源の効率低下を招いていた。そこで、YAG蛍光体にBaとSiを固溶させたBaY1.92AlSiO12:Ce0.08が考案されている(非特許文献1参照)。この蛍光体は、従来のYAG蛍光体(YAl12:Ce)より温度特性が良好で、25℃から200℃まで昇温させた場合の発光強度維持率は91.5%であり、温度消光を起こし難い。
Haipeng Ji et al.、「New Y2BaAl4SiO12:Ce3+ yellow microcrystal-glass powder phosphor with high thermal emission stability」、Journal of Materials Chemistry C, 2016, 4, pp.9872-9878
 しかしながら、前述のBaY1.92AlSiO12:Ce0.08で表される黄色蛍光体で実現できる色度範囲には制限がある。そのため、この黄色蛍光体と青色LEDとを組み合わせた白色光源として実現できる色度範囲にも制限がある。
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところの一つは、新規な蛍光体を提供することにある。
 上記課題を解決するために、本発明のある態様の蛍光体は、結晶構造がガーネット型であり、一般式がBa3-a-bAl5-aSi12:Ce(ただし、結晶構造の格子サイズをS、Baの固溶量をa[mol]、Ceの固溶量をb[mol]とした場合、a、bは、12.0113≦S+0.036b-0.003a≦12.0153を満たす範囲の値)で表される。
 この態様によると、発光特性や温度特性が良好である新規な蛍光体を実現できる。
 ピーク波長が430~480nmの範囲にある青色光で励起され、ドミナント波長が567~572nmの範囲にある黄色光を発してもよい。これにより、新規な黄色蛍光体を実現できる。
 Baの固溶量a[mol]は、1.0以下であってもよい。
 体積平均粒径が1~30μmであってもよい。
 本発明の他の態様は、蛍光部材である。この蛍光部材は、上記の蛍光体の粉末である蛍光体粉末と、蛍光体の熱伝導度よりも高い熱伝導度を有する材料の粉末である熱伝導粉末と、を含んでよい。
 この態様によると、蛍光部材の放熱性を向上させることができる。
 蛍光体粉末と熱伝導粉末との体積比は、90:10~60:40であってよい。これにより、蛍光部材の放熱性を向上させつつ、蛍光部材の発光性能を高めることができる。
 蛍光体粉末は、ピーク波長が450nmの光を吸収し、蛍光部材の厚みは、0.12~0.30mmであり、蛍光部材の波長550~600nmの光の透過率は、70%以上であってよい。これにより、蛍光部材の機械的強度を高めつつ、所望の用途(たとえばヘッドランプ)に適した光を実現できる。
 蛍光体粉末は、ピーク波長が450nmの青色光を吸収し、蛍光部材の青色光の吸収率は、78~88%であってよい。これにより、所望の用途(たとえばヘッドランプ)に適した光を実現できる。
 蛍光部材は、可視光に対して透明な樹脂と、樹脂に内包された蛍光体と、を含んでよい
。蛍光体は、樹脂において0.1~30vol%含有されており、蛍光部材の厚みが0.01~5mmであってよい。これにより、所望の発光効率を達成しつつ、発光色が所望の範囲の色度である発光モジュールを実現できる。
 本発明の更に他の態様は発光モジュールである。この発光モジュールは、ピーク波長が430~480nmの範囲にある青色光を発するLEDと、LEDが発する青色光で励起され、黄色光を発する光波長変換層と、を備えている。光波長変換層は、上述の蛍光部材を含んでいる。この発光モジュールは、青色光と黄色光とを混色した発光色が、色度座標(cx、cy)=(0.311、0.339)、(0.313、0.342)、(0.331、0.354)、(0.331、0.338)、(0.319、0.315)、(0.311、0.309)で囲まれる範囲の色度である。
 以上の構成要素の任意の組合せ、本発明の表現を製造方法、灯具や照明などの装置、発光モジュール、光源などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、新規な蛍光体を提供できる。
従来の黄色蛍光体と青色LEDの発光色の色度を示す色度図(CIE1931)である。 本実施の形態に係る黄色蛍光体が目標とするドミナント波長の範囲を説明するための図である。 Ba固溶量(a)が一定の場合におけるCe固溶量(b)とドミナント波長λdとの関係を示す図である。 Ce固溶量(b)が一定の場合におけるBa固溶量(a)とドミナント波長λdとの関係を示す図である。 Ba固溶量(a)が一定の場合におけるCe固溶量(b)と格子サイズSとの関係を示す図である。 Ce固溶量(b)が一定の場合におけるBa固溶量(a)と格子サイズSとの関係を示す図である。 Ba固溶量が一定の場合における格子サイズSとドミナント波長λdとの関係を示す図である。 補正格子サイズS’とドミナント波長λdとの関係を示す図である。 本実施の形態に係る発光モジュールの模式図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。
 [蛍光体]
 本実施の形態に係る蛍光体は、青色光で効率良く励起され発光する蛍光体である。具体的には、ピーク波長が430~480nmの範囲にある青色光で強い励起を示し、ドミナント波長が567~572nmの範囲にある黄色光を発する蛍光体である。また、本実施の形態に係る蛍光体は、結晶構造がガーネット型であり、Ce3+イオン等の賦活剤をドープすることで黄色発光を実現している。
