WO2022156238A1 - 转轮调湿装置及具有其的空调系统及控制方法和控制器 - Google Patents

转轮调湿装置及具有其的空调系统及控制方法和控制器 Download PDF

Info

Publication number
WO2022156238A1
WO2022156238A1 PCT/CN2021/118129 CN2021118129W WO2022156238A1 WO 2022156238 A1 WO2022156238 A1 WO 2022156238A1 CN 2021118129 W CN2021118129 W CN 2021118129W WO 2022156238 A1 WO2022156238 A1 WO 2022156238A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
conditioning system
mode
indoor
Prior art date
Application number
PCT/CN2021/118129
Other languages
English (en)
French (fr)
Inventor
江宇
吴宣楠
张宇晟
丁云霄
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2022156238A1 publication Critical patent/WO2022156238A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioners, in particular to a rotary humidity control device and an air conditioner system with the same, a control method and a controller.
  • the air temperature is high, and it needs to be cooled with a low-temperature cold source before it can be sent to the room, which makes the construction of the entire air conditioning system very complicated.
  • the present invention aims to solve the technical problem of low efficiency of the existing electrically heated adsorption runners at least to a certain extent.
  • a first aspect of the present invention provides a rotary humidity control device, the rotary humidity control device includes an adsorption-type rotary wheel, and the first part of the adsorption-type rotary wheel is located on the air inlet side of the fresh air system of the air conditioning system , the second part of the adsorption runner is located on the return air side of the fresh air system; the first heat exchanger, the first heat exchanger is arranged on the return air side close to the second part, and the first heat exchanger is connected to the air conditioning system.
  • the refrigerant circuit is connected, and the air-conditioning system controls the first heat exchanger to cool or heat through the refrigerant circuit; the second heat exchanger, the second heat exchanger is arranged on the air inlet side near the first part, and the second heat exchanger is connected to the refrigerant
  • the circuit is connected, and the air conditioning system controls the second heat exchanger to cool or heat through the refrigerant circuit.
  • the rotary humidity control device of the present invention utilizes the energy of the air conditioning system to absorb and release moisture in the air, so as to achieve the purpose of conditioning the air conditioning air and improve the energy utilization rate.
  • the air-conditioning system cools or heats the adsorption runner through the first heat exchanger and the second heat exchanger.
  • the rotary humidity control device humidifies the fresh air entering the room.
  • the air conditioning system controls the first heat exchanger to heat and the second heat exchanger to cool
  • the rotary humidity control device The fresh air entering the room is dehumidified, so as to achieve the purpose of adjusting the humidity of the indoor air-conditioning wind.
  • a second aspect of the present invention provides an air-conditioning system, the air-conditioning system includes: a refrigerant circuit, the refrigerant circuit is formed by sequentially connecting a compressor, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger, and an indoor unit air circuit of the air-conditioning system In thermal contact with the refrigerant circuit; a fresh air system, the fresh air system includes the rotary humidity control device according to the first aspect of the present invention, and the rotary humidity control device is connected with the refrigerant circuit and the indoor unit air circuit.
  • the air return side of the fresh air system is provided with an indoor return air duct and an outdoor exhaust duct that communicate with the adsorption runner of the runner humidity control device, and the first heat exchanger of the runner humidity control device It is arranged on the indoor return air duct and/or the outdoor air exhaust duct.
  • the air inlet side of the fresh air system is provided with an outdoor air inlet duct and an indoor air supply duct connected to the adsorption runner, and the second heat exchanger of the runner humidity control device Set in the outdoor air intake duct.
  • the indoor heat exchanger includes an indoor heating heat exchanger and an indoor cooling heat exchanger
  • the compressor and the outdoor heat exchanger constitute an outdoor unit, a throttling device, an indoor heating heat exchanger and an indoor cooling heat exchanger
  • the heat exchanger constitutes the indoor unit
  • the refrigerant circuit includes three refrigerant pipes and a refrigerant distributor that connect the outdoor unit and the indoor unit.
  • the refrigerant circuit controls the indoor heating heat exchanger, the first heat exchanger, and the indoor refrigeration heat exchanger through the refrigerant distributor. And the refrigerant flow direction and flow in the second heat exchanger.
  • the refrigerant distributor includes a first regulating valve module that communicates with the outdoor unit and the first heat exchanger, and a second regulating valve module that communicates the outdoor unit and the second heat exchanger.
  • a third aspect of the present invention further provides a control method for an air conditioning system, the control method for the air conditioning system is implemented by the air conditioning system in the second aspect of the present invention, and the control method includes: acquiring a target humidity value and a real-time humidity value of the air conditioning system; According to the fact that the real-time humidity value is greater than the target humidity value, and the fresh air system of the air-conditioning system is in the fresh-air dehumidification mode, the first heat exchanger of the air-conditioning system is controlled to execute the condensation mode, and the second heat exchanger of the air-conditioning system to execute the evaporation mode; according to the real-time humidity value is less than the target humidity value, and the fresh air system is in the fresh air humidification mode, the first heat exchanger of the air conditioning system is controlled to execute the evaporation mode, and the second heat exchanger of the air conditioning system is controlled to execute the condensation mode.
  • controlling the first heat exchanger of the air-conditioning system to execute the condensation mode further includes: acquiring a target temperature value and a real-time temperature value of the adsorption side of the adsorption-type runner of the air-conditioning system; according to the real-time temperature value being greater than the target temperature value, the opening degree of the first regulating valve module of the first heat exchanger is controlled to decrease; according to the real-time temperature value being less than the target temperature value, the opening degree of the first regulating valve module of the first heat exchanger is controlled to increase.
  • controlling the second heat exchanger of the air-conditioning system to execute the condensation mode further includes: acquiring a target temperature value and a real-time temperature value of the adsorption side of the adsorption-type runner of the air-conditioning system; according to the real-time temperature value being greater than the target temperature value, the opening degree of the second regulating valve module of the second heat exchanger is controlled to decrease; according to the real-time temperature value being less than the target temperature value, the opening degree of the second regulating valve module of the second heat exchanger is controlled to increase.
  • control method further includes: according to the real-time humidity value still greater than the target humidity value, controlling the opening of the second regulating valve module of the second heat exchanger to increase; according to the real-time humidity value still smaller than the target humidity value , the opening degree of the first regulating valve module of the first heat exchanger is controlled to increase.
  • a fourth aspect of the present invention also provides a controller, the controller includes a computer-readable storage medium and a control device, the computer-readable storage medium stores instructions, and the third aspect of the present invention is implemented when the control device executes the instructions
  • the control method of an air-conditioning system comprises: an acquisition module for acquiring a target humidity value and a real-time humidity value of the air-conditioning system; a control module for according to whether the real-time humidity value is greater than the target humidity value, and the fresh air system of the air-conditioning system is fresh air
  • the first heat exchanger of the air-conditioning system is controlled to execute the condensation mode
  • the second heat exchanger of the air-conditioning system is controlled to execute the evaporation mode
  • the control module is further configured to control the real-time humidity value to be less than the target humidity value, and the fresh air system is in the fresh air humidification mode
  • the first heat exchanger of the air conditioning system is controlled to execute the evaporation mode
  • FIG. 1 is a schematic structural diagram of a rotating wheel humidity control device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an air conditioning system according to an embodiment of the present invention.
  • Fig. 3 is the work flow curve of the fresh air dehumidification mode on the enthalpy humidity diagram according to an embodiment of the present invention
  • FIG. 4 is a work flow curve of a fresh air humidification mode on an enthalpy-humidity diagram according to an embodiment of the present invention
  • FIG. 5 is a system diagram of the air-conditioning system shown in FIG. 2;
  • FIG. 6 is a schematic structural diagram of the air-conditioning system shown in FIG. 5 in a main cooling mode
  • FIG. 7 is a schematic structural diagram of the air-conditioning system shown in FIG. 5 in the main heating mode
  • FIG. 8 is a schematic structural diagram of a rotary humidity control device according to another embodiment of the present invention.
  • FIG. 9 is a flowchart of a control method of an air conditioning system according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a control method of an air conditioning system according to another embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a controller according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a control device of an air conditioning system according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a control device of an air conditioning system according to another embodiment of the present invention.
  • spatially relative terms such as “on”, “inside”, “end” may be used herein to describe the relationship of one element or feature to another element or feature as shown in the figures “, “outside”, “side”, etc.
  • This spatially relative term is intended to include different orientations of the mechanism in use or operation in addition to the orientation depicted in the figures. For example, if the mechanism in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above the other elements or features” above features”. Thus, the example term “below” can encompass both an orientation of above and below.
  • the mechanism may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • fresh air humidity control means that the outdoor fresh air is sent into the room after passing through the rotary humidity control device, and the indoor return air is discharged to the outdoors after passing through the rotary humidity control device.
  • return air humidity control mentioned in the embodiment means that the outdoor fresh air is discharged to the outdoors after passing through the rotary humidity control device, and the indoor return air is sent indoors after passing through the rotary humidity control device.
  • a first aspect of the present invention provides a rotary humidity control device.
  • the rotary humidity control device includes an adsorption runner E, a first heat exchanger C and a second heat exchanger D.
