WO2022166130A1 - 储能系统散热装置及储能系统散热方法 - Google Patents

储能系统散热装置及储能系统散热方法 Download PDF

Info

Publication number
WO2022166130A1
WO2022166130A1 PCT/CN2021/108549 CN2021108549W WO2022166130A1 WO 2022166130 A1 WO2022166130 A1 WO 2022166130A1 CN 2021108549 W CN2021108549 W CN 2021108549W WO 2022166130 A1 WO2022166130 A1 WO 2022166130A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat dissipation
plate
dissipation device
energy storage
Prior art date
Application number
PCT/CN2021/108549
Other languages
English (en)
French (fr)
Inventor
施璐
陈佰爽
余志强
Original Assignee
上海派能能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海派能能源科技股份有限公司 filed Critical 上海派能能源科技股份有限公司
Priority to US17/625,773 priority Critical patent/US20230352772A1/en
Priority to EP21830311.3A priority patent/EP4068483A4/en
Priority to AU2021310843A priority patent/AU2021310843B2/en
Priority to JP2021578228A priority patent/JP7402901B2/ja
Publication of WO2022166130A1 publication Critical patent/WO2022166130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of energy storage, and for example, relates to a heat dissipation device for an energy storage system and a heat dissipation method for an energy storage system.
  • the container energy storage system is mainly composed of a containerized computer room, a battery pack, a battery management system (BMS), a power conversion system (PCS) and an auxiliary control system. Most of the auxiliary control systems are temperature control systems. systems and fire protection systems.
  • the container energy storage system has the advantages of small footprint, convenient installation and transportation, short construction period, strong environmental adaptability and high degree of intelligence.
  • the container energy storage system can be used in networked microgrids, independent microgrids, distributed generation and intelligent Power grid and other scenarios provide strong support for the large-scale application of renewable energy such as wind and light. At the same time, the container energy storage system can also be used as a mobile emergency power supply.
  • CN109638379A discloses a counter-flow dual-air duct cooling system for energy storage module.
  • the system includes a box body, an air extraction device, an energy storage module and a heat dissipation device.
  • the air extraction device, the energy storage module and the heat dissipation device are arranged in the box.
  • the energy storage module is arranged on the heat sink; the box body is provided with an air inlet and an air outlet, the energy storage module includes a plurality of single cells, and a gap is formed between the two single cells, and the gap forms an air supply
  • the first air duct that flows, the first air duct is communicated with the air inlet of the box body and the air outlet of the box body; a second air duct opposite to the air flow of the first air duct is arranged inside the heat sink, and the second air duct is connected to the air outlet of the box body.
  • the air inlet of the box body and the air outlet of the box body are communicated, and a counter-flow dual air channel cooling system is formed through the first air channel and the second air channel.
  • the energy storage module is cooled by the counter-flow dual air ducts, which has the characteristics of good temperature uniformity.
  • the cooling system cannot guarantee the temperature uniformity regulation of the cells under different working states.
  • CN109037542A discloses a mobile energy storage battery cabinet with excellent heat dissipation
  • the battery cabinet includes a cabinet body, a base and a liquid storage tank; the cabinet body is arranged above the base, and a heat insulation plate is arranged at the connection between the cabinet body and the base;
  • the liquid storage tank is fixed on the lower part of the base; the cabinet body and the right side of the base are communicated with each other through a liquid inlet pipe, and the cabinet body and the left side of the base are communicated with each other through a liquid outlet pipe.
  • the cooling liquid inside the liquid storage tank is pumped into the multiple cooling pipelines inside the cabinet through the pump body, and the heat inside the cabinet is quickly absorbed by the aluminum cooling pipeline, and the heat is transferred to the cooling pipeline
  • the cooling liquid flowing through the inside so as to realize the rapid cooling of the cabinet, and the heat dissipation efficiency is high.
  • the battery cabinet still has the problem of poor battery temperature uniformity.
  • the heat dissipation support includes a support body, a forced ventilation module, a water-cooled heat dissipation chassis module and a flow field control device module.
  • the forced ventilation module includes at least one ventilation duct, an air inlet and an outlet.
  • the tuyere is connected with one of the flow field control device modules in each ventilation duct; the water-cooled heat dissipation chassis module is arranged at the bottom of the bracket body.
  • the cooling bracket integrates two cooling modes of air cooling and water cooling, the cooling effect is improved, and the ventilation duct is integrated with the bracket body, and no additional air duct is required, but the structure of the cooling bracket is complex.
  • the heat dissipation device has problems such as complex structure, poor adaptability and poor battery temperature uniformity. Therefore, how to ensure the uniformity of the battery temperature and strong adaptability in the energy storage module under the condition that the heat dissipation device has a simple structure has become an urgent need. solved problem.
  • the present application provides a heat dissipation device for an energy storage system and a heat dissipation method for an energy storage system.
  • a heat dissipation device for an energy storage system and a heat dissipation method for an energy storage system.
  • the device has the characteristics of simple structure, strong adaptability and high heat dissipation efficiency.
  • the present application provides a heat dissipation device for an energy storage system
  • the heat dissipation device includes: a casing, at least one rack is arranged in the casing, an energy storage system is placed in the at least one rack, and the at least one rack is The top of the rack is provided with a curved deflector, at least one air conditioner is hung on the outside of the casing, and the cold air outlet of each air conditioner is connected to the curved deflector; the concave surface of the curved deflector is connected to the A diversion cavity is formed between at least one frame of the machine, and a diversion plate is arranged in the diversion cavity, and the diversion plate is arranged to adjust the flow direction of the gas in the diversion cavity.
  • the energy storage system includes at least one battery module.
  • each rack is provided with at least one battery compartment passing through each rack, and the battery module is placed in the battery compartment.
  • the at least one battery compartment provided on each rack is arranged in a matrix on each rack.
  • the curved air guide plate is arranged along one side of the long side of the at least one frame.
  • the cross section of the curved deflector is fan-shaped.
  • the range of the central angle of the sector is 60° ⁇ 100°, for example, the central angle is 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95° or 100° .
  • the central angle of the sector is 90°.
  • a ventilation baffle is arranged between the curved deflector and the cold air outlet of the at least one air conditioner, and the ventilation baffle protrudes from the edge of the at least one rack; At least one cold air port and at least one ventilation port are provided, and the cold air outlet of each air conditioner is connected to one cold air port.
  • the at least one cold air port and at least one ventilation port are alternately arranged.
  • each vent is movably provided with a vent slide, and the opening of each vent is adjusted by sliding the vent slide.
  • the distance between the rack and the side wall of the housing ranges from 100mm to 200mm, for example, the distance is 100mm, 110mm, 120mm, 130mm, 140mm, 150mm, 160mm, 170mm, 180mm, 190mm or 200mm.
  • both the first end and the second end of the at least one rack are provided with wind wall panels, and a hot air channel is formed between the shell, the wind wall panels and the ventilation partitions.
  • the wind wall panel is provided with a wind wall opening.
  • the air wall opening is opened on a side close to the top of the at least one rack.
  • the air wall opening is movably provided with an air wall opening sliding plate, and the opening of the air wall opening is adjusted by sliding of the air wall opening sliding plate.
  • both the vent slide and the air wall slide are provided with transmission parts, the transmission part of the air vent slide is set to drive the vent slide to slide, and the transmission part of the air wall slide is set to drive the air wall slide to slide. .
  • At least one hot air outlet is provided on the side wall of the housing located in the hot air channel.
  • each hot air outlet is provided with a return air fan of the air conditioner.