 次に、本実施の形態に係る蛍光体について詳述する。本実施の形態に係る蛍光体は、一般式がBa3-a-bAl5-aSi12:Ce(ただし、結晶構造の格子サイズをS、Baの固溶量をa[mol]、Ceの固溶量をb[mol]とした場合、a、bは、12.0113≦S+0.036b-0.003a≦12.0153を満たす範囲の値)で表される。ここで、bは、0.01~0.12であってよい。これにより、蛍光体の内部量子効率、吸収率および発光強度維持率をより向上させることができる。
 図1は、従来の黄色蛍光体と青色LEDの発光色の色度を示す色度図(CIE1931)である。図1に示すポイントC1は、YAG蛍光体にBaとSiを固溶させた公知の蛍光体(BaY1.92AlSiO12:Ce0.08)の色度座標であり、この公知の蛍光体のドミナント波長は566.3nmである。一方、ポイントC2は、ピーク波長が430~480nmの範囲にある青色LEDの一例の色度座標である。
 また、範囲R1は、特定の用途(車両用ヘッドライト)の白色光として規定される色度範囲である。具体的には、範囲R1は、色度座標(cx、cy)=(0.311、0.339)、(0.313、0.342)、(0.331、0.354)、(0.331、0.338)、(0.319、0.315)、(0.311、0.309)で囲まれる範囲である。
 公知蛍光体による黄色光とLEDの青色光とを組み合わせた混色光は、ポイントC1とポイントC2とを結んだ直線上の色度を持つ。そのため、図1に示すように、黄色光のドミナント波長が長波長側になると、青色LEDを変更しない限り範囲R1に含まれる白色光を実現できない。そこで、本願発明の黄色光蛍光体のように、従来の黄色蛍光体よりもドミナント波長が長波長側にシフトした蛍光体が求められる。
 図2は、本実施の形態に係る黄色蛍光体が目標とするドミナント波長の範囲を説明するための図である。本実施の形態に係る黄色蛍光体は、青色LEDと組み合わせて車両用ヘッドライトの白色光として規定される色度範囲を実現するために、青色LEDの色度(cx2,cy2)と黄色蛍光体の色度(cx1,cy1)とを結んだ直線が、範囲R1を通ることが必要である。
 本願発明者らの検討によれば、ポイントC2における青色LEDの色度(cx2,cy2)とポイントC1’における黄色蛍光体の色度(cx1’,cy1’)とを結んだ直線が、色度範囲R1の上部で接する場合のドミナント波長は567.4nmである。同様に、ポイントC2における青色LEDの色度(cx2,cy2)とポイントC1”における黄色蛍光体の色度(cx1”,cy1”)とを結んだ直線が、色度範囲R1の下部で接する場合のドミナント波長は570.6nmである。
 そこで、本実施の形態に係る黄色蛍光体は、ドミナント波長が567~572nmの範囲であるとよく、好ましくは、ドミナント波長が567.4~570.6nmの範囲であるとよい。
 以下、蛍光体の組成が異なる各試料の測定結果を用いて更に具体的に説明するが、下記の蛍光体の原料、製造方法、蛍光体の化学組成等の記載は本発明の蛍光体の実施の形態を何ら制限するものではない。
 (試料1)
 試料1に係る蛍光体は、Ba1.001.92Al4.00Si1.00:Ce3+ 0.08で表される蛍光体である。試料1に係る蛍光体は以下の方法で製造される。はじめに、BaCO(99.9%:関東化学株式会社製%)、Y(99.9%:株式会社高純度化学研究所製)、CeO(99.99%:株式会社高純度化学研究所製)、α-Al(99.99%:株式会社高純度化学研究所製)、SiO(99.9%:株式会社トクヤマ製)の粉末原料を準備する。そして、それぞれの粉末原料を、Ba=0.01、Y=2.97、Al=4.99、Si=0.01、Ce=0.02のmol比となるように計量する。
 フラックスとしてBaF(99%:株式会社高純度化学研究所製)を、粉末原料の合計重量の5wt%計量し、粉末原料と合わせ、それらを乳鉢で均一混合する。その後、アルミナルツボ(SSA-S B1:株式会社ニッカトー製)に入れ、還元雰囲気中(H:N=5/95(vol比))、1550℃で4h加熱し焼結する。常温まで冷却後、乳鉢で粉砕し、分光光度計(FP-8500:日本分光株式会社製)にて、波長が460nmの光で励起された蛍光体の発光特性を測定した。
 その結果、試料1に係る蛍光体のドミナント波長λdは567.0nm、25℃から200℃に昇温した際の発光強度維持率(K)を評価したところ89%であった。つまり、25℃における発光強度に対して、200℃に昇温した際の発光強度が89%に低下した。また、内部量子効率(IQE)は98%、LEDが発する青色光を黄色発光する蛍光体が吸収する吸収率(Abs)が78%であった。
 試料1に係る蛍光体の発光特性や温度特性等の結果を表1にまとめて示す。なお、表1において、ドミナント波長λdが567.4nm≦λd≦570.6nmを満たす場合を○、満たさない場合を×としている。また、発光強度維持率(K)が90%以上の場合を○、90%未満の場合を×としている。また、内部量子効率(IQE)が90%以上の場合を○、90%未満の場合を×としている。また、吸収率(Abs)が80%以上場合を○、80%未満の場合を×としている。
Figure JPOXMLDOC01-appb-T000001
 (試料2~35)