  • the adsorption type The first part of the runner E is located on the intake side of the fresh air system of the air conditioning system, the second part of the adsorption runner E is located on the return air side of the fresh air system, and the first heat exchanger C is arranged on the return air side close to the adsorption runner.
  • the position of the second part of E, and the first heat exchanger C is in communication with the refrigerant circuit of the air-conditioning system.
  • the air-conditioning system controls the first heat exchanger C to cool or heat through the refrigerant circuit, and the second heat exchanger D is arranged in the air inlet.
  • the side is close to the position of the first part of the adsorption runner E, and the second heat exchanger D is communicated with the refrigerant circuit, and the air conditioning system controls the second heat exchanger D to cool or heat through the refrigerant circuit.
  • the rotary humidity control device proposed by the present invention can utilize the low-temperature heat source generated by the air conditioning system to perform moisture adsorption and desorption, and the materials used in the adsorption rotary E include but are not limited to silica gel, molecular sieve, sodium polyacrylate , MOF (metal-organic framework) or mesoporous silica gel, the moisture absorption side of the adsorption runner E (the specific position of the moisture absorption side is changed according to the needs of humidity control) by placing a heat exchanger in the evaporation mode to improve the suction side.
  • the materials used in the adsorption rotary E include but are not limited to silica gel, molecular sieve, sodium polyacrylate , MOF (metal-organic framework) or mesoporous silica gel
  • MOF metal-organic framework
  • mesoporous silica gel the moisture absorption side of the adsorption runner E (the specific position of the moisture absorption side is
  • the relative humidity of the air increases the amount of water absorption, and at the same time, a heat exchanger in the condensation mode is placed on the water release side to heat the air to achieve the effect of the adsorption runner E to regenerate the water.
  • the embodiments of the present application do not need to use additional electric heating devices, thereby significantly improving the energy efficiency of the entire air conditioning system, solving the problem of poor humidity control by the air conditioning system, and realizing independent temperature and humidity control Effect.
  • the air conditioning system 100 includes a refrigerant circuit and a fresh air system in a fresh air humidity control mode.
  • the refrigerant circuit consists of a compressor 10, an outdoor heat exchanger 20, a throttle
  • the device, the indoor heating heat exchanger 30 and the indoor refrigerating heat exchanger 40 are connected in sequence to form, and the fresh air system includes the rotary humidity control device according to the first aspect of the present invention.
  • the components shown in FIG. 2 are marked as: A. Outdoor unit; B. MS refrigerant distributor of air conditioning system; C. The first heat exchanger of the rotary humidity control device; D. The second heat exchanger of the rotary humidity control device; E.
  • Adsorption of the rotary humidity control device type runner F, the air supply side fan of the runner humidity control device; G, the exhaust side fan of the runner humidity control device; OA, outdoor fresh air; RA, indoor return air; SA, indoor air supply; EA, outdoor Exhaust.
  • the return air side of the fresh air system is provided with an indoor return air duct and an outdoor exhaust duct that communicate with the adsorption runner E, and the first heat exchanger C is arranged on the indoor return air duct and/or the outdoor exhaust duct, and the fresh air
  • the air inlet side of the system is provided with an outdoor air inlet pipe and an indoor air supply pipe communicating with the adsorption runner E, and the second heat exchanger D is arranged in the outdoor air inlet pipe and/or the indoor air supply pipe.
  • the above air-conditioning system is a multi-connected system that can recover heat from three pipes and can realize simultaneous cooling and heating.
  • the compressor 10 and the outdoor heat exchanger 20 constitute the outdoor unit
  • the throttling device, the indoor heating heat exchanger 30 and the indoor cooling heat exchanger 40 constitute the indoor unit
  • the refrigerant circuit includes three refrigerant pipes connecting the outdoor unit and the indoor unit and the MS Refrigerant distributor B, the refrigerant circuit controls the refrigerant flow direction and flow in the indoor heating heat exchanger 30, the first heat exchanger C, the indoor refrigeration heat exchanger 40 and the second heat exchanger D through the MS refrigerant distributor B.
  • the three refrigerant pipes are a high-pressure gas pipe, a high-pressure liquid pipe and a low-pressure liquid pipe.
  • the refrigerant in the three refrigerant pipes is sent to the indoor designated heat exchanger in the MS refrigerant distributor B according to the user's needs. .
  • the rotary humidity control device can realize the switching of dehumidification or humidification by controlling the working mode and working temperature of the first heat exchanger C and the second heat exchanger D:
  • the outdoor fresh air OA leads to the hygroscopic area.
  • the outdoor fresh air OA first passes through the second heat exchanger D (in evaporation mode), the outdoor fresh air OA is cooled to the dew point, and even dehumidifies through the condensation of the second heat exchanger D
  • the humidity of the outdoor fresh air OA is reduced to a certain value less than the dew point, and then it is fully dehumidified to the set state point after passing through the adsorption runner E, and is finally attracted by the air supply side fan F and sent to the indoor space.
  • the indoor return air RA on the other side is heated by the first heat exchanger C (in the condensing mode) during the return air process, and after passing through the adsorption runner E, it is attracted by the exhaust side fan G and discharged to the outside.
  • the heated return air discharges the moisture stored in the adsorption runner E out of the room, thus completing the complete working cycle of the adsorption runner E.
  • the outdoor fresh air OA is condensed and dehumidified to OA1 through the second heat exchanger D, and then dehumidified twice through the area of the adsorption runner E to the air supply state point SA and sent indoors.
  • the indoor return air RA is heated to RA1 by the first heat exchanger C, and then regenerated by the desorption area of the adsorption runner E, and the water is discharged outdoors with the outdoor exhaust air EA.
  • the outdoor fresh air OA on the dehumidification side controls the state of OA1 by adjusting the evaporation temperature of the second heat exchanger D, so that the dehumidification amount borne by the adsorption runner E is constant, and then combined with the regeneration side by adjusting the condensation temperature of the first heat exchanger C
  • the state of RA1 and the rotational speed of the adsorption rotor E are controlled to control the state of the outdoor exhaust air SA.
  • the outdoor fresh air OA leads to the hygroscopic area.
  • the outdoor fresh air OA is first heated by the second heat exchanger D (in condensing mode), and after passing through the adsorption runner E, it is sucked into the room by the air supply side fan F.
  • the heated outdoor fresh air OA in the process sends the moisture stored in the adsorption runner E into the room to realize humidification.
  • the indoor air RA on the other side is cooled by the first heat exchanger C (in evaporative mode) during the return air process, and the relative humidity of the indoor air RA is increased to about 100% area, which makes the moisture in the return air more easily absorbed.
  • the adsorption runner E is adsorbed, and then sucked by the exhaust side fan G and discharged to the outside, thus completing the complete working cycle of the adsorption runner E.
  • the outdoor fresh air OA is heated to OA1 by the second heat exchanger D, and then is humidified to the air supply state point SA through the desorption area of the adsorption runner E and sent into the room.
  • the indoor return air RA is cooled to RA1 through the first heat exchanger C, and then the moisture is collected by the adsorption area of the adsorption runner E, and then discharged to the outdoors with the outdoor exhaust air EA.
  • the indoor return air RA on the moisture absorption side controls the state of RA1 by adjusting the evaporation temperature of the first heat exchanger C, so that the relative humidity of the air entering the adsorption area of the adsorption runner E is close to saturation, thereby improving the moisture absorption efficiency. Then combined with the outdoor fresh air OA on the humidification side, the state of OA1 is controlled by adjusting the condensation temperature of the second heat exchanger D, and the rotational speed of the adsorption runner E to control the state of the indoor air supply SA.
  • the refrigerant distributor B includes a first regulating valve module that communicates with the outdoor unit A and the first heat exchanger C, and a first regulating valve module that communicates the outdoor unit A and the second heat exchanger D.
  • the second regulating valve module the main components shown in the figure are marked as: A, outdoor unit; B, refrigerant distributor; B1 ⁇ B4, electronic expansion valve; C, first heat exchanger; C1, electronic expansion valve; C2 , heat exchanger body; D, second heat exchanger; D1, electronic expansion valve; D2, heat exchanger body.
  • the outdoor unit A switches the main cooling mode and the main heating mode according to the outdoor working conditions, and switches the refrigerant flow direction to the indoor unit by adjusting the opening degree of the electronic expansion valves B1-B4 in the refrigerant distributor B, so as to ensure the first heat exchanger C and the second heat exchanger D work according to the cooling or heating mode required by the waterless humidity control module, and at the same time adjust the required evaporating temperature and condensing temperature through the electronic expansion valve C1 and electronic expansion valve D1 on the B side of the indoor unit, thereby The temperature of the air passing through the first heat exchanger C and the second heat exchanger D is adjusted to realize the normal transfer of water vapor between different regions of the adsorption runner E.
  • Electronic expansion valve B1, electronic expansion valve B2 and electronic expansion valve C1 form the first regulating valve module of the first heat exchanger C
  • electronic expansion valve B3, electronic expansion valve B4 and electronic expansion valve D1 form the second heat exchanger D
  • the second regulating valve module The second regulating valve module.
  • FIG. 6 shows the refrigerant system diagram when the air conditioning system is in the main cooling mode.
  • the outdoor heat exchanger A4 is a condenser
  • the electronic expansion valve B1 in the MS refrigerant distributor B is opened
  • the electronic expansion valve B2 is closed
  • the first heat exchanger C in the indoor unit B is in the condensing mode
  • the electronic expansion valve B3 is closed.
  • the electronic expansion valve B4 is opened
  • the second heat exchanger D is in the evaporation mode
  • the rotary humidity control device is in the fresh air humidification mode.
  • the working modes of the first heat exchanger C and the second heat exchanger D are changed, so that the working mode of the rotary humidity control device can be switched to the one shown in FIG. 7 .
  • the opening degree of the electronic expansion valve C1 before the first heat exchanger C and the opening degree of the electronic expansion valve C2 before the second heat exchanger D the first heat exchanger C and the second heat exchanger can be adjusted.
  • the temperature of the refrigerant in D is controlled to achieve the effect of adjusting humidity and temperature.
  • heat exchanger 11 heat exchanger 11
  • heat exchanger 2 heat exchanger 3