  • At least one rack includes two sets of racks arranged symmetrically, cold air passages are formed between the two groups of racks, the curved air guide plate includes two curved air guide plates, and the top of each group of racks is provided There is a curved guide plate, a guide cavity is formed between the concave surface of the one curved guide plate and each group of frames, and the open sides of the two guide cavities are arranged oppositely.
  • the flow distribution plate includes two flow distribution plates, one flow distribution plate is disposed in each of the flow guide cavity, and the one flow distribution plate is obliquely arranged in each of the flow guide cavity.
  • the plane on which each distribution plate is located is perpendicular to the top surfaces of the two sets of racks.
  • a guide rail is provided on one side of the concave surface of each curved guide plate, the guide rail is arranged along the length direction of each curved guide plate, and the guide rails in the guide cavity formed by each curved guide plate are arranged.
  • the distribution plate is slidably arranged on the guide rail.
  • each shunt plate is provided with a driving member, and the driving member is configured to drive each shunt plate to slide along the guide rail on which each shunt plate is located.
  • At least one temperature sensor is evenly arranged on the at least one rack, and the at least one temperature sensor is configured to detect the temperature of the energy storage system;
  • the heat dissipation device further includes a controller, and the controller is electrically independent Connecting each temperature sensor, driving member, transmission member, and each air conditioner, the controller is configured to receive a feedback signal sent by the at least one temperature sensor, and control the rotation of the driving member and the cooling of each air conditioner according to the feedback signal parameters, and the stretching of the transmission parts, the refrigeration parameters of each air conditioner are used to adjust the air volume and temperature of the cold air of each air conditioner, and the speed of the return fan of each air conditioner is determined by the speed of each air conditioner. Cool air volume adjustment.
  • the present application provides a heat dissipation method using an energy storage system, using the above-mentioned heat dissipation device for the energy storage system.
  • the heat dissipation method includes: the cold air in at least one air conditioner is blown into the casing through the curved guide plate, and the distribution plate adjusts the flow direction of the cold air to cool the energy storage system and dissipate heat.
  • the cold air in the at least one air conditioner is blown into the casing through the curved deflector, and the diverter plate adjusts the flow direction of the cold air, and the cooling and heat dissipation of the energy storage system includes: the cold air generated by the at least one air conditioner passes through the curved deflector and the diverter plate.
  • Diversion blowing into the cold air channel, cooling the energy storage system on at least one rack, the cold air enters the hot air channel after exchanging heat with the energy storage system and is discharged through at least one return air fan; when at least one temperature sensor detects When the temperature of the energy storage system is higher than the first temperature threshold, the controller adjusts the at least one air conditioner, increases the air volume of the cold air of the at least one air conditioner, reduces the temperature of the cold air, and increases the rotational speed of the at least one return air fan; at least one temperature sensor In the case of detecting uneven temperature in the energy storage system, the controller controls the driving element to drive the diverter plate to slide along the guide rail to adjust the distribution of cold air.
  • the range of the first temperature threshold is 55°C to 65°C, for example, the first temperature threshold is 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C , 63°C, 64°C or 65°C.
  • the air volume of the cold air of each air conditioner ranges from 1000m 3 /h to 2000m 3 /h, for example, the air volume of the cold air is 1000m 3 /h, 1100m 3 1400m3 /h, 1500m3/h, 1600m3 /h, 1700m3 /h, 1800m3 /h, 1900m3 / h or 2000m3 /h.
  • the temperature of the cold air of each air conditioner ranges from 15°C to 20°C, for example, the temperature is 15°C, 16°C, 17°C, 18°C, 19°C or 20°C.
  • the system refers to an equipment system, a device system or a production device.
  • FIG. 1 is a schematic diagram of the appearance of a heat dissipation device for an energy storage system provided in a specific embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of the interior of a housing of a heat dissipation device for an energy storage system provided in a specific embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a ventilation baffle provided in a specific embodiment of the present application.
  • the terms "arranged”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal connection between two components.
  • the meanings of the above terms in the present application can be understood through circumstances. The technical solutions of the present application are described below through specific embodiments.
  • the present application provides a heat dissipation device for an energy storage system.
  • the heat dissipation device includes a casing 1, and at least one rack 4 is arranged in the casing 1.
  • An energy storage system is placed in the rack 4, a curved deflector 5 is arranged on the top of the rack 4, at least one air conditioner 2 is hung on the outside of the housing 1, and the cold air outlet of each air conditioner 2 is connected to the curved deflector 5 ;
  • a guide cavity is formed between the concave surface of the curved guide plate 5 and the frame 4, and the guide cavity is provided with a divider plate 6, which is arranged to adjust the flow direction of the gas in the guide cavity.
  • the cold air of the air conditioner 2 enters from the top of the rack 4, and is distributed reasonably, and more cold air is distributed to the higher temperature, so that the The overall temperature distribution of the energy storage system is uniform, which provides a good working environment for the battery and prolongs the service life of the energy storage system.
  • the energy storage system cooling device has the advantages of simple structure, strong adaptability, high heat dissipation efficiency and uniform temperature of the energy storage module. good sex characteristics.
  • the energy storage system includes at least one battery module, the rack 4 is provided with at least one battery compartment 7 penetrating the rack 4 , and the battery module is placed in the battery compartment 7 .
  • the battery compartments 7 are arranged in a matrix on the rack 4 .
  • the curved deflector 5 is arranged along one side of the long side of the frame 4 , and the section of the curved deflector 5 is fan-shaped.
  • the range of the central angle of the sector is 60° to 100°.
  • the central angle of the sector is 90°.
  • a ventilation baffle 9 is arranged between the curved deflector 5 and the cold air outlet of the air conditioner 2 , and the ventilation baffle 9 protrudes from the edge of the rack 4 .
  • the ventilation baffle 9 is provided with at least one cold air outlet 10 and at least one air outlet 11 , and the cold air outlet of the air conditioner 2 is connected to the cold air outlet 10 .
  • the cold air vents 10 and the vents 11 are alternately arranged, and a vent slide is movably arranged at the vent 11, and the opening of the vent 11 is adjusted by the sliding of the vent slide.
  • the opening of the vent 11 is controlled by setting the vent slide, so as to adjust the air volume of the hot air entering the vent 11 .
  • the distance between the rack 4 and the side wall of the casing 1 is in the range of 100 mm to 200 mm.
  • Both the first end and the second end of the rack 4 are provided with wind wall panels 8 , and a hot air channel is formed between the shell 1 , the wind wall panels 8 and the ventilation partitions 9 .
  • the air wall panel 8 is provided with an air wall opening, and the air wall opening is opened on the side close to the top of the rack 4 .
  • An air wall port slide plate is movably arranged at the air wall port, and the opening of the air wall port is adjusted by the sliding of the air wall port slide plate.
  • Both the vent slide and the air wall slide are provided with transmission parts, the transmission part of the vent slide is set to drive the sliding of the vent slide, and the transmission part of the air wall slide is set to drive the slide of the air wall.
  • the cold air is heated into hot air and enters the hot air passage, and passes through the wind wall panel 8, so that the hot air and the cold air form a "wind wall" structure, which reduces the backflow of the hot air and allows most of the hot air to pass through the air conditioner.
  • 2 return air exhaust Adjust the return ratio of hot air by setting the air wall port slide.
  • a hot air outlet is provided on the side wall of the casing 1 located in the hot air passage.
  • a return air fan 3 of an air conditioner is provided at the hot air outlet.
  • the housing 1 includes two sets of racks 4 arranged symmetrically, and cold air passages are formed between the two groups of racks 4 , and the opening sides of the two guide cavities are arranged opposite to each other.