 試料2~35に係る蛍光体は、一般式がBa3-a-bAl5-aSi12:Ceで表される蛍光体である。なお、試料1と同様のそれぞれの原料粉末を、表1の各試料に示す仕込量となるように計量した以外は、試料1と同様の条件で蛍光体を作製し、発光特性や温度特性を評価した。結果を表1に示す。このように、多くの試料において、発光特性や温度特性が良好である新規な蛍光体を実現できる。なお、Baの固溶量a[mol]は、1.0以下がよく、好ましくは0.6以下、更に好ましくは0.4以下であるとよい。
 なお、蛍光体の原料の混合を、クエン酸ゾルゲル法、ヘキサミン法、尿素法等液相混合で行った原料を用いて合成した蛍光体においても同等の発光特性が得られた。なお、本実施の形態に係る蛍光体の製造方法には様々な手法を採用し得るが、例えば、固相法を用いた場合は、高純度の粉末原料を使用することで不純物が入りにくく、原料の混合も短時間で済む(10分程度)。また、液相法を用いた場合は、原子レベルの混合が可能なため、1/100molレベルの組成違いの蛍光体を作り分けることができる。
 図3は、Ba固溶量(a)が一定の場合におけるCe固溶量(b)とドミナント波長λdとの関係を示す図である。図4は、Ce固溶量(b)が一定の場合におけるBa固溶量(a)とドミナント波長λdとの関係を示す図である。なお、図3、図4に示す白抜きのマークは、ドミナント波長λdが567.4nm≦λd≦570.6nmの範囲を満たさない試料である。
 図3に示すように、Ba固溶量が一定の場合、Ce固溶量の増加に伴いドミナント波長が長波長側にシフトすることがわかる。一方、図4に示すように、Ce固溶量が一定の場合、Ba固溶量の増加に伴いドミナント波長が短波長側にシフトすることがわかる。つまり、ドミナント波長が所望の範囲になるようにするには、Ba固溶量の増加に伴いCe固溶量も増加させる必要があることがわかる。
 図5は、Ba固溶量(a)が一定の場合におけるCe固溶量(b)と格子サイズSとの関係を示す図である。図6は、Ce固溶量(b)が一定の場合におけるBa固溶量(a)と格子サイズSとの関係を示す図である。ここで、格子サイズSとは、一般式がBa3-a-bAl5-aSi12:Ceで表される蛍光体の測定値である。格子サイズSは、株式会社リガク製のXRD測定データ解析ソフト(PDXL-II)を用いて算出した。なお、図5、図6に示す白抜きのマークは、ドミナント波長λdが567.4nm≦λd≦570.6nmの範囲を満たさない試料である。各試料の測定値としての格子サイズSを表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図5に示すように、Ba固溶量が一定の場合、Ce固溶量の増加に伴い格子サイズSが大きくなる傾向にある。一方、図6に示すように、Ce固溶量が一定の場合、Ba固溶量の増加に伴い格子サイズSが小さくなる傾向にある。ただし、格子サイズSに与えるBa固溶量とCe固溶量の影響はそれぞれ異なる。具体的には、図5に示す近似直線の結果から、Ce固溶量が1mol増加すると、格子サイズSが0.036Å増加する。一方、図6に示す近似曲線の結果から、Ba固溶量が1mol増加すると、格子サイズSが0.003Å減少する。
 そこで、車両用前照灯の白色光源に好適な黄色蛍光体のドミナント波長となる格子サイズを、擬似的に補正した補正格子サイズS’として算出した。補正格子サイズS’は、測定による格子サイズをS、Baの固溶量をa(mol)、Ceの固溶量をb(mol)とすると、S’=S+0.036b-0.003aと仮定した。各試料の補正格子サイズS’を表2に示す。
 図7は、Ba固溶量が一定の場合における格子サイズSとドミナント波長λdとの関係を示す図である。図8は、補正格子サイズS’とドミナント波長λdとの関係を示す図である。図7に示すように、格子サイズSが大きくなるにつれてドミナント波長λdが長波長側にシフトしていることがわかる。
 そして、Ba固溶量(a)とCe固溶量(b)とを反映させた補正格子サイズS’とドミナント波長λdとの関係を試料ごとにプロットすると、図8に示すように、ドミナント波長λdが567.4nm≦λd≦570.6nmの範囲に含まれる場合の補正格子サイズS’が、12.0113≦S’≦12.0153を満たす必要があることがわかる。つまり、Ba固溶量(a)とCe固溶量(b)が、12.0113≦S+0.036b-0.003a≦12.0153を満たす場合に、所望のドミナント波長で発光する一般式がBa3-a-bAl5-aSi12:Ceで表される黄色蛍光体が得られることが明らかとなった。
 [発光モジュール]
 図9は、本実施の形態に係る発光モジュールの模式図である。本実施の形態に係る発光モジュール10は、実装基板12と、実装基板12の上に実装された発光素子であるLED14と、樹脂に蛍光体が分散された光波長変換層16と、を備える。LED14は、ピーク波長が430~480nmの範囲にある青色光を発する。光波長変換層16は、可視光に対して透明なシリコーン樹脂に、本実施の形態に係る黄色蛍光体が分散されている。また、光波長変換層16は、黄色蛍光体を0.1~30vol%含有し、厚みtが0.01~5mmである。なお、厚みは0.1~2mmの範囲であってもよい。黄色蛍光体の体積濃度は10vol%以下であってもよい。また、黄色蛍光体の体積平均粒径(MV:Mean Volume Diameter)は1~30μmであってもよい。