  • heat exchanger 3 heat exchanger 3
  • the air exchange system of the return air humidity control mode also belongs to the protection scope of the embodiment of the present application, and the following is elaborated by the air exchange system of the return air humidity control mode:
  • the indoor return air RA leads to the indoor moisture absorption area.
  • the indoor return air RA is first cooled to the dew point through the heat exchanger 2 (in evaporation mode), and even the air humidity is reduced to a certain value through condensation and dehumidification, and then After passing through the adsorption-type rotor 1, it is sufficiently dehumidified to reach the set state point, and finally, the indoor air supply SA sent to the indoor space is sucked through the air supply side fan 5.
  • the outdoor fresh air OA on the other side is heated by the heat exchanger 3 (in the condensing mode)
  • after passing through the adsorption runner 1 it is sucked by the exhaust side fan 4 and discharged to the outdoor outdoor exhaust air EA.
  • the fresh air will discharge the moisture stored in the adsorption runner 1 out of the room, thus completing the complete working cycle of the adsorption runner 1 .
  • the indoor return air RA leads to the indoor moisture release area.
  • the indoor return air RA is first heated by the heat exchanger 2 (in the condensing mode), and after passing through the adsorption runner 1, it is sucked by the air supply side fan 5 and sent into the room.
  • the indoor return air RA heated in the process sends the moisture stored in the adsorption runner E to the indoor indoor air supply SA to realize humidification.
  • the outdoor fresh air OA on the other side is cooled down by the heat exchanger 3 (in evaporation mode), and the relative humidity is raised to about 100% area, so that the moisture in the outdoor fresh air OA is more easily absorbed by the adsorption runner 1, and then passes through the exhaust air.
  • the wind side fan 4 is discharged to the outside, thus completing the complete working cycle of the adsorption runner 1 .
  • an embodiment of the present invention provides a control method for an air-conditioning system.
  • the control method includes: S10, obtaining a target humidity value and a real-time humidity value of the air-conditioning system; S12 , according to the fact that the real-time humidity value is greater than the target humidity value, and the fresh air system of the air conditioning system is in the fresh air dehumidification mode, control the first heat exchanger of the air conditioning system to execute the condensation mode, and the second heat exchanger of the air conditioning system to execute the evaporation mode; S14, according to When the real-time humidity value is less than the target humidity value, and the fresh air system is in the fresh air humidification mode, the first heat exchanger of the air conditioning system is controlled to execute the evaporation mode, and the second heat exchanger of the air conditioning system to execute the condensation mode.
  • Electronic expansion valve B1, electronic expansion valve B2 and electronic expansion valve C1 form the first regulating valve module of the first heat exchanger C
  • electronic expansion valve B3, electronic expansion valve B4 and electronic expansion valve D1 form the second heat exchanger D The second regulating valve module.
  • controlling the first heat exchanger of the air-conditioning system to execute the condensation mode further includes: acquiring a target temperature value and a real-time temperature value of the adsorption side of the adsorption-type runner of the air-conditioning system; according to the real-time temperature value being greater than the target temperature value, the opening degree of the first regulating valve module of the first heat exchanger is controlled to decrease, preferably, the opening degree of the electronic expansion valve C1 in the first regulating valve module is controlled to decrease; according to the real-time temperature value less than the target temperature value , the opening degree of the first regulating valve module of the first heat exchanger is controlled to increase, preferably, the opening degree of the electronic expansion valve C1 in the first regulating valve module is controlled to increase.
  • controlling the second heat exchanger of the air-conditioning system to execute the condensation mode further includes: acquiring a target temperature value and a real-time temperature value of the adsorption side of the adsorption-type runner of the air-conditioning system; according to the real-time temperature value being greater than the target temperature value, the opening degree of the second regulating valve module of the second heat exchanger is controlled to decrease, preferably, the opening degree of the electronic expansion valve D1 in the second regulating valve module is controlled to decrease; according to the real-time temperature value less than the target temperature value , the opening degree of the second regulating valve module of the second heat exchanger is controlled to increase, preferably, the opening degree of the electronic expansion valve D1 in the second regulating valve module is controlled to increase.
  • the control method further includes: according to the fact that the real-time humidity value is still greater than the target humidity value, controlling the opening of the second regulating valve module of the second heat exchanger to increase, preferably, controlling the second regulating valve module
  • the opening degree of the electronic expansion valve B4 in the group increases; according to the real-time humidity value still less than the target humidity value, the opening degree of the first regulating valve module of the first heat exchanger is controlled to increase, preferably, the first regulating valve module is controlled to increase the opening degree.
  • the opening degree of the electronic expansion valve B1 increases.
  • FIG. 10 discloses a detailed flowchart of the control method of the air-conditioning system, wherein the specific steps of the control method of the air-conditioning system disclosed in FIG. 10 have been implemented above.
  • a detailed introduction is given. The following is a brief introduction to the control method of the air-conditioning system published in Figure 10:
  • the operation mode of the rotary humidity control device is automatically determined according to the fresh air humidity, the return air humidity and the dehumidification target humidity.
  • the controller detects the adsorption inlet temperature T2 and the supply air humidity W2 of the adsorption rotor according to the humidity target value set by the user, the fresh air humidity sensor and the return air temperature and humidity sensor.
  • the first heat exchanger and the second heat exchanger work in the evaporation mode and the condensing mode respectively, and correspondingly adjust the opening degrees of the regulating valve modules B1-B4 in the MS refrigerant distributor.
  • the temperature and humidity control module of the controller calculates according to the humidity target value and the detection value of the humidity sensor, acts according to the judgment condition, and sends the execution signal to the corresponding control unit, thereby realizing the temperature and humidity control.
  • a fourth aspect of the present invention further provides a controller 200 .
  • the controller 200 in this embodiment includes a control device 210 and a computer-readable storage medium 220 . Instructions are stored, and when the control device 210 executes the instructions, the control method for the air-conditioning system according to the third aspect of the present invention can be implemented.
  • the control device includes: an acquisition module 211 for acquiring the target humidity value and real-time humidity value of the air-conditioning system; controlling Module 212, for controlling the first heat exchanger of the air conditioning system to execute the condensation mode and the second heat exchanger of the air conditioning system to execute the evaporation mode according to the fact that the real-time humidity value is greater than the target humidity value and the fresh air system of the air conditioning system is in the fresh air dehumidification mode
  • the control module 212 is further configured to control the first heat exchanger of the air conditioning system to execute the evaporation mode and the second heat exchanger of the air conditioning system to execute the condensation mode according to the fact that the real-time humidity value is less than the target humidity value and the fresh air system is in the fresh air humidification mode.
  • the specific control system of the air-conditioning system is shown in Figure 13.
  • the entire control system is mainly composed of three parts: the input end, the electric control end, and the control actuator.
  • the specific working mode is that the input signal transmits the instructions and information to the electronic control terminal through the receiver, and the built-in calculation program processes the instructions and information, and outputs the operation mode, time control, target temperature and humidity, target fresh air volume and unachieved
  • the actuator operation command required by the target temperature and humidity is controlled by the control actuator to adjust the working mode of the first heat exchanger and the second heat exchanger, so as to adjust the indoor air-conditioning air to reach the target temperature and humidity.
  • the input end includes a user-side controller, an indoor temperature and humidity sensor, an outdoor temperature and humidity sensor, and an adsorption inlet temperature sensor.
  • the user-side controller (remote control) sends the operation mode to the device, and sets the target temperature and humidity, timing, target air volume and other commands.
  • the adsorption inlet temperature sensor is used to detect the air temperature of the adsorption side entering the adsorption runner.
  • the humidity sensor sends the current indoor and outdoor air condition information to the electric control terminal.
  • the electronic control terminal includes a mode control processor, a timer, a target temperature and humidity setter, a target air volume control and a temperature and humidity control calculation module. After receiving the information, the electronic control terminal determines the working mode, target temperature and humidity, target air volume, and the switch and opening value settings of each component to reach the target temperature and humidity through calculation processing, and finally the control actuator takes corresponding actions.
  • the control actuator includes MS expansion valves B1-B4, and the operation modes of the first heat exchanger and the second heat exchanger are controlled by adjusting the opening degrees of the MS expansion valves B1-B4, and the first heat exchanger and the second heat exchanger are adjusted at the same time.
  • the electronic expansion valve C1 on the side of the first heat exchanger and the electronic expansion valve D1 on the side of the second heat exchanger are used to adjust the evaporation temperature of the first heat exchanger and the second heat exchanger in the evaporation mode.
  • the runner drive motor E is used to adjust the rotation speed of the adsorption runner, and plays a role in regulating the air humidity control.
  • the supply air drive motor F and the exhaust air drive motor G are used to adjust the fresh air and exhaust air volume according to user instructions or automatic air volume setting.
  • the indoor target temperature and humidity can be controlled according to the continuous input signal of the input terminal, the calculation processing of the electronic control terminal and the action of the actuator.
  • a computer-readable storage medium 220 includes several instructions to make a ( It may be a single chip microcomputer, a chip, etc.) or a control device 210 (such as a processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned computer-readable storage medium 220 includes: a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc. that can store program codes. medium.