  • the two sets of racks 4 are symmetrically arranged, and the opening sides of the two guide cavities are arranged opposite to each other, so that the cold air in the guide cavities on the two sets of racks 4 is blown into the cold air between the two sets of racks 4 Channels, improve the distribution and convection of cold air, improve space utilization and heat dissipation efficiency.
  • the distribution plate 6 is obliquely arranged in the air guide cavity, and the plane where the distribution plate 6 is located is perpendicular to the top surface of the rack.
  • a guide rail is provided on the concave side of the curved air guide plate 5 , the guide rail is arranged along the length direction of the curved air guide plate 5 , and the diverter plate 6 is slidably arranged on the guide rail.
  • a driving member is provided on the distribution plate 6, and the driving member is configured to drive the distribution plate 6 to slide along the guide rail.
  • the distribution plate 6 is arranged on the guide rail, and the distribution plate 6 is adjusted by sliding to control the distribution of cold air.
  • the distribution plate 6 is used to increase the flow rate of the cold air in this part, and the temperature uniformity of the energy storage module is improved. .
  • At least one temperature sensor is evenly arranged on the rack 4, and the temperature sensor is configured to detect the temperature of the energy storage system.
  • the cooling device further includes a controller, which is independently electrically connected to the temperature sensor, the driving part, the transmission part, and the air conditioner 2 , and the controller is configured to receive a feedback signal sent by the temperature sensor, and control the rotation of the driving part and the air conditioner 2 according to the feedback signal.
  • the cooling parameters of each air conditioner and the stretching of the transmission parts, the cooling parameters of each air conditioner are used to adjust the air volume and temperature of the cold air of each air conditioner, and the speed of the return air fan of each air conditioner is determined by the each air conditioner.
  • the air volume adjustment of the cold air of the air conditioner is performed by the each air conditioner.
  • the present application provides a method for dissipating heat from an energy storage system using the above-mentioned heat dissipation device for an energy storage system, and the method includes the following steps.
  • the cold air generated by the air conditioner 2 is guided through the curved deflector 5 and the distribution plate 6, and is blown into the cold air channel to cool and dissipate heat from the energy storage system on the rack 4. After exchanging heat with the energy storage system, the cold air enters the hot air channel And it is discharged through the return air fan 3.
  • the controller adjusts the air conditioner 2, increases the air volume of the cold air of the air conditioner 2, reduces the temperature of the cold air and increases the speed of the return air fan 3; when the temperature The sensor detects the uneven temperature in the energy storage system, and the controller controls the driver to drive the splitter plate 6 to slide along the guide rail to adjust the distribution of cold air.
  • the range of the first temperature threshold is 55°C to 65°C.
  • the air volume of the cold air per air conditioner is in the range of 1000m 3 /h to 2000m 3 /h, and the temperature of the cold air is in the range of 15°C to 20°C.
  • This embodiment provides a heat dissipation device for an energy storage system, based on the heat dissipation device for an energy storage system described in a specific implementation manner, wherein the housing 1 includes two sets of racks 4 symmetrically arranged, and one of the two groups of racks 4 A cold air channel is formed between them, and the opening sides of the two guide cavities are arranged opposite to each other.
  • the housing 1 includes two sets of racks 4 symmetrically arranged, and one of the two groups of racks 4 A cold air channel is formed between them, and the opening sides of the two guide cavities are arranged opposite to each other.
  • This embodiment also provides a method for dissipating heat from an energy storage system by using the above-mentioned energy storage system heat sink, and the method includes the following steps.
  • the cold air generated by the air conditioner 2 is guided through the curved deflector 5 and the distribution plate 6, and is blown into the cold air channel to cool and dissipate heat from the energy storage system on the rack 4. After exchanging heat with the energy storage system, the cold air enters the hot air channel And it is discharged through the return air fan 3.
  • the controller adjusts the air conditioner 2, increases the air volume of the cold air of the air conditioner 2, reduces the temperature of the cold air and increases the speed of the return air fan 3; when the temperature The sensor detects the uneven temperature in the energy storage system, and the controller controls the driver to drive the splitter plate 6 to slide along the guide rail to adjust the distribution of cold air.
  • the first temperature threshold is 60°C.
  • the air volume of the cold air of each air conditioner is 1500m 3 /h, and the temperature of the cold air is 18°C.
  • This embodiment provides a heat dissipation device for an energy storage system. Based on the heat dissipation device for an energy storage system described in Embodiment 1, eight air conditioners 2 are hung outside the casing 1 , and each group of racks 4 corresponds to four air conditioners 2 . ; The section of the curved deflector is fan-shaped, and the central angle of the fan-shaped is 60°; the distance between the frame 4 and the side wall of the shell 1 is 100mm.
  • This embodiment also provides a method for dissipating heat from an energy storage system by using the above-mentioned energy storage system heat sink, and the method includes the following steps.
  • the cold air generated by the air conditioner 2 is guided through the curved deflector 5 and the distribution plate 6, and is blown into the cold air channel to cool and dissipate heat from the energy storage system on the rack 4. After exchanging heat with the energy storage system, the cold air enters the hot air channel And it is discharged through the return air fan 3.
  • the controller adjusts the air conditioner 2, increases the air volume of the cold air of the air conditioner 2, reduces the temperature of the cold air and increases the speed of the return air fan 3; when the temperature The sensor detects the uneven temperature in the energy storage system, and the controller controls the driver to drive the splitter plate 6 to slide along the guide rail to adjust the distribution of cold air.
  • the first temperature threshold is 65°C.
  • the air volume of the cold air of each air conditioner is 2000m 3 /h, and the temperature of the cold air is 20°C.
  • This embodiment provides a heat dissipation device for an energy storage system. Based on the heat dissipation device for an energy storage system described in Embodiment 1, four air conditioners 2 are hung outside the casing 1 , and each group of racks 4 corresponds to two air conditioners 2 ;
  • the section of the curved deflector is fan-shaped, and the central angle of the fan-shaped is 100°; the distance between the frame 4 and the side wall of the shell 1 is 200mm.
  • This embodiment also provides a method for dissipating heat from an energy storage system by using the above-mentioned energy storage system heat sink, and the method includes the following steps.
  • the cold air generated by the air conditioner 2 is guided through the curved deflector 5 and the distribution plate 6, and is blown into the cold air channel to cool and dissipate heat from the energy storage system on the rack 4. After exchanging heat with the energy storage system, the cold air enters the hot air channel And it is discharged through the return air fan 3.
  • the controller adjusts the air conditioner 2, increases the air volume of the cold air of the air conditioner 2, reduces the temperature of the cold air and increases the speed of the return air fan 3; when the temperature sensor When it is detected that the temperature in the energy storage system is uneven, the controller controls the driver to drive the split plate 6 to slide along the guide rail to adjust the distribution of cold air.
  • the first temperature threshold is 55°C.
  • the air volume of the cold air of each air conditioner is 1000m 3 /h, and the temperature of the cold air is 15°C.
  • the cold air of the air conditioner 2 enters from the top of the rack 4 and is reasonably distributed, and more cold air is distributed to the higher temperature, so that the storage
  • the temperature distribution of the energy system is uniform, which provides a good working environment for the battery and prolongs the service life of the energy storage system.
  • the energy storage system cooling device has the characteristics of simple structure, strong adaptability, high heat dissipation efficiency and good temperature uniformity of the energy storage module. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种储能系统散热装置及方法,所述的散热装置包括:壳体,所述壳体内设置有至少一个机架,所述至少一个机架内放置有储能系统,所述至少一个机架的顶部设置有曲面导流板,所述壳体的外部挂设有至少一个空调,每个空调的冷风出口接入所述曲面导流板;所述曲面导流板的凹面与所述至少一个机架之间形成导流空腔,所述导流空腔内设置有分流板,所述分流板设置为调节导流空腔内的气体的流向。