 この発光モジュール10は、LED14が発する青色光で励起され、黄色光を発する光波長変換層16と、を備えている。光波長変換層16は、上述の蛍光体を含んでいる。この発光モジュール10は、青色光と黄色光とを混色した発光色が、色度座標(cx、cy)=(0.311、0.339)、(0.313、0.342)、(0.331、0.354)、(0.331、0.338)、(0.319、0.315)、(0.311、0.309)で囲まれる範囲の色度である。これにより、所望の発光効率を達成しつつ、発光色が前述のヘッドランプに好適な範囲の色度である発光モジュール10を実現できる。
 また、光波長変換層16は、厚さが0.01~2.0mmのセラミックス板であってもよい。このセラミックス板は、蛍光体を加圧成形した後、真空焼成または加圧焼成することで得られる、可視光に対して透明なものである。そして、発光モジュール10は、LED14と光波長変換層16とが常温接合されていてもよい。
 セラミックス板の具体的な製造方法は、例えば、試料9に係る蛍光体(λd=569.0nm)5g、0.5wt%のTEOS(テトラエトキシシラン)、φ1mmのアルミナボール50gを100mlポリポットに入れ、24h回転させた後、フッ素樹脂コートされたアルミバットに取り出し、加熱乾燥する。乾燥品をナイロン50メッシュパスにてほぐした後、1gずつ計量し、それぞれφ20mmの金型に入れ、10MPaで成形し、さらにCIP(Cold Isostatic Pressing)にて、98MPaで成形した。
 成形品を真空炉にて1×10-3Pa、1750℃、24hの条件で加熱し、さらにHIP(Hot Isostatic Pressing)にて、196MPa、1650℃×2hの条件で加熱し、厚さが約1mmの透明焼結体(透明セラミックス板)を得た。その透明焼結体を鏡面研磨にて任意の厚さに研磨し、それぞれを□1mmの大きさでに切り出し、青色LEDチップ上に常温接合させることで、白色光を実現する本実施の形態に係る発光モジュールを作製した。
 [蛍光体粉末を含む焼結体]
 上述した蛍光体の粉末である蛍光体粉末を含む蛍光部材の一例である焼結体について、より詳細に説明する。焼結体は、各種の公知の焼結技術を用いて作製されてよい。たとえば、蛍光体粉末を金型に充填して成形を行い、得られた成形体にCIPおよびHIP等を行うことによって焼結体を作製してもよい。
 焼結体は、蛍光体粉末に加えて必要に応じて各種の材料を含んでよく、たとえば、蛍光体の熱伝導度よりも高い熱伝導度を有する材料の粉末である熱伝導粉末を含んでもよい。この材料は、たとえば、170W/mK程度の熱伝導度を有する誘電体である窒化アルミニウム(AlN)または20W/mK程度の熱伝導度を有する酸化アルミニウム(Al)などであってよい。焼結体が蛍光体粉末に加えて熱伝導粉末を含むことにより、焼結体が熱伝導粉末を含まない場合よりも、焼結体が発光する際に発生した熱をより速く拡散させることができる。本実施形態によれば、焼結体の放熱性を向上させることができるため、高輝度のLEDに焼結体を実装した場合にも発光時における温度上昇を抑制することができ、高温で発光性能が低下することを抑制できる。
 また、焼結体に含まれる蛍光体粉末と熱伝導粉末との体積比は、90:10~60:40であることが好ましい。熱伝導粉末の体積率が10vol%以上であり、蛍光体粉末の体積率が90vol%以下であることにより、焼結体の放熱性をより向上させることができる。また、熱伝導粉末の体積率が40vol%以下であり、蛍光体粉末の体積率が60vol%以上であることにより、焼結体の光(たとえば、ピーク波長が450nmの青色光など)の吸収率および光(たとえば、波長が550~600nmの黄色光など)透過率を高めることができる。なお、本明細書において体積比とは、焼結体などの蛍光部材に含まれる蛍光体粉末および熱伝導粉末の体積の合計に対する体積比を意味するものとする。
 焼結体の形状は特に限定されるものではなく、焼結体は各種の形状に加工され得るが、たとえば焼結体の形状は所定の厚みを有する板状であってよい。また、焼結体の形状は、たとえば、図6に示した光波長変換層として用いられる所定の厚みを有した形状であってよい。
 焼結体の厚みは、特に限定されるものではないが、120~300μm(0.12~0.30mm)であることが好ましい。焼結体の厚みが120μm以上であることにより、焼結体の機械的強度を高めることができる。これにより、焼結体が壊れにくくなり、焼結体の取り扱いが容易となる。また、焼結体の厚みが300μm以下であることにより、LEDから焼結体に照射された光が焼結体の側面から漏れることが抑制され、焼結体の有効光束を高めることが可能となる。
 焼結体は、各種波長の光を透過させてよいが、たとえば波長が550~600nmの光を透過させてよい。また、焼結体の光(たとえば波長が550~600nmの光)の透過率は、70%以上であってよい。焼結体(より具体的には、焼結体に含まれる蛍光体)は、各種波長の光を吸収してよいが、たとえばピーク波長が450nmの青色光を吸収してよい。また、焼結体の青色光の吸収率は、たとえば78~88%であってよい。これにより、青色光を発する光源(たとえばLEDなど)と蛍光部材とを組み合わせて、所望の用途(たとえば、ヘッドランプ)に適した白色光を発する光源を実現できる。たとえば、青色LEDと蛍光部材とを組み合わせて、色度座標(cx、cy)=(0.311、0.339)、(0.313、0.342)、(0.331、0.354)、(0.331、0.338)、(0.319、0.315)、(0.311、0.309)で囲まれる範囲の色度の白色光を発する光源を実現できる。