Abstract

一种转轮调湿装置及具有其的空调系统及控制方法和控制器,转轮调湿装置包括:吸附式转轮(1),吸附式转轮(1)的第一部分位于空调系统的新风系统的进风侧,吸附式转轮(1)的第二部分位于新风系统的回风侧;第一换热器(C),第一换热器(C)设置于回风侧靠近第二部分的位置,且第一换热器(C)与空调系统的冷媒回路连通,空调系统通过冷媒回路控制第一换热器制冷或制热;第二换热器(D),第二换热器(D)设置于进风侧靠近第一部分的位置,且第二换热器(D)与冷媒回路连通,空调系统通过冷媒回路控制第二换热器(D)制冷或制热。转轮调湿装置利用空调系统的能量吸收空气中的水分和释放吸附式转轮内的水分,以此达到对空调风进行调湿的目的,提高了能量利用率。

Description

转轮调湿装置及具有其的空调系统及控制方法和控制器
优先权信息
本申请要求于2021年01月20日提交至中国国家知识产权局的、申请号为202110077765.5、名称为“转轮调湿装置及具有其的空调系统及控制方法和控制器”的中国专利申请的优先权和权益,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调技术领域,具体涉及一种转轮调湿装置及具有其的空调系统及控制方法和控制器。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
随着空调技术的发展,用户对于温度调节的需求已经基本得到满足,现在,用户对于湿度的需求也越来越高。医学研究表明,当环境温度在20℃-25℃,空气的相对湿度达到45%-65%时,人的身体、思维皆处于最佳状态,无论工作、休息都可达到理想的效果。在冬季,热泵式空调在室内空气含湿量不变的情况下提高室内温度,将导致室内相对湿度的降低,经常会导致皮肤紧绷、口舌干燥、咳嗽感冒等空调病的滋生。对于传统空调而言,在夏季通过降低蒸发温度可以通过冷凝除湿的方式同时降低空气中的湿度,然而这种除湿方式在大多数工况下,无法同时将温湿度调节到舒适范围,而且由于除湿需要较低的蒸发温度,空调的能效受到限制。
针对以上述问题,有厂家采用吸附式转轮原理,结合电加热构建调湿系统,以此实现水分的吸附和解吸,分别解决夏季除湿和冬季加湿的问题。上述方案可在一定程度上解决夏冬季室内湿度的问题,但是采用电加热的方式实现转轮中水分的解吸,但是效率很低,其根本原因在于目前常用的转轮材料多为硅胶和沸石,水分解吸所需的温度达到100℃以上,常规低品位热源很难得以利用。同时,经过除湿后的空气经过高温再生后的空气温度高,需要另外搭配低温冷源对空气进行降温处理才能送往室内,使得整个空调系统的构建十分复杂。
发明内容
本发明旨在至少在一定程度上解决现有电加热式吸附转轮的效率低的技术问题。
为了实现上述目的,本发明的第一方面提供了一种转轮调湿装置,转轮调湿装置包括:吸附式转轮,吸附式转轮的第一部分位于空调系统的新风系统的进风侧,吸附式转轮的第二部分位于新风系统的回风侧;第一换热器,第一换热器设置于回风侧靠近第二部分的位置,且第一换热器与空调系统的冷媒回路连通,空调系统通过冷媒回路控制第一换热器制 冷或制热;第二换热器,第二换热器设置于进风侧靠近第一部分的位置,且第二换热器与冷媒回路连通,空调系统通过冷媒回路控制第二换热器制冷或制热。
本发明的转轮调湿装置利用空调系统的能量吸收和释放空气中的水分,以此达到对空调风进行调湿的目的,提高了能量利用率。具体地,空调系统通过第一换热器和第二换热器对吸附式转轮进行制冷或者制热,以空调系统的新风系统为新风调湿为例,当空调系统控制第一换热器制冷且第二换热器制热时,转轮调湿装置对进入室内的新风进行加湿,当空调系统控制第一换热器制热且第二换热器制冷时,转轮调湿装置对进入室内的新风进行除湿,以此达到调节室内空调风的湿度的目的。
本发明的第二方面提供了一种空调系统,空调系统包括:冷媒回路,冷媒回路由压缩机、室外换热器、节流装置、室内换热器依次连接形成,空调系统的室内机空气回路与冷媒回路热接触;新风系统,新风系统包括根据本发明第一方面的转轮调湿装置,转轮调湿装置与冷媒回路和所述室内机空气回路连接。
根据本发明的一个实施例,新风系统的回风侧设置有与转轮调湿装置的吸附式转轮连通的室内回风管和室外排风管,转轮调湿装置的第一换热器设置于室内回风管和/或室外排风管,新风系统的进风侧设置有与吸附式转轮连通的室外进风管和室内送风管,转轮调湿装置的第二换热器设置于室外进风管。
根据本发明的一个实施例,室内换热器包括室内制热换热器和室内制冷换热器,压缩机和室外换热器构成室外机,节流装置、室内制热换热器和室内制冷换热器构成室内机,冷媒回路包括连通室外机与室内机的三根冷媒管和冷媒分配器,冷媒回路通过冷媒分配器控制室内制热换热器、第一换热器、室内制冷换热器和第二换热器内的冷媒流向和流量。
根据本发明的一个实施例,冷媒分配器包括连通室外机与第一换热器的第一调节阀模组以及连通室外机与第二换热器的第二调节阀模组。
本发明的第三方面还提供了一种空调系统的控制方法,空调系统的控制方法由本发明的第二方面的空调系统来实施,控制方法包括:获取空调系统的目标湿度值和实时湿度值;根据实时湿度值大于目标湿度值,且空调系统的新风系统为新风除湿模式,控制空调系统的第一换热器执行冷凝模式,且空调系统的第二换热器执行蒸发模式;根据实时湿度值小于目标湿度值,且新风系统为新风加湿模式,控制空调系统的第一换热器执行蒸发模式,且空调系统的第二换热器执行冷凝模式。
根据本发明的一个实施例,控制空调系统的第一换热器执行冷凝模式还包括:获取空调系统的吸附式转轮的吸附侧的目标温度值和实时温度值;根据实时温度值大于目标温度值,控制第一换热器的第一调节阀模组的开度减小;根据实时温度值小于目标温度值,控制第一换热器的第一调节阀模组的开度增加。
根据本发明的一个实施例,控制空调系统的第二换热器执行冷凝模式还包括:获取空调系统的吸附式转轮的吸附侧的目标温度值和实时温度值;根据实时温度值大于目标温度值,控制第二换热器的第二调节阀模组的开度减小;根据实时温度值小于目标温度值,控制第二换热器的第二调节阀模组的开度增加。
根据本发明的一个实施例,控制方法还包括:根据实时湿度值仍大于目标湿度值,控制第二换热器的第二调节阀模组的开度增加;根据实时湿度值仍小于目标湿度值,控制第一换热器的第一调节阀模组的开度增加。
本发明的第四方面还提供了一种控制器,控制器包括计算机可读存储介质和控制装置,计算机可读存储介质中存储有指令,当控制装置执行指令时实现根据本发明的第三方面的空调系统的控制方法,控制装置包括:获取模块,用于获取空调系统的目标湿度值和实时湿度值;控制模块,用于根据实时湿度值大于目标湿度值,且空调系统的新风系统为新风除湿模式,控制空调系统的第一换热器执行冷凝模式,且空调系统的第二换热器执行蒸发模式;控制模块还用于根据实时湿度值小于目标湿度值,且新风系统为新风加湿模式,控制空调系统的第一换热器执行蒸发模式,且空调系统的第二换热器执行冷凝模式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明一个实施例的转轮调湿装置的结构示意图;
图2为本发明一个实施例的空调系统的结构示意图;
图3为本发明一个实施例的新风除湿模式在焓湿图上的工作流程曲线;