Description

储能系统散热装置及储能系统散热方法
本申请要求在2021年02月02日提交中国专利局、申请号为202110145288.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于储能技术领域,例如涉及一种储能系统散热装置及储能系统散热方法。
背景技术
集装箱储能系统主要由集装箱式机房、电池包、电池管理系统(Battery Management System,BMS)、储能变流系统(Power Conversion System,PCS)以及辅助控制系统等组成,辅助控制系统大多为温控系统和消防系统等。集装箱储能系统具有占地面积小、安装运输方便、建设周期短、环境适应能力强和智能化程度高等优点,集装箱储能系统可用于联网型微电网、独立型微电网、分布式发电和智能电网等场景,为实现风、光等可再生能源的规模化应用提供有力支撑,同时,集装箱储能系统亦可作为移动应急电源使用。
由于实际工况的复杂不确定性,处于工作状态的多个单体电池必然存在差距,故很难保证电池的工作温度的一致性。若多个电池之间的温度差距加剧,会影响电池模块的性能和使用寿命,甚至引起安全隐患。
CN109638379A公开了一种储能模组用逆流式双风道冷却系统,该系统包括箱体、抽风装置、储能模组和散热装置,抽风装置、储能模组和散热装置设置在所述箱体内,储能模组设置在散热装置上;箱体设有进风口和出风口,储能模组包括多个单体电芯,两两单体电芯之间设有缝隙,缝隙形成供空气流动的第一风道,第一风道与箱体的进风口以及箱体的出风口相连通;散热装置内部设有与第一风道空气流动逆向的第二风道,第二风道与箱体的进风口以及箱体的出风口相连通,通过第一风道和第二风道形成逆流式双风道冷却系统。在该申请中,通过逆流式双风道对储能模块进行冷却,具有均温效果好的特点,但是,该冷却系统不能保证对不同工作状态下的电芯进行温度均一性调控。
CN109037542A公开了一种散热优良的移动储能电池柜,该电池柜包括柜体、底座和储液箱;柜体设置在底座的上方,且柜体与底座的连接处设置有一块隔热板;储液箱固定于底座的下部;柜体与底座的右侧通过进液管相互连通,柜体与底座的左侧通过出液管相互连通。该申请通过泵体将储液箱内部的冷却液抽取送入柜体内部的多个冷却管路,利用铝制的冷却管路将柜体内部的热量 快速吸收,并将热量传递至冷却管路内部流经的冷却液,从而实现柜体的快速冷却,散热效率高。该电池柜依然存在电池温度均一性差的问题。
CN111029496A公开了一种可高效散热的储能电池散热支架,该散热支架包括支架本体、强制通风模块、水冷散热底盘模块和流场控制装置模块,强制通风模块包括至少一个通风管道、进风口和出风口,在每个通风管道内连接一个所述流场控制装置模块;水冷散热底盘模块设在支架本体的底部。该散热支架上综合了风冷和水冷两种冷却模式,冷却效果提升,且将通风管道与支架本体一体化,不需再另设风道,但是该散热支架的结构复杂。
散热装置存在结构复杂、适应性差和电池温度均一性差等问题,因此,如何在保证散热装置具有结构简单的情况下,还能够保证储能模块内电池温度的均一性以及适应性强,成为迫切需要解决的问题。
发明内容
本申请提供一种储能系统散热装置及储能系统散热方法,通过曲面导流板与分流板的结合,有效调节空调的冷风的分布,保证储能模块的温度均一性,该储能系统散热装置具有结构简单、适应性强和散热效率高等特点。
本申请提供了一种储能系统散热装置,所述的散热装置包括:壳体,所述壳体内设置有至少一个机架,所述至少一个机架内放置有储能系统,所述至少一个机架的顶部设置有曲面导流板,所述壳体的外部挂设有至少一个空调,每个空调的冷风出口接入所述曲面导流板;所述曲面导流板的凹面与所述机至少一个架之间形成导流空腔,所述导流空腔内设置有分流板,所述分流板设置为调节导流空腔内的气体的流向。
可选地,所述储能系统包括至少一个电池模块。
可选地,每个机架上设置有至少一个贯通所述每个机架的电池仓,所述电池模块放置于所述电池仓内。
可选地,每个机架上设置的所述至少一个电池仓在所述每个机架上呈矩阵排布。
可选地,所述的曲面导流板沿所述至少一个机架的长边一侧设置。
可选地,所述曲面导流板的截面呈扇形。
可选地,所述扇形的圆心角的范围为60°~100°,例如,圆心角为60°、65°、70°、75°、80°、85°、90°、95°或100°。
可选地,扇形的圆心角为90°。
可选地,所述曲面导流板与所述至少一个空调的冷风出口之间设置有通风隔板,所述通风隔板凸出于所述至少一个机架的边缘;所述通风隔板上设置有至少一个冷风口和至少一个通风口,每个空调的冷风出口接入一个冷风口。
可选地,所述至少一个冷风口与至少一个通风口交替设置。
可选地,每个通风口处活动设置有通风口滑板,通过所述通风口滑板的滑动来调节所述每个通风口的开度。
可选地,所述机架与壳体的侧壁的距离的范围为100mm~200mm,例如,距离为100mm、110mm、120mm、130mm、140mm、150mm、160mm、170mm、180mm、190mm或200mm。
可选地,所述至少一个机架的第一端和第二端均设置有风墙板,所述壳体、风墙板和通风隔板之间形成热风通道。
可选地,所述风墙板开设有风墙口。
可选地,所述风墙口靠近所述至少一个机架的顶部的一侧开设。
可选地,所述风墙口处活动设置有风墙口滑板,通过风墙口滑板的滑动来调节风墙口的开度。
可选地,所述通风口滑板和风墙口滑板均设置有传动件,所述通风口滑板的传动件设置为带动通风口滑板滑动,风墙口滑板的传动件设置为带动风墙口滑板滑动。
可选地,位于所述热风通道的壳体的侧壁开设有至少一个热风出口。
可选地,每个热风出口处均设置有一个空调的回风风扇。