 以下、実施例を用いて、蛍光体粉末を含む焼結体について更に具体的に説明する。
 (試料36)
 試料36に用いた蛍光体は、Ba0.042.91Al4.96Si0.0412:Ce3+ 0.05で表される蛍光体である。はじめに、BaCO(99.9%)、Y(99.9%)、α-Al(99.99%)、SiO、CeO(99.99%)の粉末原料を準備した。そして、それぞれの粉末原料を、Ba=0.04、Y=2.91、Al=4.96、Si=0.04、Ce=0.05のmol比となるように計量した。
 フラックスとしてBaF(99%)を粉末原料の合計重量の5wt%計量し、BaFを計量した粉末原料と合わせ、それらを乳鉢で均一混合して混合粉末を得た。その後、アルミナルツボ(SSA-S B1:株式会社ニッカトー製)に混合粉末を入れ、還元雰囲気中(H:N=5/95(vol比))において、1550℃で混合粉末を4h加熱して焼結させることで蛍光体を得た。その後、蛍光体を室温まで冷却し、乳鉢を用いて蛍光体を粉砕し、粒径が1~30μmの蛍光体粉末を得た。
 得られた蛍光体粉末とAlN粉末(99.9%)とを体積比が90:10となるように計量した。次いで、ボールミルを用いて、これらの粉末の粒径が3μm以下となるように、蛍光体粉末とAlNの粉末とを混合および粉砕した。
 混合および粉砕して得られた粉末をφ20mmの金型に充填し、10MPaの成形圧力で粉末を成形して1次成形体を得た。次いで、CIPを利用して、98MPaの成形圧力で1次成形体を圧縮成形して2次成形体を得た。次いで、加熱炉を用いて、1×10-3Paの窒素雰囲気において、2次成形体を1650℃で24h加熱した。さらに、加熱した2次成形体をHIPによって、196MPaおよび1550℃の条件で24h加熱して焼結体を得た。次いで、得られた焼結体を紙やすりを用いて研削および研磨して100μmの厚みに調整し、1mm角の大きさに切り出して、板状の焼結体のサンプルを作製した。
 熱伝導度計を使用して、定常法によりサンプルの熱伝導度を測定した。熱伝導度の基準値を30W/mKとし、測定値がこの基準値以上である場合には、サンプルの熱伝導度が良好であるものと評価した。
 分光光度計(日立社製)を使用して、サンプルの透過率を測定した。励起光の波長を460nmとし、測定光を波長が600nmである黄色光とした。黄色光の透過率が70%以上である場合に、サンプルの透過率が良好であるものと評価した。
 積分球を使用して、サンプルの吸収率を測定した。励起光は、波長が460nmである青色光とした。青色光の吸収率が78%~88%である場合に、サンプルの吸収率が良好であるものと評価した。
 また、照度計を使用して、サンプルの有効光束を測定した。具体的には、板状のサンプルを460nmの励起光を出射するLEDチップ上に搭載し、LEDチップに励起光を出射させ、サンプルの直上および側面のみについて測定および有効光束の算出を行った。サンプルの側面から漏れる光の量が10%以下である場合に、サンプルの有効光束が良好であるものと評価した。
 また、サンプルをピンセットでハンドリングした場合に、サンプルが破損しなかった場合に、サンプルのハンドリング性が良好であるものと評価した。
 さらに、サンプルの熱伝導度、透過率、吸収率、ハンドリング性および有効光束のいずれの評価も良好である場合に、そのサンプルについての総合評価が良好であるものとした。
 各サンプルの作製条件および評価結果を表3にまとめて示す。表3において、熱伝導度の評価について、測定値が30W/mK以上である場合を○、測定値が30W/mK未満である場合を×としている。また、透過率の評価について、測定値が70%以上である場合を○、測定値が70%未満である場合を×としている。また、吸収率の評価について、測定値が78%~88%である場合を○、測定値が78%~88%でない場合を×としている。また、ハンドリング性の評価について、ピンセットによるハンドリングの際にサンプルが破損しなかった場合を○、サンプルが破損した場合を×としている。また、有効光束の評価について、測定においてサンプルの側面から漏れる光の量が10%以下である場合を○、サンプルの側面から漏れる光の量が10%を超える場合を×としている。さらに、総合評価について、良好である場合を○、良好ではない場合を×としている。
Figure JPOXMLDOC01-appb-T000003
 (試料37~41)
 試料37~41については、サンプルの厚みを120,180,240,300または360μmに変更したこと以外は試料36と同様にして焼結体のサンプルを作製した。
 (試料42~59)
 試料42~59については、蛍光体粉末とAlN粉末との体積比およびサンプルの厚みを表3に示す値に変更したこと以外は試料36と同様にして焼結体のサンプルを作製した。具体的には、蛍光体粉末とAlN粉末との体積比を70:30,60:40または50:50とし、それぞれの体積比について、サンプルの厚みを100,120,180,240,300または360μmとして、焼結体のサンプルを作製した。
 (試料60)
 試料60の作製では、試料36と同様にして混合粉末を加熱して焼結させ、得られた蛍光体を乳鉢で粉砕して蛍光体粉末を得た。この蛍光体粉末をAlN粉末と混合せずに、ボールミルを用いて蛍光体粉末を粉砕した。
 次いで、ボールミルを用いて粉砕した蛍光体粉末をφ20mmの金型に充填し、10MPaの成形圧力で粉末を成形して1次成形体を得た。以下、試料36と同様にして焼結体のサンプルを作製した。
 (試料61)