图4为本发明一个实施例的新风加湿模式在焓湿图上的工作流程曲线;
图5为图2所示空调系统的系统图;
图6为图5所示空调系统处于主制冷模式的结构示意图;
图7为图5所示空调系统处于主制热模式的结构示意图;
图8为本发明另一个实施例的转轮调湿装置的结构示意图;
图9为本发明一个实施例的空调系统的控制方法的流程图;
图10为本发明另一个实施例的空调系统的控制方法的流程图;
图11为本发明一个实施例的控制器的结构框图;
图12为本发明一个实施例的空调系统的控制装置的结构框图;
图13为本发明另一个实施例的空调系统的控制装置的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,本发明转轮调湿装置不仅仅局限应用于三管制热回收多联机系统,还适用于其他类型的空调系统,这种调整属于本发明转轮调湿装置的保护范围。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”以及“具有”是包含性的,并且因此指明所陈述的特征、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、元件、部件、和/或它们的组合。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“上”、“内”、“端”、“外”、“侧”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中机构的不同方位。例如,如果在图中的机构翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。机构可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应地进行解释。
需要说明的是,本申请实施例中所述的“新风调湿”是指室外新风经过转轮调湿装置后送入室内,且室内回风经过转轮调湿装置后排至室外,本申请实施例中所述的“回风调湿”是指室外新风经过转轮调湿装置后排至室外,且室内回风经过转轮调湿装置后送至室内。
如图1所示,本发明的第一方面提供了一种转轮调湿装置,转轮调湿装置包括吸附式转轮E、第一换热器C和第二换热器D,吸附式转轮E的第一部分位于空调系统的新风系统的进风侧,吸附式转轮E的第二部分位于新风系统的回风侧,第一换热器C设置于回风侧靠近吸附式转轮E的第二部分的位置,且第一换热器C与空调系统的冷媒回路连通,空调系统通过冷媒回路控制第一换热器C制冷或制热,第二换热器D设置于进风侧靠近吸附式转轮E的第一部分的位置,且第二换热器D与冷媒回路连通,空调系统通过冷媒回路控制第二换热器D制冷或制热。
在本实施例中,本发明提出的转轮调湿装置可以利用空调系统产生的低温热源进行水分的吸附和解吸,吸附式转轮E所用的材料包括但不局限于硅胶,分子筛,聚丙烯酸钠,MOF(金属一有机骨架)或介孔硅胶,吸附式转轮E的水分吸收侧(根据调湿的需求转变水分吸收侧的具体位置)通过放置一块处于蒸发模式的换热器制冷提高吸入侧空气的相对湿度,提高水分吸收量,同时在水分释放侧放置一块处于冷凝模式的换热器加热空气,实现吸附式转轮E再生水分的效果。本申请的实施例通过对空调系统能量的充分利用,不需要使用额外的电加热装置,从而显著提升整个空调系统的能效,同时解决了空调系统对湿度控制不佳的问题,实现温湿度独立控制的效果。
如图2所示,本发明实施例所提出的空调系统100的结构示意图,空调系统100包括冷媒回路和新风调湿模式的新风系统,冷媒回路由压缩机10、室外换热器20、节流装置、室内制热换热器30和室内制冷换热器40依次连接形成,新风系统包括根据本发明第一方面的转轮调湿装置,图2中所示部件标记为:A、空调系统的室外机;B、空调系统的MS冷媒分配器;C、转轮调湿装置的第一换热器;D、转轮调湿装置的第二换热器;E、转轮 调湿装置的吸附式转轮;F、转轮调湿装置的送风侧风机;G、转轮调湿装置的排风侧风机;OA、室外新风;RA、室内回风;SA、室内送风;EA、室外排风。
具体地,新风系统的回风侧设置有与吸附式转轮E连通的室内回风管和室外排风管,第一换热器C设置于室内回风管和/或室外排风管,新风系统的进风侧设置有与吸附式转轮E连通的室外进风管和室内送风管,第二换热器D设置于室外进风管和/或室内送风管。
上述空调系统是一种三管制热回收并可实现同时制冷制热的多联机系统。压缩机10和室外换热器20构成室外机,节流装置、室内制热换热器30和室内制冷换热器40构成室内机,冷媒回路包括连通室外机与室内机的三根冷媒管和MS冷媒分配器B,冷媒回路通过MS冷媒分配器B控制室内制热换热器30、第一换热器C、室内制冷换热器40和第二换热器D内的冷媒流向和流量。具体地,三根冷媒管分别为高压气管,高压液管和低压液管,这三根冷媒管内的冷媒在MS冷媒分配器B中根据用户的需求将相应温度的冷媒送到室内指定的换热器中。
转轮调湿装置根据室内外空气条件,通过控制第一换热器C、第二换热器D的工作模式和工作温度,实现除湿或加湿多种工作模式的切换:
1)新风除湿模式
如图2所示,室外新风OA通往吸湿区域,室外新风OA首先经过第二换热器D(处于蒸发模式),室外新风OA被降温至露点,甚至通过第二换热器D的冷凝除湿将室外新风OA的湿度降低至小于露点的一定值,然后通过吸附式转轮E后被充分除湿达到设定状态点,最后被送风侧风机F吸引,送往室内空间。另一侧的室内回风RA在回风过程中被第一换热器C(处于冷凝模式)加热后,经过吸附式转轮E后被排风侧风机G吸引并排出室外,该过程中被加热后的回风将吸附式转轮E中存储的水分排出室外,如此完成吸附式转轮E的完整工作循环。
如图3所示,室外新风OA通过第二换热器D冷凝除湿至OA1,然后通过吸附式转轮E的区域被二次除湿至送风状态点SA送入室内。室内回风RA通过第一换热器C被加热至RA1,然后通过吸附式转轮E的解吸区域再生,水分随室外排风EA排出室外。除湿侧的室外新风OA通过调节第二换热器D的蒸发温度控制OA1的状态,使得吸附式转轮E所承担的除湿量恒定,然后结合再生侧通过调节第一换热器C的冷凝温度控制RA1的状态,以及吸附式转轮E的转速从而控制室外排风SA的状态。
2)新风加湿模式
如图2所示,室外新风OA通往吸湿区域,室外新风OA首先经过第二换热器D(处于冷凝模式)被加热,经过吸附式转轮E后被送风侧风机F吸引送入室内,该过程中被加热的室外新风OA将吸附式转轮E中储存的水分送入室内,实现加湿。另一侧的室内空气RA在回风过程中被第一换热器C(处于蒸发模式)被降温,室内空气RA的相对湿度被提高至100%区域左右,使得回风中的水分更容易被吸附式转轮E所吸附,然后被排风侧风机G吸引并排至室外,如此完成吸附式转轮E的完整工作循环。
如图4所示,室外新风OA通过第二换热器D被加热至OA1,然后通过吸附式转轮E的解吸区域被加湿至送风状态点SA送入室内。室内回风RA通过第一换热器C被降温至RA1, 然后通过吸附式转轮E的吸附区域收集水分,然后随室外排风EA排出室外。吸湿侧的室内回风RA通过调节第一换热器C的蒸发温度控制RA1的状态,使得进入吸附式转轮E的吸附区域的空气相对湿度接近饱和,从而提高吸湿效率。然后结合加湿侧的室外新风OA通过调节第二换热器D的冷凝温度控制OA1的状态,以及吸附式转轮E的转速从而控制室内送风SA的状态。