可选地,至少一个机架包括对称设置的两组机架,所述两组机架之间形成冷风通道,所述曲面导流板包括两个曲面导流板,每组机架的顶部设置有一个曲面导流板,所述一个曲面导流板的凹面与所述每组机架之间形成一个导流空腔,两个导流空腔的开口侧相对设置。
可选地,所述分流板包括两个分流板,每个导流空腔内设置有一个分流板,所述一个分流板倾斜设置于所述每个导流空腔内。
可选地,每个分流板所在的平面垂直于所述两组机架的顶面。
可选地,每个曲面导流板的凹面的一侧设置有导轨,所述导轨沿每个曲面导流板的长度方向布置,所述每个曲面导流板形成的导流空腔内的分流板滑动设置于所述导轨。
可选地,每个分流板上设置有驱动件,所述驱动件设置为驱动所述每个分 流板沿所述每个分流板所在的导轨滑动。
可选地,所述至少一个机架上均匀布置有至少一个温度传感器,所述至少一个温度传感器设置为检测储能系统的温度;所述散热装置还包括控制器,所述控制器独立电性连接每个温度传感器、驱动件、传动件、以及每个空调,所述控制器设置为接收所述至少一个温度传感器发出的反馈信号,并根据反馈信号控制驱动件的转动、每个空调的制冷参数、以及传动件的拉伸,每个空调的制冷参数用于调节所述每个空调的冷风的风量和冷风的温度,所述每个空调的回风风扇的转速由所述每个空调的冷风的风量调节。
本申请提供给了一种采用储能系统散热方法,采用上述储能系统散热装置。所述散热方法包括:至少一个空调内的冷风经曲面导流板吹入壳体内,且分流板调节冷风的流向,对储能系统进行冷却散热。
可选地,至少一个空调内的冷风经曲面导流板吹入壳体内,分流板调节冷风的流向,对储能系统进行冷却散热包括:至少一个空调产生的冷风经过曲面导流板和分流板进行导流,吹入冷风通道,对至少一个机架上的储能系统进行冷却散热,冷风与储能系统换热后进入热风通道并通过至少一个回风风扇排出;在至少一个温度传感器检测到储能系统的温度高于第一温度阈值的情况下,控制器调节至少一个空调,提高至少一个空调的冷风的风量、降低冷风的温度并提高至少一个回风风扇的转速;在至少一个温度传感器检到测储能系统中温度不均匀的情况下,控制器控制驱动件,驱动分流板沿导轨滑动以调节冷风的分布。
可选地,所述的第一温度阈值的范围为55℃~65℃,例如,第一温度阈值为55℃、56℃、57℃、58℃、59℃、60℃、61℃、62℃、63℃、64℃或65℃。
可选地,每台空调的冷风的风量的范围为1000m 3/h~2000m 3/h,例如,冷风的风量为1000m 3/h、1100m 3/h、1200m 3/h、1300m 3/h、1400m 3/h、1500m 3/h、1600m 3/h、1700m 3/h、1800m 3/h、1900m 3/h或2000m 3/h。
可选地,每台空调的冷风的温度的范围为15℃~20℃,例如,温度为15℃、16℃、17℃、18℃、19℃或20℃。
可选地,所述系统是指设备系统、装置系统或生产装置。
本申请所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的点值。
附图说明
图1为本申请一个具体实施方式中提供的储能系统散热装置的外观示意图;
图2为本申请一个具体实施方式中提供的储能系统散热装置的壳体的内部的结构示意图;
图3为本申请一个具体实施方式中提供的通风隔板的结构示意图。
图中,1-壳体;2-空调;3-回风风扇;4-机架;5-曲面导流板;6-分流板;7-电池仓;8-风墙板;9-通风隔板;10-冷风口;11-通风口。
具体实施方式
在本申请的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过情况理解上述术语在本申请中的含义。下面通过具体实施方式来说明本申请的技术方案。
在一个具体实施方式中,本申请提供了一种储能系统散热装置,如图1和图2所示,所述的散热装置包括壳体1,壳体1内设置有至少一个机架4,机架4内放置有储能系统,机架4的顶部设置有曲面导流板5,壳体1的外部挂设有至少一个空调2,每个空调2的冷风出口接入曲面导流板5;曲面导流板5的凹面与机架4之间形成导流空腔,导流空腔内设置有分流板6,分流板6设置为调节导流空腔内的气体的流向。
本申请通过在机架4的顶部设置曲面导流板5和分流板6,使空调2的冷风由机架4的顶部进入,并经过合理分配,对温度较高处分配更多的冷风,使储能系统整体的温度的分布均匀,为电池提供良好的工作环境,延长储能系统的使用寿命,该储能系统散热装置具有结构简单、适应性强、散热效率高和储能模块的温度均一性好等特点。
储能系统包括至少一个电池模块,机架4内设置有至少一个贯通机架4的电池仓7,电池模块放置于电池仓7内。电池仓7在机架4上呈矩阵排布。
曲面导流板5沿机架4的长边一侧设置,曲面导流板5的截面呈扇形。扇 形的圆心角的范围为60°~100°。可选地,扇形的圆心角为90°。
曲面导流板5与空调2的冷风出口之间设置有通风隔板9,通风隔板9凸出机架4的边缘。
如图3所示,通风隔板9上设置有至少一个冷风口10和至少一个通风口11,空调2的冷风出口接入冷风口10。冷风口10与通风口11交替设置,通风口11处活动设置有通风口滑板,通过通风口滑板的滑动来调节通风口11的开度。本申请通过设置通风口11,在空调2的冷风的流量不足时,通过通风口11使部分热风与冷风混合,对风量进行补充。通过设置通风口滑板控制通风口11的开度,从而调节进入通风口11的热风的风量。
机架4与壳体1的侧壁之间的距离的范围为100mm~200mm。机架4的第一端和第二端均设置有风墙板8,壳体1、风墙板8和通风隔板9之间形成热风通道。风墙板8开设有风墙口,风墙口靠近机架4的顶部的一侧开设。风墙口处活动设置有风墙口滑板,通过风墙口滑板的滑动来调节风墙口的开度。通风口滑板和风墙口滑板均设置有传动件,通风口滑板的传动件设置为带动通风口滑板的滑动,风墙口滑板的传动件设置为带动风墙口滑板的滑动。