 AlN粉末に代えてAl粉末を蛍光体粉末に混合したこと以外は、試料44と同様にして、すなわち蛍光体粉末と熱伝導粉末との体積比を70:30とし、サンプルの厚みを180μmとして、試料61の焼結体のサンプルを作製した。
 以上、サンプルの作製方法について説明した。以下、評価結果について説明する。
 試料36~59のAlN粉末を含むサンプルの熱伝導度は、いずれも基準値を上回り、良好となった。さらに、AlN粉末の体積率が10~40vol%であり、厚みが120~300μmであるサンプルでは、熱伝導度、透過率、吸収率、ハンドリング性および有効光束のいずれの評価項目も良好であった。以下、評価結果についてより詳細に説明する。
 熱伝導粉末を含まない試料60では、透過率、吸収率、ハンドリングおよび有効光束については良好な評価となったが、熱伝導度については良好な評価とならなかった。試料61は、蛍光体の熱伝導度よりも高い熱伝導度を有するAlの粉末を含む。このため試料61の熱伝導度は、試料60の熱伝導度よりも高くなったが、良好な評価とはならなかった。
 試料44は、試料61に係るサンプルと比べて、熱伝導粉末がAl粉末からAlN粉末に変更されている。AlNの熱伝導度はAlの熱伝導度よりも高いため、試料44の熱伝導度は、試料61の熱伝導度よりも高くなり、良好な値となった。
 さらに、AlN粉末を含む試料36~59のいずれにおいても、熱伝導度は良好な値(>30W/mK)となった。したがって、少なくともAlN粉末の体積率が10vol%以上であれば、サンプルの熱伝導度が良好な値となることがわかった。
 また、AlN粉末の体積率が30vol%以上である試料42~59のうち、厚みが360μmのサンプルでは透過率が70%未満となったが、厚みが300μm以下のサンプルでは透過率が良好な値となった。
 また、AlN粉末の体積率が50vol%である試料54~59のうち、厚みが100~300μmのサンプルでは、吸収率が78%未満となったが、厚みが360μmのサンプルでは、吸収率について良好な結果が得られた。なお、厚みが100~300μmのサンプルでは、サンプルの側面における光の漏れを抑制でき、有効光束については良好な結果となった。
 さらに、厚みが120μm未満のサンプルは、機械的強度が低く、ハンドリング性について良好な結果が得られなかったが、厚みが120μm以上のサンプルは、ピンセットで取り扱ってもサンプルが壊れることがなく、ハンドリング性について良好な結果が得られた。
 [発光モジュール]
 (試料62)
 図9を参照して説明した発光モジュールを試料62として作製した。具体的には、試料43と同様の条件で作製した蛍光体粉末とAlN粉末とを含む焼結体を光波長変換層とし、この光波長変換層が青色LED(ピーク波長:460nm)の光出射面を覆うように、サファイアの実装基板に光波長変換層を常温接合することにより白色発光モジュールを作製した。
 試料62では、発光モジュールの発光色の色度は、ヘッドランプに好適な色度の範囲に入り、色度(cx、cy)=(0.32、0.33)となった。したがって、本実施例では、本発明の一実施形態に係る蛍光部材を青色LED上に搭載することにより、高温特性に優れた特定の用途(車両用ヘッドライトなど)に好適な白色LEDを作製できたといえる。
 以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態やに限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 上記実施形態では、蛍光体粉末と熱伝導粉末とを含む蛍光部材の一例として、焼結体を説明した。これに限らず、たとえば、樹脂に蛍光体粉末と熱伝導粉末とを分散させたものを蛍光部材としてもよい。
 本発明は、蛍光体に利用できる。
 10 発光モジュール、 12 実装基板、 14 LED、 16 光波長変換層。

Claims (10)

  1.  結晶構造がガーネット型であり、
     一般式がBa3-a-bAl5-aSi12:Ce(ただし、結晶構造の格子サイズをS、Baの固溶量をa[mol]、Ceの固溶量をb[mol]とした場合、a、bは、12.0113≦S+0.036b-0.003a≦12.0153を満たす範囲の値)で表されることを特徴とする蛍光体。
  2.  ピーク波長が430~480nmの範囲にある青色光で励起され、ドミナント波長が567~572nmの範囲にある黄色光を発することを特徴とする請求項1に記載の蛍光体。
  3.  Baの固溶量a[mol]は、1.0以下であることを特徴とする請求項1または2に記載の蛍光体。
  4.  体積平均粒径が1~30μmであることを特徴とする請求項1乃至3のいずれか1項に記載の蛍光体。
  5.  請求項1乃至4のいずれか1項に記載の蛍光体の粉末である蛍光体粉末と、
     前記蛍光体の熱伝導度よりも高い熱伝導度を有する化合物を含む粉末である熱伝導粉末と、
     を含む、蛍光部材。
  6.  前記蛍光体粉末と前記熱伝導粉末との体積比は、90:10~60:40の範囲に含まれることを特徴とする請求項5に記載の蛍光部材。
  7.  前記蛍光体粉末は、ピーク波長が450nmの光を吸収し、
     前記蛍光部材の厚みは、0.12~0.30mmであり、
     前記蛍光部材の波長550~600nmの光の透過率は、70%以上であることを特徴とする請求項5または6に記載の蛍光部材。
  8.  前記蛍光体粉末は、ピーク波長が450nmの青色光を吸収し、