图5位本发明所涉及的空调系统的结构示意图,冷媒分配器B包括连通室外机A与第一换热器C的第一调节阀模组以及连通室外机A与第二换热器D的第二调节阀模组,图中所示主要部件标记为:A、室外机;B、冷媒分配器;B1~B4、电子膨胀阀;C、第一换热器;C1、电子膨胀阀;C2、换热器本体;D、第二换热器;D1、电子膨胀阀;D2、换热器本体。其中,室外机A根据室外工况切换主制冷和主制热模式,通过调节冷媒分配器B中电子膨胀阀B1~B4的开度切换通往室内机的冷媒流向,保证第一换热器C和第二换热器D按照无水调湿模块所需要的制冷或制热模式工作,同时通过室内机B侧的电子膨胀阀C1和电子膨胀阀D1调节所需的蒸发温度和冷凝温度,从而调节通过第一换热器C和第二换热器D的空气温度,实现水蒸气在吸附式转轮E的不同区域间的正常传递。电子膨胀阀B1、电子膨胀阀B2和电子膨胀阀C1组成第一换热器C的第一调节阀模组,电子膨胀阀B3、电子膨胀阀B4和电子膨胀阀D1组成第二换热器D的第二调节阀模组。
图6所示为空调系统处于主制冷模式时的冷媒系统图。其中,室外换热器A4为冷凝器,MS冷媒分配器B中的电子膨胀阀B1开启,电子膨胀阀B2关闭,室内机B中的第一换热器C处于冷凝模式,电子膨胀阀B3关闭,电子膨胀阀B4开启,第二换热器D处于蒸发模式,此时,转轮调湿装置处于新风加湿模式。此外,通过切换电子膨胀阀B1~B4的开度,使得第一换热器C和第二换热器D的工作模式发生变化,从而使得转轮调湿装置的工作模式可切换为图7所示的新风除湿模式。同时,通过调节第一换热器C前的电子膨胀阀C1的开度以及第二换热器D前的电子膨胀阀C2的开度,可以对第一换热器C和第二换热器D中的冷媒温度进行控制,从而实现调节湿度和温度的效果。
需要说明的是,上述实施例的转轮调湿装置中有两个换热器,但并不是对转轮调湿装置中换热器数量的限制,如图8,在本申请的其他实施例中,还可以在室内侧可以配置第三个换热器(换热器11、换热器2和换热器3),用于对送风空气温度进行进一步控制和调节,这种调整属于本申请实施例的保护范围。另外,上述实施例阐述了新风调湿模式的新风系统,回风调湿模式的换风系统同样属于本申请实施例的保护范围,下面通过回风调湿模式的换风系统进行详细阐述:
回风加湿的换风系统的回风除湿模式
如图8所示,室内回风RA通往室内的吸湿区域,室内回风RA首先通过换热器2(处于蒸发模式)被冷却至露点,甚至通过冷凝除湿将空气湿度降低至一定值,再通过吸附式转轮1后被充分除湿达到设定状态点,最后经过送风侧风机5吸引被送往室内空间的室内送风SA。另一侧的室外新风OA通过换热器3(处于冷凝模式)被加热后,经过吸附式转轮1后被排风侧风机4吸引被排出室外的室外排风EA,该过程中被加热后的新风将吸附式转轮1中存储的水分排出室外,如此完成吸附式转轮1的完整工作循环。
回风加湿的换风系统的回风加湿模式
室内回风RA通往室内的放湿区域,室内回风RA首先通过换热器2(处于冷凝模式)被加热,经过吸附式转轮1后被送风侧风机5吸引被送入室内,该过程中被加热的室内回风RA将吸附式转轮E中储存的水分送入室内的室内送风SA,实现加湿。另一侧室外新风OA通过换热器3(处于蒸发模式)被降温,相对湿度被提高至100%区域左右,使得室外新风OA中的水分更容易被吸附式转轮1所吸附,然后通过排风侧风机4排至室外,如此完成吸附式转轮1的完整工作循环。
如图9所示,根据本发明第三方面的实施例,本发明的实施例提供了一种空调系统的控制方法,控制方法包括:S10,获取空调系统的目标湿度值和实时湿度值;S12,根据实时湿度值大于目标湿度值,且空调系统的新风系统为新风除湿模式,控制空调系统的第一换热器执行冷凝模式,且空调系统的第二换热器执行蒸发模式;S14,根据实时湿度值小于目标湿度值,且新风系统为新风加湿模式,控制空调系统的第一换热器执行蒸发模式,且空调系统的第二换热器执行冷凝模式。
电子膨胀阀B1、电子膨胀阀B2和电子膨胀阀C1组成第一换热器C的第一调节阀模组,电子膨胀阀B3、电子膨胀阀B4和电子膨胀阀D1组成第二换热器D的第二调节阀模组。
根据本发明的一个实施例,控制空调系统的第一换热器执行冷凝模式还包括:获取空调系统的吸附式转轮的吸附侧的目标温度值和实时温度值;根据实时温度值大于目标温度值,控制第一换热器的第一调节阀模组的开度减小,优选地,控制第一调节阀模组中电子膨胀阀C1的开度减小;根据实时温度值小于目标温度值,控制第一换热器的第一调节阀模组的开度增加,优选地,控制第一调节阀模组中电子膨胀阀C1的开度增加。
根据本发明的一个实施例,控制空调系统的第二换热器执行冷凝模式还包括:获取空调系统的吸附式转轮的吸附侧的目标温度值和实时温度值;根据实时温度值大于目标温度值,控制第二换热器的第二调节阀模组的开度减小,优选地,控制第二调节阀模组中电子膨胀阀D1的开度减小;根据实时温度值小于目标温度值,控制第二换热器的第二调节阀模组的开度增加,优选地,控制第二调节阀模组中电子膨胀阀D1的开度增加。
根据本发明的一个实施例,控制方法还包括:根据实时湿度值仍大于目标湿度值,控制第二换热器的第二调节阀模组的开度增加,优选地,控制第二调节阀模组中电子膨胀阀B4的开度增加;根据实时湿度值仍小于目标湿度值,控制第一换热器的第一调节阀模组的开度增加,优选地,控制第一调节阀模组中电子膨胀阀B1的开度增加。
为了详细以及完整的阐述本发明第三方面的空调系统的控制方法,图10公布了空调系统的控制方法的详细流程图,其中,图10公布的空调系统的控制方法的具体步骤已经在上述实施例中做了详细介绍,下面对图10公布的空调系统的控制方法作简答的介绍:
运行开始后根据用户输入,设定运行模式,换气风量和除湿/加湿运行模式。如果用户选择自动模式,则通过新风湿度、回风湿度和除湿目标湿度自动判定转轮调湿装置的运行模式。
以加湿模式为例,控制器根据用户设定的湿度目标值、新风湿度传感器和回风温湿度传感器检测到吸附式转轮的吸附入口温度T2和送风湿度W2。同时,第一换热器和第二换 热器分别工作于蒸发模式和冷凝模式,相应的调节MS冷媒分配器中调节阀模组B1~B4的开度。然后,控制器的温湿度控制模块根据湿度目标值与湿度传感器的检测值进行计算,按照判定条件动作,并将执行信号发送至相应的控制单元,由此实现温湿度的控制。
如图11和图12所示,本发明的第四方面还提供了一种控制器200,本实施例的控制器200包括控制装置210和计算机可读存储介质220,计算机可读存储介质220中存储有指令,当控制装置210执行指令时能够实现根据本发明的第三方面的空调系统的控制方法,控制装置包括:获取模块211,用于获取空调系统的目标湿度值和实时湿度值;控制模块212,用于根据实时湿度值大于目标湿度值,且空调系统的新风系统为新风除湿模式,控制空调系统的第一换热器执行冷凝模式,且空调系统的第二换热器执行蒸发模式;控制模块212还用于根据实时湿度值小于目标湿度值,且新风系统为新风加湿模式,控制空调系统的第一换热器执行蒸发模式,且空调系统的第二换热器执行冷凝模式。
空调系统的具体控制系统如图13所示,整个控制系统主要由输入端、电控端、控制执行器三部分构成。具体的工作模式为,输入端信号通过接收器将指令和信息输送至电控端,由内置的计算程序处理指令和信息,并输出运行模式、时间控制、目标温湿度、目标新风量和未达到目标温湿度所需的执行器运行指令,并由控制执行器调节第一换热器、第二换热器的工作模式,以此调节室内的空调风达到目标温湿度。