本申请中冷风对储能系统对流换热后,冷风被加热为热风进入热风通道,通过风墙板8,使热风和冷风形成“风墙”结构,减少热风回流,使大部分的热风经过空调2回风排出。通过设置风墙口滑板,调节热风的回流比例。
位于热风通道的壳体1的侧壁开设有热风出口。热风出口处均设置有一个空调的回风风扇3。
壳体1内包括对称设置的两组机架4,两组机架4之间形成冷风通道,两个导流空腔的开口侧相对设置。本申请通过两组机架4对称设置,并且两个导流空腔的开口侧相对设置,使两组机架4上的导流空腔内的冷风吹入两组机架4之间的冷风通道,提高冷风的分布和对流,提高空间利用率和散热效率。
分流板6倾斜设置于导流空腔内,分流板6所在的平面垂直于机架的顶面。曲面导流板5的凹面一侧设置有导轨,导轨沿曲面导流板5的长度方向布置,分流板6滑动设置于导轨。分流板6上设置有驱动件,驱动件设置为驱动分流板6沿导轨滑动。
本申请将分流板6设置在导轨上,通过滑动调节分流板6,控制冷风的分布,对温度较高的部分,利用分流板6提高该部分的冷风的流量,提高储能模块的温度均一性。
机架4上均匀布置有至少一个温度传感器,温度传感器设置为检测储能系统的温度。散热装置还包括控制器,控制器独立电性连接温度传感器、驱动件、 传动件、以及空调2,控制器设置为接收温度传感器发出的反馈信号,并根据反馈信号控制驱动件的转动、空调2的制冷参数、以及传动件的拉伸,每个空调的制冷参数用于调节所述每个空调的冷风的风量和冷风的温度,所述每个空调的回风风扇的转速由所述每个空调的冷风的风量调节。
在另一个具体实施方式中,本申请提供给了一种采用上述储能系统散热装置对储能系统进行散热的方法,所述方法包括以下步骤。
(Ⅰ)空调2产生的冷风经过曲面导流板5和分流板6进行导流,吹入冷风通道对机架4上的储能系统进行冷却散热,冷风与储能系统换热后进入热风通道并通过回风风扇3排出。
(Ⅱ)当温度传感器检测到储能系统的温度高于第一温度阈值时,控制器调节空调2,提高空调2的冷风的风量、降低冷风的温度并提高回风风扇3的转速;当温度传感器检测到储能系统中温度不均匀,通过控制器控制驱动件驱动分流板6沿导轨滑动以调节冷风的分布。第一温度阈值的范围为55℃~65℃。
每台空调的冷风的风量的范围为1000m 3/h~2000m 3/h,冷风的温度的范围为15℃~20℃。
实施例1
本实施例提供了一种储能系统散热装置,基于一个具体实施方式中所述的储能系统散热装置,其中,壳体1内包括对称设置的两组机架4,两组机架4之间形成冷风通道,两个导流空腔的开口侧相对设置。壳体1的外部挂设有六个空调2,一组机架4分别对应三个空调2;曲面导流板的截面呈扇形,扇形的圆心角为90°;机架4与壳体1的侧壁的距离为150mm。
本实施例还提供了一种采用上述储能系统散热装置对储能系统进行散热的方法,所述方法包括以下步骤。
(Ⅰ)空调2产生的冷风经过曲面导流板5和分流板6进行导流,吹入冷风通道对机架4上的储能系统进行冷却散热,冷风与储能系统换热后进入热风通道并通过回风风扇3排出。
(Ⅱ)当温度传感器检测到储能系统的温度高于第一温度阈值时,控制器调节空调2,提高空调2的冷风的风量、降低冷风的温度并提高回风风扇3的转速;当温度传感器检测到储能系统中温度不均匀,通过控制器控制驱动件驱动分流板6沿导轨滑动以调节冷风的分布。第一温度阈值为60℃。
每台空调的冷风的风量为1500m 3/h,冷风的温度为18℃。
实施例2
本实施例提供了一种储能系统散热装置,基于实施例1中所述的储能系统散热装置,壳体1的外部挂设有八个空调2,每组机架4对应四个空调2;曲面导流板的截面呈扇形,扇形的圆心角为60°;机架4与壳体1的侧壁的距离为100mm。
本实施例还提供了一种采用上述储能系统散热装置对储能系统进行散热的方法,所述方法包括以下步骤。
(Ⅰ)空调2产生的冷风经过曲面导流板5和分流板6进行导流,吹入冷风通道对机架4上的储能系统进行冷却散热,冷风与储能系统换热后进入热风通道并通过回风风扇3排出。
(Ⅱ)当温度传感器检测到储能系统的温度高于第一温度阈值时,控制器调节空调2,提高空调2的冷风的风量、降低冷风的温度并提高回风风扇3的转速;当温度传感器检测到储能系统中温度不均匀,通过控制器控制驱动件驱动分流板6沿导轨滑动以调节冷风的分布。第一温度阈值为65℃。
每台空调的冷风的风量为2000m 3/h,冷风的温度为20℃。
实施例3
本实施例提供了一种储能系统散热装置,基于实施例1中所述的储能系统散热装置,壳体1的外部挂设有四个空调2,每组机架4对应两个空调2;曲面导流板的截面呈扇形,扇形的圆心角为100°;机架4与壳体1的侧壁的距离为200mm。
本实施例还提供了一种采用上述储能系统散热装置对储能系统进行散热的方法,所述方法包括以下步骤。
(Ⅰ)空调2产生的冷风经过曲面导流板5和分流板6进行导流,吹入冷风通道对机架4上的储能系统进行冷却散热,冷风与储能系统换热后进入热风通道并通过回风风扇3排出。
(Ⅱ)当温度传感器检测储能系统的温度高于第一温度阈值时,控制器调节空调2,提高空调2的冷风的风量、降低冷风的温度并提高回风风扇3的转速;当温度传感器检测到储能系统中温度不均匀时,通过控制器控制驱动件驱动分流板6沿导轨滑动以调节冷风的分布。第一温度阈值为55℃。
每台空调的冷风的风量为1000m 3/h,冷风的温度为15℃。
本申请通过在机架4的顶部设置曲面导流板5和分流板6,使空调2的冷风由机架4的顶部进入并经过合理分配,对温度较高处分配更多的冷风,使储能系统的温度分布均匀,为电池提供良好的工作环境,延长储能系统的使用寿命, 该储能系统散热装置具有结构简单、适应性强、散热效率高和储能模块温度均一性好等特点。