     前記蛍光部材の前記青色光の吸収率は、78~88%であることを特徴とする請求項5乃至7のいずれか1項に記載の蛍光部材。
  9.  蛍光部材であって、
     可視光に対して透明な樹脂と、
     前記樹脂に内包された請求項1乃至4のいずれか1項に記載の蛍光体と、を含み、
     前記蛍光体は、前記樹脂において0.1~30vol%含有されており、
     前記蛍光部材の厚みが0.01~5mmであることを特徴とする蛍光部材。
  10.  ピーク波長が430~480nmの範囲にある青色光を発するLEDと、
     前記LEDが発する青色光で励起され、黄色光を発する光波長変換層と、を備え、
     前記光波長変換層は、請求項5乃至9のいずれか1項に記載の蛍光部材を含み、
     前記青色光と前記黄色光とを混色した発光色が、色度座標(cx、cy)=(0.311、0.339)、(0.313、0.342)、(0.331、0.354)、(0.331、0.338)、(0.319、0.315)、(0.311、0.309)で囲まれる範囲の色度であることを特徴とする発光モジュール。
PCT/JP2022/004071 2021-02-03 2022-02-02 蛍光体、蛍光部材および発光モジュール WO2022168879A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579585A JPWO2022168879A1 (ja) 2021-02-03 2022-02-02
US18/360,257 US20230365860A1 (en) 2021-02-03 2023-07-27 Phosphor, fluorescent member, and light emitting module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-016058 2021-02-03
JP2021016058 2021-02-03
JP2021-118916 2021-07-19
JP2021118916 2021-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/360,257 Continuation US20230365860A1 (en) 2021-02-03 2023-07-27 Phosphor, fluorescent member, and light emitting module

Publications (1)

Publication Number Publication Date
WO2022168879A1 true WO2022168879A1 (ja) 2022-08-11

Family

ID=82741497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004071 WO2022168879A1 (ja) 2021-02-03 2022-02-02 蛍光体、蛍光部材および発光モジュール

Country Status (3)

Country Link
US (1) US20230365860A1 (ja)
JP (1) JPWO2022168879A1 (ja)
WO (1) WO2022168879A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115304A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd 無機酸化物と蛍光体及びこれを用いた発光装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115304A (ja) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd 無機酸化物と蛍光体及びこれを用いた発光装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JI HAIPENG, WANG LE, CHO YUJIN, HIROSAKI NAOTO, MOLOKEEV MAXIM S., XIA ZHIGUO, HUANG ZHAOHUI, XIE RONG-JUN: "New Y 2 BaAl 4 SiO 12 :Ce 3+ yellow microcrystal-glass powder phosphor with high thermal emission stability", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 4, no. 41, 1 January 2016 (2016-01-01), GB , pages 9872 - 9878, XP055957335, ISSN: 2050-7526, DOI: 10.1039/C6TC03422E *