输入端包括用户侧控制器、室内温湿度传感器、室外温湿度传感器和吸附入口温度传感器。用户侧控制器(遥控器)向装置发出运行模式,设定目标温湿度、定时、目标风量等指令,吸附入口温度传感器用于检测进入吸附式转轮的吸附侧空气温度,同时由室内外温湿度传感器发出当前室内外空气条件信息至电控端。
电控端包括模式控制处理器、计时器、目标温湿度设定器、目标风量控制和温湿度控制计算模块。电控端在接收到信息后通过计算处理确定工作模式、目标温湿度、目标风量以及达到目标温湿度各部件的开关和开度值设定,最后由控制执行器采取相应的动作。
控制执行器包括MS膨胀阀B1~B4,通过调节MS膨胀阀B1~B4的开度来控制第一换热器和第二换热器的运行模式,同时调节第一换热器和第二换热器在冷凝运行模式下的冷凝温度。第一换热器侧的电子膨胀阀C1、第二换热器侧的电子膨胀阀D1,用于调节第一换热器和第二换热器在蒸发模式下的蒸发温度。转轮驱动电机E用于调节吸附式转轮的转速,在出风湿度控制中起到调节作用。送风驱动电机F和排风驱动电机G用于根据用户指令或者自动风量设定调节新风和排风风量。在转轮调湿装置正常工作过程中,根据输入端不断输入的信号,电控端的计算处理以及执行器的动作实现对室内目标温湿度的控制。
以上结合附图详细描述了本发明例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个计算机可读存储介质220中,包括若干指令用以使得一个(可以是单片机、芯片等)或控制装置210(如处理器)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质220包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种转轮调湿装置,其特征在于,所述转轮调湿装置包括:
    吸附式转轮,所述吸附式转轮的第一部分位于空调系统的新风系统的进风侧,所述吸附式转轮的第二部分位于所述新风系统的回风侧;
    第一换热器,所述第一换热器设置于所述回风侧靠近所述第二部分的位置,且所述第一换热器与所述空调系统的冷媒回路连通,所述空调系统通过所述冷媒回路控制所述第一换热器制冷或制热;
    第二换热器,所述第二换热器设置于所述进风侧靠近所述第一部分的位置,且所述第二换热器与所述冷媒回路连通,所述空调系统通过所述冷媒回路控制所述第二换热器制冷或制热。
  2. 一种空调系统,其特征在于,所述空调系统包括:
    冷媒回路,所述冷媒回路由压缩机、室外换热器、节流装置、室内换热器依次连接形成,所述空调系统的室内机空气回路与所述冷媒回路热接触;
    新风系统,所述新风系统包括根据权利要求1所述的转轮调湿装置,所述转轮调湿装置与所述冷媒回路和所述室内机空气回路连接。
  3. 根据权利要求2所述的空调系统,其特征在于,所述新风系统的回风侧设置有与所述转轮调湿装置的吸附式转轮连通的室内回风管和室外排风管,所述转轮调湿装置的第一换热器设置于所述室内回风管和/或所述室外排风管,所述新风系统的进风侧设置有与所述吸附式转轮连通的室外进风管和室内送风管,所述转轮调湿装置的第二换热器设置于所述室外进风管。
  4. 根据权利要求2所述的空调系统,其特征在于,所述室内换热器包括室内制热换热器和室内制冷换热器,所述压缩机和所述室外换热器构成室外机,所述节流装置、所述室内制热换热器和所述室内制冷换热器构成室内机,所述冷媒回路包括连通所述室外机与所述室内机的三根冷媒管和冷媒分配器,所述冷媒回路通过所述冷媒分配器控制所述室内制热换热器、所述第一换热器、所述室内制冷换热器和所述第二换热器内的冷媒流向和流量。
  5. 根据权利要求4所述的空调系统,其特征在于,所述冷媒分配器包括连通所述室外机与所述第一换热器的第一调节阀模组以及连通所述室外机与所述第二换热器的第二调节阀模组。
  6. 一种空调系统的控制方法,其特征在于,所述空调系统的控制方法由权利要求2至5中任一项所述的空调系统来实施,所述控制方法包括:
    获取所述空调系统的目标湿度值和实时湿度值;
    根据所述实时湿度值大于所述目标湿度值,且所述空调系统的新风系统为新风除湿模 式,控制所述空调系统的第一换热器执行冷凝模式,且所述空调系统的第二换热器执行蒸发模式;
    根据所述实时湿度值小于所述目标湿度值,且所述新风系统为新风加湿模式,控制所述空调系统的第一换热器执行蒸发模式,且所述空调系统的第二换热器执行冷凝模式。
  7. 根据权利要求6所述的空调系统的控制方法,其特征在于,所述控制所述空调系统的第一换热器执行冷凝模式还包括:
    获取所述空调系统的吸附式转轮的吸附侧的目标温度值和实时温度值;
    根据所述实时温度值大于所述目标温度值,控制所述第一换热器的第一调节阀模组的开度减小;
    根据所述实时温度值小于所述目标温度值,控制所述第一换热器的第一调节阀模组的开度增加。
  8. 根据权利要求6所述的空调系统的控制方法,其特征在于,所述控制所述空调系统的第二换热器执行冷凝模式还包括:
    获取所述空调系统的吸附式转轮的吸附侧的目标温度值和实时温度值;
    根据所述实时温度值大于所述目标温度值,控制所述第二换热器的第二调节阀模组的开度减小;
    根据所述实时温度值小于所述目标温度值,控制所述第二换热器的第二调节阀模组的开度增加。
  9. 根据权利要求6所述的空调系统的控制方法,其特征在于,所述控制方法还包括:
    根据所述实时湿度值仍大于所述目标湿度值,控制所述第二换热器的第二调节阀模组的开度增加;
    根据所述实时湿度值仍小于所述目标湿度值,控制所述第一换热器的第一调节阀模组的开度增加。
  10. 一种控制器,其特征在于,所述控制器包括计算机可读存储介质和控制装置,所述计算机可读存储介质中存储有指令,当所述控制装置执行所述指令时实现根据权利要求6所述的空调系统的控制方法,所述控制装置包括:
    获取模块,用于获取所述空调系统的目标湿度值和实时湿度值;
    控制模块,用于根据所述实时湿度值大于所述目标湿度值,且所述空调系统的新风系统为新风除湿模式,控制所述空调系统的第一换热器执行冷凝模式,且所述空调系统的第二换热器执行蒸发模式;
    所述控制模块还用于根据所述实时湿度值小于所述目标湿度值,且新风系统为新风加湿模式,控制所述空调系统的第一换热器执行蒸发模式,且所述空调系统的第二换热器执行冷凝模式。
PCT/CN2021/118129 2021-01-20 2021-09-14 转轮调湿装置及具有其的空调系统及控制方法和控制器 WO2022156238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110077765.5A CN113048584B (zh) 2021-01-20 2021-01-20 转轮调湿装置及具有其的空调系统及控制方法和控制器
CN202110077765.5 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022156238A1 true WO2022156238A1 (zh) 2022-07-28