Claims (32)

  1. 一种储能系统散热装置,包括:壳体,所述壳体内设置有至少一个机架,所述至少一个机架内放置有储能系统,所述至少一个机架的顶部设置有曲面导流板,所述壳体的外部挂设有至少一个空调,每个空调的冷风出口接入所述曲面导流板;
    所述曲面导流板的凹面与所述至少一个机架之间形成导流空腔,所述导流空腔内设置有分流板,所述分流板设置为调节所述导流空腔内的气体的流向。
  2. 根据权利要求1所述的散热装置,其中,所述储能系统包括至少一个电池模块。
  3. 根据权利要求2所述的散热装置,其中,每个机架上设置有至少一个贯通所述每个机架的电池仓,所述至少一个电池仓设置为放置所述至少一个电池模块。
  4. 根据权利要求3所述的散热装置,其中,每个机架上设置的所述至少一个电池仓在所述每个机架上呈矩阵排布。
  5. 根据权利要求2所述的散热装置,其中,所述曲面导流板沿所述至少一个机架的长边一侧设置。
  6. 根据权利要求5所述的散热装置,其中,所述曲面导流板的截面呈扇形。
  7. 根据权利要求6所述的散热装置,其中,所述扇形的圆心角的范围为60°~100°。
  8. 根据权利要求6所述的散热装置,其中,所述扇形的圆心角为90°。
  9. 根据权利要求1-8中任一项所述的散热装置,其中,所述曲面导流板与所述至少一个空调的冷风出口之间设置有通风隔板,所述通风隔板凸出于所述至少一个机架的边缘;
    所述通风隔板上设置有至少一个冷风口和至少一个通风口,每个空调的冷风出口接入一个冷风口。
  10. 根据权利要求9所述的散热装置,其中,所述至少一个冷风口与所述至少一个通风口交替设置。
  11. 根据权利要求9所述的散热装置,其中,每个通风口处活动设置有通风口滑板,通过所述通风口滑板的滑动来调节所述每个通风口的开度。
  12. 根据权利要求11所述的散热装置,其中,每个机架与所述壳体的侧壁的距离的范围为100mm~200mm。
  13. 根据权利要求12所述的散热装置,其中,所述至少一个机架的第一端 和第二端均设置有风墙板,所述壳体、所述风墙板和所述通风隔板之间形成热风通道。
  14. 根据权利要求13所述的散热装置,其中,所述风墙板开设有风墙口。
  15. 根据权利要求14所述的散热装置,其中,所述风墙口靠近所述至少一个机架的顶部的一侧开设;
  16. 根据权利要求14所述的散热装置,其中,所述风墙口处活动设置有风墙口滑板,通过所述风墙口滑板的滑动来调节所述风墙口的开度。
  17. 根据权利要求16所述的散热装置,其中,所述通风口滑板和所述风墙口滑板均设置有传动件,所述通风口滑板的传动件设置为带动所述通风口滑板滑动,所述风墙口滑板的传动件设置为带动所述风墙口滑板滑动。
  18. 根据权利要求12-17中任一项所述的散热装置,其中,位于所述热风通道的壳体的侧壁开设有至少一个热风出口。
  19. 根据权利要求18所述的散热装置,其中,每个热风出口处设置有一个空调的回风风扇。
  20. 根据权利要求1-19任一项所述的散热装置,其中,所述至少一个机架包括对称设置的两组机架,所述两组机架之间形成冷风通道,所述曲面导流板包括两个曲面导流板,每组机架的顶部设置有一个曲面导流板,所述一个曲面导流板的凹面与所述每组机架之间形成一个导流空腔,两个导流空腔的开口侧相对设置;
  21. 根据权利要求20所述的散热装置,其中,所述分流板包括两个分流板,每个导流空腔内设置有一个分流板,所述一个分流板倾斜设置于所述每个导流空腔内。
  22. 根据权利要求21所述的散热装置,其中,每个分流板所在的平面垂直于所述两组机架的顶面。
  23. 根据权利要求21所述的散热装置,其中,每个曲面导流板的凹面一侧设置有导轨,所述导轨沿所述每个曲面导流板的长度方向布置,所述每个曲面导流板形成的导流空腔内的分流板滑动设置于所述导轨。
  24. 根据权利要求23所述的散热装置,其中,每个分流板上设置有驱动件,所述驱动件设置为驱动所述每个分流板沿所述每个分流板所在的导轨滑动。
  25. 根据权利要求17所述的散热装置,其中,位于所述热风通道的壳体的侧壁开设有至少一个热风出口;每个热风出口处设置有一个空调的回风风扇;
    所述至少一个机架包括对称设置的两组机架,所述两组机架之间形成冷风 通道,所述曲面导流板包括两个曲面导流板,每组机架的顶部设置有一个曲面导流板,所述一个曲面导流板的凹面与所述每组机架之间形成一个导流空腔,两个导流空腔的开口侧相对设置;所述分流板包括两个分流板,每个导流空腔内设置有一个分流板,所述一个分流板倾斜设置于所述每个导流空腔内;每个曲面导流板的凹面一侧设置有导轨,所述导轨沿所述每个曲面导流板的长度方向布置,所述每个曲面导流板形成的导流空腔内的分流板滑动设置于所述导轨;每个分流板上设置有驱动件,所述驱动件设置为驱动所述每个分流板沿所述每个分流板所在的导轨滑动;
    所述至少一个机架上均匀布置有至少一个温度传感器,所述至少一个温度传感器设置为检测所述储能系统的温度;
    所述散热装置还包括控制器,所述控制器独立电性连接每个温度传感器、所述驱动件、所述传动件和每个空调,所述控制器设置为接收所述至少一个温度传感器发出的反馈信号,并根据所述反馈信号控制所述驱动件的转动、每个空调的制冷参数和所述传动件的拉伸,每个空调的制冷参数用于调节所述每个空调的冷风的风量和冷风的温度,所述每个空调的回风风扇的转速由所述每个空调的冷风的风量调节。
  26. 一种储能系统散热方法,采用如权利要求1-25任一项所述的储能系统散热装置,包括:
    所述至少一个空调内的冷风经所述曲面导流板吹入所述壳体内,所述分流板调节所述冷风的流向,对储能系统进行冷却散热。
  27. 根据权利要求26所述的散热方法,其中,所述至少一个空调内的冷风经所述曲面导流板吹入所述壳体内,所述分流板调节所述冷风的流向,对所述储能系统进行冷却散热,包括:
    所述至少一个空调产生的冷风经过所述曲面导流板和所述分流板进行导流,吹入冷风通道,对所述至少一个机架上的储能系统进行冷却散热,所述冷风与所述储能系统换热后进入热风通道并通过至少一个回风风扇排出;
    在至少一个温度传感器检测到所述储能系统的温度高于第一温度阈值的情况下,控制器调节至少一个空调,提高至少一个空调的冷风的风量、降低所述冷风的温度并提高至少一个回风风扇的转速;在所述至少一个温度传感器检测到所述储能系统中温度不均匀的情况下,所述控制器控制驱动件驱动所述分流板沿导轨滑动以调节冷风的分布。
  28. 根据权利要求27所述的散热方法,其中,所述第一温度阈值的范围为55℃~65℃。
  29. 根据权利要求27所述的散热方法,其中,所述第一温度阈值的范围为45℃~55℃。
  30. 根据权利要求28所述的方法,每台空调的冷风的风量的范围为1000m 3/h~2000m 3/h。
  31. 根据权利要求28所述的方法,每台空调的冷风的风量的范围为500m 3/h~7000m 3/h。
  32. 根据权利要求28所述的方法,每台空调的冷风的温度的范围为15℃~20℃。
PCT/CN2021/108549 2021-02-02 2021-07-27 储能系统散热装置及储能系统散热方法 WO2022166130A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/625,773 US20230352772A1 (en) 2021-02-02 2021-07-27 Heat dissipation device of energy storage system and heat dissipation method for energy storage system
EP21830311.3A EP4068483A4 (en) 2021-02-02 2021-07-27 HEAT DISSIPATION DEVICE FOR ENERGY STORAGE AND METHOD FOR HEAT DISSIPATION FOR ENERGY STORAGE
AU2021310843A AU2021310843B2 (en) 2021-02-02 2021-07-27 Heat dissipation device of energy storage system and heat dissipation method for energy storage system
JP2021578228A JP7402901B2 (ja) 2021-02-02 2021-07-27 エネルギー貯蔵システム用放熱装置およびエネルギー貯蔵システム放熱方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110145288.1A CN112968245B (zh) 2021-02-02 2021-02-02 一种储能系统散热装置及其散热方法
CN202110145288.1 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022166130A1 true WO2022166130A1 (zh) 2022-08-11

Family

ID=76272411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108549 WO2022166130A1 (zh) 2021-02-02 2021-07-27 储能系统散热装置及储能系统散热方法

Country Status (6)