JIA JUNJIE, QIANG YAOCHUN, XU JIANFEI, LIANG MINGZHANG, WANG WEI, YANG FENGLI, CUI JUN, DONG QUAN, YE XINYU: "A comparison study on the substitution of Y 3+ −Al 3+ by M 2+ −Si 4+ (M = Ba, Sr, Ca, Mg) in Y 3 Al 5 O 12 : Ce 3+ phosphor", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, BLACKWELL PUBLISHING, MALDEN, MA., US, vol. 103, no. 9, 1 September 2020 (2020-09-01), US , pages 5111 - 5119, XP055957333, ISSN: 0002-7820, DOI: 10.1111/jace.17204 *
LOHE P.P.; NANDANWAR D.V.; BELSARE P.D.; MOHARIL S.V.: "Rapid synthesis of garnet structured aluminosilicate phosphors", JOURNAL OF LUMINESCENCE, ELSEVIER BV NORTH-HOLLAND, NL, vol. 214, 5 June 2019 (2019-06-05), NL , XP085753580, ISSN: 0022-2313, DOI: 10.1016/j.jlumin.2019.116537 *

Also Published As

Publication number Publication date
US20230365860A1 (en) 2023-11-16
JPWO2022168879A1 (ja) 2022-08-11

Similar Documents

Publication Publication Date Title
US10753574B2 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
EP2109651B1 (en) Illumination system comprising composite monolithic ceramic luminescence converter
EP3438229B1 (en) Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus
US10873009B2 (en) Barrier layer functioned novel-structure ceramic converter materials and light emitting devices
JP5454473B2 (ja) 蛍光体セラミックス及びその製造方法、並びに発光素子
CN104177079B (zh) 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
JP6718991B2 (ja) 窒化ルテチウム蛍光粉末、及びその蛍光粉末を有する発光装置
KR101484428B1 (ko) 질소 화합물 발광 재료, 그 제조 방법 및 이로부터 제조된 조명 광원
JP2014172940A (ja) 蛍光体分散セラミックプレート
US10591137B2 (en) Wavelength converter and light-emitting device having same
Wu et al. Highly efficient and thermally robust cyan-green phosphor-in-glass films for high-brightness laser lighting
JP2018077463A (ja) 光波長変換部材及び発光装置
CN111517804B (zh) 一种氮化物红色复相荧光陶瓷及其制备方法
CN104177078A (zh) 用于白光LED荧光转换的含Lu的Ce:YAG基透明陶瓷及其制备方法
WO2016209871A1 (en) Glass composite wavelength converter and light source having same
Liu et al. Spectrum regulation of YAG: Ce/YAG: Cr/YAG: Pr phosphor ceramics with barcode structure prepared by tape casting
WO2022168879A1 (ja) 蛍光体、蛍光部材および発光モジュール
CN113603462B (zh) 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用
CN112340982B (zh) 一种复合玻璃材料及其制备和应用
JP7339788B2 (ja) 蛍光体プレートの製造方法およびそれを用いた発光装置の製造方法
JP6273464B2 (ja) 赤色蛍光体材料および発光装置
JP6489543B2 (ja) 波長変換部材、発光装置、および波長変換部材の製造方法
JP2022117394A (ja) 蛍光体、蛍光部材および発光モジュール
Li et al. All-inorganic color converter based on a phosphor in bismuthate glass for white laser diode lighting
TWI846967B (zh) 螢光體板、發光裝置、以及螢光體板之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749750

Country of ref document: EP

Kind code of ref document: A1