Family

ID=76508310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118129 WO2022156238A1 (zh) 2021-01-20 2021-09-14 转轮调湿装置及具有其的空调系统及控制方法和控制器

Country Status (2)

Country Link
CN (1) CN113048584B (zh)
WO (1) WO2022156238A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048584B (zh) * 2021-01-20 2022-12-23 广东美的暖通设备有限公司 转轮调湿装置及具有其的空调系统及控制方法和控制器
CN113606685B (zh) * 2021-08-09 2022-07-12 珠海格力电器股份有限公司 蒸发空调设备及机房空调系统
CN113654127B (zh) * 2021-08-20 2022-09-27 美的集团武汉暖通设备有限公司 空调器及其控制方法
CN114413309B (zh) * 2021-11-30 2023-03-07 华中科技大学 一种基于pemfc的冷-热-电-湿联供系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201028884Y (zh) * 2007-05-12 2008-02-27 珠海格力电器股份有限公司 可以同时制冷、制热和制热水的多联空调机组
US7805961B2 (en) * 2004-12-28 2010-10-05 Lg Electronics Inc. Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
CN102878613A (zh) * 2012-09-20 2013-01-16 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN105115063A (zh) * 2015-10-14 2015-12-02 珠海格力电器股份有限公司 空调系统
CN108443960A (zh) * 2018-02-07 2018-08-24 同济大学 一种带新风功能的多联式空调机组
CN111780273A (zh) * 2020-07-09 2020-10-16 中国建筑科学研究院有限公司 防结霜新风热回收装置
CN113048584A (zh) * 2021-01-20 2021-06-29 广东美的暖通设备有限公司 转轮调湿装置及具有其的空调系统及控制方法和控制器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200979258Y (zh) * 2006-04-12 2007-11-21 广东美的电器股份有限公司 三管制热回收空调系统
CN201096388Y (zh) * 2007-06-06 2008-08-06 重庆大学 一种多功能空调装置
WO2013026255A1 (zh) * 2011-08-25 2013-02-28 Ma Jun 蒸汽压缩式制冷与转轮除湿耦合空调装置
CN102635906A (zh) * 2012-05-15 2012-08-15 吕智 热泵再生转轮式全热回收调湿控温新风机组及其控制方法
CN103353147B (zh) * 2013-06-28 2016-05-25 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统及温湿度独立控制方法
CN103900184B (zh) * 2014-04-25 2018-12-04 荣国华 水冷媒三管制空调系统
CN105465916B (zh) * 2015-12-21 2018-10-09 珠海格力电器股份有限公司 空调系统
US11320161B2 (en) * 2016-06-08 2022-05-03 Semco Llc Air conditioning with recovery wheel, dehumidification wheel, and cooling coil
CN107228439B (zh) * 2017-06-29 2023-07-11 广东美的暖通设备有限公司 多联机系统及其控制方法
CN109059146B (zh) * 2018-06-28 2020-08-14 大连理工大学 一种采用吸附式转轮的净化空气循环热泵系统
CN111486575B (zh) * 2020-04-29 2022-03-29 广东美的暖通设备有限公司 空调系统、水力模块以及水力模块的防凝露控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805961B2 (en) * 2004-12-28 2010-10-05 Lg Electronics Inc. Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
CN201028884Y (zh) * 2007-05-12 2008-02-27 珠海格力电器股份有限公司 可以同时制冷、制热和制热水的多联空调机组
CN102878613A (zh) * 2012-09-20 2013-01-16 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN105115063A (zh) * 2015-10-14 2015-12-02 珠海格力电器股份有限公司 空调系统
CN108443960A (zh) * 2018-02-07 2018-08-24 同济大学 一种带新风功能的多联式空调机组
CN111780273A (zh) * 2020-07-09 2020-10-16 中国建筑科学研究院有限公司 防结霜新风热回收装置
CN113048584A (zh) * 2021-01-20 2021-06-29 广东美的暖通设备有限公司 转轮调湿装置及具有其的空调系统及控制方法和控制器

Also Published As

Publication number Publication date
CN113048584A (zh) 2021-06-29
CN113048584B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2022156238A1 (zh) 转轮调湿装置及具有其的空调系统及控制方法和控制器
WO2022156239A1 (zh) 转轮调湿装置及具有其的空调系统及控制方法和控制器
CN113432210B (zh) 新风除湿一体机
CN112254209A (zh) 一种两管制冷凝再热新风系统及其控制方法
CN103090484B (zh) 一种温湿度独立控制空调系统及其使用方法
WO2014206012A1 (zh) 三管制全热处理多联机空调系统及温湿度独立控制方法
WO2020168686A1 (zh) 一种能够改善室内湿度环境的空调室内机
CN110173776B (zh) 一种预冷式转轮调湿的新风处理装置
CN112815567A (zh) 空调器及其控制方法
CN105823171B (zh) 一种增强除湿功能的空调系统
CN108826541A (zh) 一种带回热器的除湿换热器热泵空调系统及其运行方法
CN107575967A (zh) 一种适用于全年工况的热泵空调系统及其运行方法
JPH09329371A (ja) 空調システム
CN105737286B (zh) 带湿度调节功能的空调系统及其调湿溶液再生的控制方法
CN106440049A (zh) 一种无水加湿空调及加湿方法
CN211503040U (zh) 热湿比可调的溶液辅助式热泵系统
CN112229003A (zh) 一种空调系统及其控制方法
CN213747158U (zh) 一种空调系统
CN109506311A (zh) 一种复叠式双冷源温湿度独立控制空调系统
CN206648170U (zh) 一种无水加湿空调
CN112963907B (zh) 一种除湿换热器耦合压缩热泵的热湿独立控制系统
CN112555982A (zh) 一种温湿双控空调系统
US20240117974A1 (en) Rotary wheel humidity regulating device, air conditioning system having same, control method, and controller
CN114353181A (zh) 具有热回收功能的空调机组及其模式控制方法和设备
CN114198808A (zh) 一种再热型被动式环控一体机机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202305546R

Country of ref document: SG

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/11/2023)