Country Link
US (1) US20230352772A1 (zh)
EP (1) EP4068483A4 (zh)
JP (1) JP7402901B2 (zh)
CN (1) CN112968245B (zh)
AU (1) AU2021310843B2 (zh)
WO (1) WO2022166130A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087844A (ko) * 2020-01-03 2021-07-13 주식회사 엘지에너지솔루션 전력 저장 장치 및 전력 저장 시스템
CN112968245B (zh) * 2021-02-02 2023-02-03 上海派能能源科技股份有限公司 一种储能系统散热装置及其散热方法
CN113506938A (zh) * 2021-07-02 2021-10-15 华氢能源动力科技(江苏)有限公司 带有分布式云储能系统的智能微电网鲁棒控制方法及装置
CN114039124A (zh) * 2021-11-09 2022-02-11 镇江市高等专科学校 一种基于磁制冷效应的动力电池多级散热系统及控制方法
CN114592134A (zh) * 2022-03-09 2022-06-07 河南龙佰智能装备制造有限公司 一种用于海绵钛i型反应器大盖的风冷装置
CN114639898B (zh) * 2022-03-25 2022-12-23 南通国轩新能源科技有限公司 一种锂离子电池储能舱分布式智慧温控系统
CN116826249B (zh) * 2023-08-28 2023-10-31 江苏果下科技有限公司 一种风冷电池户外柜及其使用方法
CN117239300B (zh) * 2023-11-16 2024-01-26 山东省环能设计院股份有限公司 一种快速散热的高效储能装置
CN117293471B (zh) * 2023-11-23 2024-02-20 珠海科创储能科技有限公司 一种移动式储能集装箱散热装置
CN117742409A (zh) * 2023-12-21 2024-03-22 九江物瑞网络科技有限公司 基于工业互联网的数据处理方法及系统
CN117497909B (zh) * 2023-12-31 2024-03-29 常州博瑞电力自动化设备有限公司 一种风冷式储能设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202997004U (zh) * 2012-11-27 2013-06-12 比亚迪股份有限公司 一种移动储能电站的散热系统
US20130189916A1 (en) * 2012-01-20 2013-07-25 Delta Electronics, Inc. Rack system and ventilation apparatus thereof
CN206976530U (zh) * 2017-06-27 2018-02-06 深圳拓邦新能源技术有限公司 一种电池储能集装箱
CN109037542A (zh) 2018-09-29 2018-12-18 山东天瀚新能源科技有限公司 一种散热优良的移动储能电池柜
CN109638379A (zh) 2018-11-19 2019-04-16 浙江南都电源动力股份有限公司 储能模组用逆流式双风道冷却系统
CN111029496A (zh) 2019-11-20 2020-04-17 江苏科技大学 一种可高效散热的储能电池散热支架
CN211980696U (zh) * 2020-05-06 2020-11-20 湖北亿纬动力有限公司 一种电池储能集装箱
CN212366085U (zh) * 2020-06-02 2021-01-15 桑顿新能源科技有限公司 散热风道及储能集装箱散热系统
CN112968245A (zh) * 2021-02-02 2021-06-15 上海派能能源科技股份有限公司 一种储能系统散热装置及其散热方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830243B2 (ja) * 1997-10-06 2006-10-04 トヨタ自動車株式会社 電池電源装置
JP3973147B2 (ja) * 2002-07-09 2007-09-12 本田技研工業株式会社 冷却装置の配置構造
JP5364791B2 (ja) * 2009-09-30 2013-12-11 株式会社日立製作所 蓄電モジュール
US20110256431A1 (en) * 2010-04-16 2011-10-20 Coda Automotive, Inc. Battery temperature control
JP6168908B2 (ja) * 2013-08-12 2017-07-26 株式会社東芝 発熱体収容装置
JP6121856B2 (ja) * 2013-09-20 2017-04-26 三菱重工業株式会社 蓄電装置
JP6260625B2 (ja) * 2013-12-11 2018-01-17 日立化成株式会社 電力貯蔵装置
CN204651716U (zh) * 2015-02-28 2015-09-16 中兴通讯股份有限公司 一种户外电源机柜和户外电源系统
US20180062230A1 (en) * 2016-08-31 2018-03-01 General Electric Company Airflow cooling for an energy storage system
CN109148999A (zh) * 2017-12-25 2019-01-04 北京海博思创科技有限公司 电池热管理系统及储能集装箱
JP7068053B2 (ja) * 2018-06-04 2022-05-16 株式会社東芝 冷却システム
KR102115484B1 (ko) * 2018-07-19 2020-05-26 (주)에코파워텍 효율적 냉각이 가능한 ess하우징 및 이를 포함하는 모듈형 공조시스템
CN109742482B (zh) * 2019-01-08 2024-02-02 西南交通大学 一种有轨电车储能热管理系统和方法
EP3799188A4 (en) * 2019-03-14 2022-03-16 NGK Insulators, Ltd. BATTERY HOLDER
TWM592865U (zh) * 2019-11-29 2020-04-01 台達電子工業股份有限公司 貨櫃式儲能系統
CN211350908U (zh) * 2020-03-04 2020-08-25 湘投云储科技有限公司 一种储能集装箱用风道结构及储能集装箱
CN211605363U (zh) * 2020-03-05 2020-09-29 北京海博思创科技股份有限公司 送风件和储能集装箱
CN211789385U (zh) * 2020-05-13 2020-10-27 中国电建集团福建省电力勘测设计院有限公司 新型电池机柜的自动均匀散热控制装置
CN111697287A (zh) * 2020-06-10 2020-09-22 广州智光电气技术有限公司 一种集装箱式储能系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130189916A1 (en) * 2012-01-20 2013-07-25 Delta Electronics, Inc. Rack system and ventilation apparatus thereof
CN202997004U (zh) * 2012-11-27 2013-06-12 比亚迪股份有限公司 一种移动储能电站的散热系统
CN206976530U (zh) * 2017-06-27 2018-02-06 深圳拓邦新能源技术有限公司 一种电池储能集装箱
CN109037542A (zh) 2018-09-29 2018-12-18 山东天瀚新能源科技有限公司 一种散热优良的移动储能电池柜
CN109638379A (zh) 2018-11-19 2019-04-16 浙江南都电源动力股份有限公司 储能模组用逆流式双风道冷却系统
CN111029496A (zh) 2019-11-20 2020-04-17 江苏科技大学 一种可高效散热的储能电池散热支架
CN211980696U (zh) * 2020-05-06 2020-11-20 湖北亿纬动力有限公司 一种电池储能集装箱
CN212366085U (zh) * 2020-06-02 2021-01-15 桑顿新能源科技有限公司 散热风道及储能集装箱散热系统
CN112968245A (zh) * 2021-02-02 2021-06-15 上海派能能源科技股份有限公司 一种储能系统散热装置及其散热方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068483A4

Also Published As

Publication number Publication date
JP7402901B2 (ja) 2023-12-21
CN112968245A (zh) 2021-06-15
EP4068483A1 (en) 2022-10-05
AU2021310843A1 (en) 2022-08-18
JP2023516518A (ja) 2023-04-20
CN112968245B (zh) 2023-02-03
AU2021310843B2 (en) 2023-06-15
US20230352772A1 (en) 2023-11-02
EP4068483A4 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2022166130A1 (zh) 储能系统散热装置及储能系统散热方法
CN212366085U (zh) 散热风道及储能集装箱散热系统
WO2018040902A1 (zh) 电池模组、动力电池包及汽车
CN207517757U (zh) 储能用恒温机柜及其柜体
CN209947998U (zh) 散热效果更佳的储能集装箱
CN209104325U (zh) 集装箱空调冷却系统及集装箱
CN212161902U (zh) 一种小型储能电池柜
US10991997B2 (en) Energy storage container and heat dissipation system for the same
CN114976361A (zh) 一种储能集装箱
CN115589697A (zh) 机柜
CN102609063B (zh) 双面封闭循环式高效冷却装置
CN219181964U (zh) 储能柜
CN217691343U (zh) 一种储能集装箱用风道及储能集装箱
CN217881677U (zh) 一种储能电池及其热管理系统
CN218241958U (zh) 储能柜
CN215377536U (zh) 一种储能电池系统
CN213694638U (zh) 一种机柜冷却系统及机房
CN213716955U (zh) 一种储能集装箱电池散热系统
CN212519772U (zh) 一种新风双冷却系统
CN211481799U (zh) 一种机柜及数据机房
CN111726964B (zh) 一种双层集装箱制冷系统及其数据中心、控制方法
CN213847343U (zh) 一种数据机房网络机柜
CN217848080U (zh) 一种用于集装箱储能系统的分布式顶置空调散热结构
CN221632757U (zh) 预制舱式储能设备
CN221651650U (zh) 一种集装箱式储能装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021578228

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021310843

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021830311

Country of ref document: EP

Effective date: 20220103

ENP Entry into the national phase

Ref document number: 2021310843

Country of ref document: AU

Date of ref document: 20210727

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE